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ABSTRACT
Motivation: Several genome-scale efforts are underway to recon-
struct metabolic networks for a variety of organisms. As the resulting
data accumulates, the need for analysis tools increases. A notable
requirement is a pathway alignment finder that enables both the detec-
tion of conserved metabolic pathways among different species as well
as divergent metabolic pathways within a species. When comparing
two pathways, the tool should be powerful enough to take into account
both the pathway topology as well as the nodes’ labels (e.g. the
enzymes they denote), and allow flexibility by matching similar—rather
than identical—pathways.
Results: MetaPathwayHunter is a pathway alignment tool that, given
a query pathway and a collection of pathways, finds and reports all
approximate occurrences of the query in the collection, ranked by sim-
ilarity and statistical significance. It is based on a novel, efficient graph
matching algorithm that extends the functionality of known techniques.
The program also supports a visualization interface with which the
alignment of two homologous pathways can be graphically displayed.

We employed this tool to study the similarities and differences in the
metabolic networks of the bacterium Escherichia coli and the yeast
Saccharomyces cerevisiae, as represented in highly curated data-
bases. We reaffirmed that most known metabolic pathways common
to both the species are conserved. Furthermore, we discovered a few
intriguing relationships between pathways that provide insight into the
evolution of metabolic pathways. We conclude with a description of
biologically meaningful meta-queries, demonstrating the power and
flexibility of our new tool in the analysis of metabolic pathways.
Availability: Code and data upon request.
Contact: pinter@cs.technion.ac.il

INTRODUCTION
Genome-scale metabolic networks are now being reconstructed for
a variety of organisms such as Escherichia coli, Saccharomyces
cerevisiae and humans. The wealth of information regarding the
chemical reactions that take place within a cell and the corresponding
enzymes that catalyze these reactions is currently stored in several
public databases, including KEGG (Kanehisa and Goto, 2000), Eco-
Cyc (Karp et al., 2004) and SGD (Christie et al., 2004). These
databases maintain information about complex cellular processes,
such as metabolism, signal transduction and cell cycle by storing the
corresponding networks of interacting molecules in digital forms,
often as graphical pathway diagrams. The majority of these databases
provide tools for pathway visualization and for queries on pathway
components such as substrates, products and reactions. However, the
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need arises for good tools capable of searching for homologues to a
query pathway in a collection of known pathways, and of aligning
two pathways to locate conserved pathway fragments.

Pathway alignments should reflect both the similarity (rather than
identity) between the enzymes that participate in the aligned path-
ways as well as between their topologies. The need for advanced
tools for pathway analysis will increase over the next several years
as biologists begin not only to inspect the existing pathways but also
to redirect and re-engineer metabolic pathways. The latter object-
ive, called Metabolic Pathway Tinkering (Newgard, 2002), requires
thorough analysis of metabolic pathways and brings up the need for
formalizing specific, flexible queries on pathway databases.

Work to date on pathway searching has been limited to heuristics
that try to capture certain properties of the underlying graphs and use
them as measures of similarity, as by Ogata et al. (2000), and to visual
inspection, sometimes aided by tools such as described by Schreiber
(2003). Another attempt was undertaken by Tohsato et al. (2000)
who proposed a method for multiple alignment of metabolic path-
ways, but restricted the pathways’ topology to chains (or strands).
Related work, which data-mines chains in protein–protein networks,
is described by Kelley et al. (2003). Recently, Koyutürk et al. (2004)
presented a related mining approach where frequently occurring pat-
terns (that can be general graphs) are detected in biological networks.
Still, they do not address the search scenario, and—moreover—they
state that the issue of approximate (rather than exact) matching is an
important open problem.

In order to comprehensively search and mine metabolic pathways
we developed MetaPathwayHunter, a novel tool for pathway align-
ment that is based on a powerful and efficient approximate pattern
matching algorithm for labeled graphs. Our alignment model, the
algorithm supporting it, and its implementation are described in the
System and Methods section. We employed MetaPathwayHunter
to conduct a study on the similarities and variations in the meta-
bolic networks of two organisms, E.coli and S.cerevisiae, that serve
as model organisms for prokaryotes and eukaryotes, respectively,
and observed several biologically intreresting findings. Furthermore,
we provide a description of meta-pathway queries that enable the
user to probe the metabolic pathways database in a most flex-
ible yet powerful manner. The experiments, their results, and the
usage of meta-pathway queries are described in the Results section.
We conclude with a brief discussion and some suggestions for
future work.

SYSTEM AND METHODS
In order to compare pathways with each other using a quantitative meas-
ure, we must represent them as mathematical objects that lend themselves to
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Fig. 1. Approximate Labeled Subtree Homeomorphism. For each node, the label is written inside the circle and the variable name assigned to the node is
written externally. The node-label similarity scores are specified in Table �. Note that the deletion score is set to −1. A subtree in the text that is homeomorphic
to the pattern is circled by the dashed line. The LSH score for this alignment is 7.

effective computation. Here we represent a pathway by a graph whose nodes
correspond to enzymes that catalyze the pathway’s reactions, and the edges
connect two nodes if for the corresponding enzymes the product of one serves
as the substrate of the other. When computing the similarity between meta-
bolic pathways, we take into account both the resemblance between any two
corresponding nodes in the pathway graph as well as the likeness between
the pathways’ network structure. The former reflects the similarity between
matched enzymes, based on functional homology, and the latter checks for
topological similarity between the graphs in a biologically meaningful way.

When comparing two pathways we try to align them to each other as best
as we can. Similarly to the alignment of genomic and proteomic sequences,
we match pathways up in such a way that similar ingredients are paired with
each other while minimizing the differences between them. These differences
pertain both to the nodes, where enzymes of similar function are deemed close
to each other, as well as to the connections between the nodes, namely the
edges and paths that form the structure of the pathway.

As in sequence alignment, the closeness between two pathways is reflected
by a score that is obtained by computing a function that measures the distance
in a meaningful manner. Our method exhaustively computes all optimal solu-
tions under a given scoring model. Furthermore, suboptimal solutions (up to
a predefined threshold score) are reported, ranked by their statistical signi-
ficance. This is clearly preferable both to naive visual inspection, which is
expensive and prone to human errors, as well as to standard heuristic search
methods, which are likely to overlook some of the relevant results.

In this section we first describe our graph similarity measure and define the
alignment score. They are limited to tree-like graphs in order to allow efficient
alignment based on graph matching algorithms, which are described next.
Then we show how this method is highly applicable to metabolic pathways
and explain how we compute the statistical significance of the score. We
conclude this section with a few details concerning the implementation of
our tool.

Model
The topology of a metabolic pathway, similar to other biological networks,
can be represented as a graph. Thus, the structural similarity among path-
ways can be naively revealed using techniques for solving various subgraph
isomorphism and homeomorphism problems (Garey and Johnson, 1979)
(formally defined in the next paragraph). Unfortunately, both problems are
NP complete rendering their solution intractable. Dealing with the associ-
ation of individual nodes, e.g. similar rather than identical enzymes, would
then make the algorithmic problems even more complicated and computation-
ally intensive. Still, an approach that utilizes typical properties of metabolic

pathway graphs to simplify the problem at hand leads to tractable, efficient
solutions. Our study shows that the topology of most metabolic pathways
can be easily cast as multi-source trees or transformed to them without much
loss of generality, as cycles are quite rare in these data. A multi-source tree
is a directed acyclic graph (DAG), whose underlying undirected graph is a
tree (Fig. 1), where some of the nodes can have several incoming as well as
several outgoing edges.

There are several increasingly complex yet tractable ways to model the
problem of comparing trees to each other. A starting point is the subtree
isomorphism problem (Matula, 1968, 1978; Shamir and Tsur, 1999): given a
pattern tree P and a text tree T , find a subtree of T that is isomorphic to P , i.e.
find if some subtree of T that is identical in structure to P can be obtained by
removing entire subtrees of T , or decide that there is no such tree. The subtree
homeomorphism problem (Chung, 1987; Reyner, 1977; Valiente, 2003) is a
variant of the former problem, where degree-2 nodes can be deleted from the
text tree (Fig. 1).

We base our metabolic pathway alignment engine on the subtree homeo-
morphism model for reasons that are both biologically and computationally
driven. Biologically, a single enzyme in one pathway may replace a few
consecutively acting enzymes in another pathway. The replacement can take
place if the replacing enzyme is multifunctional and can thus catalyze several
consecutive reactions, or if the enzyme uses an alternative catalysis that leads
directly from the initial substrate to the final product. Note that enzymes that
catalyze just a single reaction are more likely to be replaced than those that
catalyze more reactions, for both biochemical and parsimony-related reasons.
Translating this biological description into graph terms implies that degree-2
nodes may be deleted from the graph, a behavior that is perfectly captured
by subtree homeomorphism.

Computationally, the advantage of subtree homeomorphism over the more
complex models (such as Kilpelainen and Mannila, 1995) is that it has tract-
able solutions. Complicating the model, e.g. allowing deletions from both
sides, would render the problem intractable.

The model we employ extends previously known exact tree matching mod-
els, which allowed nodes to be matched only if their labels were identical.
Our model, on the other hand, is based on an approximate pattern matching
algorithm, i.e. it enables matching of two nodes with distinct labels and scores
the match according to the similarity between the node labels.

Definitions Let � denote a predefined node-to-node similarity score table
and δ denote a predefined (usually negative) score for deleting a node from a
tree (Fig. 1). A mapping M[T1, T2] from T1 to T2 is a partial one-to-one map
from the nodes of T1 to the nodes of T2 that preserves the ancestor relations of
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Fig. 2. The work done by the ALSH algorithm during the alignment of the subtree P u with the subtree T v . The score for entry (u, v) of the above DP table is
computed via the corresponding weighted bipartite graph. The node-label similarity scores used in this example are specified in Table � of Figure 1.

the nodes. We define the following similarity measure for two homeomorphic
trees.

Definition 1. Consider two labeled trees T1 and T2, such that T2 is homeo-
morphic to T1, and let M[T1, T2] denote a node-to-node homeomorphism-
preserving mapping from T1 to T2. The Labeled Subtree Homeomorphism
score of M[T1, T2], denoted LSH(M[T1, T2]), is

LSH(M[T1, T2]) = δ(|T2| − |T1|) +
∑

∀(u,v)∈M
�[u, v].

Correspondingly,

Definition 2. The Approximate Labeled Subtree Homeomorphism
(ALSH) problem is, given two undirected labeled trees P and T , and a
scoring table that specifies the similarity scores between the label of any
node appearing in T and the label of any node appearing in P , as well as a
predefined node deletion (gap) penalty, to find a homeomorphism-preserving
mapping M[P , t] from P to some subtree t of T such that LSH(M[P , t]) is
maximal.

We observe that the ALSH problem on directed multi-source trees is a
sparse instance of ALSH on unrooted, unordered1 trees (the fact that the edges
are directed reduces the number of possible mappings). Thus, an algorithm
for directed multi-source trees can be obtained by extending the Approximate
Subtree Homeomorphism algorithm of Pinter et al. (2004) without increas-
ing the algorithm’s complexity. This algorithm combines the node-to-node
similarity measures with the topological distance between the pattern and the
text to produce a single, comprehensive score expressing how close they are
to each other.

The alignment algorithm
The alignment algorithm employs a bottom-up dynamic programming
approach and computes optimal alignments between P and any homeo-
morphic subtree t of T , which maximizes the LSH score between P and
t . It is based on the close relationship between subtree homeomorphism and
weighted assignments in bipartite graphs (see the code in Procedure Compute
Alignment Scores). The ALSH problem is recursively translated into a collec-
tion of smaller ALSH problems, which are solved using weighted assignment
algorithms. This approach yields an O(m2n/ log m+mn log n) algorithm for
solving ALSH on directed multi-source trees, where m and n are the number
of vertices in P and T , respectively. For the simplicity of presentation, we
first describe the basic ALSH algorithm for rooted unordered trees (where
both the pattern and text trees are rooted and edge direction is ignored). This
is done in the next section, where the basic algorithm flow is described and

1An unrooted tree is an undirected, acyclic, connected graph. A tree is said to
be ordered if the relative order of its subtrees in each node is fixed. Otherwise,
a tree is unordered.

exemplified. Then, in the subsequent section, we show how to extend the
basic algorithm to multi-source trees (where both the pattern and text trees
are unrooted and edge direction is taken into account).

Algorithm flow Let T r = (VT , ET , r) be the text tree, which is rooted in r ,
and P r ′ = (VP , EP , r ′) be the pattern tree, which is rooted in r ′, respectively.
Let pr ′

u denote a subtree of P r ′
, which is rooted in node u of P r ′

, and t rv
denote a subtree of T r , which is rooted in node v of T r . Let y1, . . . , yc(v) be
the children of v ∈ T r , and let x1, . . . , xc(u) be the children of u ∈ P r ′

. [Note
that c(u) ≤ c(v), as no deletions are allowed from the pattern.] We define
AlignmentScores[u ∈ VP , v ∈ VT ] as follows.

Definition 3. For each node v ∈ VT and for each node u ∈ VP ,
AlignmentScore[u, v] is the maximal LSH similarity score between any
subtree pr ′

u of P r ′
and a corresponding homeomorphic subtree t rv of T r ,

if such exists. Otherwise, AlignmentScore[u, v] is −∞.

The computation of AlignmentScores[u, v] is done recursively, in a post-
order traversal of T r . First, AlignmentScores[u, v] are computed for all leaf
nodes of T r and P r ′

. Next, AlignmentScores[u, v] are computed for each
node pair (u ∈ VP , v ∈ VT ) based on the values of the previously computed
scores for all children of u and v as follows. Let u be a node of P r ′

with
children x1, . . . , xc(u) and v be a node of T r with children y1, . . . , yc(v). After
computing AlignmentScores[xi , yj ] for i = 1, . . . , c(u) and j = 1, . . . , c(v),
a bipartite graph G is constructed with bipartition X and Y , where X is the
set of children of u, Y is the set of children of v and each node in X is
connected to each node in Y . Edge (xi , yj ) of G is annotated with weight
AlignmentScores[xi , yj ] (Fig. 2).

AlignmentScores[u, v] are then computed using procedure
ComputeAlignmentScores(u, v) (see the code in Fig. 3) as the maximum
between the following two terms:

(1) The node-to-node similarity value �[u, v] plus the sum of the weights
of the matched edges in the maximal assignment over G. Recall that
this term is only computed if c(u) ≤ c(v).

(2) The weight AlignmentScores[u, yj ] for the comparison of u and the
best scoring child yj of v, updated with the penalty for deleting v.

Figure 2 exemplifies a single call to procedure ComputeAlign-
mentScores for aligning a pair of subtrees. Upon the call to procedure
ComputeAlignmentScores(u, v), the scores for comparing each subtree of u

(rooted at either x1 or x2) with each subtree of v (rooted at y1, y2 or y3) have
already been computed and stored in the corresponding cells of the dynamic
programming table DP. Note that the score for comparing x1 with y3 is 1,
which is obtained as the sum of two terms: a score of 2 for aligning an ‘a’
with an ‘A’ plus a penalty of −1 for deleting a ‘D’ (see the scoring table
� in Fig. 1). Similarly, the score for aligning x2 with y3 is 1, which is the
score of aligning a ‘b’ with a ‘D’. (By definition of subtree homeomorphism
there is no penalty for deleting the subtree of y3 that is labeled with an ‘A’).
In the same manner, the best score for aligning x1 with y2 is −3, which is
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Procedure ComputeAlignmentScores(u, v).

Input: A DP table with all values up to cell (u, v) already set.
A Label-to-Label Scoring Table �.

Output: The score to be set to entry (u, v) of the DP table.
k: the out-degree of node u;
�: the out-degree of node v;
if k > l then

return −∞;
else

G: a bipartite graph with node bipartition X and Y ;
X: the set of children {x1, . . . xk} of u;
Y : the set of children {y1, . . . y�} of v;
node xi ∈ X is connected to node yj ∈ Y via an edge
whose weight w(xi , yj ) is set to DP [xi , yj ];
AS(G): the weighted assignment score of G;
AS(G) ← max

∑

(i,j) ∈ M

DP [xi , yj ]
where M is a maximum matching;

end
BestChild(u, v): the child of node v whose ALSH score

with u is the highest;

BestChild(u, v) ← �
max
j = 1

DP[u, yj ];
δ: the deletion penalty from �;
return max {�[u, v] + AS(G), BestChild(u, v) + δ };

Fig. 3. Procedure ComputeAlignmentScores(u, v).

obtained by matching an ‘a’ directly to a ‘C’ and deleting the subtrees of y2,
which are labeled with an ‘F ’. Similarly, the score for aligning x2 with y2

is −2. All other subtree pairs are composed of two leaf nodes and therefore
their score has been previously set by direct lookup in the scoring table �.
Procedure ComputeAlignmentScores(u, v) constructs the bipartite graph G

shown in Figure 2 with bipartition X and Y , where X = {x1, x2} is the set of
children of u, Y = {y1, y2, y3} is the set of children of v, and each node in X

is connected to each node in Y . The weight of an edge connecting vertices xi

and yj is set to the previously computed value DP[xi , yj ], which is the score
for the alignment of the subtree rooted at xi with the subtree rooted at yj .

The value DP[u, v] is then computed as the maximum between the
following two terms:

(1) The node-to-node similarity value �[u, v] = +2 plus the assignment
score for G which is also +2, obtained by matching x1 with y3 and
x2 with y1. This term yields a total score of +4.

(2) The score for comparing node u with the best child of v is −7 and
the penalty for deleting node v is −1, so this term yields a total
score of −8.

Since the term contributed by the bipartite matching yields a score that is
better than the score suggested by deleting node v, entry DP[u, v] will finally
be set to the value of +4.

Extensions to directed multi-source trees The Approximate Labeled
Subtree Homeomorphism algorithm described above can be easily extended
to support unrooted, unordered trees as follows. Let T = (VT , ET ) and
P = (VP , EP ) be the two unrooted trees. The ALSH between P and T could
be computed in a naive manner as follows. Select an arbitrary node r of T

to obtain the rooted tree T r . Next, for each node u ∈ P compute the rooted
ALSH between P u and T r . Clearly, such a strategy entails the computation
of alignments of subtree pairs (pr ′

u , t rv ) for each u ∈ P and v ∈ T . We refer

interested readers to Pinter et al. (2004) for a more sophisticated variation of
this algorithm.

We next turn to handle multi-source trees. Such trees are DAGs whose
underlying structure is an unrooted, unordered tree, and therefore alignments
corresponding to potential mappings between subtree pairs (pr ′

u , t rv ), such that
u ∈ P and v ∈ T , will be considered. However, here we filter-out subtree
alignments that map together edges of conflicting directions. For example,
consider the potential mapping between subtrees t rv and pr ′

u in Figure 1. The
following hierarchy is defined on the neighbors of node u in pr ′

u : node r ′ is
denoted as the ‘parent’ of u while nodes x1 and x2 are denoted as the ‘children’
of u. Similarly, in t rv node r is the parent of node v, and nodes y1 and y2 are
the children of v. Note that node u has two incoming edges to its children
x1 and x2 in pr ′

u , while in t rv node v has one incoming edge from child y2

and one outgoing edge to child y1. When computing ALSH for multi-source
trees, a mapping between two nodes is forbidden if the directions of the
edges connecting each node to its designated parent disagree. Furthermore,
by definition of subtree homeomorphism, each child of u must be mapped
onto a child of v, and therefore the algorithm for ALSH on multi-source
trees will set the alignment score for the subtree pair (pr ′

u , t rv ) to −∞. Thus,
the additional edge-direction information in multi-source trees restricts the
number of possible mappings by adding the requirement that both the number
of the incoming edges and the number of outgoing edges of u must be smaller
than or equal to the numbers of the incoming and the outgoing edges of v,
respectively.

As for legitimate subtree mappings, the weighted bipartite matching com-
putation is updated as follows to utilize the edge-direction information in
multi-source trees: consider the bipartite graph G = {X ∪ Y , E}, where X

denotes the children of v in t rv and Y denotes the children of u in pr ′
u . A

vertex (xi , yj ) will now be included in E if and only if the direction of the
edge connecting xi to u is similar to the direction of the edge connecting
yj to v. Therefore, we get a sparse bipartite graph, which could actually be
split into two separate, smaller bipartite graphs: one corresponding to match-
ings of incoming-edge neighbors of u and v, and the other for matching
outgoing-edge neighbors.

Application to metabolic pathway analysis
In this section we first describe our method and data sources and then analyze
their significance.

Metabolic datasets Metabolic pathways of E.coli were extracted from
the EcoCyc (Karp et al., 2004) database and metabolic pathways of the yeast
S.cerevisiae were extracted from the SGD (Christie et al., 2004). Both data-
bases combine automatic pathway creation based on gene annotations as
well as manual curation. Our dataset contained all pathways composed of
two reactions or more that appear in these databases for these organisms (113
for E.coli and 151 for S.cerevisiae).

Note that the text graph rarely contains pathways whose underlying undir-
ected graph is cyclic. In the seldom case of directed cycles (<10 per
organism), we generated alternative multi-source trees that cover all the pos-
sible cycle-splitting variations. In the special case of DAGs, which cannot
be cast as multi-source trees, duplication and splitting is performed on those
vertices where two ingoing edges meet. This fits well with biology as the
distinct paths correspond to alternative metabolic pathways.

Alignment scoring Similar to sequence alignment, the suggested notion of
pathway alignment is based on edit operations that include node substitution
and node deletion (the latter relating only to the text). Alignment scoring is
composed of node substitution scores that are rated by a label substitution
table and node deletion scores modeling gaps in the pattern, which entail
a fixed penalty. Below we describe the scoring scheme used for these two
operations.

To build a label substitution table we associated each enzyme with its
EC (Enzyme Commission) classification—a numbering system consisting
of four sets of numbers that categorize the type of the catalyzed chemical
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reaction. Since an EC classification is functional, enzymes with similar EC
classifications are functional homologues, but do not necessarily possess any
sequence similarity. The actual values of the label substitution table were
determined according to the following definition from Tohsato et al. (2000):

Definition 4. For an enzyme class h, C(h) denotes the number of enzymes
whose classes are included under h. I (h), the information content of h, is
defined as

I (h) = − log2 C(h).

For two enzymes ei and ej , if their lowest common upper class is hij , then
we consider I (hij ) to express the similarity between ei and ej .

Note that we look for the smallest common subtree that contains both the
enzymes. Therefore, if two enzymes are far apart in the EC classification their
smallest common subtree will contain many leaves and thus their similarity
level will be low. Otherwise their smallest common subtree will contain only
a few leaves and their similarity level will be higher. Hence I (h) increases
with the similarity.

The node deletion score (i.e. gap penalty) reflects the tradeoff between
a gap and a mismatch. As the gap penalty increases, the algorithm tends
to match distant enzymes to avoid gaps. Conversely, a gap penalty of zero
enables alignments of evolutionary remote pathways, where only bits of the
pathways are conserved, to score highly. As different values may suit different
needs our tool enables users to set this parameter per execution.

Statistical significance of alignments The statistical significance of
each alignment is based on p-value calculation. The p-value of an align-
ment of a pathway query with score s was computed by executing the same
query against 100 random pathway graphs, and counting the fraction of graphs
containing an alignment that received score s or higher. A random pathway
graph is a graph containing the same set of nodes and the same number of
edges as the original graph such that the degree of each node in the random
graph is equal to its degree in the original graph. Random pathway graphs
were generated from the original pathway graph by a long series of random
edge switches, as described by Maslov and Sneppen (2002).

The p-value cutoff used in our analysis is 0.01. We denote pathway pairs
with at least one statistically significant alignment between them as signific-
antly aligned pathway pairs. To assess whether the number of significantly
aligned pathway pairs in the inter-species and intra-species comparisons devi-
ate significantly from the number expected by pure chance at a cutoff of
0.01, we used the exact binomial test (k, n, p) per comparison. This test
computes the probability of having at least k successes in n Bernoulli exper-
iments with probability p for success. Here k is the number of significantly
aligned pathway pairs, n is the total number of aligned pathway pairs and p is
0.01. This test was performed using the R project for Statistical Computation
(http://www.r-project.org).

Implementation details
The algorithm was implemented as a prototype program using a combination
of C++ code and a Java-based GUI in order to allow web applet-based usage.
It runs on any Intel Pentium-based computer under the Microsoft Windows
operating system (Version 2000 and higher). It does not require any special
purpose hardware or other licensed software.

For each query, the program reports the five best matches per pathway,
sorted by score and statistical significance, and produces an html file that
graphically superimposes the query upon the aligned metabolic pathway. As
for determining the gap penalty, manual inspection of the data revealed that
most pathway alignments include at most one gap in a row. Considering
that the worst mismatch in the EC classification is scored −8.17, we set the
default gap penalty to −3, which allows for two consecutive gaps followed by
a mismatch between closely related enzymes or for one gap and a mismatch
between more distant enzymes.

RESULTS
We applied our approach to the genome-scale metabolic networks
of the bacterium E.coli and the yeast S.cerevisiae, as these are the
two extensively studied model organisms representing the proka-
ryotic and eukaryotic kingdoms, respectively. We ran all-against-all
alignments, namely taking each metabolic pathway as a query and
aligning it against all other pathways in our dataset. We also used our
tool to datamine the pathway database with a meta-pathway query.

The runtime of the all-against-all benchmark, where query sizes
ranged from 2 to 41 nodes, was measured. The entire process,
including the I/O overhead of reading the pathways and recording
the alignment information for successful matches, took 3.66 h to
complete on a regular desktop machine (Pentium 4, 2.6 GHz clock,
512 MB RAM). This yields an average of 47 s per query.

Below we describe results relating to both inter- and intra-
species alignments, and conclude by demonstrating the power of
metapathway queries in biologically relevant scenarios.

Inter-species alignments
We performed all possible alignments between the 113 E.coli path-
ways and the 151 S.cerevisiae pathways. This analysis resulted in 610
pathway pairs that had at least one statistically significant alignment
between them (p ≤ 0.01). This number was statistically significantly
greater than the randomly expected fraction of 1% (p < 2.2×10−16

using the exact binomial test). The significant alignments span most
types of metabolic pathways, such as amino acid biosynthesis and
fatty acid degradation, as 63% of the E.coli pathways and 66% of
the S.cerevisiae pathways had at least one statistically significantly
aligned pair-mate from the other species. In order to evaluate more
carefully the degree of conservation between the metabolic networks
of the two species we examined the alignments of the analogous
metabolic pathways in E.coli and S.cerevisiae. Out of the 80 analog-
ous pathways 62 were found to be statistically significant (p ≤ 0.01).
This implies that, despite the evolutionary distance between E.coli
and S.cerevisiae, a considerable fraction of their metabolic networks
is conserved.

The conservation between the two species is not limited to small
pathways, as demonstrated by the alignment of the analogous
metabolic pathways of phenylalanine, tyrosine and tryptophan bio-
synthesis in E.coli and S.cerevisiae (s = −4.28, p < 0.01). This
pathway consists of 17 enzymes arranged in a star-like topology, turn-
ing the substrate erythrose−4 phosphate into one of the three amino
acids phenylalanine, tyrosine or tryptophan (Fig. 4a). In spite of its
size the pathway is almost identical between the two species, imply-
ing a common ancestral pathway. Indeed, it has been suggested that
the major amino acid biosynthesis pathways were established before
ancient organisms diverged into the three kingdoms of Archaea,
Bacteria and Eukarya (Hochuli et al., 1999).

The analogous pathways of phenylalanine, tyrosine and trypto-
phan biosynthesis in E.coli and S.cerevisiae provide a stimulating
example for the power of our tool in discovering interesting bio-
logical phenomena. Inspection of their alignment reveals that the
two pathways are identical except for a single mismatch within an
intermediate enzyme in the biosynthesis of tyrosine, carried out by
TyrA in E.coli (labeled 1.3.1.13) and Tyr1 in S.cerevisiae (labeled
1.3.1.12). The two enzymes catalyze almost identical reactions;
however, TyrA uses NAD+ as an acceptor while the S.cerevisiae
enzyme uses NADP+ instead. Intriguingly, upon aligning their
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Fig. 4. The top-scoring inter-species alignments. Each node represents a match: the upper part represents the query enzyme and the lower part represents the text
enzyme. Color shades reflect enzyme homology. (a) The phenylalanine, tyrosine and tryptophan pathway of E.coli versus S.cerevisiae (s = −4.28, p < 0.01).
(b) Homoserine and methionine biosynthesis of E.coli versus S.cerevisiae (s = −13.15, p < 0.01).

protein sequences using BLAST no significant sequence similarity
was found between the two enzymes. The two enzymes appear to be
true functional orthologs resulting either from convergent evolution
where non-homologous proteins converged to a similar function, or
else from divergent evolution that changed the protein sequences but
maintained their function. This example asserts our choice of EC
classification as our scoring scheme since only by using a functional
classification, in contrast to sequence based classification, could such
a phenomenon be detected.

Gaps in the alignment of two pathways may hint to additional
intriguing evolutionary phenomena. An example is the gap found
upon comparing homoserine with methionine biosynthesis in E.coli
versus S.cerevisiae (s = −13.15, p < 0.01), depicted in Figure 4b.
In S.cerevisiae this pathway consists of a chain of three reactions
catalyzed by three different enzymes. In E.coli the pathway consists
of a chain of four reactions catalyzed by four different enzymes. The
middle reaction in S.cerevisiae, catalyzed by Met17, is analogous to
the succession of the two middle reactions in E.coli, catalyzed by
MetB and MetC. Biologically, this implies that the functionality of
Met17 in S.cerevisiae is comparable to the combined functionality of
the two enzymes MetB and MetC in E.coli. Moreover, all the three
enzymes are sequence homologues. This may hint to an interesting
case of either gene fusion in S.cerevisiae or gene duplication in E.coli.
Further investigation is needed to uncover the biological scenario
that led to this incident; however, the finding that these enzymes
participate in a common metabolic pathway provides a first step in
this direction.

Intra-species alignments
Intra-species alignments may provide researchers with the ability to
trace the evolution of metabolism within a species. For example, the
finding that pathways within a species resemble each other may imply
that they arose during evolution due to instances of gene duplication

followed by divergence. To demonstrate the abilities of our tool we
executed all-against-all intra-species queries, where each pathway
was aligned against all other pathways within the same species.

The all-against-all alignments in E.coli and in S.cerevisiae resulted
in 187 significantly aligned pathway pairs in E.coli, and 262 such
pairs in S.cerevisiae (p ≤ 0.01). The number of such pathways in
E.coli is statistically significantly greater than the randomly expected
number of 113 × 112 × 0.01 = 127 pathway pairs (yielding p <

4.2 ×10−7 using the exact binomial test). The same computation for
S.cerevisiae resulted in 151 × 150 × 0.01 = 227 expected pathway
pairs, and the corresponding statistical significance of our result is
p < 0.02. Statistically significant alignments were found for 66%
of the pathways in E.coli and 62% of the pathways in S.cerevisiae.

The pathways of biosynthesis of the amino acids valine, leucine
and isoleucine (Fig. 5a) provide an example for the power of intra-
species alignments. The three amino acids belong to the class of
hydrophobic amino acids. Valine and leucine are synthesized from
the same substrate and share most of the pathway; isoleucine is
synthesized from a different substrate. The intra-species alignments
revealed that valine and isoleucine have identical biosynthesis path-
ways (s = 0, p < 0.01) in both E.coli and S.cerevisiae, and even
employ the same set of enzymes. This substantiates the hypothesis
that the biosynthesis of the three amino acids arose from a com-
mon ancestral amino-acid biosynthesis pathway (Klipcan and Safro,
2004). Moreover, the degradation of the three amino acids, similar
to their biosynthesis, involves identical enzymes. Hence the entire
metabolism of these three amino acids seems to stem from a single
ancestral pathway.

MetaPathway queries
So far we have discussed cases in which a user provides a specific
metabolic pathway as a query. However, in some cases a user may
query the tool using only a partial skeleton of a certain pathway. The

3406

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/16/3401/216371 by SuU
B Brem

en user on 24 January 2022



MetaPathwayHunter

4.3.1.19 

4.1.3.18 

4.1.3.18 

1.1.1.86 

1.1.1.86 

2.6.1.42 

2.6.1.42 

5.4.99.5 

5.4.99.5 

1.3.1.12 

4.2.1.51 

2.6.1.57 

2.6.1.57 

2.7.1.4 3.1.3.11 5.3.1.9 

5.4.2.2 

5.4.2.2 

2.7.7.9 

2.7.7.9 

2.4.1.13 

2.4.1.15 

2.4.1.14 

3.1.3.12 

3.1.3.24 

4.2.1.9 

4.2.1.9 

(b)

(c)

(a)

Fig. 5. The top-scoring intra-species alignments. (a) The isoleucine versus valine biosynthesys pathways of S.cerevisiae(s = 0, p < 0.01) alignment. (b) The
trehalose anabolism pathways of S.cerevisiae versus the sucrose biosynthesis pathway of S.cerevisiae (s = −9.58, p < 0.01). (c) The tyrosine biosynthesis of
E.coli versus the phenylalanine biosynthesis of E.coli (s = −8.23, p < 0.01).
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Fig. 6. The meta-pathway query alignment. (a) A meta-query. (b) The alignment of a meta-query with the ureide degradation pathway of S.cerevisiae
(left, s = 0, p < 0.01) and with the alantoin degradation pathway of E.coli (right, s = 0, p < 0.01).
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output of the pathway alignment tool may then identify the entire
pathway scheme. One approach that is likely to benefit from this
option is metabolic pathway tinkering (Newgard, 2002), where meta-
bolic pathways are redirected and re-engineered in order to supply
certain products. To answer such needs and others we provide the
possibility to form and pose a MetaPathway query.

A MetaPathway query is a pattern containing the essential enzymes
as nodes and a suggested structure of their (not necessarily direct)
interactions. Note that in our model no deletions are allowed in the
pattern, hence it is important for all putative enzymes to appear in
the pattern. Furthermore, our notion of homeomorphism allows us to
represent indirect interactions as single edges in the pattern; the gap
penalties must be adjusted when using the algorithm in this mode so
as to increase the chances of finding chained reactions.

MetaPathway queries may be of significant value in two likely
scenarios. The first is when a user wishes to discover whether two
or more enzymes of interest are metabolically connected. This may
serve to understand the effect of a mutation in one enzyme on the per-
formance of another, for example the analysis of functional profiles
of gene-deletion mutants (Giaever et al., 2004). A second scenario is
when a user has limited knowledge of a certain pathway and would
like to uncover the entire pathway.

An example for the latter is given in Figure 6, where the query
consisted of a hub enzyme and its adjacent enzymes (Fig. 6a). The
tool reported two significant alignments (Fig. 6b), the E.coli allan-
toin degradation pathway and the S.cerevisiae ureide degradation
pathway. Both pathways degrade the same substrate to three differ-
ent products in S.cerevisiae and to two of these three in E.coli (note
that the gap penalty was set to zero to allow for maximal degrees
of freedom during the search). The ability to detect these related
but not identical pathways through a common core demonstrates the
power of meta-queries where knowledge of the entire pathway and
its homologues is lacking.

DISCUSSION
We have presented a new formulation for an emerging problem
in bioinformatics namely the need to find pathway patterns in lar-
ger metabolic pathway texts. Our formulation includes a score that
combines both topological as well as naming similarities in a com-
prehensive manner. Moreover, this formulation gives rise to efficient
algorithms (Pinter et al., 2004) that are able to deal with more
complicated network structures than that have been handled to date.

We have implemented these algorithms and embodied them in a
working tool that can be effectively used by life science researchers.
Our new tool yields more comprehensive queries than those suppor-
ted by previous tools, which were restricted to chain topology and
therefore could not capture the more complex, tree-like homologies.
Furthermore, we demonstrated the utility of our tool by analyzing
a large number of metabolic pathways of E.coli and S.cerevisiae,
thus revealing new biological insights into pathway evolution. These
results in themselves are of interest and open the way to similar
studies.

We intend to extend the tool to more general network topologies
such as DAGs, graphs with limited tree-width and graphs that have
simple cycle decompositions. Another open issue is to incorporate
a variable scoring scheme, e.g. to represent affine gap penalties.
We also propose to analyze hypergraphs: hyperedges can be used to

represent reactions that involve several enzymes. Finally, we plan to
make our tool available through the emerging platforms for biological
data exchange, providing the necessary interfaces.
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