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1 Introduction 

We can view certain randomized optimization al- 
gorithms as rules for randomly moving a particle 
around in a state space; each state might corre- 
spond to a distinct solution to the optimization 
problem, or more generally, the state space might 
express some other structure underlying the op- 
timization algorithm. In this setting, a general 
paradigm for designing heuristics is to run several 
simulations of the algorithm simultaneously, and 
every so often classify the particles as “doing well” 
or “doing badly”, and move each particle that is 
“doing badly” to the position of one that is “do- 
ing well”. In this paper, we give a rigorous analy- 
sis of such a “go with the winners” scheme in the 
concrete setting of searching for a deep leaf in a 
tree. There are two relevant parameters of the tree: 
its depth d, and another parameter n which is a 
measure of the imbalance of the tree. We prove 
that the running time of the “go with the winners” 
scheme (to achieve 99% probability of success) is 
bounded by a polynomial in d and IC. By contrast, 
the simple restart scheme: run several independent 
simulations and pick the deepest leaf encountered 
takes time exponential in IC and din the worst-case. 
We also show that any algorithm that guarantees 
a constant probability of success must have worst- 
case running time at least  d. 

Another way to interpret the result is as follows: 
suppose we are given a heuristic randomized opti- 
mization algorithm with only a small probability 
p of success. One way to boost the success prob- 
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ability to 99%, say, is to run the algorithm B ( l / p )  
times using independent coin-fips and select the 
best answer. Can one do better by introducing 
interactions between the different runs of the algo- 
rithm? Our results show that in the tree setting, 
we can boost the success probability by using as 
few as l og l lp  runs of the optimization algorithm 
by introducing “go with the winners” interactions 
between the runs. 

Our original motivation for studying this con- 
crete tree setting was that it mimics the polynomial 
time behavior of simulated annealing (see section 
3). The polynomial time behavior of simulated an- 
nealing is notoriously hard to analyze rigorously. 
Many early results such as [8] apply only to the sit- 
uation where the running time is allowed to grow 
exponentially in the problem size. A notable ex- 
ception is an analysis of the case when the function 
to be minimized has a special kind of fractal-like 
structure, where [lo] proved that simulated anneal- 
ing runs in polynomial time. There are now sev- 
eral results (see for example [SI) that analyze the 
Metropolis algorithm, which is the special w e  of 
running simulated annealing at a fixed tempera- 
ture. These results use sophisticated methods to 
bound mixing rates of Markov chains. However, 
such techniques do not appear to be adequate to 
analyze the behavior of general simulated anneal- 
ing which corresponds to running a sequence of 
Markov chains, one for each temperature on the 
annealing schedule. The tree model was designed 
to capture precisely the effect of lowering the tem- 
perature - walking towards the leaves corresponds 
to lowering the temperature (as explained in sec- 
tion 3). There has been extensive experimental 
study of variants of simulated annealing such as 
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random restarts (see for example [2], and [7]). Our 
results suggest that it might be fruitful to study 
the performance of a “go with the winners” imple- 
mentation for simulated annealing. 

“Go with the winners’’ schemes are obviously 
reminiscent of genetic algorithms [3] - they incor- 
porate a “survival of the fittest’’ rule, but do not 
incorporate a “mating rule” for combining pairs of 
solutions to obtain a new one. Our results indi- 
cate that the fitness rule can be quite a powerful 
heuristic for designing search strategies in certain 
contexts. We should point out that our results hold 
even if the state space being explored is a layered 
directed graph instead of a tree. By contrast, a 
recent paper [l] on the quadratic dynamical sys- 
tems gave evidence that the mating rule is not as 
powerful as had been assumed. 

2 Finding deep vertices on a 
tree 

In this section, we introduce a simple model for 
certain randomized optimization algorithms, which 
we shall view as a rule for moving a particle 
around a state space. In our model the state 
space is a rooted tree, and the particle traverses 
a path from the root to a leaf of the tree. For 
each vertex o in the tree, the randomized op- 
timization algorithm assigns a probability distri- 
bution p(vllv),p(o21o), . . .,p(v,lv) on its children 
ol, v2,. . . , v,; the particle chooses its path accord- 
ing to these probabilities. The objective of the al- 
gorithm is to pick a deep vertex in the tree: of 
depth at least d .  By truncating the tree at depth 
d, the question “what is the chance the algorithm 
finds some vertex at depth 2 d?” becomes the ques- 
tion “what is the chance that the deepest vertex 
found by the algorithm is at the (unknown) maxi- 
mal depth d?”.  For the applications that we have 
in mind, the number of vertices in the tree is expo- 
nential in d ,  and the probabilities p(v;lv) are not 
available explicitly. Instead we have access to a 
procedure that given v as input produces a child of 
o with the above probability distribution. More- 
over, the names of the vertices are not unique, so 
if the procedure is called twice on the same input 
v it is not possible to tell whether the same child 

of v was ouput in the two cases. 
In our model the randomized optimization algo- 

rithm can now be stated as follows: 
Algorithm 0. Start at the root, repeatedly 

choose a child at random until reaching a leaf, then 
stop. 

Write a ( i )  for the chance that this algorithm 
reaches at least depth i. If we repeat K times, 
or equivalently if we follow this procedure with 
K particles simultaneously and independently, the 
chance of finding a vertex at maximal depth d is 
large iff Ka(d)  is large, so the condition for a maxi- 
mal depth vertex to be found in a polynomial num- 
ber of steps is simply 

l / a ( d )  is polynomial in d .  (1) 

(A step is a single move of a single particle). Can 
we specify an interacting algorithm which requires 
only some weaker condition? Here is a natural can- 
didate, which mimics the typical “go with the win- 
ners” schemes mentioned in section 1. 

Algorithm 1. “Go with the winners” Repeat the 
following procedure, starting at stage 0 with B par- 
ticles at the root. 

At stage i each of the B particles is at 
some vertex at depth i. If all the par- 
ticles are at leaves, then stop. Other- 
wise some particles j , ,  . . . , j, are at non- 
leaves: spread the remaining B - m par- 
ticles evenly among the positions of these 
m particles. If B - m is not a multiple 
of m then pick a random subset of the 
m positions each of which gets assigned 
an extra particle. Then let each of the B 
particles move from its current vertex to 
a child chosen at random. 

We remind the reader that choosing a child of o 
“at random” means according to the given proba- 
bilities p ( . l v ) ;  let us also declare that all different 
random choices in any algorithm are to be made 
independently. Before we discuss the performance 
of Algorithm 1, we must first define the parameter 

To define K we need more notation. Recall that, 
in terms of Algorithm 0, p ( v )  is the chance the par- 
ticle visits vertex o, and u ( j )  = CVEv,p(v) is the 

K. 
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chance the particle reaches depth j at least. Now 
fix U and consider Algorithm 0 with the particle 
started at v: write p(wlv) for the chance the par- 
ticle visits vertex w ,  and a(jlv) = CwEv,p(w(v) 
for the chance the particle reaches depth j at least. 
For i < j define 

In other words, let W; be the position of the Algo- 
rithm l particle at depth i, conditioned on getting 
to depth i: then 

K;,j  = 

Finally define 

Ea2(jlWd 2 1. 
( E a ( j  IWiN2 

Informally, IC;,, measures the variability, amongst 
depth4 starting vertices, of the chance of getting 
to depth j .  So K is some measure of the “imbal- 
ance” of the tree. For example, if there is a single 
deep vertex at level d ,  then K;,d = l / q ; ,  where q; 
the the probability of being at the unique level i 
ancestor of the deep vertex conditioned on getting 
to level i. As another example, consider a random 
tree in which each vertex is a leaf with probabil- 
ity 7 < 1/2 and otherwise has two children, con- 
dition on the tree reaching depth d at least, and 
truncate to depth d.  Take the given p(.lv) to be 
uniform on the children of v. For a typical real- 
ization of such a tree, one can use classical results 
about Galton-Watson branching processes to show 
n = O ( 1 )  while l / a ( d )  = O(cd) for c = 2(1-7)  > 1. 
In this example, the standard depth-first search al- 
gorithm would work well. But now consider the 
tree in figure 1. 

Figure 1 illustrates an example in which Algo- 
rithm l works well but where any simple “back- 
tracking’’ single particle algorithm would work 
badly. And backtracking algorithms are less nat- 
ural in the general randomized optimization algo- 
rithm context we are trying to mimic. 

To analyze the performance of Algorithm 1, 
we have to make the technical assumption that 
for each i, & 2 poZy(d) for some polynomial 
pZy(d) to be specified. If this does not hold for 

Figure 1: A bad tree for Algorithm 0 

the tree in question, then it is very easy to satisfy 
this condition by simply associating poly(d) new 
leaves with each non-leaf node in the tree. A “Go 
with the winners” algorithm is easy to implement 
on the new tree, and the parameter K for the new 
tree is simply poly(d) times the value of K for the 
old tree. 

Theorem 1 There is a polynomial p o l y ( )  such 
that if Algorithm 1 is run with B = K x poZy(d), 
then it fails to find the deepest leaf with probability 
at most 114. 

Unfortunately Algorithm 1 is hard to analyze di- 
rectly, and we defer its proof. To say why, let p ( ~ )  
be the chance that vertex v is on the path taken 
by Algorithm 0. And let Vj be the set of vertices 
at depth j .  One might guess that in Algorithm 2, 
conditional on reaching depth j ,  the mean number 
of particles at vertices v E V, would be propor- 
tional to p(v). But this is false. One cannot give, 
inductively on j ,  an expression for the mean num- 
bers of particles at vertices at depth j ,  because 
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Figure 2: Conditioning in Algorithm 2 

the dependence between positions of different par- 
ticles comes into play. An example should make 
this clear. Consider the tree in figure 2, which con- 
sists of a large complete binary tree whose leftmost 
and rightmost leaves are extended as shown - the 
leftmost node z has two children, one is a leaf node 
and the other is a path down to node U .  The right- 
most node y has a path down to node U .  Clearly 

- 1 2. Now consider a “go with the winners” 
process with 2 particles. Since the complete bi- 
nary tree is very large, we may as well assume that 
if both particles do not get stuck at the leaves of 
the complete binary tree, then at most one of them 
reaches z or y,  and the other gets stuck at a leaf. 
But now the stuck particle is moved to the location 
of the other particle, and so both particles end up 
at z or at y with equal probability. If both particles 
are at z, with probability 3/4, both make it to U ,  

since the only way the particles get stuck is if they 
both choose the leaf child of 2. On the other hand 
conditioned on getting to y,  both particles reach U 

with probability 1. So the mean number of parti- 
cles reaching U is 3/4 times the mean number of 
particles reaching U ,  and these are not in the same 
ratio as = 1/2. 

Algorithm 2, which is conceptually similar to Algo- 
rithm l ,  but mathematically more tractable. Our 
analysis of Algorithm 1 is based on the analysis of 
Algorithm 2. Algorithm 2 is defined in terms of the 
parameters 8; for 1 5 i 5 d - 1. Ideally we would 
like 8; = w, and our analysis will show that Al- 
gorithm 2 is efficient if the parameters 8; are close 
to their ideal values. However, since we do not 

a -  1 

We sha # first analyze the following algorithm, 

know the quantities U ( ; )  associated with the tree, 
Algorithm 2 is just a conceptual algorithm. For 
real c 2 0 write N ( c )  for a random variable with 
mean c and possible values { LcJ, [ c l } .  That is, for 
non-integral c ,  

P ( N ( c )  = I C ] )  = [C]-C,P(N(C)  = [ c l )  = c-LcJ(2)  

Algorithm 2. Repeat the following procedure, 
starting at stage 0 with B particles at the root. 

At stage i there are a random number of 
particles all at level i. If all the parti- 
cles are at leaves then stop. Otherwise, 
for each particle at a non-leaf, add at 
that particle’s position a random num- 
ber of particles, this random number hav- 
ing distribution N(8f’ - 1). Finally move 
each particle from its current position to 
a child chosen at random. 

The fact that different particles “reproduce” and 
“die” independently makes it possible to give mo- 
ment estimates. The motivation for defining Al- 
gorithm 2 was to avoid the conditioning problems 
of Algorithm 1; we note that unlike Algorithm 1, 
Algorithm 2 does satisfy the property that condi- 
tional on reaching depth j ,  the mean number of 
particles at vertex U E V, is proportional to p(w) .  

Denote by Si the number of particles at the start 
of stage i. Write 

j-1 

s j = n O , , j = l ,  ..., d. 
i=l 

Note that if we choose 8; = a( i  + l ) / u ( i ) ,  then 
E(Sd)  = B and var(Sd) 5 KBd. So by Chebyshev’s 
inequality the choice B = 2 ~ d  ensures that sd > 0 
with probability at least l /2 .  As stated, Algorithm 
2 cannot be implemented, since the 8;’s are not 
known quantities. However, we can iteratively use 
Algorithm 2 to obtain an algorithm that estimates 

495 



the 9i directly by sampling. This is what Algorithm 
3 does. 

Algorithm 3. Start at stage 0 with B(d - 1) 
particles at  the root, divided into d - 1 groups 
with B particles each. Move each particle to a 
randomly-chosen child of the root, ending stage 0. 
At the start of stage i ( 1  5 i 5 d - l ) ,  groups 1 
through i - 1 have been discarded, and the remain- 
ing groups contain random numbers of particles, 
all at depth i. Count the proportion 9i of group 
i particles which are at non-leaves. If 8; = 0 then 
output the vertex occupied by some group-i parti- 
cle, and stop. Otherwise, discard all the particles 
in groups i + 1 through d - 1 which are at leaves. 
If no particles remain in group i + 1 ,  or if i = d - 1, 
then choose some group-i particle at a non-leaf v, 
and output some child of w ,  and stop. Otherwise, 
discard the group-i particles. For each remaining 
particle v in groups i + 1 through d - 1, add at 
that particle’s position a random number of addi- 
tional particles, this random number having dis- 
tribution N(9:’ - l ) ,  and include these additional 
particles in the same group as v. If any group now 
has more than 10B particles, then stop. Other- 
wise move each particle from its current vertex to 
a child chosen at random. End stage i .  

The intuitive idea is that the number of particles 
in each group should remain approximately B .  Be- 
cause 9; should be about a(i + l ) / a ( i ) ,  and in the 
remaining groups the number of particles should 
change by a factor of approximately 

where the first term reflects particles at leaves be- 
ing discarded, and the second term reflects the 
added particles. 

The rule that the algorithm stops if any group 
acquires more than 10B particles clearly bounds 
the total number of steps (particle-moves) by 

d-1 

10B x ( d  - 1 - i )  + 1 5 5Bd2.  (3) 
i=O 

So the issue is to estimate the chance that the al- 
gorithm works, i.e. outputs some vertex at depth 
d ,  and this happens iff 9d-1 > 0. 

Our bound involves two parameters. The impor- 
tant parameter, K ,  has already been discussed, and 
a less important one is 

Theorem 3 The chance that Algorithm 9 does not 
work is  

So under the reasonable assumption that p = 
f l ( l / d )  it is enough to take B = O(xd4)  and so 
by (3) to use O ( K @ )  steps. More crudely, if K is 
polynomial in d then Algorithm 3 works in polyno- 
mial time. 

3 Simulated annealing 

The following discussion is of course oversimplified 
and inexact, but should make clear the motivation 
for our tree model. 

Given a real-valued function f defined on a state 
space S, there is a natural way to define a tree such 
that leaves of the tree correspond to local min- 
ima of f. See figure 3. The essence of the cor- 
respondence is that each branch of the tree pass- 
ing through height h corresponds to one connected 
component of {s : f(s) 5 h}. Although figure 3 
pictures a one-dimensional S, all that is required of 
S is a notion of connectivity, and so the correspon- 
dence works for either continuous f on Rd with the 
topological notion of connectivity, or arbitrary f on 
a finite graph S with the graph-theoretic notion of 
connectivity. 

If we run a Metropolis-type algorithm to try to 
simulate the distribution 

then what we actually get (in polynomial time) 
is TT restricted to the connected component of 
{s : f(s) 5 h(T)} containing the starting point, for 
some function h(T).  Identify this distribution with 
the corresponding point on the tree at height h(T).  
Then we can view the progress of a polynomial- 
time simulated annealing algorithm, in which the 
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and the conditional covariance formula 

COV(X1,X2) = Ecov((X1,X2)1Y)+ 

Figure 3: The tree corresponding to simulated an- 
nealing 

temperature T is decreased with time, as a particle 
moving slowly down the tree, making irrevocable 
(non-uniform) random choices at branchpoints, ul- 
timately ending at a leaf. (Of course theoretical 
results asserting logarithmic cooling schedules ul- 
timately attain global minima have no relevance to 
polynomial-time behavior.) The branching prob- 
abilities in the description above depend on both 
size and depth of subtrees, and the fundamental 
requirement needed to make simulated annealing 
work well is that there be a strong association be- 
tween size and depth of subtrees. This property 
has not been rigorously established for any non- 
trivial combinatorial optimization problem, and is 
unlikely to be established using current techniques 
for analyzing Markov chains. Instead, in our ideal- 
ized tree model, we make a weaker assumption on 
the association between size and depth of subtrees, 
and show that it suffices to guarantee success of 
the “go with the winners’’ algorithm. 

4 Proof of Lemma 2 

The proofs of both Theorems 1 and 3 are based 
upon Lemma 2, which we prove in this section. 

Recall the conditional variance formula 

varX = Evar(X(Y) + varE(X1Y) (4) 

which hold for arbitrary square-integrable random 
variables (these formulas treat conditional expecta- 
tions, etc, as random variables). We also need two 
simple facts about the distribution N(c) defined at 
(2). First, 

varN(c) 5 c ( 5 )  

Second, if N(c) balls are put independently into 
boxes 1 , 2 , .  . . with probabilities q( l), q ( 2 ) ,  . . . then 
the numbers Ni in boxes i satisfy 

COV(Nj,Nj) 5 0, j # i. (6) 

Proof of Lemma 2. Let Xu = number of particles 
reaching vertex v. So Sn = CuEv, Xu. If w is a 
child of v and w is at depth n then 

E(X,IX,) = p ( w l v ) ~ X ,  (7) 
3n 

ES,  = Ba(n)/sn.  

For v , w  as above let Xz be the number of par- 
ticles at v after reproduction. Then 

~ ( X W l X 3  = P(wlv)X: 

and so by the conditional variance formula (4) 

var(Xw) = P ( W b ) ( l -  P(wlv))EX: 

Now write 
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Applying the conditional variance formula (4) to 
the two expressions above gives 

var(X:) I EX,* + (sn-i/sn)2var(Xv)- (9) 

Combining (4) and (9), 

var(X,) I p(wlv)sn-l/sn E-& 

Then by induction, if v (n )  is a descendant of 
v(0) through the line of descent v(O), v(l), . . . , v(n), 
then 

Now let w(l),w(2) be vertices at depth n with 
last common ancestor v at depth m < n. Let 
v(l),v(2) be the children of v which are ancestors 
of w(l), 4 2 ) .  Then 

E(X,( l ) X W (  2) I XV( 1) 7 Xu(2)  1 
= ~ ( X ~ ( l } l X U ( l ) )  x E(XW(2)1X"(2)) 

and this gives 

Substituting into (4) 

We can now bound var(Sn). 

c 

the final sum being restricted to  those U which are 
common ancestors of w( 1) and w(2) 

5 Proof of Theorem 3 

We first analyze Algorithm 3 without the condi- 
p(w(2))/3n cov(xu(l), xu(2,). tion "if any group has more than 10B particles, 

~ ( v ( 1 ) ) / 3 ~ + 1  ~(v(2))/3m+i then stop". The key observation is that Algo- 
- - p(w(l))/sn 

rithm 3 is equivalent -to a sequential algorithm-in 
which the particles of one group are moved down 

Next consider how Xu(l) and Xu(2) relate to  Xu. 

COV((XU(l), XV(2))lXU) I 0 by (6) 

4 E(Xu( 1)l xu 1, E(Xu(2) I xu 1) 

= p ( ~ ( l > l v ) p ( v ( 2 ) 1 ~ ) ( 3 ~ / ~ ~ + i ) ~ v a r ( x ~ )  by (7) 

the tree and deleted before the particles in the 
next group are moved from the root. The be- 
havior of the group-k particles depends on the 
previous groups' behaviors only via the quantities 
el,. . . ,Ok- l .  Thus we start our analysis by con- 
ditioning on &, . . ., &-I, and studying the condi- 
tional behavior of B = S r ) , S i k )  ,..., S, ,Sk+l, 
where Sjk) is the number of groupk particles at 

(k) (k) So by the conditional covariance formula (4) 

COV(XU( l ) ,  Xu(,)) 
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the start of stage i, interpreting S Z ,  as the num- 
ber of particles at non-leaves at the start of stage 
k. Write 

j-1 

Sj = 6 ; , j  = 1 , .  . ., k; S k + l  = S k .  
i=l 

Lemma 4 is a reformulation of Lemma 2 making the 
conditioning explicit. Lemmas 5 and 6 are proved 
below. 

Lemma 4 For 1 _< k 5 d'- 1, 

0 5 i 5 k +  1. 

Now write 

and consider the event 

Note that b2-l < e and hence for j 5 d - 1 

Now summing over k gives 

P(A1, ..., Adand d k ) < e B f o r l  5 k s d - 1 )  

1 2 1 - 8etcB-'d4(1+ -). 
2Pd 

If Ad happens, the algorithm works, because 
8d-1 > 0. It remains to consider the chance that 
the algorithm stops because some group's size ex- 
ceeds 10B. Write Qk,; for the event that group 
k exceeds size 10B during stage i. We shall show 
that, for the algorithm continued without this stop- 
ping rule, 

Lemma6 F o r l < k < d - 1 ,  l < i < k ,  

f'(sik' < eB(Qk,,, AI,. . ., Ak) 5 2lrcdB-l. 

The conditional probability in Lemma 6 is larger 
than the corresponding joint probability, so sum- 
ming over (k, i) gives 

21 
2 

P( event ( 5 ) ,  and Qk,i for some (k,i)) 5 --d3B-' 

Combining with (5) gives Theorem 3. 
Proof of Lemma 5. Suppose events AI, .  . . , A k  

happened. In order for Ak+l to happen it suffices 
that 

Lemma 2 shows 

so it suffices that 
Recall that 8 k  = sg,/Sf'. w e  shall estimate dk 

bound the variance terms inductively to get 
(12) 

(13) 

using Chebyshev's inequality and Lemma 2, and Sf) E (1 f -)ESf' 1 and 
2d 

(k) 1 
Lemma 5 For 1 5 k 5 d' - 1, sk+l E ( l  s)Eszl' 

P(Ai+l or S r )  2 eBle i , .  . . , ek-1 ,  sl (1) , . . ., Sryl))Note also that when (13) occurs, 

and so to establish the Lemma it suffices to bound 
the probability that (13) does not happen. On Al n 
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. . . fl Ak we have s j / a ( j )  5 e for j 5 k and so the 
variance bounds in Lemma 2 imply 

5 K B  a2(k  + ' ) e d ( l +  l/P). 4 
Applying Chebyshev's inequality separately to 
each event in (13), the chance the event does not 
happen is at most rcB-'ed x (2d)2 or K;B-'e(d + 
l / P )  x (2d)2,  establishing the Lemma. 

Proof of Lemma 6. We use the same kind of 
argument as in the proof of Lemma 5. Condition 
on S$ = B* 2 10B, for fixed B' and i .  Applying 
Lemma 2 to the groupk particles started with B' 
particles at the beginning of stage i + 1 ,  

If events A I , .  . . , Ak happened then 

varSf) 5 nB*de3. 

Then Chebyshev's inequality gives the first in- 
equality in 

where the second inequality uses B* 2 10B. 

6 Sketch of Proof of Theorem 1 

In this section, we outline the proof of Theo- 
rem 1. First consider running Algorithm 2 with 
parameters 8; chosen so that the expected num- 
ber of particles at level i ,  S;, is B ( l  +- l /pl (d)) '  

for some polynomial pl(d)  to be chosen. By apply- 
ing Chebyshev's inequality to the variance bound 
in Lemma 2, we can closely bound the probability 
that S; deviates significantly from this expectation. 

We will show that there are polynomials 
pz,p3,p4,p5 such that for B = KpS(d): 

0 With probability at least 1 - l /pz (d) ,  ISi - 
mt 5 B / R ( d ) .  

0 With probability at least 1 - l /pz (d) ,  for each 
i and each particle, the total number of de- 
scendants of this particle at level i is at most 
B/P4(4 .  

We now exclude from consideration the 2/pa(d) 
fraction of the probability space in which the above 
two conditions are not satisfed. Our next obser- 
vation is that it is possible to transform a run of 
Algorithm 2 into a run of Algorithm 1 in stages as 
follows: 

At stage i there are a random number C 
of particles at level i ,  which can be parti- 
tioned into D groups, each with N(8:') 
particles. If C < B then abort. If 
C 2 B, then remove C-B particles mak- 
ing sure that particles are removed from 
the groups with the largest number of par- 
ticles first, and ties are broken randomly. 
Also, remove all descendants of particles 
that are removed. 

Finally, to prove that Algorithm 1 reaches depth 
d with high probability, it suffices to show that 
the probability that we have to abort in the above 
transformation is very small. We carry out this 
argument for only those runs of Algorithm 2 that 
satisfy the two conditions above. First note that 
if the number of particles at each level was exactly 
equal to its expectation, and if the removal of par- 
ticles from each level i caused exactly the expected 
number of descendants to be removed from levels 
j > i ,  then at the end of stage i ,  the number of 
particles remaining at level j L: i is exaclty B and 
at level j > i is B ( l  + l /pl (d))J- ' .  By applying 
Chernoff bounds, and an inductive argument to es- 
tablish that the errors do not grow exponentially, 
but only polynomially, we can show that the num- 
ber of particles remaining after stage i is with high 

. .  

500 



probability close to the above numbers. Thus the 
process runs to completion with high probability. 

of polynomially-many particles on exponentially- 
growing state spaces is intrinsically different from 
studying asymptotics on a fixed state space. 

7 Miscellaneous remarks 
References 

7.1 Approximate counting 

There is a structural similarity between Theorem 3 
and the topic of approximate counting [9]. To take 
the best-known example [5], consider how to esti- 
mate the volume of a convex set C in d dimensions, 
for large d, if we are told 

B( 1)  c c c B(2) 

where B ( T )  is the ball of radius T .  We can’t just 
estimate the ratio vol(C)/vol(B(2)) by sampling 
at random from B(2), because the ratio may be 
exponentially small (c.f. Algorithm 1 and (1)). But 
we can define subsets 

c c c1 c . . . c c, = B ( 2 )  

such that the ratios vol(C;)/vol(C;+1) are not 
small, and then estimate each ratio by sampling 
from C;+1. Algorithm 3 has a similar “conditional 
sampling” flavor, and the parameter K measures 
the non-uniformity of conditional probabilities. 

7.2 Superprocesses 

“Go with the winners’’ schemes are loosely related 
to a fashionable topic in theoretical probability. 
Consider K particles performing independent ran- 
dom walks on the d-dimensional lattice. Introduce 
an interaction by picking at each step one particle 
at random and moving it to the position of an- 
other randomly-chosen particle. Now the group of 
particles does not disperse as time increases but 
stays within 0(1) of its randomly-moving center 
of mass. With appropriate scaling, the K + 00 

limit is a process of unit mass moving randomly 
in space, essentially the Fleming-Viot process [4], 
and this is one of a family of measure-valued dif- 
fusions studied under the name of superprocesses. 
There are however two important differences be- 
tween our optimization algorithm setting and the 
theoretical probabilist’s setting. First, we have an 
objective function that we use to choose which 
particle to move. Second, studying asymptotics 
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