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- An invariant form for the prior probability in
estimation problems

By HaroLp JeEFFREYS, F.R.S.

(Received 23 November 1945)

It is shown that a certain differential form depending on the values of the parameters in a
law of chance is invariant for all transformations of the parameters when the law is differen-
tiable with regard to all parameters. For laws containing a location and a scale parameter
a form with a somewhat restricted type of invariance is found even when the law is not
everywhere differentiable with regard to the parameters. This form has the properties
required to give a general rule for stating the prior probability in a large class of estimation
problems.

1. The consistency of induction. The consistency of pure mathematics has never
been in serious doubt, but work mostly done in the present century has shown that
a definite proof that pure mathematics is consistent is a matter of considerable
difficulty. Nevertheless, both the creators and the users of pure mathematics have
proceeded on the hypothesis that consistency at least cannot be disproved. Suitable
axioms for the theory of real numbers have been stated, and if those of any extension
can be formulated in terms of those of real numbers that has been held to be sufficient
justification.

The usual attitude towards generalization from experience is quite different. It
is taken for granted that it is possible, but when it comes to actual application there
is seldom any attempt to state formal rules, and different workers proceed by methods
that lead to different conclusions from the same data. Each is sure that there is only
one right method, but they disagree about the fundamental principles.

The object of my Theory of Probability (1939) is to construct a system whose most
important properties should be that (1) on the same evidence the probabilities of a
given set of propositions shall have a unique order, (2) the axioms of the system
shall not deny any law capable of being stated as a prediction concerning observa-
tions, (3) with sufficient observational evidence any such law can be established with
a probability approaching certainty. Property (1) is the assertion that a consistent,
scheme is possible, but merely making this assertion does not guarantee that a given
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scheme is consistent. It does make it possible to derive theorems by equating prob-
abilities found in different ways; and if, in spite of all efforts, probabilities found in
different ways are different it makes it impossible to accept the situation as satis-
factory. A theorem that has been established suffices to establish consistency over
a large part of the subject, namely, that if ¢, and g, are two alternative hypotheses,
p,; and p, two sets of observational data, then the posterior probabilities of ¢; and’
¢s, given the same prior probabilities, are in the same ratio whether p, is taken into
account and then p,, the orderreversed, or both allowed forat once. The proof depends
on supposing that the product rule for probabilities holds for the likelihoods, but
this has never been questioned. It follows at once from the definition if the prob-
ability of p,, given p,q,H, is the same as the probability of p,, given ¢, H alone;
that is, if the likelihoods are chances.* It is not obviously true in general, but it does
follow that, if the product rule for probabilities is consistent for likelihoods, no
inconsistency can arise through the principle of inverse probability.

The question then arises, can any general rule be laid down for assessing the
prior probability itself? In existing theory there is a principle that specifies it for
any quantity such as a standard error, where it might be equally reasonable to
regard some power of the parameter as fundamental; the only rule that is invariant
(except for an irrelevant constant) for such changes is the do /o rule. In other cases
uniform distribution is used in estimation problems, and various more or less
satisfactory rules are adopted in significance tests, but no general rule is available,
and the absence of one makes further extensions difficult. For errors satisfying a
Pearson law of Type VII, for instance, it is natural to use the do /o rule for the scale
parameter and uniform distribution for the location parameter, but there is no
definite rule to say what should be taken for the index—or, to put it in another way,
what function of the index should be taken to have uniform prior probability
distribution.

‘An attempt to give a general rule will require a new set of conditions. As long as
each type of problem is treated separately, no problem of consistency arises; the
prior probability in one type is irrelevant to that in another, and there is no more
to be said. But it may turn out (1) that no general rule can be used consistently,
(2) that there may be a choice of several, or that (3) a general rule may be self-
consistent but contrary to the fundamental principles that we are trying to express
in our formalism, or (4) conflict with other less fundamental principles that we are
not prepared to abandon lightly. A satisfactory rule must, in particular, provide
for the distinction between problems of estimation and significance.

2. Invariants expressing the difference between two distributions of chance. For
simplicity take the laws as referring to one variable z; let the respective chances
that  is not greater than an assigned value be P, P’. Then consider the integrals

I = j (JIP' —dP)?, I, = flog?ll;,d(P’—P), (1)

* This is used in the proof of Theorem 9 (1939, p. 24) but has escaped explicit statement.
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defined in the Stieltjes manner, by taking 8 P, 8P’ for the same interval 8z, forming
the approximating sums, and letting the intervals of # tend to zero. It is obvious
from the form of these integrals, since they depend only on the distribution of P, P’,
that they are invariant for all transformations of the parameters in the laws and
also for all non-singular transformations of z, the range of integration being over the
range permitted to x. Further, they are both positive definite. They therefore provide
measures of the discrepancy between the two laws.

The greatest possible discrepancies between the laws will be when dP’ = 0.in
all ranges where P varies, and conversely. In that case I, = 2 and I, is infinite.
The same extreme values occur if P is continuous as a function of « but P’ varies
only at isolated points. ‘

These are not the only invariants with similar properties; any integral of the form

J | (dP'ym— (dP)ym |m (2)

would behave similarly; but I, and I, are apparently the only ones that are ordinarily
of the second order in the differences of the parameters in the laws when these
differences are small. '
If the range of « is subdivided and p, = 8P, p, = 6P, for the rth interval, and if
p, is differentiable with regard to all parameters in the law, then to the first order

NOPL) = (OF,) = Jp, —lp, = 5—35 (pr=2,)s 3)
Pl
lOg 881; = % (p;'_pr)’ (4)

and to the second order
2
- hm2~( =P [ lim x PP pp’) 5)

For laws referring to more than one variable only formal changes are needed. The
limit taken corresponds to (8,)pmax—>0. Now if the P, law depends on parameters
ai (?: = 1 tO m), and P;. on OL¢+AOL,;,

op; o,
A —hmzpr(aa Ada )(6 kAoc,r)

= gikA“iA“k’ (6)

. 1 9p} opy
where = lim LA
e = oy da; da

(7)

Hence for small variations of the parameters I,, and therefore I;, have the form of
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the square of an element of distance in curvilinear co-ordinates. If we transform
to any other parameters a;, I, is unaltered, and

I, = gy Ao Aoy, (8)
, oa,; 0o,
= zka aoalf’ 9)
I all = {1 g 5&; (10)
But docldocz...docm=}é“—f day ... day,
oo
i 93-111}* ;g
= {208 do ... de,. 11
{HgmH ! " (1
Hence || gax || deeydety ... dex,, is invariant, (12)

and if the prior probability density of the parameters is taken as proportional to
|| 9.z ||¥, the prior probability over any region will be invariant for all ways of choosing
the parameters.

It remains to be seen whether such a choice agrees with those that have been used
hitherto. Take first the normal law of error. Here

- 1 (xr - OC)2
pr—\/(2")o_exp{—*‘“‘égr} 8227,. (13)
and, exactly,

=gl ) - e | [
)?

_o 7 2 (x—a (x— oc)2
=2 f-wwznw(w XP{ 0% T 4ot }d’”
_ofio 2 (et ]
=1~ o e e ) s
Writing o = oye¢, 0 = 0 ¢f, we have
(@ —a')? ) . (x—a')?
= —_ ¥ —_—— = 9F2
L 2[1 sech 2§exp( So2cosh o) |’ =202+ 7= (15)
when ¢ is small.
Again,
© 1 (x~ oc)2 (x—a')? (x—a')? (x—o)?
Iz=f~m\/(2ﬂ {lg o+ %552 " 9y }[—e p{ 5572 }— exp{— 502 ;:ldm
_ ., 0" (a—a')2(02+0"?)
=—ltomt 20"2 20202 (16)
2
s 22N (1)

0

=2(8_") L

o o2
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Three cases arise. If o is fixed, g,, = 2/02, and the probability density for o is
proportional to 1/o, in agreement with the previous rule. If ¢ is fixed, g,, is constant
and the probability density for « is uniform, again in accordance with the pre\fious
rule. But if « and o are both to be treated as unknown, the determinant is 2/o?,

and then P(dode | H)oc do-doa/0'2, (18)

instead of the previous form dodo/o. The effect on the ¢ distribution would be sub-
stantial, the index being increased by }. Further, if the same method was applied
to a joint distribution for several variables about independent true values, an extra
factor 1/o- would appear for each, and the index in the ¢ distribution for » observa-
tions would always be }(n + 1) whatever the number of unknowns estimated. These
_consequences are unacceptable. To see what (18) really says, let us suppose first
that a is known to lie between fixed limits independent of o, which corresponds
fairly well to the usual practical case. Then by integration the probability density
for o is proportional to 1/02, and there is probability 1 that o is less than any assigned
positive value. To avoid this we should have to suppose that the range permitted
to o is proportional to . There would be nothing self-contradictory in this, but it is
not the normal state of affairs in an estimation problem.

The conclusion to be drawn is that it would be a self-consistent and generally
applicable procedure to take the prior probability density proportional to || g |[*
subject to the chances being differentiable functions of the parameters, and there-
fore that under this condition a self-consistent general theory of induction is pos-
sible. It does not, however, cover the whole ground because where it has been seen
to succeed it gives the estimation prior probability, not one suitable for significance
tests; and if a scale parameter o is taken as an unknown, irrelevant to the values
of the other parameters, a correcting factor is needed.

Next consider simple sampling. Denote the chance of a success by p = sin2a,
that of a failure by cos?«. Then for variations of o

= (sina—sina’)?+ (cosa—cosa’)? = 4sin2 (o’ —a), (19)
= (sin®?a’ —sin?a) log tan®a’ = 4(oc" —~a)?. (20)
tan%o -

Then the rule gives, since 0 < a < i,

2 dp
PdocH=~doc=——~————. 21

(dec| H) ( 7\{p(1-p)} 1)
According to the Bayes- Laplace rule the prior probablhty of p should be taken
uniform. Haldane has suggested

P(dp | H)oc ———— (22)

(1 p)

which has the property that the expectation of p, given the sampling ratio, is equal
to the sampling ratio. The present rule is intermediate. It is easy to construct models
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to make any of these correspond to states called ignorance in ordinary language, but
the present more precise language makes it necessary to distinguish between them.
For the comparison of two Poisson distributions of the form

P(m|rH) = e—r%,
then I = 2 2¢—¥Vr—vr?
leading to P(dr | H)oc dr/yr.

This conflicts with the rule dr/r previously adopted for the Poisson parameter, and

would say that r is practically certain to exceed any suggested value. Alternatively,

in most cases of the Poisson law it would be equally reasonable to take r or 1/r as-
the fundamental parameter; and the dr/r law is the only one that has the same

form for both.

3. Limitations of the rule. The requirement that the chances shall be differentiable
with respect to the parameters is not always satisfied. One case is the rectangular
distribution. If the laws are that the chance of a measure in a range du is dx/a for
O<z<a, or deja’ for 0<z<a’, take o’ > a. Then according to the first law dP = 0
for any interval included in « <z < o', and I, is infinite. 1, is still finite; it is, in fact,

o

For o slightly greater than a, I, is of the first order in o’ — & instead of the second.

Another exceptional case is where the unknown itself is capable of taking only
discrete values, as in the sampling of a finite population or in the ‘tramecar’ problem
+ (Jeffreys 1939, p. 186). Here we cannot even try to differentiate. If the suggested
numbers of the class are n and #»’, then, for a given n, I, is finite but takes only a
discrete set of values; J, is infinite except for n’ = n.

4. On inspection it is seen that most of these anomalies concern laws with a
common feature; they include one or more parameters with an infinite range of
possible values, and both for the normal law (with any number of parameters), the
rectangular law, and the Poisson law the previous solution was quite satisfactory.
These parameters are dimensional (though the Poisson parameter is itself a number,
it arises as the product of two dimensional quantities, one of which is the arbitrary
unit taken‘as a ‘trial’). Suppose then that a law depends on a location parameter
A, a scale parameter o of the same dimensions as A, and on a number of numerical
parameters ;. Examples will be the indices in various Pearson laws and the negative
binomial. It is just the occurrence of these parameters that lead in practice to a
doubt about what should be taken as the best way of stating the law; for instance,
whether any asymmetrical law should be stated with the first moment or the mode
as location parameter. But different ways of stating the law that would ever be
considered fall into the type represented by the transformation

A= /1+0'f(06,,;), o' = 0'9(057;), OC;- = 0(;‘(067;). (23)
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In practice, again, there is usually some more or less vague information indicating
that A and o are practically certain to lie within wide but finite limits. With a trans-
formation of this form the ranges permitted to A" and logo”/a (where a is any fixed
quantity of the same dimensions as o), for given «,, will be practically the same as
for A and logo/a. Now

oA, 0,0 ... 0)  O(N,07,04...0) 0(A, 0,01 ... o)

0,00y ... ay) OA,0,0] ... ally) O(A, 0,0 ... )

0ot '
= 9(%) Fotg|| (24)
Hence if I, or I, is formed for changes of the o, only, then
do- ’ do" e / »

in the sense that the integrals of both quantities over corresponding regions in the
two cases are equal, and the same constant factor will be needed to make the total
probability of all possible values equal to unity. Thus the condition of invariance
for this type of transformation gives again the same type of law for the numerical
parameters, but permits us to retain the previous form dado/o for location and
scale parameters. '

Most of the difficulty for laws that are not everywhere differentiable with regard
to some parameter also disappears. It is well known that with some values of the
indices Pearson Type I laws behave like (x —c)™ near a terminus, where m may be
less than 1, and that m = 1is a critical value in the fitting of the law to observations.
If m > 1, the law is differentiable at x = ¢, and the uncertainty of an estimate of ¢
from the observations is nearly proportional to n—*, where » is the number of obser-
vations. If m < 1, the law is not differentiable at = ¢, and the uncertainty decreases
faster than n~* (like n~1 for the rectangular law). The present device covers both
cases, if we agree to take the termini in these laws always as A +o; for with fixed
termini /; is a quadratic for small variations of the indices over the whole range of
intelligibility of the laws.

Consequently the form (25) for the prior probability can be applied consistently
over most estimation problems where both a scale and a location parameter have to
be determined. .

The outstanding exception is the case where a parameter can take only discrete
values. This difficulty does not appear insuperable. Consider, for instance, the
sampling of a finite population of number #, containing » members with property ¢.
This is often itself a sample of » derived from a chance x. Then

' dx
P(dx | nH) = =)
|
P(?‘ I n,z, H) = ;lrnﬁ_:*mxr(l ——x)"—’f,
P(rdx I nH) = W(n?’_-;)—i xr-—%(l — x)n—r-—% dx,

Vol. 186. A. , 30


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on May 11, 2016

460 H. Jeffreys
and by integration P(r | nH) = (r—j)r!lgz::)_' ! ’

which is finite both for » = 0 and r = n. If used when'the population is not derived
from a chance =, it will still be satisfactory.

Applications to determine posterior probabilities have not been developed in the
present paper, because it is known that, within any limits that anybody would
ordinarily suggest, changes of the prior probability make little difference to the
posterior probability in practical cases, and the modifications of existing solutions
would be easy. The use of the prior probability is to provide a starting-point, and it
now appears that a consistent rule for it can be stated so as to be applicable to the
majority of estimation problems.

Some significance tests based on the use of I; and I, when not small have been
developed, and will, it is hoped, be the subject of a further paper.

5. Relation to x® and maximum likelihood. Suppose the possible values of the
variable to be discrete; if the laws are continuous, suppose the values grouped. If
there are N observations the expectations of the numbers of observations in the 7th
group according to the two laws are Np,, Np;. Suppose that the set of parameters
a; are used as a trial hypothesis, and that the set o are in fact correct. Let the
observed number in the rth group be #,. Then

n, — Npr)2

(
2=2 , 26
X Np, (26)
and if IV is large the expectation of ¥%, where % is the number of groups, is
; 2
B) = n—14 2P =Pr)
r
=n—1+NI,. 27)

Again, let a; be taken as a set of approximate values, put o = a; + Ao, and con-
sider the estimation of Aa; by maximum likelihood. The function to be made a

maximum is
L = I(p'), (28)

the product being over the observed values of x. In the ordinary case the terms
in Aa; Aoy, in log L will be

%AaiAockZB aa log p’. (29)

The expectation of the coefficient, if the correct values are «;, will be

02 1 9p op
pra - logpdx_%Nfa ng s

= — N9 (30)
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by differentiation and then integration by parts, since jpdx = 1. Hence

—1Ng;, Ao, Aay, is the expectation of the quadratic terms in the logarithm of the
likelihood, given that the parameters have the value o;.

6. Joint probabilities for several observations. Let N observed values be derived
independently from each law; their joint chances will be the products of their
separate chances, and [y, I,y can be defined as measures of the difference between
the joint chances. Then

Ly = X... X (J(Ip;) — (IIp}))*. (31)

IT refers to a product over the N values and the summations are over the values

of . Then
Ty = 2 253((Tp}) J(ITp,)) = 2—2(1 — 3L, (32)

Hence %log (1=4%1y) is independent of N. Also

’

Ly = Z...Z(Hp;—ﬂp)logg—i’ = Z...Z‘(Hp;—ﬂpr)Z'log%’

4

=NZp, log%-—NZp,.log%’ = NI, (33)
r r

and I,y/N is independent of N.
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