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Connectivity is not distributed evenly throughout the brain. Instead,
it is concentrated on a small number of highly connected neural
elements that act as network hubs. Across different species and
measurement scales, these hubs show dense interconnectivity,
forming a core or “rich club” that integrates information across
anatomically distributed neural systems. Here, we show that pro-
jections between connectivity hubs of the mouse brain are both
central (i.e., they play an important role in neural communication)
and costly (i.e., they extend over long anatomical distances) aspects
of network organization that carry a distinctive genetic signature.
Analyzing the neuronal connectivity of 213 brain regions and the
transcriptional coupling, across 17,642 genes, between each pair of
regions, we find that coupling is highest for pairs of connected hubs,
intermediate for links between hubs and nonhubs, and lowest for
connected pairs of nonhubs. The high transcriptional coupling asso-
ciated with hub connectivity is driven by genes regulating the oxi-
dative synthesis and metabolism of ATP—the primary energetic
currency of neuronal communication. This genetic signature con-
trasts that identified for neuronal connectivity in general, which is
driven by genes regulating neuronal, synaptic, and axonal structure
and function. Our findings establish a direct link between molecular
function and the large-scale topology of neuronal connectivity, show-
ing that brain hubs display a tight coordination of gene expression,
often over long anatomical distances, that is intimately related to the
metabolic requirements of these highly active network elements.
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Certain neural elements possess an unusually high degree of
connectivity, designating them as putative network hubs (1).

Analyses of microscale, mesoscale, and macroscale connectomes
of multiple species, constructed using a variety of methods, indicate
that these hubs are strongly interconnected with each other, forming
a so-called “rich club” of connectivity that mediates a large fraction
of communication traffic in the brain and supports the efficient
integration of otherwise segregated neural systems (2–8).
Hub connectivity is functionally advantageous, but it is also

costly. Hub regions make more connections with other areas, and
these connections often extend over long anatomical distances,
thus requiring greater physical space, cellular material, and meta-
bolic resources (3, 9). Accordingly, human neuroimaging studies
have indicated that topologically central hub regions have a higher
energetic demand than other brain areas (9–12), which may render
them particularly vulnerable to the effects of damage or disease
(10, 13). This hypothesis is supported by evidence that pathology in
a broad range of disorders preferentially accumulates within highly
connected brain regions (14).
Hub connectivity is thus a topologically central and costly aspect

of brain network organization that is conserved across species and
spatial scales. This conservation suggests that hub connectivity may
be under tight genetic control. Growing evidence indicates that
gene expression affects neuronal connectivity, with studies of
worm, rat, and mouse nervous systems showing that the transcrip-
tional profile of an individual neuron or neuronal population can
predict its connectivity to other areas with greater than chance ac-
curacy (15–19). Brain regions with similar transcriptional profiles

display similar connectivity profiles (20, 21), and gene expression
profiles are more correlated between pairs of structurally con-
nected brain regions in the mouse/rat (20) and within functionally
coupled networks of the human cortex (22). Functional neuro-
imaging of human twins indicates that the topological properties
of hub connections are strongly heritable (23), but it is not known
whether the topologically distinctive and functionally important
connections between hub regions are associated with a unique
transcriptional signature. Characterizing this relationship is critical
for understanding the molecular basis of topological specialization
in brain networks.
In this work, we show that the topologically central and costly

connections involving hubs of the mouse brain are associated with a
distinct transcriptional signature. Transcriptional coupling is greatest
for pairs of connected hubs, intermediate for connections between
hubs and nonhubs, and lowest for connected pairs of nonhubs, a
trend that mirrors the signaling load that these connections are
likely to carry (3, 4). The highly correlated gene expression profiles
of connected hubs are not driven by the coupling of genes associated
with structural connectivity in general (which we show are involved
in neuronal connectivity and communication) but are driven by
genes regulating oxidative metabolism. We thus identify a close
interplay between gene transcription and large-scale brain network
architecture and show that the primary genetic distinction between
different classes of neuronal connections is intimately related to the
metabolic demand of the regions that they interconnect.

Topological Centrality and Cost of Hub Connectivity
We first describe the topological properties of the mouse con-
nectome from work by Oh et al. (24), represented here as a binary,
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directed adjacency matrix that encodes 3,063 anatomical connections
between 213 brain regions in the right hemisphere (Fig. 1A). The
total number of connections involving a given brain region is called
its degree, k. The distribution of k across all regions of the mouse
connectome, plotted in Fig. 2A, reveals an extended tail of highly
connected hub regions. For each value of k, we quantified the
tendency of nodes with degree > k to preferentially connect to each
other, forming a rich club, using the normalized rich club coefficient,
Φnorm ðkÞ. Values of ΦnormðkÞ> 1 indicate rich club organization of
the network (7, 25). As shown in Fig. 2B, the mouse connectome
displays rich club organization across the contiguous range 42≤ k≤ 54
(P< 0.05, shaded gray area in Fig. 2B), reflecting dense connectivity
between these high-degree hub regions. This range of k is referred to
as the “topological rich club regime” throughout this work.
Putative hub regions are distributed broadly across anatomical

brain divisions in the topological rich club regime (Fig. S1B). For
example, hubs with k> 42 are present in 9 of 13 broad anatomical
divisions of the Allen Mouse Brain Atlas (24, 26). Relative to
other types of network connections, connections between hubs
show a greater mean connection distance (Fig. 2B), an increased
proportion of reciprocal connections (Fig. S1D), and higher aver-
age connectivity weight (Fig. S1E). The high density, reciprocity,
connection weight, and connection distance of hub–hub connec-
tions characterize the high-topological wiring cost of these links (3,
9, 10). These findings counter the general trend across the brain,
where the probability of a connection between two brain areas
decays exponentially with their physical separation, as does the
probability that a connection will be reciprocal (Fig. S2). Hub–hub
connections also play a topologically central role in network
communication, as measured by their edge betweenness centrality
and network communicability (Fig. S1F), suggesting that they are
well-positioned to mediate a large proportion of signal traffic in the
mouse brain. All of the above-mentioned properties of hub–hub
connections display a similar increasing trend with k and a signifi-
cant increase relative to all other connections across the topological
rich club regime (P< 0.05). Thus, hubs of the mouse connectome
are distributed broadly across anatomical divisions and show a
rich club organization characterized by a high wiring cost and
topological centrality, consistent with prior observations in other
diverse species (2–7).

Gene Coexpression and Neuronal Connectivity
We next investigated how the connectivity of pairs of regions of the
mouse brain relate to their transcriptional coupling, as illustrated

in Fig. 1. Transcriptional data for 17,642 genes were obtained from
the Allen Mouse Brain Atlas (26) and normalized across the brain
for each gene, yielding an expression profile for each brain region
(Fig. 1C, rows). To compare different classes of pairwise connec-
tions, we examined patterns of gene coexpression (transcriptional
coupling) measured for each pair of brain regions as the Pearson
correlation of their expression profiles. Gene coexpression values
were corrected for strong spatial correlations in the data (Fig. S3),
ensuring that our results reflect robust effects of connectivity and
connection topology that cannot be explained simply by the spatial
proximity of different pairs of brain regions (Materials and Methods).
We investigated the relationship between gene coexpression

and neuronal connectivity by comparing three different classes of
brain region pairs, i and j (excluding self-connections): (i) re-
ciprocally connected (i↔ j), (ii) unidirectionally connected (i→ j
or j→ i, but not both), and (iii) unconnected. Spatially corrected
gene coexpression is greatest in reciprocally connected pairs of
brain regions (mean ± SD = 0.10± 0.17) followed by unidirec-
tionally connected pairs (0.06± 0.16) and lowest in unconnected

A B C

Fig. 1. Mapping the transcriptional signature of large-scale brain network topology. (A) Defining highly connected hub regions with connectivity degree
k>44, all neuronal connections between each of 213 brain regions were labeled as rich (hub → hub; red), feeder (hub → nonhub or nonhub → hub; green),
or peripheral (nonhub → nonhub; blue). (B) Network schematic illustrating the different connection types in the mouse brain. (C) Normalized expression
levels of 17,642 genes (columns) measured in each brain region (rows) visualized here using color from low (blue) to high (red) are used to compute the
correlation in expression profiles or gene coexpression for each pair of brain regions. Missing data are shown as green, and columns of the matrix have been
reordered using hierarchical clustering to place genes with correlated expression patterns close to one another.
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Fig. 2. The mouse connectome contains a costly and topologically central
rich club of densely interconnected hub regions. (A) Degree distribution of
the mouse connectome. (B) Normalized rich club coefficient, Φnorm (red), and
mean connection distance, d, of hub–hub links (purple) as a function of the
degree, k, at which hubs (regions with degree > k) are defined. Red circles
indicate values of Φnorm that are significantly higher than an ensemble of
10,000 null networks (permutation test; P < 0.05); purple circles indicate
where the mean connection distance of hub–hub links is significantly in-
creased relative to all other network links (one-sided Welch’s t test; P < 0.05).
The topological rich regime (42≤ k≤ 54) is shaded gray.
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pairs (−0.01± 0.16; all differences are statistically significant;
Welch’s t test, P< 10−6) (Fig. S3C).
To investigate which functional groups of genes contributed to

this trend in transcriptional coupling, we developed a measure
that quantifies the contribution of each gene to the overall cor-
relation in expression levels between pairs of brain regions, re-
ferred to here as the gene coexpression contribution (GCC) score.
These GCC scores were then used to perform a gene function
analysis (Materials and Methods). At a false discovery rate of 0.05,
31 distinct functional groups of genes [using Gene Ontology (GO)
annotations for biological processes (27)] show a significantly in-
creased contribution to gene coexpression for connected pairs of
brain regions relative to unconnected pairs (P< 0.05) (Table S1).
The majority of these GO categories are related to neuronal
connectivity and communication, including genes regulating syn-
apse structure, function, and plasticity; neuronal membrane po-
tentials; neurotransmitter signaling; dendritic spine morphogenesis;
and axonogenesis. Similar categories were also selected when
cellular components were included in the analysis (Table S2).
Other categories are related to metabolism, such as those involved
in the electron transport chain and mitochondrial function, sug-
gesting an increased energy demand for connected pairs of brain
regions over unconnected pairs, likely reflecting the metabolic cost
of neuronal communication (28). Similar GO categories related to
neuronal communication and connectivity were obtained when
comparing separately (i) reciprocal vs. unconnected pairs and (ii)
unidirectional vs. unconnected pairs, indicating a robust transcrip-
tional signature of structural connectivity in the mouse brain that
varies quantitatively (rather than qualitatively) as a function of
connection presence and reciprocity.

Gene Coexpression and Hub Connectivity
Having characterized a distinctive transcriptional signature of
neuronal connectivity in the mouse brain, we next investigated
whether gene coexpression might also vary as a function of con-
nection type, focusing particularly on different classes of connections

involving hubs (Fig. 1B). At each k, we labeled each brain region as
either a hub (nodes with degree > k) or a nonhub (otherwise), and
then labeled each connection as rich (hub → hub), feeder (nonhub →
hub or hub → nonhub), or peripheral (nonhub→ nonhub) (3). The
anatomical distribution of hubs, interregional connections, and gene
coexpression values is shown in Fig. 3A.
Across the topological rich club regime, mean gene coexpression

is significantly increased for connections involving hubs (i.e., rich
and feeder connections) and is greatest for rich connections (Fig.
3B). Mean gene coexpression of rich connections increases sharply
at the start of the topological rich club regime (k= 42) and con-
tinues to increase with k, indicating that transcriptional coupling is
strongest for pairs of the most highly connected hubs. Across the
topological rich club regime, gene coexpression is significantly
greater in (i) rich links than feeder links and (ii) feeder links than
peripheral links (Welch’s t test; all P< 0.01). For example, at
k= 42, (spatially corrected) gene coexpression is greatest for rich
links (mean ± SD = 0.11± 0.17) followed by feeder links
(0.08± 0.17) and peripheral links (0.05± 0.16). This same increase
in gene coexpression for rich connections was reproduced using a
range of different data processing methods [including variations in
connectome density (Fig. S5) and spatial correction procedures
(Fig. S6)], highlighting the robustness of this result.
To determine whether specific functional groups of genes drive

this correlated gene expression signature of hub connectivity, we
used our method of assigning GCC values to genes to compare
connections involving hubs with peripheral connections between
nonhubs (Materials and Methods). Hubs were defined as brain
regions with k> 44, corresponding to 1 SD above the mean of
the degree distribution (1, 7) (Table S3). The five biological
process GO categories that show a significant increase in gene
coexpression in rich and feeder connections over peripheral
connections (P< 0.05) fall into two parent categories related to
oxidative energy metabolism: (i) hydrogen ion transmembrane
transport and (ii) citrate metabolic process (Table 1). When GO
annotations for cellular components were also included in the
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analysis, in total, 25 functional groups of genes were selected
(P< 0.05), including mitochondrial respiration, cellular respiration,
mitochondrial membrane, and proton-transporting ATPase com-
plex (Table S4). Importantly, similar functional groups of genes
drive the increased transcriptional coupling of both (i) rich links
compared with peripheral links and (ii) feeder links compared
with peripheral links (Table S5), pointing to a robust and con-
sistent transcriptional signature of connections involving hubs.
The 70 unique genes annotated to the metabolic processes

implicated in hub connectivity (Table 1) show a strikingly se-
lective increase in coexpression for connections involving hubs
across the topological rich club regime (Fig. 4), being highest for
rich connections followed by feeder connections and then pe-
ripheral connections. This result was reproduced when analyzing
each GO category in Table 1 separately, despite the two parent
categories containing nonoverlapping sets of genes (Fig. S7).
Across these 70 genes, mean regional gene expression is also
increased in hub regions over nonhub regions (Welch’s t test;
P< 0.05) (Fig. S8C). Thus, both the regional expression in hub
regions and the interregional coexpression for pairs of brain
regions involving hubs are increased for these metabolic genes.
The result is robust, with similar results reproduced at less
conservative significance thresholds and when cellular compo-
nent annotations were included (Fig. S9).

Discussion
Connectivity is the substrate for neuronal communication. Here
we show that connections between hub regions are topologically
central and costly features of the mouse connectome, and that
these connections are characterized by tightly coupled expression
of genes regulating oxidative metabolism. This distinct transcrip-
tional signature of hub connectivity is different to that of neuronal
connectivity in general, which predominantly implicates genes in-
volved in synaptic communication and plasticity, the regulation of
membrane potentials, and neurite development and morphology.
Our findings point to a molecular basis for the topological speciali-
zation of distinct classes of interregional connections in mesoscale
brain networks and indicate that connections between hub regions in
particular can be distinguished by the metabolic requirements of
integrating large amounts of neural information over long distances.

Gene Coexpression and Neuronal Connectivity. The idea that con-
nected neural elements should show coupled molecular function
was suggested in the work of Ramón y Cajal (29) and later elab-
orated in Sperry’s chemoaffinity hypothesis for how developing
neural connections find their targets (30). Developmental pro-
cesses involved in establishing and maintaining neuronal connec-
tivity, such as neurite outgrowth and guidance, synapse formation,
and synaptic transmission, are all under tight transcriptional
regulation (31). We should therefore expect that genes involved

in these processes will show coordinated expression in connected
pairs of brain regions, as suggested previously using a combination
of mouse gene expression and rat connectivity data (20).
Our findings, obtained using a novel methodology to combine

connectivity and expression data, support this view. For both re-
ciprocal and unidirectional connections, correlated gene expres-
sion is driven by the same types of functional gene groups, pointing
to a uniform transcriptional profile of connectivity that increases with
connection reciprocity. Similar functional categories of genes related
to the development of neurons, neurites, and synapses, as well as
the regulation of neuronal activity and synaptic plasticity, contrib-
ute to predicting the presence of a connection between neurons in
Caenorhabditis elegans (15, 16) and larger-scale neuronal pop-
ulations of the rat (17) and mouse brains (18, 19). The consistency
of these findings across species, datasets, and analysis methods
points to a robust transcriptional signature of neuronal connectivity
characterized by the coordinated expression of genes involved in
the development and ongoing function of neuronal networks.

Benefits and Cost of Hub Connectivity. The pressure to minimize
network wiring costs can account for many diverse aspects of
brain organization, suggesting that wiring cost minimization is an
organizational imperative for brain networks (32). However,
these wiring costs are not absolutely minimized, with some axons
extending over long distances to interconnect spatially disparate
brain areas (10). Our analysis indicates that these connections
are often interposed between highly connected hub regions,
which are dense, strong, reciprocal, and show rich club organi-
zation. These properties counter the general trend for interregional
connectivity in the mouse brain, where the probability of a con-
nection and the probability that a connection will be reciprocal both
decay exponentially as a function of spatial separation (Fig. S2).
Connections linking hub areas thus serve a topologically unique
role, acting as a central but costly backbone that supports the
integration of anatomically distributed and functionally seg-
regated neural systems (3, 4, 8).
The high wiring cost of hub connectivity is coupled with an

increased demand for metabolic resources (9–12). Our results

Table 1. Genes regulating oxidative metabolism are implicated
in hub connectivity

GO category P value

Hydrogen ion transmembrane transport 0.04
Energy-coupled proton transmembrane transport

against electrochemical gradient
0.0097

ATP hydrolysis-coupled proton transport 0.0097
Citrate metabolic process 0.045

Tricarboxylic acid cycle 0.014

GO annotated biological processes with significantly increased gene co-
expression [measured using GCC scores; false discovery rate (FDR) corrected
P < 0.05] in connections involving hubs compared with connections between
nonhubs along with FDR corrected P values. Categories are organized into
two parent categories in the GO hierarchy that contain nonoverlapping sets of
genes (Fig. S7B).
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indicate that this demand defines the transcriptional signature of
hub connectivity. Specifically, we report that gene coexpression is
highest for rich connections (pairs of connected hubs) followed
by feeder connections (connected hubs and nonhubs), with both
rich and feeder connections showing significantly increased gene
coexpression relative to peripheral connections (pairs of con-
nected nonhubs). This result is robust to variations in processing
and analysis procedures (Figs. S5 and S6) and is striking when
one considers the broad anatomical distribution and functional
diversity of hubs (Fig. 3A). Indeed, the strong transcriptional
coupling of connections involving hubs persists despite spanning
distinct neural systems and extending over long anatomical dis-
tances. Importantly, the same types of functional gene groups
involved in oxidative metabolism drive the increase in gene coex-
pression for both rich and feeder connections relative to peripheral
connections, indicating that the transcriptional distinction between
rich and feeder connections is quantitative rather than qualitative.
The increasing gradient of gene coexpression from peripheral to
feeder to rich links follows the expected signal traffic that these
different connection classes are thought to mediate, as indicated by
both topological analysis (3) and computational models of in-
terregional communication (4). This convergence suggests that the
transcriptional signature of different types of interregional con-
nections may be determined by the metabolic resources required to
meet their differential signaling load, consistent with evidence that
the energetic requirements of neuronal signaling scale with action
potential frequency (28).
Genes driving the correlated gene expression signature of hub

connectivity are involved in the synthesis and breakdown of ATP.
Increased transcriptional coupling of these genes was highly
specific to rich and feeder connections across the topological
rich-club regime of the mouse connectome. ATP is the energetic
currency of neuronal signaling (28) and is predominantly sup-
plied by oxidative phosphorylation, with ∼10–12% of energy
supplied by nonoxidative metabolism in the form of aerobic
glycolysis (33). Human functional and metabolic imaging has
shown that brain regions with high-degree and topological cen-
trality consume more glucose (12) and have higher regional
blood flow (11) and glycolytic activity (9, 10) than other areas,
suggesting a role for both oxidative and nonoxidative pathways in
meeting the energetic requirements of hub areas.
Our findings emphasize the role of oxidative phosphorylation

in supporting high-cost communication between hub areas. Func-
tional groups of genes showing elevated coexpression for rich and
feeder connections (Table 1) include nine genes encoding different
subunits of the mitochondrial H+-ATP synthase subunit 5, which
catalyzes ATP synthesis by oxidative phosphorylation, as well as
four genes encoding subunits of cytochrome oxidase c, which is the
terminal enzyme in the mitochondrial electron transport chain and
which has activity levels that are tightly coupled with neuronal
signaling (34). The categories also include a cluster of genes coding
proteins involved in citrate metabolism (Sdh, Mdh, Idh, and Pdh).
Notably, Pdh acts as a molecular bridge between glycolysis and
oxidative phosphorylation by catalyzing the conversion of pyruvate
to acetyl-CoA, further underlining the role of oxidative metabolism
in the transcriptional signature of hub connectivity.
Our analysis of the adult mouse brain reflects the functional

requirements of supporting neuronal connectivity in a mature
neural system. Although many aspects of gene expression in the
brain show a developmentally persistent profile (35), it is unclear
whether the same transcriptional signature of hub connectivity

would be apparent throughout development. Although rich club
connectivity seems to be established early in development (2, 36),
it also undergoes significant remodeling later in life (37). Inter-
estingly, recent evidence indicates that aerobic glycolysis plays a
prominent role in biosynthesis and growth and that it accounts for a
larger fraction of the brain’s energetic needs earlier in develop-
ment, peaking in early childhood when levels of synaptic develop-
ment are highest (35). This work also found that areas of the adult
human brain with high levels of glycolytic activity show increased
expression of genes regulating synapse formation and growth,
whereas brain regions with high glucose metabolism show elevated
expression of genes regulating mitochondria and synaptic trans-
mission (35). Collectively, these findings suggest that the develop-
ment and remodeling of synaptic networks is associated with the
expression of genes regulating aerobic glycolysis. On the other
hand, signaling across established or mature networks, particularly
along links involving hub nodes, may be supported by the coordi-
nated expression of genes regulating oxidative phosphorylation.

Implications for Disease. Many complex diseases of the brain can
be construed as disorders of neuronal connectivity, and the high
metabolic demand of hub regions may render these areas par-
ticularly vulnerable to the effects of injury or disease (10, 13, 14,
38). It is well-known that metabolic abnormalities (mitochondrial
dysfunction in particular) play a key role in the pathophysiology of
many neurological disorders, including Alzheimer’s and Parkinson’s
diseases (38–41), schizophrenia (42), and others. Although the
exact causes of these disorders are no doubt complex, our results
point to a close interplay between the topological organization of
hub connections and the transcription of metabolic genes. This
link suggests that a closer investigation of how brain network to-
pology relates to the energetic requirements of neuronal signaling
may help elucidate the pathogenesis of these disorders.

Materials and Methods
A summary of our analysis methods is provided here, with additional detail
provided in SI Materials and Methods. Mouse brain connectivity data were
obtained from the Allen Mouse Brain Connectivity Atlas (24), and expression
data were obtained from the Allen Mouse Brain Atlas (26). Because the mag-
nitudes of in situ hybridization-measured expression levels are not directly
comparable across genes (43), they were normalized across the brain for each
gene using a scaled sigmoidal transformation. This choice of normalization did
not drive our qualitative results, which were reproduced using a range of nor-
malizing transformations (SI Materials and Methods). The gene coexpression
value for a pair of brain regions is defined as the Pearson correlation between
the normalized expression levels across all genes. Gene coexpression values dis-
play strong spatial correlations that decay exponentially with separation distance
(Fig. S3B). We corrected for this exponential trend, analyzing spatially corrected
gene coexpression data as the residuals of an exponential fit to the data. This
correction allowed us to analyze patterns of gene coexpression beyond what
would be expected purely based on the spatial proximity of brain regions. The
contribution of each individual gene to the spatially corrected gene coexpression
value for each interregion pair was measured as a GCC score using the defi-
nition of the Pearson correlation. Each gene was assigned a t statistic mea-
suring the increase in GCC values (and thus, a more correlated pattern of gene
expression) in one class of interregion pairs over another. Gene function
analysis was performed as a gene score resampling analysis on these t statistics
using ermineJ (44).
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