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The unity of all science consists alone
in its method, not in its material.

Karl Pearson,
The Grammar of Science,

(1892), p. 16
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Overview

The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve. We should be grate-
ful for it and hope that it will remain valid in future research
and that it will extend, for better or for worse, to our pleasure,
even though perhaps also to our bafflement, to wide branches of
learning. (E. Wigner [1])

These lecture notes are divided in two parts. The first part will focus on
modelling, i.e. how to translate a real world problem, into a mathematical
statement, and on the tools to derive from this a quantitative answer. In
particular, we shall see that modelling is often a reduction of the problem to
a paradigmatic problem of probability theory (e.g. drawing balls from urns,
distributing balls in boxes, random walks, etc) for which one can develop a
theory and an intuition. The second step, often deals with counting, so amajor
part of the first part of the course will be about learning to count. We shall
mostly rely on the definition of probability as given by Kolmogorov axioms.
This definition, however, is axiomatic and it does not tell us anything about
what probability really is. A more modern derivation of probability — as the
language that should be used to extend logic to discuss about the plausibility
of statements — will be given following the book of E. T. Jaynes [2], to which
we shall refer as Jaynes.

For the rest, this first part of the course is heavily based on the book by
Feller [3], to which we shall refer as Feller.

The second part of the course will focus on more advanced subjects. First
we will delve into the relation between probability and information theory.
Second we’ll focus on asymptotic properties. These are key to understanding
the collective behaviour of real systems. Wewill realise that a typical behaviour
emerges with its rules and laws. The Central Limit Theorem is probably the
clearest example that formalises the idea that the collective (or large scale)
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behaviour of a system, under specific assumptions, may be independent of
microscopic details. This is precisely the same logic of the more advanced
applications of the renormalisation group in statistical physics.

We shall then focus on atypical behaviour, i.e. the most likely way in which
very unlikely events, such as large deviations, occur.

We shall find that these concepts provide an unifying language1 for a broad
range of different disciplines, from statistical physics in physics, to statistical
inference and computer science (coding and complexity theory). Phenomena
such as phase transitions manifest in a different way in different disciplines,
but they build on the same theoretical foundations, though they are discussed
with a different language. The main goal of the second part of the course is to
discuss the concepts which underlie all these fields.

The main text we shall follow in the second part is the one by Cover
and Thomas [4], to which we shall frequently refer as Cover. A further
textbook towhichwe shall refer is the one byGnedenko [5], using the acronym
Gnedenko. Some of the chapters and sections are excursions to applications
of ideas discussed in other chapters and they are marked with an asterisk ∗.
They may serve to gain deeper understanding and intuition.

As for the reason for this particular structure, I realised after my studies
that my understanding of many problems had suffered from the fact that I
had been taught subjects in the wrong order.2 Take the concept of entropy: I
first learned about it from thermodynamic transformations in heat engines.
Then I was taught that this is a measure of volume in phase space in statistical
mechanics. But I understood what entropy really is when I studied typical
sequences, Shannon’s theorem and information theory. This also made it
clear why it is related to volume in phase space and heat, that remained
somewhat mysterious until that point. The same applies to limit theorems
or large deviation theory, a subject which is often clouded in sophisticated
mathematical language and is approachedwith unnecessary awe by beginners.

Probability is often regarded as a branch of mathematics. If we agree with
E. T. Jaynes, that probability is the language of science, then it should be spoken
properly by all scientists, not only by measure theorists. Much of classical
probability (and most of the books that I refer to in this course) can indeed be
understood with a rather limited knowledge of mathematics, which should

1Interestingly, many non-trivial statistical phenomena can be understood in simple settings.
Having a good grasp of what happens in simple settings, such as those addressed in the
sequel, provides a guide for attacking more complex problems, besides conforming to Occam’s
prescription Frustra fit per plura quod potest fieri per pauciora.

2I was lucky enough to follow the course in probability theory given by G. Jona-Lasinio in
my undergraduate studies at the University of Rome, La Sapienza.
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be familiar to all undergraduate students who passed the basic courses in
mathematics.3

How do we learn? We feel stranger in a city where we cannot go from
A to B. We learn by turning corners and realising “ahah, I could have come
here also from this other path!” I believe the same is true for a subject. At the
beginningwe start populating an emptymap andwith time, we start seeing the
connections. At the end we can navigate autonomously and we enjoy walking
on our own.4 Surprise is a driving force in the discovery process, in which
we instinctively take beauty as a truth certificate.5 Aesthetic amusement, I
believe, is what makes us dig deeper, and a relevant part of what makes us
humans.

Acknowlegments
This book grew out of the lecture notes that I’ve been distributing to students
of a course that I have been teaching in the last twenty seven years. It is
the result of my interaction with students in all these years, initially PhD
students in SISSA, Trieste, then students of the International Master in the
Physics of Complex Systems and lately students of the Diploma programme
in Quantitative Life Sciences at the Abdus Salam International Centre for
Theoretical Physics (ICTP). The text reflects their comments, questions and
corrections. It reflects their thirst for understanding which is one of the most
valuable things on earth. I’m deeply indebted to all of them.

Even though generations of students have helped me correct errors in
these notes, many errors may still remain. My gratitude is extended to all
those who would point out further mistakes.

I couldn’t have developed these ideas without the constant and critical
interaction with my colleagues in the scientific community. It’s hard to list
names, but those who read these words may know whether I’m referring to
them or not. I regard the atmosphere of critical attitude I have breathed in my
career is a sacred fire that we all cherish and preserve for future generations.
The sense of belonging to this community is one of the things I value the most.

3Mathematics deals with proving true statements. That is almost never possible in science.
Science is about falsifiability of theories. It reduces to a disciplined method to show that
something (the prediction of a theory) is wrong, which is a much easier task. Our current
theories are those that survived all these attacks, but this does not mean that they are true.

4Walking on your own, in this course, means challenging yourself with the exercises.
5A point that is maybe best expressed by John Keats verses:

Beauty is truth, truth beauty, — that is all
Ye know on earth, and all ye need to know.
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A self-critical attitude is necessary to distill truewisdom, but thewellspring
of even the most rigorous theorem lies in beliefs. We wouldn’t set out to prove
something if we didn’t believe it can be true. The beliefs that drove me in this
process have been heavily shaped by the teachings of Nichiren and by their
practice, as explained by Daisaku Ikeda, to whom goes my deepest gratitude.
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Part I

Learning to count

1





3

Probability is at the basis of scientific and quantitative analysis. It for-
malises the approach with which we go from a question on a real world
problem to a quantitative estimate, a number.6 The stages in this process are
the following:

Real world. The problem we are interested typically refers to a situation that
occurs in the real world. This is full of details, from the atomic compo-
sition of the entities involved up to the properties of the environment
they are immersed in. Experiments can be carried out and quantitative
measures can be taken of the relevant quantities.

A description. The problem we’re interested in is described in common
language, with a text of finite length. This description is silent about
many details of the real world and (hopefully) only concentrates on the
relevant details that are necessary to arrive at a quantitative answer.

Amathematical model. The description has to be translated in mathemat-
ical language, introducing the appropriate variables and the appropriate
assumptions.

A calculation. The solution to the problem entails a mathematical calcula-
tion. If it reproduces experimental results then we’re allowed to believe
that we reached some understanding, i.e. that the description captures
relevant ingredients and that experiments measure relevant quantities.

From the real world to mathematics

Much of physics is the science of approximation: to zeroth order, a cow is a
sphere and the only two number that suffice to describe it are its radius and
mass. To first order we can add the head and the legs, making the mathemati-
cal description more complex, and so on. The appropriate level of description
varies with the type of questions we’re interested in. Theoretical physicists
inhabit the land of spherical cows, whereas if you want to build bridges and
airplanes that fly, you need to take into account many more details. The
description of a real world situation entails innumerable details, but these
hopefully can be arranged in a hierarchy of relevance and we can cut it to
achieve the desired level of approximation. This is true in physics, but it is
by no means trivial. Take the free fall of bodies: since Galileo Galilei we
know that

6From this point of view, probability theory could be thought of as the theory of the theories
of everything.
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a body falling from an height ℎ takes a time 𝑡 =
√
2ℎ∕𝑔 to reach

the ground, where 𝑔 = 9.81𝑚∕𝑠2.

It is definitely remarkable that there is such a specific relation between 𝑡 and
ℎ. What is more remarkable is that 𝑡 does not depend on any other detail. So
blue bodies fall exactly in the same manner as red bodies. There is a sharp
separation between relevant details (the height) and irrelevant ones (the color,
the smell, etc) which is non-trivial. As Wigner says [1] (read this essay!), the
fact that such precise relations exist and that they have a mathematical form is
a gift. There are two other aspects which are worth to point out in this respect.

First, not all possible questions have such sharp answers, i.e. depend on few
variables. Much of science is precisely about identifying those questionswhich
allow for such sharp answers. These are typically very unnatural questions,
you would rarely ask in your daily life. Imagine what Galileo’s contemporaries
were thinking of him spending his days letting objects fall from a tower.

The second aspect is that the statement above refers to a quite idealised
situation. Have you ever tried to use the relation 𝑡 =

√
2ℎ∕𝑔 to measure 𝑔?

If you do, you will see that every time you get a different number. The more
you control the conditions under which you do the experiment, the more the
dispersion of the numbers you get decreases. We use the term experimental
errors to describe this fact, but there is no error in how bodies fall. The error
refers to our lack of experimental ability and to account the influence of aspects
that we deem irrelevant, as they don’t enter the relation 𝑡 =

√
2ℎ∕𝑔. The

conditions under which 𝑡 =
√
2ℎ∕𝑔 holds with good precision are somewhat

far from the typical ones that hold in the real world, they are quite un-natural
conditions. The second aspect, is that in the end every statement about the
real world is a probabilistic statement: the time it takes for the body to fall
will be close to

√
2ℎ∕𝑔most of the time, i.e. with high probability.

It is important to reflect on the appropriateness of this approach as we
move our attention away from physics, to life sciences.7 We’d dream to find
a cure for cancer or Parkinson’s disease. These are not questions that we
have chosen. There is no reason to believe that the occurrence of cancer
depends on few causes or variables, or that a single pill can cure it. There is
no guarantee that the same sharp separation between relevant and irrelevant
variables holds there and there may be no idealised conditions under which
this is true. Often therapies are developed and tested on model organisms
of increasing complexity, from yeast and worms, to rats and monkeys. Yet
what cures a disease in worms may not work in rats. Even quantifying the

7Indeed, even in physics there are strong coupling problems where a perturbative approach
of successively refined approximations does not work.
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relevance of variables in a specific problem is an issue. In these domains, even
more, all statements are of probabilistic nature, and discipline in going from a
real world problem to a quantitative result is a key issue.

Translating a description into mathematics

Summarising, the best we can do is to develop a discipline to translate real
world problems into mathematical problems.

Kolmogorov’s axioms define a general scheme for describing a problem
in probability in a mathematically precise manner. This entails defining the
sample space— i.e. the set of all possible outcomes— and how the probability
is assigned to each of them. This is an important point which will be treated
in detail in the next lecture. For the time being, let us appeal to an intuitive
notion of what probability is.

The first step is to “read carefully” the statement of the problem, both
what is written and what is not written. Let’s illustrate this with few examples.

What is the probability of a single pair at poker?

Let’s analyse this question. In this statement there’s a lot of missing infor-
mation of three different types:

Irrelevant details. Implicitly the statement refers to a real world situation
where the game of poker is played by some players, each with different
expertise and dressed differently. . . the cards are of a certain brand and. . .
All these details are not contained in the description of the problem.
The answer is assumed to be the same irrespective of these details. It
means that they are irrelevant.

Common knowledge. It is implicitly assumed that we know that poker is
played with a set of 52 cards, of 4 different groups, each numbered from
1 to 13; and that a hand at poker consists of 5 cards drawn from the 52.
We assume that a "single pair at poker" is a concept which is common
knowledge.

Implicit information. The statement does not say anything about how the
5 cards are chosen. Yet this is a relevant information. There is no
reason to believe that a particular group of 5 cards will be more or less
likely that some other group (otherwise it would have been stated in the
problem). So there is a symmetry in the problem which implies that
the probability of each group of 5 cards must be the same. This is a very
useful information, because it reduces the problem to that of counting
the number of ways in which a single pair at poker can arise.
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So the probability of a single pair at poker is the fraction of all possible
hands at poker that result in a single pair. Among the

(
52

5

)
= 2598960 possible

hands, there are8
(13

1

)(4

2

)(12

3

)(4

1

)3

= 1098240

ways to choose the 5 cards. So the probability is 0.422569.
The key lessons to learn from this exercise is i) what is written in the

statement of a problem is important, but what is not written may be even
more important and ii) in many cases computing probabilities amounts to
counting outcomes.

Prototype models of probability theory

What is the probability that at least two people have a birthday on
the same day of the year in a room with 𝑛 people?

Again there is a lot of implicit information. In particular, there is no
information that suggests that individuals are more likely to be born in certain
days, so we shall assume that every day is equally likely as a birthday.9

There is no information about the relation among the individuals, so we
should assume that there is no relation. Knowing the birthday of Mr X does
not tell us anything on when Mrs Y was born. So the correct way to translate
our ignorance on the relation between the people is to treat their birthdays as
independent variables.10 If there were twins among the 𝑛 people this would
not be true. But if this were true, it would have been specified in the statement,
so we disregard this possibility.

Finally, we should consider that one every 4 years is a leap year. We shall
neglect this fact for simplicity, and work under the approximation that every
year has 365 days. This is an approximation. Whether this is appropriate or

8There are
(
13

1

)
ways of choosing the number which appear twice and

(
4

2

)
ways of choosing

the two equal cards among the four possible ones. The other three cards must be different,
which account for the factor

(
12

3

)
and each of them can be of

(
4

1

)
possible types.

9If one looks closely at statistics this is not actually true. There are certain times of the year
when there are more newborn than in other days, depending on the geographical location.
We assume we don’t have this information, and again ignorance entails symmetry that means
equiprobability. Here what we treat as common knowledge is somewhat arbitrary. If the
question would be asked at a conference on demography probably this assumption might not
be tenable.

10In loose terms, there are many ways in which the birthdays of different people could be
related, but there is only one way in which they can be unrelated. If there is nothing that
suggests in which direction this relation should go in the statement of the problem, then it’s
reasonable to assume that there is no relation.
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not depends on the context. It is definitely appropriate for the point we want
to make here.

With these premises, the problem becomes formally equivalent to one of
drawing at random 𝑛 balls in 365 boxes and asking what is the probability
that at least two balls fall in the same box. There are many other problems
that can be formally mapped into problems of distributions of balls in boxes,
so it makes sense to study random distribution of balls in boxes in its own
right. Balls and boxes is the first prototype model of probability theory that we
have encountered but there are many others. In many instances, the answer
to a problem in probability entails finding ways to map it into one of these
prototype problems. We’ll see more examples below.

The answer entails counting all configurations where one or more boxes
contains two or more balls. It’s definitely easier to count the number of
configurations where no box has more than one ball and to subtract this from
the total number of ways to draw the balls. If one thinks of computing this
number as the number of ways we can accommodate the first ball, times
the number of ways we can accommodate the second, etc we realise that this
problem is equivalent to one of drawing 𝑛 times balls from an urnwith 𝑟 = 365

distinguishable balls, without replacement.11 The number of ways in which
we can draw 𝑛 balls from an urn of 𝑟 balls without replacement is

𝑟(𝑟 − 1) ⋅ (𝑟 − 𝑛 + 1) =
𝑟!

(𝑟 − 𝑛)!
.

The problem of counting howmany possible configurations of birthdays there
can be in total, instead, is equivalent to drawing 𝑛 times from an urn of 𝑟 = 365

distinguishable balls with replacement, because each birthday can be chosen
to be any of the 𝑟 days. So this number is 𝑟𝑛 and the probability is

1 −
𝑟!

(𝑟 − 𝑛)!
𝑟−𝑛, 𝑟 = 365

A different problem we shall discuss is how to estimate these numbers, when
𝑛 and 𝑟 is large. We anticipate that this probability is of order one when
𝑛 ≃

√
𝑟 ≃ 19. Drawing balls from urns with or without replacement, or with

more complicated procedures is a further prototype model of probability of
intrinsic interest.

The show at a theatre in Moskow costs 5 rubles. 2𝑛 people show
up. 𝑛 of them have only notes of 10 rubles, whereas the rest has

11Notice: in this further description of the problem, boxes become balls!
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Figure 1. The variable 𝑆𝑘 as a function of 𝑘 in different possible realisations of the
arrival of customers at the theatre.

notes of 5 rubles. The cashier initially has no notes. What is
the probability that the cashier has no change to give to some
customer?

Here the fact that the theatre is inMoscow is irrelevant, it suggests that this
exercise probably first appeared in a Russian book on probability theory. The
𝑛 people can show up in any possible order, so each of them is equiprobable.
What matters to answer the question is whether, at any time, the number of
customers with 5 rubles that have arrived up to that time is at least as large as
the number of customers with 10 rubles that have arrived so far, or not.

So the key variable is the difference 𝑆𝑘 between the customers with 5
rubles and those with 10 rubles that have arrived up to time 𝑘, i.e. when the
𝑘th customer has arrived. Then the problem can be conveniently represented
graphically by drawing a plot of 𝑆𝑘 as a function of 𝑘 = 1,… , 2𝑛. All possible
paths in this plot correspond to a different order in which customers can
arrive and there is no reason to assume that a particular path is more likely
than some other. So all paths are equally likely. A random paths with this
property is called a random walk, which is yet another cornerstone models of
probability theory.
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If the cashier has no change to give at some point in time, it means that
𝑆𝑘 < 0 for some 𝑘 = 1,… , 2𝑛. So the problem above is equivalent to computing
the probability that a random walk of 2𝑛 steps, that returns to the origin at
time 2𝑛 (because 𝑆2𝑛 = 0), never visits the negative half plane. This is a
classical problem in random walk theory that we will discuss.

Using invariance, random variables and generating functions

As an overview of the concepts that we shall discuss in the first part of the
course, consider the following problem:

Mr X checks emails every minute with probability 𝑝. He receives
on average 𝜆 emails per minute. What is the probability that Mr
X finds no email the next time he checks?

The answer to this question involves a few conceptual steps that are useful
building blocks in dealing with a large number of problems.

Probability distributions. The probability that in a given minute Mr X
receives 𝑘 emails is given by the Poisson distribution

𝑃{𝑍 = 𝑘} =
𝜆𝑘

𝑘!
𝑒−𝜆, 𝑘 = 0, 1, 2, …

As we will see, this is the only distribution that is consistent with the (implicit)
assumption of time translation invariance (i.e. that any time is as likely as
any other time for the arrival of an email) and of independence (the arrival of
an email now does not imply that emails are more or less likely to arrive in
the near future). It is important to learn which distribution is appropriate for
which situation.

Random variables. The number of emails that Mr X finds is a random
variable 𝑁

𝑁 = 𝑍1 + … + 𝑍𝑇

where 𝑇 is the number of minutes that have passed since last time he checked
emails, and 𝑍𝑡 are the emails that arrived in the 𝑡thminute. 𝑍𝑡 are also random
variables. The probability that 𝑍𝑡 = 𝑘 is the Poisson distribution discussed
above, and all 𝑍𝑡 are independent. Indeed also 𝑇 is a random variable. With
probability 𝑝 it is equal to 1, with probability 𝑝(1 − 𝑝) it is equal to 2,. . . with
probability 𝑝(1 − 𝑝)𝑡−1 it is equal to 𝑡 (this is a geometric distribution).

We’re interested in the event that 𝑁 = 0, that only occurs if all 𝑍𝑡 = 0.
Decomposing the problem as in the equation above, paves the way to finding
a solution in a simple manner.
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Computing with functions. A convenient way to compute the answer is
to consider the functions

𝜙(𝑠) =

∞∑

𝑡=1

𝑃{𝑇 = 𝑡}𝑠𝑡 =
𝑝𝑠

1 − (1 − 𝑝)𝑠
, 𝜓(𝑠) =

∞∑

𝑘=0

𝑃{𝑍 = 𝑘}𝑠𝑘 = 𝑒(𝑠−1)𝜆

that are conveniently written as expected values: 𝜙(𝑠)=𝔼
[
𝑠𝑇
]
and𝜓(𝑠)=𝔼

[
𝑠𝑍
]
.

These functions are called generating functions. Then we can write

𝔼
[
𝑠𝑁
]
≡

∞∑

𝑡=1

𝑃{𝑇 = 𝑡}𝔼
[
𝑠𝑍
]𝑡
= 𝔼

[
𝔼
[
𝑠𝑍
]𝑇]

= 𝜙(𝜓(𝑠))

and, after a moment of reflection, it is clear that the sought answer is given by
setting 𝑠 = 0 in this expression, i.e.

𝑃{𝑁 = 0} = 𝜙(𝜓(0)) =
𝑝

𝑒𝜆 − 1 + 𝑝
. (1)

Indeed many counting problems can be solved very efficiently by introducing
appropriately defined (generating) functions (i.e. 𝜙 and 𝜓 here). How to count
with functions will be another important subject of the first part of the course.

The aim of the first part of the course is to acquire familiarity with all the
concepts and techniques involved in the derivations above (as well as with
others), in order to be able to tackle and solve complex problems.

Exercise

Consider the following problems. Findwhat is themissing information
in their statements and of which type? What does "surprising" means
in the first problem?

1. "In a parking lot there are 12 places arranged in a row. A person
observes that 8 places are taken and the 4 free places are adjacent
to each other. Is this surprising?"

2. "Mr Brown has 𝑛 keys. Only one of them opens the door. What is
the probability that he needs to try 𝑘 of them to open the door?"

3. "What is the probability that in a family with five children, none
is a girl?"



Chapter 1

A safe definition of probability

Probability begins and ends with probability.
(John Maynard Keynes,

The Application of Probability to Conduct)

1.1 Chance and randomness
In the classical textbook of Gnedenko we find a definition of probability
as “that branch of mathematics that deals with the regularities in chance
phenomena”. But what are “chance phenomena”? Are there real chance
phenomena? Is a financial crisis a chance phenomenon? And what about an
earthquake? Conversely, are there phenomena that are really deterministic?
Any experiment is to some extent affected by uncontrollable effects that we
may call “chance”. Indeed, laws of physics describe ideal situations in which
the predicted outcome only occur when a number of factors are carefully
controlled.

We believe events generally happen because of causal mechanisms, yet
we might not be able to specify or know all the conditions that are necessary
for an event 𝐴 to occur.1 Only if a specified set of conditions Ω contains all
those ingredients that are necessary for the event 𝐴 to occur, we may say that
𝐴 is certain. Since this is rarely the case, we are left with statements about the
likelihood of events under specified conditions, that take the form:

1For the moment, you can think of an event 𝐴 as a statement, e.g. a description of what
happens, e.g. an earthquake of magnitude between 6.3 and 6.5 in a give period of time (e.g. next
month) and region. Likewise, we think of the conditions Ω as a set of statements specifying all
the information we have on the factors potentially relevant for the event: e.g. the time series of
previous earthquakes, whether nuclear tests are going to be performed or not in that region,
levels of humidity and temperature etc.

11
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The probability of the event 𝐴 given the conditions Ω is 𝑝

By convention we assume 0 ≤ 𝑝 ≤ 1.
On the other hand, “chance events” which are typical of classical probabil-

ity, such as the toss of a coin (e.g. 𝐴 = {head}), are not intrinsically stochastic.
We could include in Ω all those informations that allows us to solve the equa-
tion of motion of the coin from its start, and that would allow us to say exactly
whether 𝐴 occurs or not. Therefore chance events exist because of our negli-
gence in the description of the problem or of our lack of information. Indeed
probability has a lot to do with information as we’ll see. But for the moment
being, let it suffice to say that in the description of any phenomena, there are
a set of conditions that we specify and control. All the rest, at finer level of
description, is what we call “random” or “chance”. Chance is a useful label to
attach to all those details that we ignore or consider irrelevant with respect to
the questions we’re interested in.

It’s important to understand what are the rules of chance, because it is
important to make sure that the predictions we derive are robust and mean-
ingful.

1.2 The concept of probability
Probability is a primitive concept. In order to see this, Marinari and Parisi [6]
offer the following reasoning: let us focus on a simple event like the occurrence
of a particular outcome in an experiment (e.g. head in coin tossing). One
might try to define the probability 𝑝 of an event as the limit of the frequency
𝑓𝑛 of its occurrence, when the experiment is repeated many times and the
number 𝑛 of trials goes to infinity:

𝑝 ≡ lim
𝑛→∞

𝑓𝑛 (1.1)

This means that ∀𝜖 > 0 there is an 𝑛̄ such that ∀𝑛 > 𝑛̄,

|𝑓𝑛 − 𝑝| < 𝜖. (1.2)

However this cannot be true, because the fact that 𝑓𝑛 is close to 𝑝 by less than
a distance 𝜖 is itself a random event. However large 𝑛 may be, realisations in
which the inequality (1.2) is violated are possible. So at most one can say that
such deviations become very unlikely as 𝑛 gets large, i.e.

lim
𝑛→∞

Prob{|𝑓𝑛 − 𝑝| > 𝜖} = 0.
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Therefore Eq. (1.1) is a definition of probability which relies on the concept of
probability. Indeed probability cannot be defined in terms of other concepts.
Probability is a primitive concept. One way to deal with primitive concepts is
to give them an axiomatic definition.

We note in passing that Eq. (1.1) is a non-trivial fact, a result called the
Law of Large Numbers, that we shall derive later in the course, once we have
a proper definition of probability.

1.3 Kolmogorov’s axioms

The theory of probability is based on three objects

(Ω,𝒜, 𝒫)

• Ω is the sample space. If we are dealing with an experiment, its elements
𝜔 are all its possible outcomes. If we are dealing with a forecast for a
future time𝜔 is a possible state of the world at that time. Ω can be a finite
set, or a set of countably infinite elements, or a continuum measurable
set.

• 𝒜 is a 𝜎-field. In words, it is a collection of subsets 𝐸 ⊆ Ω of the
sample space – that are called events2 — satisfying the following three
properties:

i) Ω ∈ 𝒜

ii) : if 𝐴 ∈ 𝒜 then 𝐴̄ = Ω∕𝐴 ∈ 𝒜

iii) 𝒜 is closed under countable unions: this means that if𝐴1, 𝐴2, … ∈

𝒜 then also 𝐴1 ∪ 𝐴2 ∪ … ∈ 𝒜.

Since 𝐴1 ∩ 𝐴2 ∩ … = 𝐴̄1 ∪ 𝐴̄2 ∪ …, these three properties imply that 𝒜
is closed also under countable intersections.3

2Notation: If 𝐴, 𝐵 ⊆ Ω are two events, 𝐴 ∪ 𝐵 is the union, that corresponds to points 𝜔
that either belong to 𝐴 or to 𝐵. ∪ is equivalent to the OR logical operation or to addition (+)
in mathematics. Likewise 𝐴 ∩ 𝐵 is the intersection, that contains points 𝜔 that belong both
to 𝐴 and to 𝐵. ∩ is equivalent to the AND logical operation or to product (×) in mathematics.
I denote by 𝐴∕𝐵 the set of points 𝜔 ∈ Ω that belong to 𝐴 but that do not belong to 𝐵. This
operation is analogous to the difference between sets. The set 𝐴̄ = Ω∕𝐴 is the complement of
set 𝐴, that includes all points 𝜔 ∈ Ω that do not belong to 𝐴. The complement operation ⋅ is
analogous to the logical negation (NOT). The empty set is denoted as ∅ = Ω.

3In all cases we will discuss 𝒜 will be the family of all possible subsets of Ω.
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• 𝒫 is the probability measure, which is a real function defined on𝒜

𝒫 ∶ 𝒜 → [0, 1] (1.3)
𝐴 ∈ 𝒜 → 𝑃(𝐴) ∈ [0, 1] (1.4)

which satisfies the following properties

positivity ∶ 𝑃(𝐴) ≥ 0, ∀𝐴 ∈ 𝒜 (1.5)
normalization ∶ 𝑃(Ω) = 1 (1.6)

additivity ∶ 𝑃(
⋃

𝑖

𝐴𝑖) =
∑

𝑖

𝑃(𝐴𝑖), (1.7)

∀𝐴𝑖 ∈ 𝒜 ∶ ∀𝑖 ≠ 𝑗 𝐴𝑖

⋂
𝐴𝑗 = ∅

continuity ∶ ∀𝐴1 ⊇ 𝐴2 ⊇ … , 𝐴𝑛 → ∅, (1.8)
then 𝑃(𝐴𝑛) → 0 as 𝑛 → ∞. (1.9)

As consequences of these axioms we have

– for all 𝐴 ⊆ Ω, 𝑃(𝐴) ≤ 1 and 𝑃(𝐴̄) = 𝑃(Ω) − 𝑃(𝐴) = 1 − 𝑃(𝐴),
because 𝐴 and its complement 𝐴̄ = Ω∕𝐴 are disjoint, and we can
apply the additivity rule.

– Subadditivity: for all 𝐴, 𝐵 ∈ 𝒜

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

because 𝐵∕𝐴 and 𝐴 are disjoint, as well as 𝐵∕𝐴 and 𝐴 ∩ 𝐵. Using
𝐵 = (𝐵∕𝐴) ∪ (𝐴 ∩ 𝐵) and 𝐴 ∪ 𝐵 = (𝐵∕𝐴) ∪ 𝐴 and the additivity
rule gives the result.

– if 𝐴 ⊆ 𝐵 then whenever 𝐴 occurs 𝐵 also occurs. In other words,
this means that “𝐴 implies 𝐵”, or 𝐴 ⇒ 𝐵. For all 𝐴, 𝐵 ∈ 𝒜 such
that 𝐴 ⇒ 𝐵, 𝑃(𝐴) ≤ 𝑃(𝐵).

It is important to remark that the probability of an event𝐴 depends on the
state of knowledge. This is encoded inΩ becauseΩ specifies all the outcomes
that are possible. If the state of knowledge changes, because an event Ω′ ⊆ Ω

is known to be true, then the state of knowledge changes to Ω′. The more we
know, the more the sample space Ω shrinks. So, strictly speaking, we should
use the notation 𝑃(𝐴|Ω) for the probability of event 𝐴 under the conditions
specified by Ω. Therefore, all probabilities are conditional to a given state of
knowledgeΩ, i.e. all probabilities are conditional probabilities. Yet, whenΩ is
fixed, we shall disregard the dependence on it and write simply 𝑃(𝐴) for the
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probability of event 𝐴. We shall come back to this point when we will discuss
conditional probability.

Kolmogorov’s axioms provide the dictionary and the basic grammar rules
to discuss probability.

One annoying aspect of Kolmogorov axioms is illustrated by the following
example (taken from Feller, p. 8): imagine we want to know the probability
that a person lives more that 1000 years. A statistician’s approach would
extrapolate from formulas extracted from mortality tables and come with a
probability of one in 101036 , a number which clearly makes no sense. Still if
one is going to take seriously the problem, one has to decide whether this
event (a person living 1000 years) is possible or not. In the first case, it has to
be assigned a positive probability. If we assume it to be impossible, then the
event does not belong to Ω. But then we should find out what is the maximal
age a person can live, based on first principles, in order to define Ω. This
problem needs to be solved before we even start talking about probabilities.

We shall discuss other definitions of probability theory that overcome these
difficulties. Our focus here is on computing, i.e. quantifying the plausibility
of statements. For this, Kolmogorov’s axioms are enough.

1.4 The fallacy of intuition
Probabilistic thinking is hard wired in us, as there are regions of our brain
that are activated when, for example, we have to take decision in uncertain
circumstances or that have uncertain consequences. So we have a lot of
intuition about probability. Yet there are also well documented biases in our
probabilistic thinking [7], so it is important not to rely blindly on our intuition.

In order to be sure about what your intuition suggests, you can use Kol-
mogorov’s axioms: ask yourself: what is Ω? What is 𝒫? Then do the calcula-
tion. Let’s consider a couple of examples:

Take two points 𝐴 and 𝐵 at random on a circle. This divides the
circle in two arcs. What is the probability that the arc that contains
the origin is larger than the other?

Intuitively there is no reason to think that one of the arcs should be larger
than the other, so you would conclude that 𝑝 = 1∕2. But let’s check. A point
on a circle is identified by the angle, i.e. by a number 𝑋 ∈ (0, 2𝜋]. So two
points correspond to a pair (𝑋𝐴, 𝑋𝐵) ∈ (0, 2𝜋]2. The sample space is then
Ω = (0, 2𝜋]2 and every subset 𝐸 ⊆ Ω is a possible event. Each outcome is a
priori equally likely, so 𝒫 is the uniform measure on (0, 2𝜋]2. Event 𝐸 ⊆ Ω

has a probability 𝑝 = |𝐸|∕|Ω| where |𝐸| is the area of the set 𝐸.
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A

B O

Figure 2. Taking two points, A and B, at random on a circle, what is the probability
that the arc that contains the origin is larger than the other?

2⇡

E

(2⇡, 2⇡)
2⇡

Figure 3. The sample space of the problem discussed in the text.

Now you can translate the statement above in a precise mathematical form.
Actually it is easier to draw the sample space and identify the set corresponding
to the event

𝐸 = {the arc that contains the origin is larger than the other}.
If you do that, you discover that the right answer is 𝑝 = 3∕4, contrary to

intuition.
How can this be possible? On second thought you realise this is expected.

Indeed there is a symmetry and the choice of the origin breaks it. So there
are three points drawn at random in reality, 𝐴, 𝐵 and 𝑂. So there are three
intervals and the interval containing the origin in the problem formulation
corresponds to the union of two of them. It is natural to expect that it should
be longer than the other.

1.4.1 The Bertrand paradox

A further aspect where our intuition may need to be checked is the notion of
drawing at random. Let us consider the following problem:

Choose a chord AB at random on the circle of radius one. What is
the probability 𝑝 that AB is longer than the side of the inscribed
triangle (which is

√
3)?
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Bertrand gave three different answers:

• by symmetry chose the chord to be horizontal and draw the vertical
diameter. If the chord intersects the diameter in its middle half, then
𝐴𝐵 >

√
3. This means 𝑝 = 1∕2.

• by symmetry, chose one of the end points (𝐴) to coincide with a vertex
of the triangle. The second point is identified by choosing the angle
𝜃 ∈ [0, 𝜋] of the chord with the tangent in 𝐴. Then 𝐴𝐵 >

√
3 if 𝜃 ∈

[𝜋∕3, 2𝜋∕3]. This means 𝑝 = 1∕3.

• the chord is uniquely identified by its middle point. So one can chose
this middle point at random in the circle. If the point falls inside the
circle inscribed in the triangle, then 𝐴𝐵 >

√
3. Since the area of the

inscribed circle is 4 times smaller than that of the outer circle, 𝑝 = 1∕4.

The problem is that the sentence “the chord is chosen at random” has not a
clear meaning, and it is indeed interpreted differently, with a different Ω and
𝒫, in the three cases above.4 There is no paradox.

Exercise 1.1

1. 𝐴 is the event of a single pair at poker. What is Ω? What is 𝒫?

2. 𝐴 is the event that at least two people have a birthday on the
same day of the year in a room with 𝑛 people. What is Ω? What
is 𝒫?

3. The show at a theatre in Moskow costs 5 rubles. 2𝑛 people show
up in a random order. 𝑛 of them have only notes of 10 ruble,
whereas the rest has notes of 5 ruble. 𝐴 is the event that the
cashier has no change to give to some customer. What is Ω?
What is 𝒫?

4. 𝑁 gentlemen go to theatre each leaving his hat at the wardrobe.
On exit they are assigned their hats in a random order. 𝐴 is the
event that none of the gentlemen get his own hat back. What is
Ω? What is 𝒫?

4Notice that we assume that, in each of the three cases, drawing at random implies an uni-
form probability distribution overΩ, as if ignorance is naturally translated into equiprobability.
This is not an innocent assumption. For example, why should an interval [𝜃, 𝜃 + 𝑑𝜃) have the
same probability when 𝜃 is close to the endpoints (𝜃 = 0, 𝜋) and in the middle (𝜃 = 𝜋∕2)?
Jaynes discusses this issue in some detail in this paper: Prior probabilities [8].
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5. A fair coin is tossed until for the first time the same result appears
twice consecutively. 𝐴 is the event that the experiment ends
before the 6th toss. 𝐵 is the event that an even number of tosses
is required. Compute the probabilities of 𝐴 and of 𝐵.

6. Consider two dice. Let 𝐴 = {sum of the faces is odd} and 𝐵 =

{at least one ace}. Describe the events𝐴∪𝐵,𝐴∩𝐵 and𝐴∩𝐵. As-
suming that each outcome is equiprobable, find the probabilities
of all these events.

7. An insurance is interested in the age distribution of couples (𝑥, 𝑦),
where 𝑥 is the age of the husband and 𝑦 is the age of the wife
(both are integers, in years). What is the sample space? What is
the event𝐴 that the husband is older than 40, 𝐵 that the husband
is older than the wife and 𝐶 that the wife is older than 40? Draw
them. Show that 𝐴 ∩ 𝐶 ⊂ 𝐵.

8. Verify the relations and try to express them in words:

(a) 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵

(b) 𝐴 ∪ 𝐴 = 𝐴 ∩ 𝐴 = 𝐴

(c) (𝐴 ∪ 𝐵)∕(𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵)

(d) 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵

9. Find simpler expressions for

(a) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵),
(b) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵)

(c) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)

10. Let 𝐴, 𝐵 and 𝐶 be three events. Find expressions for the events:

(a) Only 𝐴 occurs
(b) All three events occur
(c) at least two occur
(d) two and no more occur
(e) not more than two occur
(f) none occurs
(g) at least one occurs



Chapter 2

But what is probability?∗

“ [. . . ] le regole della logica probabilistica [. . . ] — come quelle
della logica formale nel campo delle proposizioni—ci insegnano a
ragionare nel campo delle valutazione di probabilitá mantenendo
intatta la coerenza del pensiero con se stesso.” (B. De Finetti [9])

Kolmogorov’s axioms are enough for computing probabilities in an un-
ambiguous manner. Yet, they don’t provide any insight on what probability
really is.

2.1 de Finetti and subjective probabilities
Bruno de Finetti, argued that probability is nothing else than the degree of
confidence that an individual has that some event will actually occur or that
a fact is true. Probability is subjective by definition.

One way to quantify the probability of an event 𝐴 is to devise a lottery.
A ticket of the lottery grants a payoff of one pound to its holder if 𝐴 occurs
and nothing otherwise. The price 𝑃(𝐴) of a ticket of this lottery measures the
degree of confidence that a buyer has on the likelihood of event 𝐴. Clearly
𝑃(𝐴) ≥ 0. For an event that is almost certain, 𝑃(𝐴) should be close to one
(pound), and if 𝐴 is very unlikely then 𝑃(𝐴) should be small.

When there is more than one event, the price of the tickets of the corre-
sponding lotteries should be fixed in a consistent way, in order to ensure that
the system of lotteries is fair, and that no-one can extract a positive gain with-
out taking any risk.1 Prices should be such that an agent would be indifferent
between being on the sell or the buy side. This implies that:

1This is known as the no-arbitrage hypothesis in finance.
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• If two events𝐴 and𝐴′ are equally likely, the tickets of the corresponding
lotteries should be the same, 𝑃(𝐴) = 𝑃(𝐴′).

• If 𝐴 and 𝐴′ are exclusive events (i.e. 𝐴 ∩ 𝐴′ = ∅), then the price of the
combined lottery for 𝐴 ∪ 𝐴′, that grants a win of one pound if either 𝐴
or 𝐴′ occur, should be equal to the sum of the prices of the lotteries for
𝐴 and 𝐴′, i.e. 𝑃(𝐴 ∪ 𝐴′) = 𝑃(𝐴) + 𝑃(𝐴′) pounds.2

• If 𝐴̄ is the event that 𝐴 does not occur, a gambler that buys one ticket of
the lottery 𝐴 and one of the lottery 𝐴̄ is sure to win one pound. Hence
𝑃(𝐴) + 𝑃(𝐴̄) = 1 pound.

These rules are consistent with the Kolmogorov axioms that define the prob-
ability 𝑃(𝐴), and indeed de Finetti has shown that they are identical. In
addition, they give a meaning to the probability 𝑃(𝐴) of an event 𝐴 as the
amount that an individual is willing to bet on its occurrence. Different indi-
viduals may assign different probabilities to the same event, so probability is
subjective. Yet, each of them should assign probabilities to different events in
a way which is consistent with the rules of probability.

Buying a share of a stock in the financial market is like buying a ticket of
a lottery. Indeed, Bruno de Finetti’s idea of relating probability to monetary
outcomes of uncertain events is the basis of the theory of finance.3 He laid
the foundations of asset pricing theory (i.e. the theory that says how the price
of a stock or a financial instrument should be fixed) and of portfolio theory.

2.2 Probability as a theory of plausible reasoning

Several authors have argued that probability is a way to formalise in a quanti-
tative manner our way of reasoning about the plausibility of statements. We
follow the discussion in the first two chapters of Jaynes, to which we refer
for a more detailed discussion. Here we only sketch the main ideas.

The first observation is that deductive logic (see Figure 4) is hardly applica-
ble to the real world, as there are few cases where we can say that a statement
𝐴 implies another statement 𝐵 in the strong sense (if 𝐴 is true, then 𝐵 is true).
In real life and in science, we’re almost always arguing about how the fact

2Because if 𝑃(𝐴 ∪ 𝐴′) > 𝑃(𝐴) + 𝑃(𝐴′), buying a ticket for 𝐴 ∪ 𝐴′ and selling one ticket
for both 𝐴 and 𝐴′, would ensure a gain 𝑃(𝐴 ∪ 𝐴′) − 𝑃(𝐴) − 𝑃(𝐴′) > 0 irrespective of what
happens.

3de Finetti worked at the Generali insurance company in Trieste for some time, where he
faced the problem of computing prices for insurance contracts.
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Socrates

humans

mortals

Figure 4. The typical syllogism on which deductive logic is based: "all humans are
mortal", "Socrates is a human" then "Soctrates is mortal".

that something (𝐴) is true affects the plausibility of something else (𝐵).4 As
J. Clerk Maxwell put it:

[. . . ] the actual science of logic is conversant at present only with
things either certain, impossible, or entirely doubtful, none of
which (fortunately) we have to reason on. Therefore the true
logic for this world is the calculus of Probabilities, which takes
account of the magnitude of probability which is, or ought be, in
a reasonable man’s mind.

Exercise 2.1

Does the quote "What I cannot create, I do not understand", attributed
to R.P. Feynman, implies that he though he could create what he un-
derstood?

2.2.1 A digression into logics

The basic entities that are the object of probability theory are statements,
such as

𝐴 = it will start to rain by 10 am at the latest

4This applies also to mathematics. While theorems express logical relations between
statements they are almost always derived or discovered starting from reasonable conjectures.
The worth of any theory 𝐴 is to make predictions on other statements, e.g. if 𝐴 is true then 𝐵 is
true. We can falsify 𝐴 if we find that 𝐵 is false. But if 𝐵 is true we can only say that 𝐴 is more
plausible (see later). We cannot prove that 𝐴 is true.
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which are either true or false. Logic provides a language to combine different
statements into more complex ones:5

Logical product or conjuction 𝐴𝐵 = both 𝐴 and 𝐵 are true

Logical sum or disjunction 𝐴 + 𝐵 = either 𝐴 or 𝐵 are true

Negation or denial 𝐴̄ = 𝐴 is false

that satisfy a set of properties

Idempotence 𝐴𝐴 = 𝐴, 𝐴 + 𝐴 = 𝐴

Commutativity 𝐴𝐵 = 𝐵𝐴, 𝐴 + 𝐵 = 𝐵 + 𝐴

Associativity 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 = 𝐴𝐵𝐶

and 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 = 𝐴 + 𝐵 + 𝐶

Distributivity 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, 𝐴 + (𝐵𝐶) = (𝐴 + 𝐵)(𝐴 + 𝐶)

Duality If 𝐶 = 𝐴𝐵, then 𝐶̄ = 𝐴̄ + 𝐵̄ and if 𝐷 = 𝐴 + 𝐵, then 𝐷̄ = 𝐴̄𝐵̄6

It can be shown that with these operations we can generate all possible
statements.

𝐴 T F
𝑓1(𝐴) T T
𝑓2(𝐴) T F
𝑓3(𝐴) F T
𝑓4(𝐴) F F

Table 2.1. All possible statements derived from 𝐴.

Exercise 2.2

Think of all possible statements involving two events𝐴, 𝐵 (see table 2.2).
How many are them? Express them in terms of sum, negation and
product.

5Although the notation is different, the product 𝐴𝐵 for statements is the same as the
intersection 𝐴 ∩ 𝐵 for sets, and the sum 𝐴 + 𝐵 is the same as the union 𝐴 ∪ 𝐵.

6Note that 𝐴̄𝐵̄ ≠ 𝐴𝐵.
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𝐴, 𝐵 T,T F,T T,F F,F
𝑓1(𝐴, 𝐵) T T T T
𝑓2(𝐴, 𝐵) T F T T
𝑓3(𝐴, 𝐵) F T T T
. . . . . . . . . . . . . . .

Table 2.2. All possible statements involving two events 𝐴, 𝐵.

Yet, the language of logics is redundant as indeed the same statement can
be expressed in many ways. For example7

𝐶 = (𝐴 + 𝐵)(𝐴̄ + 𝐴𝐵) + 𝐴̄𝐵̄(𝐴 + 𝐵̄) = 𝐴̄ + 𝐵 .

𝑛 elementary statements 𝐴1, … , 𝐴𝑛 can only have 2𝑛 possible truth assign-
ments, which means that there are 22𝑛 different statements that can be ob-
tained by combining them.

The redundancy of the language based on the three logical operators above
suggests that any statement can be expressed in terms of a fewer number of
operators. It can be proved that all operators can be expressed in terms of the
NAND operator 𝐴 ↑ 𝐵 ≡ 𝐴𝐵 = 𝐴̄ + 𝐵̄. For example, you can check that

𝐴̄ = 𝐴 ↑ 𝐴

𝐴𝐵 = (𝐴 ↑ 𝐵) ↑ (𝐴 ↑ 𝐵)

𝐴 + 𝐵 = (𝐴 ↑ 𝐴) ↑ (𝐵 ↑ 𝐵).

2.2.2 Quantifying plausibility

Jaynes approach to probability is normative: how should a robot assign plau-
sibility to different statements in a “correct” way? First, the plausibility of any
statement 𝐴 depends on the state of knowledge of the robot, i.e. those state-
ments that the robot knows to be true. If 𝐵 is the statement that encodes the
state of knowledge, plausibility should be a function of 𝐴|𝐵, i.e. of statement
𝐴 given 𝐵. Jaynes shows that there is a unique way of defining probability
that satisfies the following desiderata:

7Note that 𝐶 is false whenever 𝐴 is true and 𝐵 is false. In this sense 𝐶 can be read as the
statement 𝐶 = {𝐴 ⇒ 𝐵} that 𝐴 implies 𝐵, because 𝐶 being true means that if 𝐴 is true then
𝐵 must be true. The statement 𝐶 does not say anything about 𝐵 if 𝐴 is false. Alternatively,
𝐶 can also be expressed as the statement 𝐶 = {𝐴 = 𝐴𝐵}, which is true if whenever 𝐴 is true
𝐵 is also true. Logical implication seen in this way has the interesting property that all false
statements imply any other statement, as well as their opposite, because if 𝐴 is false then 𝐴𝐵 is
also false (and hence 𝐴 = 𝐴𝐵, i.e. 𝐶 is true) and 𝐴𝐵̄ is also true. It’s suggestive to think about
the implications of this fact for the “surprising” propagation of fake news. See [10].
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I Degrees of plausibility are represented by real numbers.

II Qualitative correspondence with common sense.
For example, if 𝐴|𝐶 is less plausible than 𝐴|𝐶′ and if 𝐵|𝐴𝐶 and 𝐵|𝐴𝐶′
are equally plausible, then 𝐴𝐵|𝐶′ should be more plausible than 𝐴𝐵|𝐶
and 𝐴̄|𝐶′ should be less plausible than 𝐴̄|𝐶.

III Consistency

1. If a conclusion can be reached in more than one way, then every
possible way must lead to the same quantitative estimate of the
plausibility.

2. The robot always takes into account all of the evidence which
is relevant to a question that it is aware of. It does not base its
conclusion on a subset of the information available, neglecting the
rest.

3. The robot always represents equivalent states of knowledge by
equivalent plausibility assignments. That is, if the robot’s infor-
mation about two statements is the same (except perhaps for the
labelling of the propositions), then it must assign the same plausi-
bilities in both.

We shall not repeat the derivation here and refer to Jaynes for it. We only state
the key steps, which consists in deriving rules for computing the plausibility
of composed statements such as the product 𝐴𝐵|𝐶 and the sum 𝐴 + 𝐵|𝐶

from the plausibility of elementary statements, e.g.𝐴|𝐶 and 𝐵|𝐶. The product
and the sum rule are enough to compute the plausibility of any composite
statement. We shall avoid using the word probability until the very end, and
discuss instead about a generic measure of plausibility. As we shall see, for
any measure of plausibility which is consistent with the desiderata above, it is
possible to derive a function, that we call probability, that satisfies the product
and sum rules of probability that we’re used to.

The first requirement implies that there should be a function 𝑔(⋅) that
assigns to any statement 𝐴|𝐵 a real value 𝑔(𝐴|𝐵) that we call the plausibility
of 𝐴 given the state of knowledge 𝐵.8

The product rule. Let us start by considering the statement 𝐴𝐵|𝐶. Jaynes
argues that its plausibility 𝑔(𝐴𝐵|𝐶) should be a function

𝑔(𝐴𝐵|𝐶) = 𝐹[𝑔(𝐴|𝐵𝐶), 𝑔(𝐵|𝐶)] = 𝐹[𝑔(𝐵|𝐴𝐶), 𝑔(𝐴|𝐶)] (2.1)
8Note that plausibility does not depend on what the statement is about.
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of either 𝑔(𝐴|𝐶) and 𝑔(𝐵|𝐴𝐶), or of 𝑔(𝐵|𝐶) and 𝑔(𝐴|𝐵𝐶). Indeed, the rea-
soning about 𝐴𝐵 given 𝐶 can be decomposed in two steps: first estimate the
plausibility of 𝐵 given 𝐶 and then that of 𝐴 given 𝐵𝐶. Equivalently we can
reason first about 𝐴 given 𝐶 and then about 𝐵 given 𝐴𝐶. The result must
be the same for consistency, with the same function 𝐹(⋅, ⋅). Note also that
Eq. (2.1) implies that 𝑔(𝐴|𝐵𝐶) does not depend on the plausibility of other
statements involving 𝐴, 𝐵 and 𝐶. For example, whether 𝐴|𝐵̄𝐶 is more or less
plausible should not affect the result, because if 𝐵 is not true, then 𝐴𝐵 is also
not true. Next, the function 𝐹 should be a nondecreasing function of both
arguments, for common sense.

Now, consider the plausibility of 𝐴𝐵𝐶 given 𝐷. This can be expressed in
two ways

𝑔(𝐴𝐵𝐶|𝐷) = 𝐹[𝑔(𝐵𝐶|𝐷), 𝑔(𝐴|𝐵𝐶𝐷)] = 𝐹[𝐹[𝑔(𝐶|𝐷), 𝑔(𝐵|𝐶𝐷)], 𝑔(𝐴|𝐵𝐶𝐷)]

= 𝐹[𝑔(𝐶|𝐷), 𝑔(𝐴𝐵|𝐶𝐷)] = 𝐹[𝑔(𝐶|𝐷), 𝐹[𝑔(𝐵|𝐶𝐷)], 𝑔(𝐴|𝐵𝐶𝐷)]]

which implies that the function 𝐹 satisfies

𝐹[𝐹[𝑥, 𝑦], 𝑧] = 𝐹[𝑥, 𝐹[𝑦, 𝑧]] (2.2)

where 𝑥 = 𝑔(𝐶|𝐷), 𝑦 = 𝑔(𝐵|𝐶𝐷) and 𝑧 = 𝑔(𝐴|𝐵𝐶𝐷). It is easy to check that
the function9

𝐹(𝑥, 𝑦) = 𝑤−1 (𝑤(𝑥)𝑤(𝑦))

where 𝑤(𝑥) is a monotone increasing function of 𝑥, satisfies Eq. (2.2). For a
proof that this solution is also unique, under general assumptions of continuity
that derive from common sense (II), we refer to Jaynes.10

The key point of the derivation is that the function

𝛾(𝐴|𝐵) = 𝑤[𝑔(𝐴|𝐵)]

satisfies the product rule

𝛾(𝐴𝐵|𝐶) = 𝑤 (𝑔(𝐴𝐵|𝐶)) (2.3)
= 𝑤 (𝐹(𝑔(𝐴|𝐵𝐶), 𝑔(𝐵|𝐶)) (2.4)
= 𝑤 (𝑔(𝐴|𝐵𝐶))𝑤 (𝑔(𝐵|𝐶)) (2.5)
= 𝛾(𝐴|𝐵𝐶)𝛾(𝐵|𝐶). (2.6)

9To prove this, use the fact that 𝑤(𝐹(𝑥, 𝑦)) = 𝑤(𝑥)𝑤(𝑦) and check that applying 𝑤(⋅) to
Eq. (2.2) yields 𝑤(𝑥)𝑤(𝑦)𝑤(𝑧) on both sides.

10Note that 𝐹(𝑥, 𝑦) = 𝐹(𝑦, 𝑥) is invariant under exchange of its arguments. Should this be
expected?
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Consider the case where 𝐵|𝐶 = 𝑇 is true.11 Then 𝐴𝐵|𝐶 = 𝐴|𝐶 and 𝐵 does
not change the state of knowledge, i.e. 𝐵𝐶 = 𝐶. Eq. (2.6) then becomes
𝛾(𝐴|𝐶) = 𝛾(𝐴|𝐶)𝛾(𝐵|𝐶) that can only be satisfied for all𝐴 and𝐶 if 𝛾(𝐵|𝐶) = 1.
Hence we conclude that

𝐵|𝐶 is true ⇒ 𝛾(𝐵|𝐶) = 1 . (2.7)

Next, if 𝐴|𝐶 = 𝐹 is false,12 then 𝐴𝐵|𝐶 = 𝐴|𝐶 is also false and 𝛾(𝐴𝐵|𝐶) =
𝛾(𝐴|𝐶). Also 𝛾(𝐴|𝐵𝐶) = 𝛾(𝐴|𝐶) because 𝐴|𝐶 is false irrespective of whether
𝐵 is true or not. Therefore 𝛾(𝐴|𝐶) = 𝛾(𝐴|𝐶)𝛾(𝐵|𝐶) that can only be satisfied
for all 𝐵 and 𝐶 if 𝛾(𝐴|𝐶) = 0. Therefore

𝐴|𝐶 is false ⇒ 𝛾(𝐴|𝐶) = 0 . (2.8)

Common sense implies that, the plausibility of any statement must be higher
than that of a false statement and lower than that of a true statement. Hence
𝛾(𝐴|𝐶) ∈ [0, 1] for all statements.

The sum rule. Let us now consider the two statements 𝐴|𝐵 and its nega-
tion 𝐴̄|𝐵. It is clear that if one of the two becomes more plausible the other
decreases in plausibility, by common sense. So there should be a decreasing
function 𝑆(𝑥) such that 𝛾(𝐴̄|𝐵) = 𝑆 (𝛾(𝐴|𝐵)). If 𝐴|𝐵 = 𝑇 is true, we know
that 𝐴̄|𝐵 = 𝐹 is false and eqs. (2.7) and (2.8) imply that 𝑆(1) = 0 and 𝑆(0) = 1.
For 𝑥 ∈ [0, 1] the function 𝑆(𝑥) takes also values in [0, 1].

An equation for 𝑆(⋅) can be derived by the following steps

𝛾(𝐴𝐵|𝐶) = 𝛾(𝐴|𝐶)𝛾(𝐵|𝐴𝐶)

= 𝛾(𝐴|𝐶)𝑆 (𝛾(𝐵̄|𝐴𝐶))

= 𝛾(𝐴|𝐶)𝑆 (
𝛾(𝐴𝐵̄|𝐶)

𝛾(𝐴|𝐶)
)

where we used 𝛾(𝐴𝐵̄|𝐶) = 𝛾(𝐴|𝐶)𝛾(𝐵̄|𝐴𝐶) in the last line. An equivalent
equation can be derived by inverting𝐴 and 𝐵 in the derivation, which leads to

𝛾(𝐴|𝐶)𝑆 (
𝛾(𝐴𝐵̄|𝐶)

𝛾(𝐴|𝐶)
) = 𝛾(𝐵|𝐶)𝑆 (

𝛾(𝐴̄𝐵|𝐶)

𝛾(𝐵|𝐶)
) (2.9)

This equations holds whatever 𝐴, 𝐵 or 𝐶 are. If we specialise to a situation
where 𝐵̄ = 𝐴𝐷 with 𝐷 an arbitrary statement, then13 𝐴𝐵̄ = 𝐵̄. Also 𝐵 =

11Here 𝑇 is the true statement. It is analogous of the sure event Ω.
12𝐹 is the false statement. It is analogous to the impossible event ∅.
13𝐵̄ = 𝐴𝐷 means that 𝐵̄ implies 𝐴, i.e 𝐵̄ ⇒ 𝐴, therefore 𝐴𝐵̄ = 𝐵̄. On the other hand, if 𝐴 is

false, then 𝐵 cannot be false, i.e. 𝐴̄ ⇒ 𝐵 and hence 𝐴̄𝐵 = 𝐴̄.
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𝐴𝐷 = 𝐴̄ + 𝐷̄, so that 𝐴̄𝐵 = 𝐴̄(𝐴̄ + 𝐷̄) = 𝐴̄. This reduces Eq. (2.9) to

𝑥𝑆 (
𝑆(𝑦)

𝑥
) = 𝑦𝑆 (

𝑆(𝑥)

𝑦
) . (2.10)

with 𝑥 = 𝛾(𝐴|𝐶) and 𝑦 = 𝛾(𝐵|𝐶). With 𝑦 = 1 the equation above yields 𝑥 =
𝑆(𝑆(𝑥)) which is consistent with the self-reciprocal property of the negation,
i.e. the negation of 𝐴̄ is 𝐴, and with the conditions 𝑆(0) = 1 and 𝑆(1) = 0.

A lengthy algebraic derivation (see Jaynes) shows that 𝑆(𝑥)must be of
the form

𝑆(𝑥) = (1 − 𝑥𝑚)1∕𝑚 (2.11)

with 𝑚 > 0 a positive real number. This means that, for all measures of
plausibility 𝑔(𝐴|𝐵) there exist a function

𝑃(𝐴|𝐵) = 𝑤 (𝑔(𝐴|𝐵))
𝑚 (2.12)

that satisfies the following product and sum rules

𝑃(𝐴𝐵|𝐶) = 𝑃(𝐴|𝐶)𝑃(𝐵|𝐴𝐶) (2.13)
𝑃(𝐴̄|𝐶) = 1 − 𝑃(𝐴|𝐶) (2.14)

We can forget about the plausibility function 𝑔(𝐴|𝐵) and just work with this
function, that we call probability. It has the property

𝑃(𝐴|𝐶) = 1 if 𝐴 is true given 𝐶

and 𝑃(𝐴|𝐶) = 0 if 𝐴 is false given 𝐶.

Exercise 2.3

Show that Eq. (2.11) is a solution of Eq. (2.10). Why should 𝑚 be
positive?

Knowing how the probability transforms under the operations of conjunc-
tion and negation allows one to compute the probability of combinations of
statements. For example, one can derive the rule

𝑃(𝐴 + 𝐵|𝐶) = 𝑃(𝐴|𝐶) + 𝑃(𝐵|𝐶) − 𝑃(𝐴𝐵|𝐶)

from the two properties above.14 In particular, if the events 𝐴 and 𝐵 are
mutually exclusive, i.e. 𝑃(𝐴𝐵|𝐶) = 0 then we obtain the additivity rule.

14Start with 𝐴 + 𝐵 = 𝐴̄𝐵̄, so 𝑃(𝐴 + 𝐵|𝐶) = 1 − 𝑃(𝐴̄𝐵̄|𝐶). Then use 𝑃(𝐴̄𝐵̄|𝐶) =

𝑃(𝐴̄|𝐶)𝑃(𝐵̄|𝐴̄𝐶) and 𝑃(𝐴̄|𝐶) = 1 − 𝑃(𝐴|𝐶). The rest is left as an Exercise.
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In brief, what Jaynes shows is that all the rules that are encoded in Kol-
mogorov axioms can be derived as an extension of logic, that defines how a
robot should assign probabilities to statements, in a way to satisfy the desider-
ata above. This is remarkable.

As a final consequence of consistency, consider the situation where the
robot has to assign probabilities to 𝑛 exclusive statements 𝐴1, … , 𝐴𝑛. If the
state of knowledge𝐵 does not distinguish between the statements15 (i.e.𝐵 does
not say anything on 𝐴𝑖 that it does not say on 𝐴𝑗) then 𝑃(𝐴𝑖|𝐵) = 𝑃(𝐴𝑗|𝐵).
In this situation, the way in which the statements are labeled from 1 to 𝑛 is
completely arbitrary because any robot that looks at a problemwhere the labels
are a permutation of the original ones, should give the same numerical values.
Finally if the events are also exhaustive, i.e. if 𝑃(𝐴1 + … + 𝐴𝑛|𝐵) = 1, then
the permutation symmetry invoked above implies 𝑃(𝐴𝑖|𝐵) = 1∕𝑛. Indeed
symmetries are a key element to compute probabilities [8].

As we observed, if 𝐴 implies 𝐵 given a state of knowledge 𝐶, then we
cannot conclude anything about𝐴 if 𝐵 is true. Yet, the probability of𝐴 should
increase in the case where 𝐵 is true. Indeed

𝑃(𝐴|𝐵𝐶) =
𝑃(𝐵|𝐴𝐶)𝑃(𝐴|𝐶)

𝑃(𝐵|𝐶)
=

1

𝑃(𝐵|𝐶)
𝑃(𝐴|𝐶) ≥ 𝑃(𝐴|𝐶) (2.15)

where we used the product rule in the first equation, 𝑃(𝐵|𝐴𝐶) = 1 in the
second (because 𝐴 implies 𝐵 given 𝐶) and 𝑃(𝐵|𝐶) ≤ 1. Finding out that a
quasi-obvious statement 𝐵 that implies 𝐴 is true, does not increase by much
the likelihood of𝐴, whereas a non-trivial statement 𝐵, with a small probability
𝑃(𝐵|𝐶), increases the plausibility of 𝐴 considerably. Likewise the fact that 𝐴
is false, does not imply that a statement 𝐵 that is implied by 𝐴 is also false,
but it decreases its plausibility by an amount that can be computed with a
derivation similar to Eq. (2.15):

𝑃(𝐵|𝐴̄𝐶) =
𝑃(𝐴̄|𝐵𝐶)𝑃(𝐵|𝐶)

𝑃(𝐴̄|𝐶)
= 𝑃(𝐵|𝐶) −

𝑃(𝐴|𝐶)

𝑃(𝐴̄|𝐶)
𝑃(𝐵̄|𝐶) ≤ 𝑃(𝐵|𝐶). (2.16)

If 𝐵|𝐶 is likely true a priori, i.e. if 𝑃(𝐵|𝐶) ≃ 1, showing that a new fact 𝐴
that could explain it is wrong does not affect its likelihood significantly. On
the other hand, if 𝐴 is very likely true, showing that it is false decreases
considerably the probability that all its consequences 𝐵 are true. This is
why the changes in our state of knowledge that occur when well established
theories are falsified are often called paradigm shifts.

15For example 𝐵 = {the dice is fair} and 𝐴𝑖 = {a throw of the dice results in 𝑖} with
𝑖 = 1, … , 6.
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Exercise 2.4

Derive the expression (2.16).

Jaynes formalisation of probability is conceptually more transparent than
that based on Kolmogorov’s axioms. Yet, from a computational point of view,
Kolmogorov axioms are more practical (although they introduce unnecessary
axioms and assumptions) and lead to the same conclusions.16

16If you’re interested to know more, see the discussion in Jaynes, appendix A.





Chapter 3

Classical probability

Probability theory is nothing but common sense reduced to calcu-
lation. (Laplace, 1819)

Let us consider again the two problems we discussed earlier:1

1. 𝐴 is the event of a single pair at poker.

2. 𝐴 is the event that at least two people have a birthday on the same day
of the year in a room with 𝑛 people.

One way to estimate the probability of 𝐴 is to identify those elementary
events 𝜔 ∈ Ω that are “evidently” equiprobable. By this we mean that there
is no indication in the statement of the problem or in our state of knowledge
that would hint at the fact that some 𝜔 are more or less likely than others.2

This means that 𝑃(𝜔) = 𝑃(𝜔′) for all 𝜔, 𝜔′ ∈ Ω and that 𝑃(𝜔) = 1

|Ω|
for all

𝜔 ∈ Ω, because of normalisation
∑

𝜔∈Ω

𝑃(𝜔) = |Ω|𝑃(𝜔) = 1.

Here |Ω| is the number of elements of Ω. Therefore, for any event 𝐴 ⊆ Ω, the
probability can be written as

𝑃(𝐴) =
∑

𝜔∈𝐴

𝑃(𝜔) =
|𝐴|

|Ω|

1This part is discussed in Feller II, which you’re strongly suggested to study. In particular,
if you want to make sure you master this material, challenge yourself with the problems at the
end of the chapter.

2Another way to state the same fact, is that when the state of knowledge is such that
the answer to a question is invariant with respect to any relabelling (or permutation) of the
elementary events 𝜔 ∈ Ω, then 𝑃(𝜔) = 𝑃(𝜔′) for all 𝜔, 𝜔′ ∈ Ω.

31
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where |𝐴| is the number of “favourable” cases and |Ω| is the total number of
cases. We stress the fact that what allows us to compute probability exactly is
the (permutation) symmetry present in the problem (as in the first example
above) or assumed (as in the second).

In these cases computing probabilities becomes a counting problem. This
is the realm of classical probability.

3.1 Combinatorics
Counting problems are often combinatorial problems. The mathematical
objects that occurs frequently are:

Permutations. The number of different permutations3 of 𝑛 objects (e.g. the
numbers 1, 2, … , 𝑛) is given by the product of all integers up to 𝑛

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) ⋅ 2 ⋅ 1,

which is called the factorial of 𝑛. Indeed, let us label the 𝑛 objects by
integers 𝑥𝑖 from 1 to 𝑛. Then we can write a permutation as a sequence
(𝑥1, 𝑥2, … , , 𝑥𝑛), where 𝑥𝑖 is the label of the object in position 𝑖 (𝑥𝑖 ≠
𝑥𝑗 ∀𝑖 ≠ 𝑗). Then 𝑥1 can be chosen in 𝑛 ways, 𝑥2 in 𝑛 − 1 ways, and
so on.

Ordered samples. The number of ways to draw 𝑟 out of 𝑛 objects is given by

(𝑛)𝑟 = 𝑛(𝑛 − 1)⋯ (𝑛 − 𝑟 + 1) =
𝑛!

(𝑛 − 𝑟)!
.

Indeed, using the same notation as above, a draw of 𝑟 of the 𝑛 objects
corresponds to an 𝑟-tuples 𝑥1, 𝑥2, … , 𝑥𝑟 with 𝑥𝑖 ∈ ℕ, 1 ≤ 𝑥𝑖 ≤ 𝑛 and
𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗. The number of distinct 𝑟-tuples is given by the
expression above because 𝑥1 can be chosen in 𝑛 ways, 𝑥2 in 𝑛 − 1 ways,
. . . and 𝑥𝑟 in 𝑛 − 𝑟 + 1 ways.

Combinations. The number of subsets of 𝑟 objects of a set of 𝑛 elements is

(𝑛

𝑟

)
=
(𝑛)𝑟

𝑟!

Indeed, from each subset of {𝑥1, … , 𝑥𝑛} of size 𝑟, it is possible to form 𝑟!

ordered samples of size 𝑟, by permuting the 𝑟 elements in all possible
ways.

3I.e. ways in which the 𝑛 objects can be ranked.
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The combinatorial coefficient has several properties that are discussed in
Feller, Chapter II. Here we remind only two main important facts:

• The binomial coefficient can be generalised when 𝑛 is replaced by any
real number. Indeed

(𝑛

𝑘

)
=
𝑛 ⋅ (𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)

𝑘!
(3.1)

is a valid expression even if 𝑛 ∈ ℝ. If 𝑛 < 𝑘 is an integer, one of the
terms in the numerator is zero, so

(
𝑛

𝑘

)
= 0 for 𝑛 < 𝑘 and 𝑛 integer. Yet

this is not true if 𝑛 is not an integer. So for example4

(−1∕2

𝑘

)
=

(
−
1

2

) (
−
3

2

) (
−
1

2
− 𝑘 + 1

)

𝑘!
(3.2)

=
(−1)𝑘1 ⋅ 3⋯ (2𝑘 − 3)(2𝑘 − 1)

2𝑘𝑘!
=
(−1)𝑘(2𝑘 − 1)!!

2𝑘𝑘!

=
(−1)𝑘

4𝑘

(2𝑘

𝑘

)
(3.3)

is non-zero for 𝑘 > −1∕2.

• The binomial theorem: for any 𝑎, 𝑏 ∈ ℂ and any 𝑛 ∈ ℝ

(𝑎 + 𝑏)𝑛 =

∞∑

𝑘=0

(𝑛

𝑘

)
𝑎𝑘𝑏𝑛−𝑘. (3.4)

For integer values of 𝑛, the sum in Eq. (3.4) is limited to 𝑛, because
(
𝑛

𝑘

)
= 0 for all 𝑛, 𝑘 ∈ ℕ, 𝑘 > 𝑛. This allows us to derive non-trivial

identities, such as, for example

∞∑

𝑘=0

(−1)𝑘

4𝑘

(2𝑘

𝑘

)
𝑧𝑘 =

∞∑

𝑘=0

(−1∕2

𝑘

)
𝑧𝑘 =

1
√
1 + 𝑧

.

4Here we define the double factorial

(2𝑘 − 1)!! = 1 ⋅ 3 ⋅ 5⋯ (2𝑘 − 1)

as the product of odd integers up to 2𝑘 − 1. Analogously

(2𝑘)!! = 2 ⋅ 4 ⋅ 6⋯ (2𝑘) = 2𝑘𝑘!

is the product of all even integers up to 2𝑘. Notice that (2𝑘)! = (2𝑘 − 1)!! ⋅ (2𝑘)!!.
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3.1.1 The Stirling’s approximation to 𝒏!

Stirling’s formula provides an approximation of 𝑛! for large 𝑛 that reads:

𝑛! ≃ 𝑛𝑛𝑒−𝑛
√
2𝜋𝑛

(
1 + 𝑂(𝑛−1)

)
. (3.5)

In Feller II you find a derivation of the this result. Here we give a different
derivation based on the saddle point method.

Let us start from an important identity

𝑛! = ∫

∞

0

𝑑𝑥𝑥𝑛𝑒−𝑥 ≡ Γ(𝑛 + 1) (3.6)

where the function Γ(𝑧) defined by the second equality (with 𝑛 + 1 replaced
by a complex number 𝑧) is called gamma function. Eq. (3.6) indeed provides
a generalisation of the factorial for integers (i.e. an analytic continuation) to
all complex values of 𝑛. For 𝑛 = 0 the integral is easily evaluated and we
discover that 0! = 1. Eq. (3.6) can be proved to reproduce the factorial 𝑛! =
𝑛⋅(𝑛−1)⋯2⋅1 because for 𝑛 > 0 integration by parts yields Γ(𝑛+1) = 𝑛Γ(𝑛).

In order to derive Eq. (3.5), observe that the integrand above is maximal
for 𝑥 = 𝑛. Hence set 𝑥 = 𝑛(𝑧 + 1) so that

𝑛! = 𝑛𝑛𝑒−𝑛𝑛 ∫

∞

−1

𝑑𝑧𝑒𝑛[log(1+𝑧)−𝑧]

The function in the integral is shown in Figure 5. For 𝑛 large, this function is
sharply peaked around 𝑧 = 0. So the integral is dominated by the region 𝑧 ≈ 0

where log(1 + 𝑧) − 𝑧 is maximal. This allows us to approximate this function
by its power expansion around 𝑧 = 0, i.e. log(1 + 𝑧) − 𝑧 ≃ −𝑧2∕2 + 𝑂(𝑧3).
Then, by making the further change of variables

√
𝑛𝑧 = 𝑢, we find that

∫

∞

−1

𝑑𝑧𝑒𝑛[log(1+𝑧)−𝑧] ≃
1
√
𝑛
∫

∞

−
√
𝑛

𝑑𝑢 𝑒−𝑢
2∕2+𝑢3∕(3

√
𝑛)+…

≃
1
√
𝑛
∫

∞

−∞

𝑑𝑢 𝑒−𝑢
2∕2 (1 +

𝑢3

3
√
𝑛
+ …) (3.7)

=

√
2𝜋

𝑛
(1 + 𝑂(1∕𝑛)) (3.8)

which gives Stirling’s approximation, Eq. (3.5).
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Figure 5. The function 𝑓(𝑧) = 𝑒𝑛[log(1+𝑧)−𝑧] for 𝑛 = 10, 50, 100 and 500.

Exercise

Show that replacing −
√
𝑛 by −∞ in the lower limit of integration of

Eq. (3.8) involves an error which is of order 𝑒−𝑛∕2∕
√
𝑛, and hence is

negligible with respect to the leading term of order 1∕𝑛. Explain the
result.

Exercise

The first order correction in the Stirling’s formula (3.5) should be of
order 1∕

√
𝑛 according to Eq. (3.8). Yet it turns out to be only of order

1∕𝑛. Can you explain why? Can you compute the coefficient of the
1∕𝑛 correction?

3.2 Different ways of counting
What is the probability that no student in a class has his/her birthday on the
same day as another one? As already mentioned, this question can be trans-
lated into that of random distributions of 𝑟 balls (the students) into 𝑛 boxes
(birthdays, 𝑛 = 365). The probability of this event is then computed counting
the number of ways in which the event 𝐴 = {at most one birthday per day}
can occur. Counting the way in which we can choose the birthdays of Amelie,
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Figure 6. The number of ways in which a pair at poker can occur can be counted
either labelling cards from one to five or counting the ways in which the different
boxes in the scheme above can be occupied so as to result in a pair.

George, . . . , Carla in such away to satisfy𝐴, leads to |𝐴| = 𝑛(𝑛−1)… (𝑛−𝑟+1).
It does not matter in which order we take the students, we get always the same
number.5

What is the probability that we get a pair at poker? We can count in the
same way, as you pick up the cards one by one. There are 52ways in which we
can get the fist card, to get a pair the second must be one of the three with the
same number. The third can be chosen among the 48with a different number,
the fourth in 44 ways and the last in 40 ways. Then we have to consider that
the two equal cards can be any, not necessarily the first two. This suggests

|𝐴|1 =
(5

2

)
× 52 × 3 × 48 × 44 × 40 = 131788800

where the index 1 refers to theway of counting. We can also count in a different
way. There are 13 ways of choosing the number of the pair and

(
4

2

)
ways of

choosing their type. Then there are
(
12

3

)
ways to chose the numbers of the

three remaining cards and 43 ways in which we can choose their type. Hence

|𝐴|2 = 13 ×
(4

2

)
×
(12

3

)
× 43 = 1098240.

We get two different numbers! What is going on? The problem is that we’re
counting in different ways. In the first, we’re considering an ordered sample
whereas in the second we’re not. So we should apply the same counting when
we compute |Ω|. In the first case we should take |Ω1| = (52)5 whereas in the
second |Ω2| =

(
52

5

)
= |Ω1|∕5!. Does this fix the problem?

5The element of the sample space that we consider is an ordered sample of birthdays
𝜔 = (𝑏1, 𝑏2, … , 𝑏𝑟). Yet the order does not matter, i.e. every ordered sample has the same
probability. This is why it is enough to compute the number of ordered samples to calculate
the probability.
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3.2.1 Balls in boxes and draws with and without replacement

Take a random number in [0, 1). What is the probability that the first five
digits are all different? This problem can be stated as that of birthdays, in
terms of distributions of 𝑟 balls (the digits) into 𝑛 boxes (the integers 0, 1… , 9),
and 𝐴 is the event where all boxes contain at most one ball. This is also
equivalent to drawing 𝑟 = 5 distinguishable balls (the digits) from an urn
with 𝑛 = 10 balls (the integers 0, 1… , 9) with replacement, and asking what
is the probability that all balls are different.6 There are |Ω| = 𝑛𝑟 possible
draws with replacement and in |𝐴| = (𝑛)𝑟 = 𝑛!∕(𝑛 − 𝑟)! of them all balls
are different. Now |𝐴| is the number of possible draws without replacement.
Hence 𝑃(𝐴) = (𝑛)𝑟∕𝑛

𝑟 = 189∕625 = 0.3024 (for 𝑟 = 5 and 𝑛 = 10). If 𝑟 = 𝑛,
this probability is 𝑃(𝐴) = 𝑛!∕𝑛𝑛 ≃

√
2𝜋𝑛𝑒−𝑛 that for 𝑛 = 10 is already very

small (0.00036). So the same problem can be addressed mapping it to different
prototype problems of probability.

Exercise 3.1

Consider the limiting behaviour of the probability 𝑃(𝐴) for 𝑛 → ∞

when 𝑟 = 𝑐𝑛𝛼 and 𝛼 < 1 so that 𝑛 ≫ 𝑟 ≫ 1. Show that

lim
𝑛→∞,𝑟=𝑐𝑛𝛼

𝑃(𝐴) =

⎧

⎨

⎩

1 𝛼 < 1∕2

𝑒−𝑐
2∕2 𝛼 = 1∕2

0 𝛼 > 1∕2

3.2.2 Sub-sampling

A lake contains an unknown number 𝑛 of fishes. In order to estimate it a
sub-population of 𝑚 fishes is caught and marked.7 Then they are released
in the lake. In a second catch, 𝑟 fishes are caught and 𝑘 of them turn out to
be marked. If we can compute the probability to find that 𝑘 out of 𝑟 fishes
are marked, as a function of 𝑛, then we can estimate 𝑛 by requiring that this
probability be as large as possible.

There are two ways to compute this probability. In the first, among all
possible ways to draw 𝑟 balls without replacement from an urn with 𝑛 balls —
that are (𝑛)𝑟 —we are interested in those where 𝑘 are of a sub-type (marked)
and the rest is not. There are

(
𝑟

𝑘

)
sequences of draws which result in sub-sets

of 𝑘 marked and 𝑟 − 𝑘 unmarked balls. Furthermore, there are (𝑚)𝑘 ways to

6Note: balls now are what boxes were in the other case.
7This problem is discussed in Feller, II.6.
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draw the 𝑘 marked balls and (𝑛 − 𝑚)𝑟−𝑘 ways to draw the others. Hence:

𝑃{𝑘|𝑛,𝑚, 𝑟} =
(𝑟

𝑘

)(𝑚)𝑘(𝑛 − 𝑚)𝑟−𝑘

(𝑛)𝑟
=

(
𝑚

𝑘

)(
𝑛−𝑚

𝑟−𝑘

)

(
𝑛

𝑟

) .

This is called theHypergeometric distribution. In the secondmethod, we invert
the order of the argument, starting with the observation that there are (𝑛)𝑚
ways to chose the𝑚marked fishes, and proceeding in an analogous manner.

Exercise 3.2

Complete the argument.

This results in

𝑃{𝑘|𝑛,𝑚, 𝑟} =

(
𝑟

𝑘

)(
𝑛−𝑟

𝑚−𝑘

)

(
𝑛

𝑚

) .

You can easily check that, in this case, two different ways of counting give the
same result (because both are correct).

Imagine that this experiment is done because the number 𝑛 of fishes in
the lake is unknown and we want to estimate it. Then we can ask which value
of 𝑛maximises the log-likelihood8 log 𝑃{𝑘|𝑛,𝑚, 𝑟}. Since

𝑑

𝑑𝑛
log 𝑃{𝑘|𝑛,𝑚, 𝑟} ≃

𝑃{𝑘|𝑛,𝑚, 𝑟} − 𝑃{𝑘|𝑛 − 1,𝑚, 𝑟}

𝑃{𝑘|𝑛,𝑚, 𝑟}

we need to find the value of 𝑛 for which

𝑃{𝑘|𝑛,𝑚, 𝑟}

𝑃{𝑘|𝑛 − 1,𝑚, 𝑟}
=

(𝑛 − 𝑚)(𝑛 − 𝑟)

𝑛(𝑛 − 𝑚 − 𝑟 + 𝑘)
≈ 1

which yields 𝑛 ≈ 𝑟𝑚∕𝑘. This is a reasonable estimate of the unknown value
of 𝑛.

3.2.3 Distinguishable and indistinguishable balls in 𝒏 boxes

Consider again distributions of 𝑟 balls in 𝑛 boxes. If the 𝑟 balls are distinguish-
able and distributed independently in the boxes, each element of the sample
space is defined by the “coordinate” 𝑥𝑖 of ball 𝑖 = 1, … , 𝑟, where 𝑥𝑖 = 1,… , 𝑛

8𝑃{𝑘|𝑛,𝑚, 𝑟} as a function of 𝑘 is a probability distribution. 𝑛,𝑚 and 𝑟 are parameters. As a
function of the parameters (e.g. of 𝑛) 𝑃{𝑘|𝑛,𝑚, 𝑟} is a likelihood. Quoting David McKay: Never
say “the likelihood of the data”. Aways say “the likelihood of the parameters”.
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indicates the box containing ball 𝑖. The number of possible outcomes is then
|Ω| = 𝑛𝑟.

In discussing the physics of gases, where balls are particles and boxes are
states, this is called the Maxwell-Boltzmann distribution in statistical physics.

This way of counting treats balls as distinguishable because we can attach
a label to each of them. For example, a sample point 𝜔 where ball 5 is in box 1
(i.e. 𝑥5 = 1) and ball 2 is in box 7 (i.e. 𝑥2 = 7) is different from the one 𝜔′ that
only differs by the interchange of the two balls (i.e. where 𝑥5 = 7 and 𝑥2 = 1

and all othe 𝑥𝑖 are the same).
If balls are indistinguishable these two sample points cannot be distin-

guished, i.e. 𝜔 = 𝜔′. We cannot attach labels to indistinguishable balls.9 We
can only know how many balls are in each box. So an outcome 𝜔 ∈ Ω is
defined in terms of occupation numbers 𝜔 = (𝑚1, … ,𝑚𝑛), where𝑚𝑘 specifies
how many balls fall in box 𝑘 = 1,… , 𝑛.10 This is the correct way to count
in quantum physics, because quantum particles are indistinguishable. For
bosons each state (box) can be occupied by more than one particle (ball) and
this leads to Bose-Einstein statistics (𝑚𝑘 ≥ 0). For fermions, instead, at most
one particle can occupy a state (𝑚𝑘 = 0, 1). This leads to Fermi-Dirac statistics.

Exercise 3.3

In how many ways can you put 𝑟 indistinguishable particles in 𝑛 ≥ 𝑟

indistinguishable boxes?

The number of elements in the sample space in these two cases is, respec-
tively

|ΩBE| =
(𝑛 + 𝑟 − 1

𝑟

)
, |ΩFD| =

(𝑛

𝑟

)
. (3.9)

The second is just the number of ways in which the 𝑟 occupied boxes can be
chosen out of the 𝑛 boxes. The first is slightly more complex to derive. Each
element 𝜔 ∈ ΩBE can be represented as a string of 𝑟 balls ∙ and 𝑛 − 1 sticks |,
which delimitate one box and the next one. For example,

𝜔 = ∙ ∙ ∙| ∙ || ∙ ∙| … ∙ | ∙ ∙

9Notice the difference between identical and indistinguishable. Even identical balls can be
distinguished by attaching labels to them. Indistinguishability means that this is not possible,
i.e. that balls do not have an identity.

10And clearly
𝑛∑

𝑘=1

𝑚𝑘 = 𝑟.
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is a configuration with 𝑚1 = 3,𝑚2 = 1,𝑚3 = 0,… ,𝑚𝑛 = 2. The number
of possible 𝜔’s of this type is the number of ways we can combine 𝑟 among
𝑛 − 1 + 𝑟 objects, as in Eq. (3.9). This different way of counting gives rise to
peculiar phenomena such as an effective repulsion of fermions or an effective
attraction of bosons, as compared to classical particles (Maxwell-Boltzmann
statistics). Indeed there is no interaction between particles. It’s only that in
quantum physics we need to count differently.

Exercise 3.4

In order to see this, compute the probabilities of the events 𝐴 = {𝑚𝑘 =

1, 𝑘 ≤ 𝑟, 𝑚𝑘 = 0𝑘 > 𝑟} and 𝐵 = {∃𝑘;𝑚𝑘 > 1} both in the case of dis-
tinguishable (Maxwell-Boltzmann) and of indistinguishable balls, and
for the latter for both the Bose-Einstein and the Fermi-Dirac statistics.
Show that for 𝑟 = 2

𝑃𝐹𝐷(𝐵) < 𝑃𝑀𝐵(𝐵) < 𝑃𝐵𝐸(𝐵).

as if Bose-Einstein (Fermi-Dirac) particles were subject to an effective
attraction (repulsion).

Exercise 3.5

Which statistics would you use to handle the problem of a single pair
at poker?

3.3 An extension of the sub-additivity rule

Consider a sequence 𝐴1, … , 𝐴𝑛 of 𝑛 events. The event 𝐴>0 that at least one of
the events occurs is

𝐴>0 =

𝑛⋃

𝑖=1

𝐴𝑖

For any subset11 of 𝑘 ≤ 𝑛 of events, let 𝑃{𝐴𝑖1
∩…∩𝐴𝑖𝑘

} be the probability that
all events with indices 𝑖1, … , 𝑖𝑘 occur, and let

𝑆𝑘 =
∑

𝑖1<𝑖2<…<𝑖𝑘

𝑃{𝐴𝑖1
∩ … ∩ 𝐴𝑖𝑘

}.

11For this part, see Feller IV.
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Figure 7. The number of times that elementary events 𝜔 ∈ 𝐴>0 are counted in 𝑆1
for 𝑛 = 2 and 3.

Note that the events in the sum are not disjoint, so we cannot interpret 𝑆𝑘 as
a probability. It is just a sum of the probabilities of the joint occurrence of 𝑘
events, in all possible ways.

The generalisation of the additivity rule for events that are not necessarily
disjoint, is given by:

𝑃{𝐴>0} =

𝑛∑

𝜈=1

(−1)𝜈+1𝑆𝜈. (3.10)

Notice that for disjoint events 𝑆𝜈 = 0 for all 𝜈 > 1. So Eq. (3.10) reduces back
to the additivity rule of Kolmogorov’s axioms.

As a corollary, the probability that none of the events 𝐴𝑖 occur. is

𝑃{𝐴0} = 1 − 𝑃{𝐴>0} =

𝑛∑

𝜈=0

(−1)𝜈𝑆𝜈, (3.11)

with the understanding that 𝑆0 = 1. This is a generalization of the rule
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵). For three events we have

𝑃(𝐴∪𝐵∪𝐶)=𝑃(𝐴)+𝑃(𝐵)+𝑃(𝐶)−𝑃(𝐴∩𝐵)−𝑃(𝐴∩𝐶)−𝑃(𝐵∩𝐶)+𝑃(𝐴∩𝐵∩𝐶),

where each term “corrects” the counting of the previous one.

Exercise 3.6

Consider the case where ∀𝑘,

𝑃{𝐴𝑖1
∩ … ∩ 𝐴𝑖𝑘

} =

𝑘∏

𝑗=1

𝑃(𝐴𝑖𝑗
), ∀ 𝑖1, … , 𝑖𝑘,

which, as we shall discuss later, means that the events 𝐴𝑖 are indepen-
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dent. Then show that

𝑃(𝐴0) =

𝑛∏

𝑖=1

(1 − 𝑃(𝐴𝑖)) .

Indeed, the proof of Eq. (3.10) is based on the generalization of the intuition
used for 𝑛 = 2 and 3, and is done by counting howmany times a sample point
𝜔 ∈ 𝐴>0 “is counted” in the expression on the right hand side of Eq. (3.10).
Let 𝑚 be the number of events 𝐴𝑖 that contain 𝜔. Then 𝜔 contributes only
to terms 𝑆𝜈 with 𝜈 ≤ 𝑚, and for each of these there are

(
𝑚

𝜈

)
terms in the sum

which defines 𝑆𝜈 where 𝜔 contributes. Therefore the total number of times
that 𝜔 ∈ 𝐴>0 is counted in the r.h.s. is

𝑚∑

𝜈=1

(𝑚

𝜈

)
(−1)𝜈+1 = 1 −

𝑚∑

𝜈=0

(𝑚

𝜈

)
(−1)𝜈 = 1 − (1 − 1)𝑚 = 1.

Hence each sample point 𝜔 ∈ 𝐴>0 is counted exactly once both on the left
and on the right hand side of Eq. (3.10).

Exercise 3.7

𝑁 gentlemen go to theatre each leaving his hat at the wardrobe. On exit
they are assigned their hats in a random order. What is the probability
that none of the gentlemen get his own hat back? How likely is this
event for 𝑁 → ∞? (Hint: take 𝐴𝑖 as the event that Mr 𝑖 gets his hat
back).

Exercise 3.8

Compute the probability of the different hands in 5-cards poker (see ta-
ble).

Hand Probability Number of Hands
Single Pair 0.422569 1098240
Two Pair 0.047539 123552
Triple 0.0211285 54912
Full House 0.00144058 3744
Four of a Kind 0.000240096 624
Straight (excl. Straight Flush and Royal Flush) 0.00392465 10200
Flush (but not a Straight) 0.0019654 5108
Straight Flush (but not Royal) 0.0000138517 36
Royal Flush 0.00000153908 4
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Exercise 3.9

Using saddle point integration, show that, for𝑚 ∈ (−1, 1)

𝑍(𝑚) = ∫

∞

−∞

𝑑ℎ
𝑒𝑛ℎ𝑚

(cosh ℎ)𝑛
≃

√
2𝜋

𝑛(1 − 𝑚2)
𝑒𝑛[log 2−𝐻(𝑚)]

[
1 + 𝑂

(
𝑛−1

)]

with
𝐻(𝑚) = −

1 + 𝑚

2
log

1 + 𝑚

2
−
1 − 𝑚

2
log

1 − 𝑚

2
.

See Feller IV and II for more exercises and examples.





Chapter 4

Conditional probability and
stochastic dependence

Two events𝐴, 𝐵 ∈ 𝒜 are independent1 if the probability of their simultaneous
occurrence is the product of the probabilities that each of them occurs:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). (4.1)

One situation where 𝐴 and 𝐵 are independent is when it is possible to
decompose Ω = Ω1 ⊗ Ω2 in such a way that ∀𝜔 ∈ Ω, ∃𝜔1 ∈ Ω1, 𝜔2 ∈ Ω2

such that 𝜔 = (𝜔1, 𝜔2) and 𝑝(𝜔) = 𝑝1(𝜔1)𝑝2(𝜔2). Then if 𝐴 = {𝜔1 ∈ 𝐴1} only
involves conditions on 𝜔1 and 𝐵 = {𝜔2 ∈ 𝐵2} only involves conditions on 𝜔2,
then

𝑃(𝐴 ∩ 𝐵) =
∑

𝜔1∈𝐴1

∑

𝜔2∈𝐴2

𝑝1(𝜔1)𝑝2(𝜔2) =
⎡
⎢

⎣

∑

𝜔1∈𝐴1

𝑝1(𝜔1)
⎤
⎥

⎦

⎡
⎢

⎣

∑

𝜔2∈𝐴2

𝑝2(𝜔2)
⎤
⎥

⎦

= 𝑃(𝐴)𝑃(𝐵)

Consider the example of the throw of two dice, i.e. Ω = {(𝑑1, 𝑑2), 𝑑𝑖 = 1… , 6}

and assume that all outcomes are equiprobable: 𝑃(𝑑1, 𝑑2) = 𝑃(𝑑1)𝑃(𝑑2) =

1∕36. Then the events 𝐴 = {𝑑1 = 6} and 𝐵 = {𝑑2 = 1} are trivially inde-
pendent. Yet generally independence might be less evident, and it might not
imply a structure on the sample space Ω. Indeed independence is a property
of 𝒫 and, in general, one needs to compute the probability of the events and
of their intersection in order to verify it.

1This material can be found in Feller, Chapters V, VIII, IX and X. Here I give a more
concise discussion. You can refer to Feller for a more extended discussion.
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Exercise 4.1

A
B

Ω

A

B

Ω

A

B

Ω
a) b) c)

Can the events in Figures a), b) or c) be independent? What is 𝑃(𝐵|𝐴)
in the three cases?

This is illustrated by the example of the two dice above: consider events
𝐶 = {𝑑1 + 𝑑2 = 7} and 𝐷 = {𝑑1 + 𝑑2 = 8}. Are events 𝐴 and 𝐶 independent?
And what about events 𝐴 and 𝐷? And what if one of the dice is biased?

In order to have more intuition on what independence means, let us
define conditional probability. The probability of event 𝐴 conditional on the
occurrence of event 𝐵, is defined as

𝑃(𝐴|𝐵) ≡
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
(4.2)

Equivalently, we can write 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵), i.e. that the probability
that both 𝐴 and 𝐵 occur is the probability that 𝐵 occurs, times the probability
that 𝐴 occurs given that 𝐵 occurs.2 In words, if 𝐴, 𝐵 are independent then
𝑃(𝐴|𝐵) = 𝑃(𝐴), i.e. the occurrence of 𝐵 does not tell us anything on whether
𝐴 will also occur or not.3 Notice also that

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴).

This means that you can compute 𝑃(𝐴 ∩ 𝐵) in either way, starting from the
probability of 𝐴 and then asking what is the probability of 𝐵 given 𝐴, or
vice-versa. This is also the way in which we think logically.

Conditioning on an hypothesis𝐻, is equivalent to substituting Ω with4 𝐻.
Indeed, probabilities should in general be written as 𝑃(𝐴) = 𝑃(𝐴|Ω). Condi-
tional on𝐻 all the rules of probability apply, e.g.

𝑃(𝐴 ∪ 𝐵|𝐻) = 𝑃(𝐴|𝐻) + 𝑃(𝐵|𝐻) − 𝑃(𝐴 ∩ 𝐵|𝐻).

2For short, 𝑃(𝐴|𝐵) is called the probability of 𝐴 given 𝐵.
3For the example of two dice above, compute 𝑃(𝐶|𝐴 ∩ 𝐵). Is this equal to 𝑃(𝐶)?
4Indeed, in classical probability, you can easily check that 𝑃(𝐴|𝐻) = |𝐴 ∩ 𝐻|∕|𝐻|. So the

number of elements |Ω| in the sample space disappears.
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For more than two events, we can decompose the joint probability of
𝐴1, 𝐴2, … , 𝐴𝑛 by iteratively applying the rule of conditional probability

𝑃
(
∩𝑛
𝑖=1
𝐴𝑖

)

= 𝑃(𝐴𝑛|𝐴𝑛−1 ∩ 𝐴𝑛−2 ∩⋯ ∩ 𝐴1)𝑃(𝐴𝑛−1|𝐴𝑛−2 ∩⋯ ∩ 𝐴1)⋯𝑃(𝐴2|𝐴1)𝑃(𝐴1)

This can be useful as sometimes conditional probabilities are easier to compute
than joint probabilities. Note that 𝑃

(
∩𝑛
𝑖=1
𝐴𝑖

)
can be expanded in the same

way in terms of the conditional probabilities of events 𝐴𝑖 taken in any order.
Independence can be defined for any sequence of events: the events 𝐴𝑖,

𝑖 = 1, … , 𝑛 are independent if for any subset 𝐼 ⊆ {1, … , 𝑛} of indices

𝑃 (∩𝑖∈𝐼𝐴𝑖) =
∏

𝑖∈𝐼

𝑃(𝐴𝑖) (4.3)

or equivalently, if for any subset 𝐼 and index 𝑗 ∉ 𝐼

𝑃
(
𝐴𝑗| ∩𝑖∈𝐼 𝐴𝑖

)
= 𝑃(𝐴𝑗).

This states that no combination of events 𝐴𝑖 can give information on the
likelihood of a different event 𝐴𝑗.

Exercise 4.2

Show that if 𝐴 and 𝐵 are independent then also 𝐴̄ and 𝐵̄ are indepen-
dent. This means that if 𝐵 carries no information on𝐴, then neither its
negation does. Show by induction that the same is true for any set 𝐴𝑖

of 𝑛 events, i.e. if 𝐴𝑖 are independent, then also their complements are.

It is important to remark that independence is different from pairwise
independence, which amounts to

𝑃(𝐴𝑖 ∩ 𝐴𝑗) = 𝑃(𝐴𝑖)𝑃(𝐴𝑗), ∀𝑖 ≠ 𝑗,

in the sense that pairwise independence does not imply independence.5 Like-
wise 𝑃(

⋂𝑛

𝑖=1
𝐴𝑖) =

∏𝑛

𝑖=1
𝑃(𝐴𝑖) does not imply independence of the 𝑛 events.

Exercise 4.3

Find a simple example showing that 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃(𝐴)𝑃(𝐵)𝑃(𝐶)

does not imply independence of the three events 𝐴, 𝐵 and 𝐶.

5To see this, consider the events 𝐴, 𝐵 and 𝐶 in the example above of the two dice. Check
that 𝐴, 𝐵, 𝐶 are pairwise independent but 𝑃(𝐶|𝐴 ∩ 𝐵) ≠ 𝑃(𝐶).
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Furthermore, notice also that pairwise independence is not a transitive
property. If 𝐴 and 𝐵 are independent and if 𝐵 and 𝐶 are independent, this
does not imply that 𝐴 and 𝐶 are independent.

Exercise 4.4

Find an example showing this.

Independence of 𝑛 events is a very demanding condition. In order to
see this, let us consider a finite sample space Ω. For any event 𝐴 ⊂ Ω the
probability

𝑃(𝐴) =
∑

𝜔∈𝐴

𝑝(𝜔)

is a linear combination of the probabilities 𝑝(𝜔) of the elements 𝜔 ∈ Ω. Let
us take 𝑛 events 𝐴𝑖, … , 𝐴𝑛 and let us ask whether we can find a probability
measure 𝒫 = {𝑝(𝜔)} such that 𝐴𝑖, … , 𝐴𝑛 are independent. The independence
of 𝑛 events imposes

𝒩eq =
(𝑛

2

)
+
(𝑛

3

)
+ … +

(𝑛

𝑛

)
= 2𝑛 − 1 − 𝑛 (4.4)

linear equations on the probabilities 𝑝(𝜔). Barring non-generic choices6 of
the events 𝐴𝑖, this number needs to be smaller than the number of variables
𝑝(𝜔), which is |Ω| − 1 (considering normalisation). So the size of the sample
space needs to be larger than

|Ω| ≥ 2𝑛 − 𝑛

in order for 𝑛 events to be independent. In order to have 𝑛 = 3 indepen-
dent events, the sample space needs to contain at least 5 elements, for 𝑛 =

4, 5, 10, 20 and 100 events we need |Ω| ≥ 12, 27, 1014, 1048556 and |Ω| ≥
1.27 ⋅ 1030, respectively.

Exercise 4.5

Are Eqs. (4.3) really independent? Let 𝐴1, 𝐴2 and 𝐴3 be such that
𝑃(𝐴1 ∩ 𝐴2 ∩ 𝐴3) = 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3). Show that 𝐴𝑖 and 𝐴𝑗 are inde-

6Notice that the sure event Ω is independent of any other event 𝐴. Indeed 𝑃(𝐴 ∩ Ω) =

𝑃(𝐴) = 𝑃(𝐴)𝑃(Ω), because 𝐴 ∩ Ω = 𝐴 and 𝑃(Ω) = 1. This is also true of the impossible event
∅, because 𝐴∩ ∅ = ∅ and 𝑃(∅) = 0. All sure or impossible events are independent of all events,
because they are true or false no matter what. So they cannot provide information on other
events. Notice that two exclusive events 𝐴∩𝐵 = ∅ cannot be independent as long as they have
positive probability.
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pendent if 𝑃(𝐴𝑘) = 𝑃(𝐴𝑘|𝐴𝑖 ∩ 𝐴𝑗) for 𝑖 ≠ 𝑗 ≠ 𝑘 = 1, 2, 3.

Exercise 4.6

Check explicitly if there can be two independent events 𝐴, 𝐵 ≠ Ω, ∅ for
|Ω| = 3?

Notice that the number of different events 𝐴 ⊆ Ω equals 2|Ω|, including Ω
and ∅.7 Therefore, as the size of the sample space |Ω| increases, the number
of possible events increases exponentially (as𝒩𝐴 = 2|Ω|) but only at most
𝑛 ≃ log

2
|Ω| of these can be simultaneously independent. This suggests that

statistical dependence is the norm, whereas independence is the exception.
A useful decomposition of the probability of an event is the following:

Total probability rule. Let 𝐶𝑖, 𝑖 = 1, … , 𝑛 be a complete set of events. By
this we mean that they are exclusive (𝐶𝑖 ∩ 𝐶𝑗 = ∅ ∀𝑖 ≠ 𝑗) and that

𝑛⋃

𝑖=1

𝐶𝑖 = Ω

Then, for any event 𝐴 ⊂ Ω, we can decompose its probability as

𝑃(𝐴) =

𝑛∑

𝑖=1

𝑃(𝐴|𝐶𝑖)𝑃(𝐶𝑖). (4.5)

The proof is nothing but the application of the additivity axiom. We can
consider 𝐶𝑖 as causes, and hence decompose the probability of 𝐴 into that of
𝐴 conditional on the occurrence of each cause 𝐶𝑖. This rule is useful, because
it makes it possible to compute 𝑃(𝐴) once one finds a suitable set of “causes”
𝐶𝑖 for which 𝑃(𝐴|𝐶𝑖) and 𝑃(𝐶𝑖) are easy to compute.

Bayes theorem of causes. In other circumstances, we are interested in the
inference of the probability of a particular cause 𝐶𝑖 given that we know that
an event 𝐴 has occurred. This is given by Bayes theorem

𝑃(𝐶𝑖|𝐴) =
𝑃(𝐴|𝐶𝑖)𝑃(𝐶𝑖)

∑

𝑗
𝑃(𝐴|𝐶𝑗)𝑃(𝐶𝑗)

(4.6)

7Each event can be represented by a sequence (𝑎1, … , 𝑎|Ω|) where, each 𝑎𝜔 can be chosen
in two ways: 𝑎𝜔 = 1 if 𝜔 ∈ 𝐴 and 𝑎𝜔 = 0 otherwise. So the number of sequences is 2|Ω|.
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This is the basis of statistical inference: 𝐶𝑖 may represent alternative theories
and𝐴 an experimental observation. 𝑃(𝐴|𝐶𝑖) can be computed from the theory.
Yet the interesting quantity is 𝑃(𝐶𝑖|𝐴) that quantifies the probability that
theory 𝐶𝑖 is correct given the observation of 𝐴. Bayes theorem tells us how
to compute it. In statistics 𝑃(𝐴|𝐶𝑖) is called the likelihood (of 𝐶𝑖), 𝑃(𝐶𝑖) is the
prior, i.e. the probability of 𝐶𝑖 before observing event 𝐴, and 𝑃(𝐶𝑖|𝐴) is called
the posterior, i.e. the updated probability of 𝐶𝑖 after event𝐴 has been observed.
The denominator 𝑃(𝐴) =

∑

𝑗
𝑃(𝐴|𝐶𝑗)𝑃(𝐶𝑗) is called the evidence.

4.1 Statistical dependence is not causation
It is important to notice that if 𝐴 depends on 𝐵 then we cannot conclude that
𝐴 causes 𝐵, nor viceversa. Writing 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃(𝐴|𝐵 ∩ 𝐶)𝑃(𝐵|𝐶)𝑃(𝐶)

does not implies that 𝐶 causes 𝐵 and 𝐵, 𝐶 cause 𝐴. Indeed 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) can
be written also as 𝑃(𝐵|𝐴∩𝐶)𝑃(𝐶|𝐴)𝑃(𝐴) or in four other ways, each of which
refers to a different permutation of the three events. One of these ways may
reflect a causal structure, but this is not necessarily the case. Indeed, theremay
be another event𝐷 that is causing all of them.8 There is a whole field of causal
inference which deals with this issue. For the moment, it is important to
stress that statistical dependence 𝑃(𝐴 ∩ 𝐵) ≠ 𝑃(𝐴)𝑃(𝐵) is about observational
probabilities, that concerns the probability of simultaneous occurrence of 𝐴
and 𝐵. No causal conclusion can be drawn from statistical dependence.

Exercise 4.7

Let there be three coins, one with head on both sides, one with tail on
both sides and the other with head on one side and tail on the other.
If you see one of these coins on a table with the upward face which is
head, what is the probability that the other face is also head?

Exercise 4.8

The next upgrade of the machine at Cern is going to explore an higher
energy range. Skeptics say that as soon as the newmachine is turned on,
a black hole will form at Cern and the planet will collapse (so the new

8Imagine that we observe an increase in the price of butter and later on an increase in the
price of cheese. Can we infer that the former causes the latter? Not in general. Indeed both
may be caused by the increase in the price of milk, because it takes less time to make butter
from milk than cheese. Statistics shows that countries with a higher consumption of chocolate
also receive more Nobel prizes, and that fertility is higher in regions of Germany where storks
are more abundant. Does this mean that eating chocolate is a good strategy for winning the
Nobel prize or that babies are brought by storks?
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machine should not be turned on!). Scientists reply that, according to
our present theories, this event has zero probability. Is this a satisfactory
answer?

Exercise 4.9

Consider families with two children Ω = {𝑏𝑏, 𝑏𝑔, 𝑔𝑏, 𝑔𝑔} where the
first (second) character stands for the sex (boy or girl) for the elder
(younger) child. Imagine that all four possibilities occur with the same
probability 𝑃(𝜔) = 1∕4.

• Given that a family has a boy, what is the probability that the
other child is also a boy?

• Given that the older child of a family is a boy, what is the proba-
bility that the younger is also a boy?

• Given a boy taken at random what is the probability that the
other child in his family is also a boy?

• Given that a family has a boy who was born on Tuesday, what is
the probability that the other child is also a boy?

Exercise 4.10

The Monty Hall problem: suppose you’re on a game show, and you’re
given the choice of three doors: behind one door is a prize; behind
the others there is nothing. You pick a door and the host, who knows
what’s behind the doors, opens another door, which is empty. He then
asks: “Do you want to pick the other door?” Is it to your advantage to
switch your choice?

Exercise 4.11

Let 𝐴 and 𝐵 be two event. Show that the probability that both of
them occur, given that at least one of them occurs, is smaller than the
probability that both of them occur given that you know which of the
two events occurs.





Chapter 5

Random variables

A random variable is not a variable. It is a function.

A random variable (RV) is a function1

𝑋 ∶ Ω → 𝔽 (5.1)
∶ 𝜔 → 𝑋(𝜔) ∈ 𝔽 (5.2)

where 𝔽 is a field, for example the real numbers ℝ (real RV), the integers ℕ
(integer RV), the complex plane ℂ, etc.

We assume that statements like 𝑋 ∈ [𝑎, 𝑏] that concern the random
variable 𝑋 are all events that belong to 𝒜. Then the definition of 𝒫 on 𝒜
induces a probability distribution on the values that the random variable takes.
For variables defined on a set 𝔽 of finite or countably many elements 𝑥 the
probability distribution is defined as

𝑝𝑥 = 𝑃{𝑋(𝜔) = 𝑥} ≡ 𝑃{𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥} (5.3)

where 𝑝𝑥 ≥ 0 and
∑

𝑥
𝑝𝑥 = 1 by normalisation. For real RV, the probability

distribution is defined as follows. For any interval [𝑎, 𝑏] ⊂ ℝ, we define

𝑃{𝑋(𝜔) ∈ [𝑎, 𝑏]} = ∫

𝑏

𝑎

𝑑𝑥𝑝(𝑥)

1As a general rule, we shall use uppercase letters for randomvariables and the corresponding
lowercase letter for the values they take. When not needed, we shall suppress the dependence
on 𝜔. Yet it is important that you always remember that random variables are functions, not
variables.
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Figure 8. A graphical representation of the relation between the pdf of 𝑋 and that
of 𝑌 = 𝑓(𝑋).

where 𝑝(𝑥) is called probability density function (pdf). More precisely, the pdf
of a continuous random variable 𝑋 is defined as

𝑝(𝑥) = lim
𝑑𝑥→0

1

𝑑𝑥
𝑃{𝑋(𝜔) ∈ [𝑥, 𝑥 + 𝑑𝑥)}. (5.4)

The term “density” in pdf appears because 𝑝(𝑥) is not the probability of the
event {𝑋(𝜔) = 𝑥}. The probability of this event is zero for any 𝑥 ∈ ℝ.2 Eq. (5.4)
states that the probability to find a random variable in an interval [𝑥, 𝑥 + 𝑑𝑥),
for an infinitesimally small 𝑑𝑥, is 𝑝(𝑥)𝑑𝑥.

The cumulative distribution is defined as3

𝑃{𝑋(𝜔) < 𝑥} = ∫

𝑥

−∞

𝑑𝑥′𝑝(𝑥′) ≡ 𝑃(𝑥).

The normalisation implies

∫

∞

−∞

𝑝(𝑥)𝑑𝑥 = lim
𝑥→∞

𝑃(𝑥) = 1. (5.5)

2This does not mean that it is impossible for a real random variable to take any value 𝑥, of
course.

3Notation: when𝑋 is a discrete random variable, we use the values 𝑥 that it takes as indices
for the probability, as in Eq. (5.3). When 𝑋 is continuous we use 𝑥 as the argument of either
the pdf Eq. (5.4) or of the cumulative distribution. For the pdf we use lowercase letters — as 𝑝
in Eq. (5.4). We shall use uppercase letters for cumulative distributions.
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Change of variables: let 𝑓(𝑥) be a monotonic function. Then the pdf of
the variable 𝑌(𝜔) = 𝑓[𝑋(𝜔)] is

𝑝𝑌(𝑦) =
𝑝𝑋(𝑥)

|𝑓′(𝑥)|

|||||||𝑥=𝑓−1(𝑦)
(5.6)

this merely reflect the fact that the probability of corresponding intervals4
[𝑥, 𝑥 + 𝑑𝑥) and [𝑦, 𝑦 + 𝑑𝑦), with 𝑦 = 𝑓(𝑥) and 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥, must be the
same, i.e. 𝑝𝑋(𝑥)𝑑𝑥 = 𝑝𝑌(𝑦)𝑑𝑦. This can be extended to non-monotonic func-
tions 𝑓(𝑥), splitting the domain of 𝑥 in subdomains where 𝑓(𝑥) is monotonic
and adding all the contributions to 𝑝𝑌(𝑦) that come from each domain (see
Figure 8).

The factor |𝑓′(𝑥)| in the denominator Eq. (5.6) appears because the pdf
is not a probability, but a probability density. If for example 𝑋(𝜔) is a length,
then the pdf has dimensions of inverse length. Probability are numbers, so
they are adimensional. The pdf of 𝑋 is not adimensional, it has dimensions
of 1∕𝑋.

5.1 Many random variables
The same definition extends to the case of 𝑛 random variables 𝑋(𝜔) =

(𝑋1, … , 𝑋𝑛), where each component 𝑋𝑖(𝜔) is a random variable. The joint
pdf is defined by

𝑝(𝑥)𝑑𝑥 = 𝑃 {𝑋𝑖(𝜔) ∈ [𝑥𝑖, 𝑥𝑖 + 𝑑𝑥𝑖), 𝑖 = 1, … , 𝑛} , (5.7)

where 𝑑𝑥 = 𝑑𝑥1 𝑑𝑥2…𝑑𝑥𝑛. If we’re interested only in the distribution of one
of the random variables, say 𝑋1(𝜔), we can derive its pdf integrating over all
other random variables:

𝑝𝑋1(𝑥) = ∫

∞

−∞

𝑑𝑥2…∫

∞

−∞

𝑑𝑥𝑛𝑝(𝑥, 𝑥2, … , 𝑥𝑛). (5.8)

This is called themarginal distribution of 𝑋1. Likewise we can compute the
marginal distribution of any subset of random variables by integrating the
joint distribution on all the others.

We can also define the distribution of a variable, say 𝑋1, conditional to
other variables, say 𝑋2. In order to do this, we need to consider the events

4This refers to an increasing function. For a decreasing function 𝑑𝑦 < 0, so the interval on
𝑌 is between 𝑦 + 𝑑𝑦 and 𝑦. This is the reason of the absolute value in Eq. (5.6).
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{𝑋1(𝜔) ∈ [𝑥1, 𝑥1 + 𝑑𝑥1)} and {𝑋2(𝜔) ∈ [𝑥2, 𝑥2 + 𝑑𝑥2)} and apply the rules of
conditional probability. Then

𝑃{𝑋1(𝜔) ∈ [𝑥1, 𝑥1 + 𝑑𝑥1)|𝑋2(𝜔) ∈ [𝑥2, 𝑥2 + 𝑑𝑥2)} =
𝑝(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

𝑝(𝑥2)𝑑𝑥2

≡ 𝑝(𝑥1|𝑥2)𝑑𝑥1 ,

hence the pdf of 𝑋1 conditional to 𝑋2 is:

𝑝(𝑥1|𝑥2) =
𝑝(𝑥1, 𝑥2)

𝑝(𝑥2)
. (5.9)

This generalises in obvious ways to the joint pdf of any subset of variables
conditional to another subset of variables.

Two random variables 𝑋1 and 𝑋2 are independent if their joint pdf fac-
torises, i.e. it 𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1)𝑝(𝑥2). 𝑛 random variables are mutually inde-
pendent if

𝑝(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝓁) =

𝓁∏

𝑘=1

𝑝(𝑥𝑖𝑘 ) (5.10)

for any 𝓁 = 2, 3, … , 𝑛 and for any indices 𝑖1 < 𝑖2 < … < 𝑖𝓁. Again pairwise
independence (i.e. 𝑝(𝑥𝑖, 𝑥𝑗) = 𝑝(𝑥𝑖)𝑝(𝑥𝑗) for all 𝑖 < 𝑗) is not enough to
ensure mutual independence among 𝑛 random variables. When the sample
space is finite, the same argument that we invoked before to estimate the
maximal number of independent events suggests that the maximal number
of independent variables is, generically, upper bounded by log

2
|Ω|.

Exercise 5.1

What is your estimate of the maximal number of pairwise independent
random variables defined on a sample space with a finite number |Ω|
of elements?

Exercise 5.2

Show that it is possible to obtain a constant as a linear combination of
𝑛 random variables 𝑋𝑖(𝜔)when 𝑛 = |Ω| < +∞. In other words, in this
case there are combinations of random variables that are not random
at all. [Hint: you can think of a random variable as a vector in an |Ω|
dimensional space.]
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5.2 Examples of random variables
A binary random variable. The simplest random variable takes just two

values: 𝑋(𝜔) ∈ {0, 1}. The distribution is given by

𝑝 = 𝑃{𝜔 ∶ 𝑋(𝜔) = 1} and 𝑃{𝜔 ∶ 𝑋(𝜔) = 0} = 1 − 𝑝.

Bernoulli trials. Consider the repetition of 𝑛 independent experiments (tri-
als), each of which results in either a success or a failure. This setup
corresponds to the case of 𝑛 independent binary random variables 𝑋𝑘,
𝑘 = 1,… , 𝑛, where 𝑋𝑘 = 1 stands for success in the 𝑘th trial and 𝑋𝑘 = 0

for failure.5 As before 𝑃{𝜔 ∶ 𝑋𝑘(𝜔) = 1} = 𝑝 for all 𝑘. Then one
can define the random variable 𝑆𝑛 =

∑𝑛

𝑘=1
𝑋𝑘 which is the number of

successes in 𝑛 trials. The probability

𝐵(𝑘|𝑛, 𝑝) = 𝑃{𝑆𝑛 = 𝑘} =
(𝑛

𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−𝑘 (5.11)

is called binomial distribution easily computed observing that all out-
comes (𝑋1, 𝑋2, … , 𝑋𝑛) with 𝑘 successes have probability 𝑝𝑘(1 − 𝑝)𝑛−𝑘

and there are
(
𝑛

𝑘

)
of them.

Multinomial distribution. The binomial distribution naturally generalises
to cases where the outcomes 𝑋𝑖 of each of the 𝑛 trials can be more than
two. If each trial corresponds to a random variable 𝑋𝑖 = 1, 2, … , 𝑑 that
can take 𝑑 different values, and 𝑃{𝑋𝑖 = 𝓁} = 𝑝𝓁 (with

∑

𝓁
𝑝𝓁 = 1), then

the number of times the outcome 𝑋𝑖 = 𝓁 is observed across trials6

𝐾𝓁 =

𝑛∑

𝑖=1

𝛿𝑋𝑖 ,𝓁,

is a random variable with distribution7

𝑃{𝐾𝓁 = 𝑘𝓁, 𝓁 = 1,… , 𝑑} =
𝑛!

∏𝑑

𝓁=1
𝑘𝓁!

𝑑∏

𝓁=1

𝑝
𝑘𝓁

𝓁
,

𝑑∑

𝓁=1

𝑘𝓁 = 𝑛. (5.12)

Again the probability that in a sequence𝑋1, … , 𝑋𝑛 there are 𝑘𝓁 variables
with the value 𝑋𝑖 = 𝓁 is 𝑝𝑘𝓁

𝓁
. This accounts for the second factor. The

5In this case the sample space Ω =
⨂𝑛

𝑘=1
Ω𝑘 is the direct product of the sample spaces for

each trial and 𝑋𝑘 ∶ Ω𝑘 → {0, 1} depends only on the outcome of trail 𝑘.
6Here 𝛿𝑖,𝑗 is the Kroneker delta, which is one if 𝑖 = 𝑗 and zero otherwise. In this equation it

is used to count the number variables 𝑋𝑖 which are equal to 𝓁.
7Note that the random variables 𝐾𝓁 are not independent, because

∑𝑑

𝓁=1
𝐾𝓁 = 𝑛.
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combinatorial factor accounts for the number of sequences that satisfy
this condition for each 𝓁.

Exercise 5.3

Let 𝑝𝑖 be the probability that a child of a family was born on day
𝑖 of the year (𝑖 = 1, 2, … , 𝑛 = 365). Compute the probability that
the two children of a family have their birthday on different days.
Show that this is maximal when 𝑝𝑖 = 1∕𝑛. Show that, in a family
of three children the probability that all have different birthdays
is also maximal when 𝑝𝑖 = 1∕𝑛. Argue that this should be true
for a family with any number 𝑟 of children and try to prove it.

Exercise 5.4

Show that, if {𝐾1, … , 𝐾𝑑} follows a multinomial distribution with
parameters 𝑝1, … , 𝑝𝑑, then for any 𝓁 = 1,… , 𝑑 the marginal
distribution of 𝐾𝓁 is given by the binomial distribution with
parameter 𝑝𝓁, over 𝑛 trials. Is this what you would expect?

Poisson distribution. Often one is interested in the same problem as above,
but in the limit where 𝑛 → ∞, 𝑝 → 0 with 𝑛𝑝 = 𝜆 fixed. The typical
example is the decay of nuclei in a sample of radioactive material. Each
of these events can occur with the same probability in an infinitesimal
time interval 𝑑𝑡, and the probability 𝑝 = 𝑟𝑑𝑡 of this to occur is propor-
tional to 𝑑𝑡. In a fixed time interval of duration 𝑇 there are 𝑛 = 𝑇∕𝑑𝑡

such intervals. In this case, 𝜆 = 𝑟𝑇 where 𝑟 is the rate of decay per
unit time. The probability of observing 𝑘 events is given by the Poisson
distribution

𝑃(𝑘|𝜆) = lim
𝑛→∞

𝐵 (𝑘|𝑛, 𝜆∕𝑛) =
𝜆𝑘

𝑘!
𝑒−𝜆 (5.13)

which is derived from the binomial distribution Eq. (5.11) in a straight-
forward manner.

Exercise 5.5

1. Derive Eq. (5.13) and check that Eq. (5.13) is correctly nor-
malised.

2. What is the same limit of the multinomial distribution
Eq. (5.12) when 𝑛 → ∞ with 𝑝𝓁 = 𝜆𝓁∕𝑛.
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The Geometric and the Negative Binomial distributions (waiting
times). In a sequence of Bernoulli trials, one can ask the question
of how many trials one should “wait” before observing the first suc-
cess. This is an integer random variable — a waiting time— 𝑇 whose
distribution is

𝑃{𝑇 = 𝑘 + 1} = 𝑝(1 − 𝑝)𝑘. (5.14)

This is because there need to be 𝑘 failures (which have probability
(1 − 𝑝)𝑘) in order for the first success (which accounts for the factor 𝑝)
to occur at trial 𝑇 = 𝑘 + 1. Eq. (5.14) is called the geometric distribution
and it is a special case of the negative binomial distribution

𝑃{𝑇 = 𝑘 + 𝑟} =
(−𝑟

𝑘

)
𝑝𝑟(𝑝 − 1)𝑘 =

(𝑟 + 𝑘 − 1

𝑘

)
𝑝𝑟(1 − 𝑝)𝑘, (5.15)

for 𝑟 = 1. This is evident from the second expression, that is obtained
from the first by a simple manipulation of binomial coefficients. The
negative binomial gives the probability that the 𝑟th success in a sequence
of Bernoulli trials occurs at “time”𝑇 = 𝑟+𝑘. In this case, 𝑘 is the number
of failures and there can be

(
𝑟+𝑘−1

𝑘

)
ways in which they can occur before

the 𝑟th success.8 Waiting times are a useful concept that we shall use
frequently in what follows.

Exercise 5.6

What is the probability that 𝑇 ≥ 𝑘 + 𝑘0 + 𝑟 given that 𝑇 ≥ 𝑘0 + 𝑟

if 𝑇’s distribution is given by Eq. (5.15)? Show that for 𝑟 = 1 this
equals the probability that 𝑇 ≥ 𝑘 + 𝑟. This means that knowing
that 𝑇 ≥ 𝑘0 + 𝑟 does not make the event that we should wait
𝑘 more steps for the first success any more or less likely. This
is a sign of lack of memory in the Bernoulli trial process — i.e.
knowing what has happened up to a certain point does not affect
what will happen in the future. Show that for 𝑟 > 1 this is not
so. Is the event 𝑇 ≥ 𝑘 + 𝑘0 + 𝑟 given that 𝑇 ≥ 𝑘0 + 𝑟more or less
likely than 𝑇 ≥ 𝑘 + 𝑟 for 𝑟 > 1?

The Gaussian distribution. The pdf of a Gaussian variable 𝑋(𝜔) ∈ ℝ is
given by

𝑝(𝑥) =
1

√
2𝜋𝜎

𝑒
−
(𝑥−𝑚)2

2𝜎2 (5.16)

8See Feller VI.8 for more details.
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where9𝑚 (the mean) and 𝜎 (the standard deviation) are real parameters.
Clearly 𝜎 > 0.
An important property of Gaussian variables is that the sum of two
independent Gaussian variables 𝑍 = 𝑋 + 𝑌 is also a Gaussian variable
with mean 𝜇𝑍 = 𝜇𝑋 +𝜇𝑌 and variance 𝜎2𝑍 = 𝜎2

𝑋
+𝜎2

𝑌
, where 𝜇𝑋 , 𝜇𝑌 and

𝜎𝑋 and 𝜎𝑌 are the mean and standard deviations of 𝑋,𝑌, respectively.
This has important consequences.

Exercise 5.7

Prove this.

The de Moire-Laplace theorem shows that the Binomial distribution, in
the limit 𝑛 → ∞, is asymptotically equal to

𝐵(𝑘|𝑛, 𝑝) ≈
1

√
2𝜋𝑛𝑝(1 − 𝑝)

𝑒
−

(𝑘−𝑛𝑝)2

2𝑛𝑝(1−𝑝) (5.17)

this means that, for large 𝑛, a binomial random variable 𝑆𝑛 is well
approximated10 by aGaussian randomvariablewith parameters𝑚 = 𝑛𝑝

and 𝜎 =
√
𝑛𝑝(1 − 𝑝).

Exercise 5.8

Derive Eq. (5.17) using Stirling’s formula.

TheMultivariate Gaussian distribution. The Gaussian distribution gen-
eralizes to a vector 𝑋(𝜔) = (𝑋1, … , 𝑋𝑛) of 𝑛 random variables in the
following manner

𝑝(𝑥) =

√

det𝐴

(2𝜋)𝑛
𝑒
−
1

2
(𝑥−𝑚)′𝐴̂(𝑥−𝑚) (5.18)

where𝑚 ∈ ℝ𝑛 is a vector and 𝐴̂ is an 𝑛 × 𝑛 positive definite symmet-
ric matrix (prime denotes transpose). This is called the multivariate
Gaussian distribution.

9To check that Eq. (5.16) is correctly normalised, you can use the fact that, by a change
variables to polar coordinates,

[∫

∞

−∞

𝑑𝑧𝑒
−
𝑧2

2 ]

2

= ∫

2𝜋

0

𝑑𝜃 ∫

∞

0

𝑟𝑒
−
𝑟2

2 𝑑𝑟 = 2𝜋.

10We could equivalently say that a binomial random variable converges to a Gaussian when
𝑛 → ∞. Yet we shall discuss later what “converges” means for random variables.



5.2. EXAMPLES OF RANDOM VARIABLES 61

Exercise 5.9

Using the spectral decomposition of the matrix 𝐴̂ in eigenvalues
and eigenvectors, prove that Eq. (5.18) is correctly normalised.

Notice that if 𝐴̂ is diagonal, i.e. if its matrix elements 𝐴𝑖,𝑗 vanish for all
𝑖 ≠ 𝑗, then the 𝑛 random variables 𝑋𝑖 are independent. However, there
is a linear combination 𝑌 = 𝑉̂(𝑋−𝑚) of the 𝑛 variables that transforms
them into a vector of independent variables 𝑌𝑖. Indeed, if one takes 𝑉̂′

as the matrix11 of eigenvectors of 𝐴̂, one can write 𝐴̂ = 𝑉̂′Λ̂𝑉̂, where Λ̂
is the diagonal matrix of eigenvalues. Then one can rewrite Eq. (5.18) as

𝑝(𝑦) =

𝑛∏

𝑖=1

√
𝜆𝑖

2𝜋
𝑒
−
𝜆𝑖

2
𝑦2
𝑖

which is the joint distribution of 𝑛 independent random variables 𝑌𝑖.
In words, any multivariate Gaussian distribution can be transformed
into the distribution of 𝑛 independent Gaussian variables by a “simple
rotation”.

The uniform distribution. The RV 𝑋(𝜔) ∈ [0, 1] with 𝑝(𝑥) = 1 for 𝑥 ∈

[0, 1] and 𝑝(𝑥) = 0 otherwise is called a uniform random variable. The
random number generator in your computer simulates realisations of
uniform random variables.12 Therefore, this is your starting point for
generating pseudo-random variables with any continuous pdf𝑝(𝑥). One
of the methods relies on the fact that for any random variable 𝑋 with
pdf 𝑝(𝑥), the random variables

𝑈(𝜔) = ∫

𝑋(𝜔)

−∞

𝑝(𝑥)𝑑𝑥 (5.19)

is a uniform random variable (please check). If this relation can be
inverted to find 𝑋 as a function of 𝑈, then it can be used to generate
random variables with pdf 𝑝(𝑥) starting from a pseudo-random number
generator of uniform random variables 𝑈.

The exponential distribution applies to RV 𝑋(𝜔) ∈ [0,∞) with 𝑝(𝑥) =
𝑎𝑒−𝑎𝑥 for 𝑥 ≥ 0 and 𝑝(𝑥) = 0 for 𝑥 < 0.

11Where the prime indicates matrix transpose.
12The book Numerical Recipes ([11], also available online) provides a practical and concise

discussion of how this is done. Please read it.
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Exercise 5.10

How would you generate an exponential random variable using
Eq. (5.19)?

This arises in problems related to waiting times. Consider a process
like the decay of a certain radioactive sample. The probability of the
event 𝐴𝑡,𝑑𝑡 that an 𝛼 particle is emitted in any interval [𝑡, 𝑡 + 𝑑𝑡) is
independent of 𝑡 by time translation invariance. If we also assume that
the occurrence of a decay at time 𝑡 does not provide any information
about decays at later times then, 𝑃(𝐴𝑡,𝑑𝑡)must also be proportional to
𝑑𝑡, i.e, 𝑃(𝐴𝑡,𝑑𝑡) = 𝑎𝑑𝑡. The probability that 𝑘 events occur in [𝑡, 𝑡 + 𝜏) is
then a Poisson distribution with parameter 𝑎𝜏.

Exercise 5.11

Can you demonstrate explicitly the last two sentences?

Then the probability that no event occur in [𝑡, 𝑡 + 𝜏) is 𝑒−𝑎𝜏. This is also
the probability that the time 𝑇 one has to wait for the next event is larger
than 𝑡, i.e. 𝑃{𝑇 > 𝜏} = 𝑒−𝑎𝜏. Therefore the pdf of 𝑇 is

𝑝(𝑡) = −
𝑑

𝑑𝑡
𝑃{𝑇 > 𝑡} = 𝑎𝑒−𝑎𝑡. (5.20)

A characteristic of exponential random variables is that it describes
memory-less processes. This is well explained by the fact that, if buses
arrive at your bus stop at random times, and the time you have to wait
has an exponential distribution, it makes no sense to ask to by-standers
how long they have been waiting. That information will not tell you
anything on whether the next bus will arrive sooner or later.

Exercise 5.12

To show this, compute the conditional probability that you will
have to wait at least 𝑡 more minutes, given that someone at the
bus stop has seen no bus arriving in the past 𝜏minutes. Compare
this with the unconditional probability that you will have to wait
at least 𝑡 more minutes.
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5.3 Expectation
The expected value of a random variable 𝑋 is defined as

𝔼[𝑋] = ∫ 𝑑𝑥𝑝(𝑥)𝑥 or 𝔼[𝑋] =
∑

𝑥

𝑝𝑥𝑥

for real or discrete random variables, respectively. In general the expectation
operator 𝔼[⋅] is defined on any functions and combinations of RV. E.g.

𝔼[𝑓(𝑋)] = ∫ 𝑑𝑥𝑝(𝑥)𝑓(𝑥)

It is a linear operator 𝔼[𝑎𝑋 + 𝑏𝑌] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] for any constants 𝑎, 𝑏
and RV 𝑋(𝜔) and 𝑌(𝜔). The 𝑛th moment of 𝑋(𝜔) is defined as

𝑀𝑛 = 𝔼[𝑋𝑛] = ∫ 𝑑𝑥𝑝(𝑥)𝑥𝑛

In particular the first moment 𝔼[𝑋]— the mean— gives a measure of the
value around which 𝑋(𝜔) is distributed and the variance

𝕍[𝑋] = 𝔼[(𝑋 − 𝐸[𝑋])2]

gives a measure of the variability of 𝑋, because the standard deviation 𝜎[𝑋] =
√
𝕍[𝑋] quantifies the dispersion of 𝑋(𝜔) around its expected value.

Exercise 5.13

Compute the expected value of the waiting time of an exponential
random variable with pdf given by Eq. (5.20). Now go back to the bus
stop problem. If a bus comes on average every 10 minutes, how much
time do I expect that I will have to wait?

Exercise 5.14

Compute the mean and the variance for the binomial (Eq. (5.11)), the
Poisson (Eq. (5.13)) and the Gaussian distribution (Eq. (5.16)). How is
the Poisson distribution special?

The expected value can also be defined for more than one random variable,
for example:

𝔼 [𝑋1𝑋2] = ∫

∞

−∞

𝑑𝑥1 ∫

∞

−∞

𝑑𝑥2𝑝(𝑥1, 𝑥2)𝑥1𝑥2 . (5.21)
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In general, the expected value of a function of 𝑛 random variables 𝑋1, … , 𝑋𝑛
is given by

𝔼 [𝑓(𝑋1, … , 𝑋𝑛)] = ∫

∞

−∞

𝑑𝑥1…∫

∞

−∞

𝑑𝑥𝑛𝑝(𝑥1, … , 𝑥𝑛)𝑓(𝑥1, … , 𝑥𝑛) .

In other words, every random variable on which the expectation is taken
needs to be integrated over with the corresponding probability. The expected
value can be decomposed in conditional expected values, just like the joint
distribution 𝑝(𝑥1, … , 𝑥𝑛) can be decomposed in conditional distributions. For
example, for two variables

𝔼 [𝑓(𝑋1, 𝑋2)] = ∫

∞

−∞

𝑑𝑥1𝑝(𝑥1)𝔼 [𝑓(𝑋1, 𝑋2)|𝑋1 = 𝑥1]

where𝔼 [𝑓(𝑋1, 𝑋2)|𝑋1 = 𝑥1] = ∫
∞

−∞
𝑑𝑥2𝑝(𝑥2|𝑥1)𝑓(𝑥1, 𝑥2) is the expected value

conditional to 𝑋1 = 𝑥1. So we can write13

𝔼 [𝑓(𝑋1, 𝑋2)] = 𝔼 [𝔼 [𝑓(𝑋1, 𝑋2)|𝑋1]]

where the inner conditional expected value is taken with respect to 𝑋2 with
𝑋1 fixed, and the outer one with respect to 𝑋1.

Exercise 5.15

The tower property of conditional expectation is

𝔼 [𝔼 [𝑓(𝑋, 𝑌, 𝑍)|𝑋, 𝑌] |𝑋] = 𝔼 [𝑓(𝑋, 𝑌, 𝑍)|𝑋] .

Show it and interpret it.

Going back to Eq. (5.21), if 𝑋1 and 𝑋2 are independent, then the joint pdf
factorises 𝑝(𝑥1, 𝑥2) = 𝑝1(𝑥1)𝑝2(𝑥2) and the integrals also factorise. Therefore
if 𝑋1 and 𝑋2 are independent14

𝔼 [𝑋1𝑋2] = 𝔼 [𝑋1] 𝔼 [𝑋2] .

Notice that the converse is not true, i.e. 𝔼 [𝑋1𝑋2] = 𝔼 [𝑋1] 𝔼 [𝑋2] does not
imply that 𝑋1 and 𝑋2 are independent.

13The expected value 𝔼 [𝑓(𝑋1, 𝑋2)] is a number, but 𝔼 [𝑓(𝑋1, 𝑋2)|𝑋1] is a RV, because it is a
function of the random variable 𝑋1.

14Note that 𝔼 [𝑋1𝑋2] = 𝔼 [𝑋1] 𝔼 [𝑋2] if 𝑋1 (or 𝑋2) is a constant. A random variable which is
constant is independent of any other random variable.
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Exercise 5.16

Find a simple counter-example with 𝑋1 and 𝑋2 that take values in
{−1, 0, 1}, where

𝔼 [𝑋1𝑋2] = 𝔼 [𝑋1] 𝔼 [𝑋2]

but 𝑋1 and 𝑋2 are not independent.

The same consideration applies to expected values of functions of more
than one random variable: the expected value of the product of 𝑛 independent
random variables𝑋1, … , 𝑋𝑛 equals the product of the expected values, or more
generally

𝔼 [𝑓1(𝑋1)𝑓2(𝑋2)⋯𝑓𝑛(𝑋𝑛)] = 𝔼 [𝑓1(𝑋1)] 𝔼 [𝑓2(𝑋2)]⋯𝔼 [𝑓𝑛(𝑋𝑛)] ,

for any set of functions 𝑓𝑖(𝑥). But the converse is not true in general.
The covariance between two variables is defined as

Cov(𝑋1, 𝑋2) = 𝔼 [(𝑋1 − 𝔼[𝑋1])(𝑋2 − 𝔼[𝑋2])]

whereas the correlation is defined as

Corr(𝑋1, 𝑋2) =
𝔼 [(𝑋1 − 𝔼[𝑋1])(𝑋2 − 𝔼[𝑋2])]

√
𝕍[𝑋1]𝕍[𝑋2]

.

One important point to keep in mind is that if 𝑋1 and 𝑋2 are independent,
then they are also uncorrelated, i.e. Cov(𝑋1, 𝑋2) = 0, but the converse is not
true, unless the variables have a multivariate Gaussian distribution.

Exercise 5.17

Prove that if 𝑋1 and 𝑋2 have a multivariate Gaussian distribution and
Cov[𝑋1, 𝑋2] = 0 then they are also independent. Find a counter-
example that shows that this is not true in general.

Exercise 5.18

Show that the covariance matrix 𝐶𝑖,𝑗 = Cov(𝑋𝑖, 𝑋𝑗) of a ensemble of 𝑛
random variables 𝑋 = (𝑋1, … , 𝑋𝑛), is a non-negative definite matrix,
whatever is their distribution 𝑝(𝑋). (Hint: the variance of any linear
combination

𝑈 =

𝑛∑

𝑖=1

𝑢𝑖𝑋𝑖
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cannot be negative).

Other examples of the use of the expected value that we shall use frequently
in the sequel are the generating function 𝑔(𝑠) = 𝔼[𝑠𝑋] for integer valued
random variables, and the characteristic function 𝜙(𝑘) = 𝔼

[
𝑒𝑖𝑘𝑋

]
for real

random variables.

5.4 Correlation and factor graphs*
Imagine that a variable 𝑍 is caused by 𝑋 and 𝑌, where 𝑋 and 𝑌 are two inde-
pendent causes. One way to think about this is that there is a “mechanism”,
such that 𝑍 is a function of 𝑋 and 𝑌. One way to write this is 𝑍 = 𝑓(𝑋, 𝑌,𝑈)

where 𝑈 is an unobserved independent random variable. Then, among the
six ways in which we can write the joint pdf 𝑝(𝑥, 𝑦, 𝑧) in terms of conditional
pdf, there is one

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑧|𝑥, 𝑦)𝑝(𝑥)𝑝(𝑦)

that reflects this causal structure. Notice that this is the only way in which the
conditional dependence is simplified, because 𝑝(𝑥|𝑦) = 𝑝(𝑥). For example,
in 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑦|𝑥, 𝑧)𝑝(𝑧|𝑥)𝑝(𝑥) the term 𝑝(𝑦|𝑥, 𝑧) is different from

𝑝(𝑦|𝑧) = ∫ 𝑑𝑥𝑝(𝑦|𝑥, 𝑧)𝑝(𝑥) (5.22)

because even if 𝑋 and 𝑌 are independent, conditioning on 𝑍 introduces a
statistical dependence between them. This allows us to identify the causal
relation, i.e. to say that 𝑋 and 𝑌 cause 𝑍 and not that 𝑌 is caused by 𝑋 and 𝑍.

Exercise 5.19

In order to convince you about Eq. (5.22), write 𝑝(𝑦|𝑥, 𝑧) in terms of
𝑝(𝑧|𝑥, 𝑦), 𝑝(𝑥) and 𝑝(𝑦).

A causal dependence between 𝑛 variables 𝑋1… ,𝑋𝑛 can be represented
as a structural causal model 𝑋𝑖 = 𝑓(𝑋𝜕𝑖, 𝑈𝑖), where 𝑋𝜕𝑖 = {𝑋𝑗, 𝑗 ∈ 𝜕𝑖} is a
shorthand for the set of variables that “cause” 𝑋𝑖 (and 𝜕𝑖 is the set of indices
of these variables). A structural causal model can be represented as a directed
a-cyclical graph (DAG), where “directed” means that each link has a direction
and “a-cyclic”means that there are no loops. For example, theDAG in Figure 9
corresponds to

𝑝(𝑥1, … , 𝑥6) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1, 𝑥3)𝑝(𝑥3)𝑝(𝑥4|𝑥2, 𝑥3)𝑝(𝑥5|𝑥2, 𝑥6)𝑝(𝑥6|𝑥1)
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X2

X1

X3
X4

X5X6

Figure 9. A directed aciclic graph representing the statistical dependence between
six variables.

In each factor, the conditional probability of 𝑋𝑖 only contains the variables
that “cause” 𝑋𝑖, which are called the parent variables. The best way to identify
causal relations is to act on the variables. So suppose one can act on the
variables and fix one of the variables to a specific value, let’s say 𝑋2 = 𝑥2. It
is clear that this intervention will affect only the variables which are down-
stream of 𝑋2 (e.g. 𝑋4 and 𝑋5) and not those that are upstream (e.g. 𝑋1, 𝑋3 and
𝑋6). This means that the marginal pdf of 𝑋𝑖 changes only for those variables
that are causally dependent on 𝑋2 but not for those which are not causally
related. Note, in particular, that fixing 𝑋2 = 𝑥2 to a constant makes 𝑋4 and
𝑋5 independent. Graphically, fixing a variable corresponds to removing the
corresponding node from theDAG. Thismay break the DAG into disconnected
components. Two variables that belong to different disconnected components
are independent.

These arguments are developed further in the field of causal inference.15
For our purposes, let us suffice to say once again that statistical dependence
should not be interpreted as causation.

Exercise 5.20

Compute the𝑚th moment of the Gaussian distribution with mean 𝜇
and variance 𝜎2, for a generic𝑚.

15See very interesting lectures by Bernhard Schölkopf at the 2020Machine Learning Summer
School.
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Exercise 5.21

Show that for a multivariate Gaussian distribution (Eq. (5.18))

𝔼
[
𝑒𝑏⋅𝑋

]
= 𝑒

𝑏⋅𝑚⃗+
1

2
𝑏′𝐴̂−1𝑏

Exercise 5.22

Show that if 𝑋 = (𝑋1, … , 𝑋𝑛) follows a multivariate Gaussian distribu-
tion (Eq. (5.18)), then the marginal distribution of 𝑋𝑖 is also a Gaussian
with mean𝑚𝑖 and variance equal to {𝐴̂−1}𝑖,𝑖 (i.e. the 𝑖, 𝑖 element of the
inverse of 𝐴̂.a

aThe world of Gaussian variables is like Eden. It’s beautiful and perfect. The only
way to get out of it is to commit a sin.

Exercise 5.23

Let 𝑋 be a random variable distributed in the range [𝑎,∞) with pdf
𝑝(𝑥). Show that

𝔼 [𝑋] = 𝑎 + ∫

∞

𝑎

[1 − 𝑃(𝑥)] 𝑑𝑥, 𝑃(𝑥) = ∫

𝑥

𝑎

𝑝(𝑥)𝑑𝑥 .

Exercise 5.24

Show that if 𝑋 and 𝑌 are two independent random variables with
cumulative distribution 𝑃(𝑥), then the cumulative distribution of the
minimum is

𝑃{min(𝑋, 𝑌) < 𝑥} = 1 − [1 − 𝑃(𝑥)]
2
.

Exercise 5.25

If 𝑋1 and 𝑋2 are two independent RV with the same cumulative distri-
bution 𝑃(𝑥), show that

𝔼 [|𝑋1 − 𝑋2|] = 4Cov [𝑋, 𝑃(𝑋)] .
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Exercise 5.26

Let 𝜃 be a uniformly distributed random variable in [0, 2𝜋]. Show that
the two random variables 𝑋 = cos 𝜃 and 𝑌 = sin 𝜃 are uncorrelated
but are not independent. Find their marginal distributions.

Exercise 5.27

Show that, if 𝑋 is a Gaussian variable, then

𝔼 [erf (𝑎𝑋 + 𝑏)] = erf (
𝑎𝔼 [𝑋] + 𝑏

√
1 + 2𝑎2𝕍 [𝑋]

) ,

where

erf (𝑥) =
2
√
𝜋
∫

𝑥

0

𝑒−𝑧
2

𝑑𝑧

is the error function.





Chapter 6

On urn models and sampling∗

The fundamental idea of probability theory is expressed in terms
of urn models. Feller

Even though we cannot define the probability 𝑃(𝐴) of an event 𝐴 as the
limit of the frequency of its occurrence in a sequence of many independent
trials, this remains a possible way to estimate 𝑃(𝐴).

The process of repeating the experiment becomes conceptually equivalent
to repeated drawswith replacement from an urnwithmany balls, a (unknown)
fraction 𝑝 = 𝑃(𝐴) of which is black and the rest is white. So a “success” in
the experiment, i.e. the occurrence of the event 𝐴, is equivalent to a draw of a
black ball. In this schematisation, 𝑝 is an objective, physical property of the
system (the fraction of black balls). Let’s first argue that indeed the frequency
of draws of black balls will converge to 𝑝.

Let𝐾𝑛 be the number of black balls drawn after 𝑛 draws with replacement,
i.e. when the ball which is drawn is put back into the urn. It is clear that the
probability of 𝐾𝑛(𝜔) = 𝑘 is given by the binomial distribution:

𝑃{𝑘|𝑛, 𝑝} =
(𝑛

𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−𝑘.

We expect and we can explicitly check by De Moivre-Laplace limit of the
binomial that, as 𝑛 gets large, the frequency 𝐾𝑛(𝜔)∕𝑛 → 𝑝, in the sense that
the probability that |𝐾𝑛∕𝑛 − 𝑝| > 𝜖 gets soon very small. Please note that
this is a non-trivial statement because 𝐾𝑛(𝜔)∕𝑛 depends on 𝜔 (it is a random
variable!), whereas 𝑝 is independent of 𝜔, it is a constant.

It is also instructive to check this numerically. It is easy to write a computer
code1 — let’s call it A.for— that will generate the sequence 𝑘𝑛 (for 𝑛 ≤ 1000

1Do it and run it!
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and 𝑝 = 0.4, for example),2

seed=81701
p=0.4
do n=1,1000

if (ran(seed).lt.p) k=k+1
print *,n,k

end do
end

If we plot 𝑘
𝑛
we expect to see a trajectory drawing closer to 𝑝 = 0.4.

This seems a good simulation of what we expect from our experimental
process, with one big difference:

when we do the experiment we do not know 𝑝. Actually, we do the
experiment precisely because we want to measure 𝑝!

In order to imagine the situation where 𝑝 is unknown, think of the situa-
tion where the line p=0.4 is replaced by p=ran(seed) in the program above.
Imagine someone compiles the program, with an unknown value of seed,
and gives you the executable, but not the source file. Then, you can run the
code and plot 𝑘∕𝑛 vs 𝑛. You will observe 𝑘∕𝑛 converge to some value, which
will be close to the unknown 𝑝. This means that over time we will learn the
value of 𝑝 to a better and better approximation.

Indeed, by Bayes rule you can find out what is the probability of 𝑝 being
in any interval [𝑥, 𝑥 + 𝑑𝑥), and find that this is sharply peaked at 𝑥 ≈ 𝑘∕𝑛,
for large 𝑛. In order to do this, you need a prior distribution on the value of
𝑝. How to choose a prior is a quite interesting and non-trivial issue that is
discussed in detail in ref. [8]. We’ll get back to it, for the moment I will assume
that 𝑃0(𝑝) = 𝐴𝑝𝑎−1(1 − 𝑝)𝑎−1 (i.e. 𝑎 = 1 corresponds to the uniform prior).
Then

𝑃{𝑝 ∈ [𝑥, 𝑥 + 𝑑𝑥)|𝑛, 𝑘} =
𝑃{𝑘|𝑛, 𝑝 = 𝑥}𝐴𝑥𝑎−1(1 − 𝑥)𝑎−1𝑑𝑥

∫
1

0
𝑃(𝑘|𝑛, 𝑦)𝐴𝑦𝑎−1(1 − 𝑦)𝑎−1𝑑𝑦

=
Γ(𝑛 + 2𝑎)

Γ(𝑘 + 𝑎)Γ(𝑛 − 𝑘 + 𝑎)
𝑥𝑘+𝑎−1(1 − 𝑥)𝑛−𝑘+𝑎−1𝑑𝑥

2The variable seed initialises the random number generator ran(). This is morally the
analog of the element 𝜔 of the sample space, in the sense that different choices of seed
generate different random sequences. The if statement uses the fact that ran(seed) produces
a uniform random variable, which is less than 𝑝 with probability 𝑝.
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Then, our estimate of the fraction 𝑝 of black balls, is the expected value on
this distribution:3

𝔼 [𝑝|𝑛, 𝑘] =
Γ(𝑛 + 2𝑎)

Γ(𝑘 + 𝑎)Γ(𝑛 − 𝑘 + 𝑎)
∫

1

0

𝑥𝑘+𝑎−1(1 − 𝑥)𝑛−𝑘+𝑎−1𝑥𝑑𝑥 =
𝑘 + 𝑎

𝑛 + 2𝑎
.

Summarising, in our sampling process the distribution of possible values
of 𝑝 becomes more and more sharply peaked around a value that is close to
the frequency 𝑝 ≃ 𝑘∕𝑛 as 𝑛 → ∞.

Note that the best estimate of the probability that the next draw will be a
success, using the results above, is given by

𝑃{𝐾𝑛+1 = 𝑘 + 1|𝐾𝑛 = 𝑘, 𝑛} =
𝑘 + 𝑎

𝑛 + 2𝑎
. (6.1)

So we can compute the probability that the next drawn ball will be black
without knowing 𝑝, incorporating all the information we have so far about it.
Indeed, we can “simulate” the whole process without knowing 𝑝. In other
words, if you generate a sequence 𝑘𝑛, starting from 𝑘0 = 0, using the above
rule — i.e setting 𝑘𝑛+1 = 𝑘𝑛 + 1 with probability (𝑘𝑛 + 𝑎)∕(𝑛 + 2𝑎) and
𝑘𝑛+1 = 𝑘𝑛 otherwise — then this should be statistically indistinguishable
from 𝑛 repeated draws from an urn with unknown composition. To make the
statement concrete, consider the program B.for

a=1.0
seed=81701
do n=1,1000

if ((n+2*a)*ran(seed).lt.k+a) k=k+1
print *,n,k

end do
end

The output of this program is statistically undistinguishable from the output
of A.for, which means that if both are compiled and given the same name
there is no way we can tell whether the output comes from one or the other.

3The expected value of the estimate of 𝑝 does not coincide with 𝑝 unless 𝑎 = 0 (in statistics
jargon, the estimator is biased). 𝑎 = 0 corresponds to a prior 𝑃0(𝑝) = 𝐴∕[𝑝(1 − 𝑝)] that is non
normalizable (which is called an improper prior). This seems odd, but there are good reasons
to believe that indeed 𝑎 = 0 correctly encodes our state of ignorance on 𝑝. Indeed, if you had
observed no success (𝑘 = 0) after 𝑛 trials, you would infer that 𝑝 = 0. The article by Jaynes
cited above provides arguments for 𝑎 = 0.
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Exercise 6.1

Show that the random variable 𝑃𝑛 =
𝐾𝑛+𝑎

𝑛+2𝑎
in this process satisfies the

equation 𝔼 [𝑃𝑛+1|𝑃𝑛] = 𝑃𝑛. Sequences of random variables that satisfy
this property are calledmartingales. Iterating this equation, show that
𝔼 [𝑃𝑛] =

1

2
.

Interestingly, you can interpret even B.for as reproducing a sequence of
draws from an urn. Take an urn which initially has 𝑎 black and 𝑎 white balls.4
At each draw, the drawn ball is put back into the urn and an additional ball of
the same colour is added (by some device internal to the urn). Equivalently,
you can think that the ball “magically” duplicates just after being put back
in the urn. So, if a black (white) ball is drawn, it is put back in the urn and
a further black (white) ball is added. The number of balls increases with 𝑛.
If out of 𝑛 draws 𝑘 black balls have been observed, then the urn will contain
𝑘 + 𝑎 black balls out of a total of 𝑛 + 2𝑎 balls. Hence the probability that
the next draw results in a black ball is exactly given by Eq. (6.1). And this is
precisely the process that B.for simulates. This model is called a Polya urn.5

Arbitrary6 as it might seem, this construction is just a different conceptual
model for our sequence of experiments. Remember that the observer is run-
ning the experiments precisely because he/she wants to learn about a system
that is not known. So there is no a priori reason to prefer one to the other.

The fact that A.for and B.for produce statistically indistinguishable out-
puts is striking, for the two programs code for processes which are completely
different. One is a sequence of independent draws, whereas in the second the
outcome in a draw depends on the whole sequence of previous draws. In the
first the urn is always the same, whereas the second is a process where draws
modify the composition of the urn and hence the probability of future events.

There is no way to knowwhether you’re learning about the unknown
composition of the urn or if you’re filling up an urn in a history

4Isn’t it curious that the parameter 𝑎 that specifies the number of balls in the urn before
the first draw is also the one that defines the prior distribution 𝑃0? This does not seems like a
coincidence, because that is precisely what is known about the urn before the draws.

5See Feller, Chapter V.
6One may question about the arbitrariness of such constructions. Jaynes argues that even

the simple scheme of draw from an urn with replacement is not at all unambiguous, as the
state of the urn is affected by the drawing. One implicitly assumes that the urn is shuffled after
each draw enough to ensure that at the next draw the urn is in its original state. Yet how much
shaking and what “ensure” really means is never really spelled out. Definitely the observer,
after all these operations, is not in the same state of knowledge as at the time of the first draw.



6.1. SAMPLING AND UNDERSAMPLING 75

dependent manner.7

Now you should be in a position to answer the following questions:

1. what is the fraction of black balls in the limit of infinite draws in the
second process?

2. What is the limiting fraction if one starts from an urn with two black
and one white balls? or with 𝑏 black and 𝑤 white balls?

6.1 Sampling and undersampling
This setup can be generalized to experiments that can give any number of
outcomes. Inmany cases, when we do experiments, we do not even know how
many different outcomes we can get. Consider for example a botanist that is
classifying samples into species of plants in a yet unexplored island. He/she
has a criterium to decide whether the next sample is a further exemplar of
one of the species he/she has already seen or if it is a new species. In this case,
as well in cases where the system we’re studying is complex, the number of
outcomes can be very large, and much larger than the number𝑀 of available
samples.8

So consider the general situation of an experiment repeated𝑀 times and
let 𝑘𝑥 be the number of times the state (or outcome) 𝑥 is observed, with
𝑥 = 1,… ,Ω and

∑

𝑥
𝑘𝑥 = 𝑀. We may think of the experiment as sampling

an underlying distribution. But when𝑀 ≪ Ω we’re very far from sampling
correctly this distribution (we call this under-sampling regime).

What can one learn from this data? What is the typical behavior of a
sampling process? What type of frequency distribution can we expect?

Generalizing the discussion above, it is possible to estimate in a Bayesian
manner, the probability 𝑝𝑥 of outcomes 𝑥, given the outcome of earlier ex-
periments (the number 𝑘𝑥 of times the outcome 𝑥 has been found). The

7This means that, on the basis of the data alone, it is not possible to exclude “magical”
explanations that maintain that the outcome of an experiment is influenced in mysterious
ways by the outcome of previous experiments. Common sense suggests that this is not the
right explanation.

8As another example, consider the case where each observation can be a gene expression
array that tells you whether each gene is on or off. There may be hundreds of genes, so the
number of possible outcomes can be as large as Ω ≃ 2n. of genes. Since the number of genes is
of the order of tens of thousands, this is an astronomical number, in principle. In practice,
the observed gene expression profiles are only those compatible with a biologically functional
organism, so they may be much less. The number of samples in typical experiments can be of
order𝑀 ∼ 102𝛁 ⋅ 103, which is much less than Ω.
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probability of 𝑘 is

𝑃{𝑘|𝑝⃗} = 𝑀!

Ω∏

𝑥=1

𝑝
𝑘𝑥
𝑥

𝑘𝑥!
𝛿∑

𝑥
𝑘𝑥 ,𝑀

.

Let the prior (pdf) on 𝑝⃗ be9

𝑝0(𝑝⃗) =
Γ(𝛼Ω)

Γ(𝛼)Ω

∏

𝑥

𝑝𝛼−1𝑥 𝛿 (
∑

𝑥

𝑝𝑥 − 1)

Then the posterior pdf is given by Bayes rule

𝑝(𝑝⃗|𝑘) = Γ(𝑀 + 𝛼Ω)
∏

𝑥

𝑝
𝑘𝑥+𝛼−1
𝑥

Γ(𝑘𝑥 + 𝛼)
𝛿 (

∑

𝑥

𝑝𝑥 − 1)

Imagine now that I can do a further experiment. The probability to observe
outcome 𝑥 is

𝔼[𝑝𝑥|𝑘] = ∫ 𝑑𝑝⃗𝑝(𝑝⃗|𝑘)𝑝𝑥 =
𝑘𝑥 + 𝛼

𝑀 + 𝛼Ω
(6.2)

If the outcome of the experiment𝑀 + 1st and that of subsequent experiments
is consistent with what we have learned so far, then we can view 𝑘(𝑀) as being
the result of a draw from a Polya urn that initially contains 𝛼 balls of each
color 𝑥. A sequence of draws of a ball from the urn is executed where, after
each draw, the chosen ball is put back into the urn together with a further ball
of the same color. After𝑀 draws, the probability of drawing a ball of color 𝑥
is precisely given by Eq. (6.2).

Therefore Polya urn schemes describe experiments whose outcomes, at
each time, are consistent with the statistics accumulated that far: these self-
consistent experiments produce a peculiar distribution of 𝑘 which is obtained
generalizing the arguments in Feller Vol. 1 for the simple case Ω = 2: each
sequence 𝑥1, 𝑥2, … , 𝑥𝑀 with a certain number 𝑘𝑥 of outcomes 𝑥𝓁 = 𝑥 has the
same probability, which is given by

𝑃{𝑥1, 𝑥2, … , 𝑥𝑀} =

∏

𝑥∶𝑘𝑥>0
𝛼(𝛼 + 1)⋯ (𝛼 + 𝑘𝑥 − 1)

Ω𝛼(1 + Ω𝛼)⋯ (𝑀 − 1 + Ω𝛼)
, 𝑘𝑥 =

𝑀∑

𝓁=1

𝛿𝑥𝓁,𝑥

=
Γ(𝛼Ω)

Γ(𝛼Ω +𝑀)

∏

𝑥

Γ(𝑘𝑥 + 𝛼)

Γ(𝛼)

9Here 𝛿(𝑥) is Dirac’s delta function, defined by the relation

𝑓(𝑥0) = ∫

∞

−∞

𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥

for any function 𝑓(𝑥) and any 𝑥0 ∈ ℝ.
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The number of sequences of this type is given by the multinomial factor
𝑀!∕(

∏

𝑥
𝑘𝑥!), so that

𝑃{𝑘|𝑀} =
𝑀!Γ(𝛼Ω)

Γ(𝑀 + Ω𝛼)Γ(𝛼)Ω

∏

𝑥

Γ(𝑘𝑥 + 𝛼)

𝑘𝑥!
,

∑

𝑥

𝑘𝑥 = 𝑀 (6.3)

which is also what one gets from integrating the likelihood over the prior
on 𝑝⃗.

The number 𝑁𝑀 of different colours discovered up to𝑀, i.e. the number
of 𝑥 with 𝑘𝑥 > 0, can be estimated for large𝑀,Ω as follows: write𝑀 = 𝑚Ω

and 𝑁𝑀 = 𝑛(𝑚)Ω then

𝑃{𝑁𝑀+1 = 𝑁𝑀 + 1} =
𝛼(Ω − 𝑁𝑀)

𝑀 + 𝛼Ω
=
𝛼(1 − 𝑛)

𝑚 + 𝛼
(6.4)

≃
𝑑𝑁

𝑑𝑀
=
𝑑𝑛

𝑑𝑚
. (6.5)

By integration of the resulting differential equation, we find

𝑛(𝑚) = 1 −
(
1 +

𝑚

𝛼

)−𝛼
. (6.6)

So, 𝑁𝑀 ≃ 𝑀 for𝑀 ≪ 𝛼Ω and 𝑁𝑀 saturates at Ω when𝑀 ≫ 𝛼Ω.
The probability that, for a particular 𝑥, we find 𝑘𝑥 = 𝑘 decays as 𝑘𝛼−1𝑒−𝜈𝑘,

where 𝜈 is adjusted so that 𝐸[𝑘] = 𝑀∕Ω. The number of 𝑥 with 𝑘𝑥 = 𝑘, on
average, is10

𝑃{𝑘𝑥 = 𝑘|𝑀} = 𝐴𝑘𝛼−1𝑒−𝜈𝑘.

when 1 ≪ 𝑀 ≪ Ω we expect 𝜈 ≪ 1 so the distribution of frequency types is
very broad.

Indeed, broad frequency distributions are observed rather ubiquitously
when one samples complex systems. For example, the abundance of species
in a given environment, the number of species with a given gene, the number
of firms with a given number of employees all follow broad frequency distribu-
tions. Our discussion suggests that this is the hallmark of an under-sampled
system.

We’ll come back to this, from a different angle, when we’ll talk about
statistics and inference.

10In order to obtain this result, you should sum Eq. (6.3) on all values of 𝑘𝑥′ for 𝑥′ ≠ 𝑥 with
the constraint

∑

𝑥
𝑘𝑥 = 𝑀. This constraint can be introduced with the integral representation

of the delta function 𝛿𝓁,𝑗 = ∫
𝜋

−𝜋

𝑑𝑞

2𝜋
𝑒𝑖𝑞(𝓁−𝑗). The sums on 𝑘𝑥′ factorise inside the integral, which

can then be evaluated by saddle point.





Chapter 7

Generating functions

A very useful tool to handle infinite sequences 𝑎𝑛 (𝑛 = 0, 1, …) is to construct
the function

𝐴(𝑠) =

∞∑

𝑛=0

𝑎𝑛𝑠
𝑛, 𝑠 ∈ ℂ (7.1)

which is called a generating function (GF). This is useful because all the prop-
erties of the sequence are encoded in the analytic behaviour of 𝐴(𝑠), as a
function of 𝑠. Eq. (7.1) is a formal power series that need not necessarily
converge for any value of 𝑠. The variable 𝑠 has no meaning. It is used as a
device.

In this chapter we shall first see how the structure of singularities of 𝐴(𝑠)
can inform us on the asymptotic behaviour of the sequence 𝑎𝑛. Then we shall
see how generating functions can be used to solve counting problems. Finally
we shall apply generating function to probability. We shall restrict attention
to cases where 𝑎𝑛 ≥ 0, which are those we shall be interested in. As a teaser,
we start by an example that shows the power of generating functions.

7.1 Warm-up: Fibonacci numbers
Fibonacci numbers are defined by the recurrence relation

𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1

for 𝑛 > 0 and 𝑓0 = 𝑓1 = 1. Let 𝐹(𝑠) be the corresponding generating function.
If you multiply the recurrence relation by 𝑠𝑛+1 and sum on all 𝑛 > 0 you find
𝐹(𝑠) − 𝑓0 − 𝑓1𝑠 = 𝑠[𝐹(𝑠) − 𝑓0] + 𝑠2𝐹(𝑠), i.e.,

𝐹(𝑠) =
1

1 − 𝑠 − 𝑠2
.

79
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F (s)

s

Figure 10. The function 𝐹(𝑠) has two singularities, at 𝑠 = 1∕𝜙 and at 𝑠 = −𝜙.

This has two poles (the zeros in the denominator) at 𝑠 = −𝜙 and at 𝑠 = 1∕𝜙,

where 𝜙 =
1+

√
5

2
≃ 1.61803… is the golden ratio. Expanding 𝐹(𝑠) in simple

fractions, and then in geometric series, we find

𝐹(𝑠) =
1
√
5
[

𝜙

1 − 𝜙𝑠
+

𝜙−1

1 + 𝜙−1𝑠
] (7.2)

=

∞∑

𝑛=0

1
√
5

[
𝜙𝑛+1 − (−𝜙−1)𝑛+1

]
𝑠𝑛. (7.3)

This gives the remarkable result

𝑓𝑛 =
1
√
5

[
𝜙𝑛+1 − (−𝜙−1)𝑛+1

]
, 𝑛 ≥ 0.

This formula allows to compute 𝑓100 = 573147844013817084101 with few
operations, without the need to iterate the recursion relation 100 times. In
spite of the fact that 𝜙 is an irrational number, this expression yields an integer
number for all 𝑛. For 𝑛 → ∞, the asymptotic behaviour of Fibonacci numbers
is given by the first term in the expression above, since the second term is
exponentially smaller with respect to the first. Hence 𝑓𝑛 ≃ 𝜙𝑛+1∕

√
5 for 𝑛

large.
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Exercise 7.1

Can you compute the generating function when 𝑓0 = 0 and 𝑓1 = 1?
What is the difference? What if 𝑓0 = 1 and 𝑓1 = 2?

The same techniques can be applied for any sequence 𝑎𝑛 that is defined by
a recursion relation, transforming the latter into an equation for the generating
function𝐴(𝑠) in Eq. (7.1). This equation can be solved to obtain𝐴(𝑠) in explicit
form. Finally the expansion on powers of 𝑠 yield 𝑎𝑛 as the coefficient of 𝑠𝑛.
The 𝑛th coefficient in theMaclaurin power expansion of𝐴(𝑠) can be computed
in different ways:

𝑎𝑛 =
1

𝑛!

𝑑𝑛𝐴(𝑠)

𝑑𝑠𝑛

|||||||𝑠=0
= ∫

2𝜋

0

𝑑𝑞

2𝜋
𝐴(𝑒𝑖𝑞)𝑒−𝑖𝑞𝑛 =

1

2𝜋𝑖
∮

𝑑𝑠

𝑠
𝐴(𝑠)𝑠−𝑛 , (7.4)

where the last integral is on a contour around the origin in the complex plane
𝑠 ∈ ℂ. In particular, 𝑎0 = 𝐴(0) and if 𝐴(𝑠) = 𝑠𝑚𝐵(𝑠) where 𝐵(𝑠) is analytic at
𝑠 = 0, then 𝑎𝑛 = 0 for all 𝑛 < 𝑚.

Even if it is not possible to find an exact formula for 𝑎𝑛, it is still possible to
extract its asymptotic behaviour as 𝑛 → ∞, by studying the analytic properties
of 𝐴(𝑠) close to its singularities, as we’re going to see next.

7.2 Asymptotics of 𝒂𝒏 from the structure of
singularities

Let us start by the simplest case where 𝐴(𝑠) has only isolated single poles1

𝐴(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
, (7.5)

where 𝐷(𝑠) is a polynomial of degree 𝑑 and 𝑁(𝑠) is a polynomial of degree2
𝑛 ≤ 𝑑. Let 𝑠1, … , 𝑠𝑑 be the zeroes of 𝐷(𝑠), which we assume to be all different
𝑠𝑖 ≠ 𝑠𝑗 for 𝑖 ≠ 𝑗. This means that 𝐷(𝑠) can be written as the product of (𝑠 − 𝑠𝑖)
over the different roots. Close to 𝑠𝑖, 𝐴(𝑠) diverges as 𝑐𝑖∕(𝑠 − 𝑠𝑖), where the
constant 𝑐𝑖 can be computed as the limit of (𝑠 − 𝑠𝑖)𝐴(𝑠), as 𝑠 → 𝑠𝑖. Using
L’Hôpital rule, we find

𝑐𝑖 = lim
𝑠→𝑠𝑖

(𝑠 − 𝑠𝑖)𝑁(𝑠)

𝐷(𝑠)
=
𝑁(𝑠𝑖)

𝐷′(𝑠𝑖)
,

1This argument is presented in much more detail in Feller XI.4.
2How does the case 𝑛 > 𝑑 reduces to this?



82 CHAPTER 7. GENERATING FUNCTIONS

where 𝐷′(𝑠𝑖) is the first derivative of 𝐷(𝑠) computed in 𝑠𝑖. Then we can write

𝐴(𝑠) =

𝑑∑

𝑖=1

𝑁(𝑠𝑖)

𝐷′(𝑠𝑖)

1

𝑠 − 𝑠𝑖
. (7.6)

You can check that this expression for 𝐴(𝑠) has the same poles of Eq. (7.5),
with the same asymptotic behaviour as 𝑠 → 𝑠𝑖 for all 𝑖. Now each term in
Eq. (7.6) can be expanded as a geometric series, so

𝐴(𝑠) =

∞∑

𝑛=0

⎡
⎢

⎣

−

𝑑∑

𝑖=1

𝑁(𝑠𝑖)

𝐷′(𝑠𝑖)
𝑠−𝑛−1
𝑖

⎤
⎥

⎦

𝑠𝑛 (7.7)

which shows that

𝑎𝑛 = −

𝑑∑

𝑖=1

𝑁(𝑠𝑖)

𝐷′(𝑠𝑖)
𝑠−𝑛−1
𝑖

. (7.8)

For 𝑛 → ∞ the term that dominates the sum is the one corresponding to the
root 𝑠𝑖 which is closest to the origin. Without loss of generality, we can assume
that |𝑠1| ≤ |𝑠2| ≤ ⋯ ≤ |𝑠𝑑|. Then 𝑎𝑛 ∼ 𝑒𝑎𝑛 has an exponential behaviour for
large 𝑛, with a rate given by 𝑎 = − log |𝑠1|.

The first lesson that we learn can be summarised in the following.3

First Principle of Coefficient Asymptotics. The location of the singu-
larities of a function dictates the exponential growth of the coefficients of its
power expansion. More precisely, if the closest singularity of𝐴(𝑠) to the origin
is at 𝑠1, then 𝑎𝑛 ∼ |𝑠1|

−𝑛 in the sense that

lim
𝑛→∞

1

𝑛
log 𝑎𝑛 = − log |𝑠1|.

If instead of a single pole, the singularity closest to the origin is a double
pole 𝐴(𝑠) ∼ (𝑠 − 𝑠1)

−2, then it is easy to see4 that the corresponding leading
asymptotic behaviour is given by 𝑎𝑛 ∼ 𝑛𝑒𝑎𝑛. This suggests that the type of
singularity determines the sub-exponential asymptotic behaviour of 𝑎𝑛. In

3If 𝑎𝑛 ≃ 𝐴𝑛𝛽𝑧𝑛, a simple recipe to compute 𝑧 is to observe that

lim
𝑛→∞

𝑎𝑛+𝑘

𝑎𝑛
= 𝑧𝑘 .

For example, if 𝑎𝑛 satisfies a recursion relation, such as 𝑎𝑛+2 = 𝑏𝑎𝑛+1 + 𝑐𝑎𝑛, then dividing this
equation by 𝑎𝑛 and taking the limit 𝑛 → ∞, one finds that 𝑧 is given by the solution of the
equation 𝑧2 = 𝑏𝑧 + 𝑐, with the largest value of |𝑧|.

4Hint: compare the singularities of 𝐴(𝑠) in Eq. (7.7) and of its derivative.
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order to get more intuition, let us consider the generating function 𝐴(𝑠) =
(𝑠1−𝑠)

−𝛼−1. The binomial theorem gives directly the power expansion in 𝑠, as

𝐴(𝑠) =

∞∑

𝑛=0

(−𝛼 − 1

𝑛

)
(−𝑠)𝑛𝑠−𝛼−1−𝑛

1
.

In order to simplify the expression of 𝑎𝑛 we shall use the properties of the Γ
function

𝑎𝑛 = (−1)𝑛
(−𝛼 − 1

𝑛

)
𝑠−𝛼−1−𝑛
1

(7.9)

= (−1)𝑛
(−𝛼 − 1)(−𝛼 − 2)… (−𝛼 − 𝑛)

𝑛!
𝑠−𝛼−1−𝑛
1

(7.10)

=
Γ(𝑛 + 1 + 𝛼)

Γ(𝛼 + 1)𝑛!
𝑠−𝛼−1−𝑛
1

(7.11)

≃
𝑠−𝛼−1
1

Γ(𝛼 + 1)
𝑛𝛼𝑠−𝑛

1
, 𝑛 ≫ 1 (7.12)

where we used Stirling’s approximation for both 𝑛! and the Γ function in the
last relation.

This has been generalised by Flajolet and Odlyzko [12] to the

Second Principle of Coefficient Asymptotics. The nature of the sin-
gularity closest to the origin of the generating function 𝐴(𝑠) determines the
sub-exponential behaviour of the sequence𝑎𝑛. More precisely, setting 𝑠1 = 1, if

𝐴(𝑠) = 𝐹 (
1

1 − 𝑠
) with 𝐹(𝑢) ∼ 𝑢𝛼(log 𝑢)𝛾(log log 𝑢)𝛿 as 𝑢 → ∞

then5

𝑎𝑛 ∼
1

Γ(𝛼)

𝐹(𝑛)

𝑛

as 𝑛 → ∞.

7.3 Counting with functions*
Much of classical probability is about counting. There are smart ways to count
objects using algebra, and it’s worthwhile doing a digression.

5The symbol ∼means that the limit of the ratio of the right hand side and the left hand
side of the relation equals one when 𝑛 → ∞.
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Imagine you are interested in a class 𝒜 of objects of a certain kind. Each
object 𝐴 has an integer size |𝐴| = 𝑛 that counts its components. For example,
𝐴may be a graph of 𝑛 nodes, and𝒜 the set of all graphs satisfying some rules.

The typical questions that we address is: how many objects are there in 𝒜
of size 𝑛? For example, how many words of 7 letters from a given alphabet
can you form? How many trees of 𝑛 nodes are there?

One way to do this, given the set 𝒜 of all possible objects 𝐴 ∈ 𝒜, is to
construct the function

𝐴(𝑧) =
∑

𝐴∈𝒜

𝑧|𝐴| =
∑

𝑛

𝑎𝑛𝑧
𝑛. (7.13)

As before, 𝑧 is a real or complex variable that does not have any meaning, per
se. It serves just as a counting device. It is not necessary that Eq. (7.13) be a
well defined function in general. Yet, in all cases we shall discuss 𝐴(𝑧) is a
convergent series in a neighbourhood of the origin 𝑧 = 0, i.e. the radius of
convergence is finite.6

As the second equality in Eq. (7.13) shows, the number 𝑎𝑛 of objects of size
𝑛 is given by the coefficient of the 𝑛th term in the power expansion of 𝐴(𝑧).
This is very useful in case 𝐴(𝑧) can be computed analytically. This subject is
dealt with in great detail in Flajolet’s book [13], to which we refer as Flajolet
in what follows. The purpose of this discussion is to introduce you to the
subject and to show the power of generating functions as counting devices.

7.3.1 Operations on sets

The objects we want to count may satisfy some properties that can be ex-
pressed in terms of basic operations. These operations correspond to algebraic
operations on generating functions. Let us see some of them (see Flajolet
for more):

Union. The objects we’re interested in are of two possible types, i.e. they
belong to a class 𝒞 = 𝒜 ∪ ℬ of objects that can be split in two disjoint
(𝒜 ∩ ℬ = ∅) classes. Then

𝐶(𝑧) ≡
∑

𝐶∈𝒞

𝑧|𝐶| =
∑

𝑛

𝑐𝑛𝑧
𝑛

=
∑

𝐴∈𝒜

𝑧|𝐴| +
∑

𝐵∈ℬ

𝑧|𝐵| = 𝐴(𝑧) + 𝐵(𝑧),

i.e. 𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛

6Given what we have discussed in the previous section, this restricts our attention to series
for which |𝑎𝑛| diverges at most exponentially.



7.3. COUNTINGWITH FUNCTIONS* 85

Product. Each object𝐶 = (𝐴, 𝐵) can be decomposed in sub-objects of smaller
sizes, |𝐴| + |𝐵| = |𝐶|. Correspondingly the class of objects 𝒞 = 𝒜⊗ℬ

can be written as the direct product of the classes of the sub-objects.
This implies, for generating functions

𝐶(𝑧) =
∑

𝐴∈𝒜,𝐵∈ℬ

𝑧|𝐴|+|𝐵| = 𝐴(𝑧)𝐵(𝑧).

Therefore 𝑐𝑛 is given by

𝑐𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + … + 𝑎𝑛𝑏0.

which is called the convolution of the sequences 𝑎𝑛 and 𝑏𝑛.

Sequence. The class of objects 𝒞 we’re interested in are the repetition of
more elementary objects in a class 𝒜. We write 𝒞 = Seq(𝒜) to denote
the fact that the generic element 𝐶 = (𝐴1, 𝐴2, … , 𝐴𝑘) is a sequence of
elements 𝐴𝑗 ∈ 𝒜. Clearly7 𝒞 = ∅ +𝒜+𝒜⊗𝒜+𝒜⊗𝒜⊗𝒜+… that,
using the two relations above, imply

𝐶(𝑧) = 1 + 𝐴(𝑧) + 𝐴2(𝑧) + … =
1

1 − 𝐴(𝑧)
(7.14)

Note that we admit as a possible object in 𝒞 the sequence with zero
elements of 𝒜.

Powerset. Imagine we want to consider all possible subsets of objects 𝐴 of a
given set 𝒜. The set of all these objects — called the power-set— can
formally be written as

𝒞 ≡ PSet(𝒜) =
⨂

𝐴∈𝒜

[∅ ∪ {𝐴}]

Indeed expanding the product, each term corresponds to a “monomial”
with some of the objects 𝐴 ∈ 𝒜 occuring only once. The corresponding

7The first element of the sequence is the empty set, i.e. a set containing no element. We
interpret the empty set as the set with one element of size zero. Hence the generating function
of the empty set is 1. With this definition𝒜 = ∅⊗𝒜 because all objects in the l.h.s. correspond
to one object on the r.h.s. where we add one element of size zero.
Flajolet avoids reference to the empty set, defining a neutral set which is composed of one
neutral element of size zero.
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generating function is given by

𝐶(𝑧) =
∏

𝐴∈𝒜

(1 + 𝑧|𝐴|) =
∏

𝑛

(1 + 𝑧𝑛)𝑎𝑛

= exp [
∑

𝑛

𝑎𝑛 log(1 + 𝑧𝑛)]

= exp [

∞∑

𝑘=1

(−1)𝑘+1

𝑘

∑

𝑛

𝑎𝑛𝑧
𝑘𝑛] = exp [

∞∑

𝑘=1

(−1)𝑘+1

𝑘
𝐴(𝑧𝑘)]

Multiset. The multi set 𝒞 = MSet(𝒜) is the set of all collections of objects
taken from 𝒜 with repetition. One can write

MSet(𝒜) =
⨂

𝐴∈𝒜

Seq({𝐴})

from which8

𝐶(𝑧) =
∏

𝐴∈𝒜

(1 − 𝑧|𝐴|)−1 =
∏

𝑛

(1 − 𝑧𝑛)−𝑎𝑛

= exp [−
∑

𝑛

𝑎𝑛 log(1 − 𝑧𝑛)]

= exp [

∞∑

𝑘=1

1

𝑘

∑

𝑛

𝑎𝑛𝑧
𝑘𝑛] = exp [

∞∑

𝑘=1

𝐴(𝑧𝑘)

𝑘
]

Let us illustrate with some examples how these concepts can be useful to
count:

• The set of all binary words is 𝒞 = Seq({0, 1}). The generating function
of 𝒜 = {0, 1} is 𝐴(𝑧) = 2𝑧, because there are two objects of size 1 in 𝒜.
Then 𝐶(𝑧) = 1∕(1 − 2𝑧) =

∑

𝑛
2𝑛𝑧𝑛. Indeed there are exactly 2𝑛 binary

words of size 𝑛.

• Consider the set 𝒯 of all rooted plane trees. A rooted plane tree of size
𝑛 is a connected graph of 𝑛 points ∙ and 𝑛 − 1 links joining them. One
of the vertices is the root, from which the tree starts. Plane means that

8The difference between sequence, power-set and multi-set is the same as the difference
between Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Indeed each element of a
sequence Seq({𝐴}) is a collection of elements in 𝒜 in any order, whereas in the power-set
PSet(𝒜) each element of𝒜 can occur only once, and in the multi-setMSet(𝒜) only the number
of times different elements of 𝒜 occur matter, as for indistinguishable particles.
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T T1 T2 T3

=

+

+ +

Figure 11. Rooted plane trees.

ordering is specified for the sub-trees of each vertex. You can describe
a tree as being a node linked to a number of (sub)trees, in the sense
that if you remove a node, you’re left with a collection of smaller trees.
Therefore

𝒯 = {∙} ⊗ Seq(𝒯)

This means that 𝑇(𝑧) = 𝑧∕[1 − 𝑇(𝑧)]. This can be cast in a quadratic
equation for 𝑇(𝑧) whose solution is

𝑇(𝑧) =
1 −

√
1 − 4𝑧

2
=
∑

𝑛

𝐶𝑛−1𝑧
𝑛, 𝐶𝑛 =

1

𝑛 + 1

(2𝑛

𝑛

)

where 𝐶𝑛 are the Catalan’s numbers. Therefore the number of trees of
size 𝑛 is given by the 𝑛 − 1st Catalan number.

Exercise 7.2

How does 𝑇𝑛 grows with 𝑛 for 𝑛 → ∞? In particular, if 𝑇𝑛 ∼
𝑛𝛽𝑒𝛼𝑛, what are 𝛼 and 𝛽?

• Consider a convex polygonwith𝑛+2 edges. By drawing non intersecting
diagonals this can be reduced to the union of triangles, which is called
a triangulation of the polygon. How many triangulations does a 𝑛 + 2

sides polygon admit?

Let us consider the set 𝒯 of all triangulations of all polygons. For any
given polygon with 𝑛 + 2 edges, removing one of the sides and joining
the endpoints with another point reduces the polygon into the union of
two smaller polygons, say of size𝑚+2 and 𝑛−𝑚+1 edges (note indeed
that overall one edge has been added). Each of the sub-polygons admits
a certain number of triangulations. So the number of triangulations of
the original polygon can be related to the number of triangulations of
the sub-polygons, with the addition of a further triangle. This implies
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n+ 2
m+ 2

n�m+ 1

1

…

Figure 12. Triangulation of polygons.

that 𝒯 = ∅ ∪ 𝒯 ⊗ {△} ⊗ 𝒯, which considers the possibility that the
polygon with 𝑛 = 0 has no triangles. Therefore

𝑇(𝑧) = 1 + 𝑧𝑇2(𝑧) =
∑

𝑛

𝐶𝑛𝑧
𝑛

where the second equality result from solving the second order equation
and expanding the result in series. Again the result involves Catalan
numbers!

Exercise 7.3

Consider the setℬ11 of binary sequences that terminatewhenever
a pair of ones occurs for the first time. Show that for this set

ℬ11 = {11} ∪ {0} ⊗ ℬ11 ∪ {10} ⊗ ℬ11 .

Find the equation for the generating function and show that the
number of sequences of length 𝑛 is given by 𝑏(11)𝑛 = 𝑓𝑛−2 for
𝑛 ≥ 2 where 𝑓𝑛 are the Fibonacci numbers (𝑏

(11)

0
= 𝑏

(11)

1
= 0).

Next consider the set ℬ00 of sequences that terminate when-
ever a pair of zeroes occurs for the first time. What is the number
𝑏
(00)
𝑛 of such sequences of length 𝑛? Now consider the set ℬ= of
sequences that terminate whenever a pair of equal digits occurs
for the first time. Is ℬ= = ℬ00 ∪ ℬ11? What is the number of
such sequences of length 𝑛?

Next consider the set ℬ10 of binary sequences that terminate
whenever the subsequence 10 occurs for the first time. Derive an
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equation for the setℬ10 and, from this, the associated generating
function. Is the number of sequence of length 𝑛 in ℬ10 equal to
that in ℬ11? Does an equation like the one above for ℬ11 holds
for ℬ10? Finally, what is the number 𝑏

≠
𝑛 of sequences of length 𝑛

that terminate whenever two consecutive digits are different? Is
𝑏
≠
𝑛 = 𝑏

(01)
𝑛 + 𝑏

(10)
𝑛 ?

• Integer partitions and compositions. A positive integer can be decom-
posed in the sum of other positive integers

𝑛 = 𝑥1 + 𝑥2 + … , 𝑥𝑘, 𝑥𝓁 ≥ 1

in a number of ways. Integer partitions correspond to the case when the
summands are non-decreasing (𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑘) whereas composi-
tions to the general case where 𝑥𝓁 can appear in any order. How many
partitions 𝑝𝑛 (compositions 𝑐𝑛) does an integer 𝑛 admits? First, the set
of integer can be constructed from a single element {∙} as ℐ = Seq({∙})∖∅.
Since the generating function of the set {∙} is just 𝑧, we have

𝐼(𝑧) =
𝑧

1 − 𝑧
.

This is consistent with the fact that there is one integer of size 𝑛, 𝑖𝑛 = 1.

Compositions are given by

𝒞 = Seq(ℐ)∖∅ = {(∙), (∙∙), (∙, ∙), (∙ ∙ ∙), (∙, ∙∙), (∙∙, ∙), (∙, ∙, ∙), …}

Correspondingly their generating function is

𝐶(𝑧) =
𝐼(𝑧)

1 − 𝐼(𝑧)
=

𝑧

1 − 2𝑧
=

∞∑

𝑛=1

2𝑛−1𝑧𝑛

Therefore the number of compositions of the integer 𝑛 is equal to 2𝑛−1.
A simple way to recover this result is by noting that, representing the
integer as a string of 𝑛 symbols ∙ ∙ ∙ ∙ … ∙, the number of partitions
correspond to the number of ways this string can be split inserting
commas in the 𝑛 − 1 spaces between the symbols. Since in each of the
𝑛 − 1 spaces a comma can be present or not, this makes 2𝑛−1 possible
ways to split 𝑛 as a sum of integers.
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Partitions are more complicated objects and they are given by the multi-
set 𝒫 = MSet(ℐ). Correspondingly

𝑃(𝑧) = 𝑒
𝐼(𝑧)+

1

2
𝐼(𝑧2)+

1

3
𝐼(𝑧3)+… (7.15)

=

∞∏

𝑚=1

1

1 − 𝑧𝑚
= (1 + 𝑧 + 𝑧2 + …)(1 + 𝑧2 + 𝑧4 + …)⋯ (7.16)

There if no explicit expression for the number of partitions of 𝑛, but
Hardy and Ramanujan [14] derived the celebrated asymptotic result

𝑝𝑛 ∼
1

4𝑛
√
3
exp (𝜋

√
2𝑛

3
) .

Note that if we are interested in partitions in distinct parts, i.e. when
𝑥1 < 𝑥2 < … < 𝑥𝑘, then the powerset has to be used instead of the multi
set 𝒫≠ = PSet(𝐼). Correspondingly

𝑃≠(𝑧) = 𝑒
𝐼(𝑧)−

1

2
𝐼(𝑧2)+

1

3
𝐼(𝑧3)+…

=

∞∏

𝑚=1

(1 + 𝑧𝑚) (7.17)

𝑝
≠
𝑛 ∼

33∕4

12𝑛3∕4
exp (𝜋

√
𝑛

3
) (7.18)

where the last asymptotic expression was also derived by Hardy and
Ramanujan.

7.4 Labeled objects
Generating functions are also useful if we want to count objects that are
labeled. Take for instance a connected graph of 𝑛 nodes where each node
has a different label, say the integers from 1 to 𝑛. How many such graphs
are there? The key point that we have to take into account is that, besides
counting different graphs as before, we also need to count the number of
different ways in which each graph can be labeled.

We’ll not enter into much details here, but just mention the main fact and
give a flavor of the method. Consider for example combining two objects, one
from a set 𝒜 the other from set ℬ and let 𝑎𝑛 and 𝑏𝑛 be the number of labeled
objects of size 𝑛 in the two sets.

In order to count labeled objects 𝐶 ∈ 𝒞 = 𝒜 ⊗ ℬ one needs to account
for the fact that each object 𝐶 of size 𝑛 will be composed of an object 𝐴 ∈ 𝒜
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of size 𝑘 ∈ [0, 𝑛] and an object 𝐵 ∈ ℬ of size 𝑛 − 𝑘. There are
(
𝑛

𝑘

)
ways to

label 𝐶, so

𝑐𝑛 =

𝑛∑

𝑘=0

(𝑛

𝑘

)
𝑎𝑘𝑏𝑛−𝑘

Then if we construct exponential generating functions

𝐴̃(𝑧) =
∑

𝑛

𝑎𝑛

𝑛!
𝑧𝑛, 𝐵̃(𝑧) =

∑

𝑛

𝑏𝑛

𝑛!
𝑧𝑛 (7.19)

the generating function of labeled objects 𝐶 ∈ 𝒞 will be given by the simple
multiplicative formula

𝐶̃(𝑧) = 𝐴̃(𝑧)𝐵̃(𝑧).

This indicates that for labeled objects one needs to use exponential generating
functions such as the ones defined in Eq. (7.19). These satisfy further relations
if one considers more complicated constructions.

The simplest example is that of permutations. In order to compute the
number of permutations of integers, think of a permutation as a sequence of
labeled symbols ∙𝑘 for 𝑘 = 1,… , 𝑛. The generating function of permutations
is again9

𝑃̃(𝑧) =
𝑧

1 − 𝑧
=
∑

𝑛

𝑝𝑛

𝑛!
𝑧𝑛

so that the number of permutations of 𝑛 is given by 𝑝𝑛 = 𝑛!.

7.5 Generating functions for integer random
variables

Let10 𝑝𝑛 = 𝑃{𝑋(𝜔) = 𝑛} be the probability distribution of an integer random
variable 𝑋(𝜔) ∈ ℕ. Consider the associated generating function

𝑃(𝑠) ≡

∞∑

𝑛=0

𝑝𝑛𝑠
𝑛 = 𝔼[𝑠𝑋]. (7.20)

The properties of this function close to 𝑠 = 1 give us a lot of information about
𝑋. First when we set 𝑠 = 1 in Eq. (7.20) we find 𝑃(1) = 1, by normalisation.

9We can construct 𝒫 from the relation 𝒫 = {∙1}
⋃
{∙𝓁}⊗𝒫, where ∙𝓁 is an object with a new

label. This corresponds to 𝑃̃(𝑧) = 𝑧 + 𝑧𝑃̃(𝑧). Note that the same generating function counts
integers when objects are unlabeled an permutations when they are labeled, i.e. 𝑃̃(𝑧) = 𝐼(𝑧).

10This material is discussed in Feller, Chapter XI.
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Second, if we take a derivative and compute it at 𝑠 = 1 we get

𝑃′(1) =

∞∑

𝑛=0

𝑝𝑛𝑛𝑠
𝑛−1

|||||||||𝑠=1

= 𝔼
[
𝑋𝑠𝑋−1

]||||𝑠=1
= 𝔼[𝑋]

Likewise, if we take 𝑘 derivatives we find11

𝑑𝑘𝑃(𝑠)

𝑑𝑠𝑘

||||||||𝑠=1

=

∞∑

𝑛=0

𝑝𝑛(𝑛)𝑘𝑠
𝑛−𝑘

|||||||||𝑠=1

= 𝔼[(𝑋)𝑘].

So, for example, the variance of 𝑋 is given by

𝕍[𝑋] = 𝑃′′(1) + 𝑃′(1)[1 − 𝑃′(1)]. (7.21)

The cumulative distribution 𝑞𝑛 = 𝑃{𝑋 > 𝑛} of an integer random variable
is also a sequence for which we can define a generating function 𝑄(𝑠). This
is related to 𝑃(𝑠) because the probability that 𝑋 ≥ 𝑛 equals the probability
that 𝑋 = 𝑛 plus the probability that 𝑋 > 𝑛, i.e., 𝑞𝑛−1 = 𝑝𝑛 + 𝑞𝑛 for 𝑛 > 0.
Multiplying this by 𝑠𝑛 and summing over 𝑛 > 0we obtain 𝑠𝑄(𝑠) = 𝑃(𝑠)−𝑝0+

𝑄(𝑠) − 𝑞0. Finally, observing that 𝑝0 + 𝑞0 = 1 and rearranging terms, we find

𝑄(𝑠) =
1 − 𝑃(𝑠)

1 − 𝑠
. (7.22)

Using de l’Hopital rule, we find 𝑄(1) = lim𝑠→1 𝑄(𝑠) = 𝑃′(1) = 𝔼[𝑋].

7.5.1 Sums of variables and convolutions

Let 𝑋 and 𝑌 be two independent integer random variables with distributions
𝑝𝑛 = 𝑃{𝑋 = 𝑛} and 𝑟𝑛 = 𝑃{𝑌 = 𝑛}. Then the probability 𝑠𝑛 = 𝑃{𝑋 + 𝑌 = 𝑛}

is given by
𝑠𝑛 = 𝑝0𝑟𝑛 + 𝑝1𝑟𝑛−1 + … + 𝑝𝑛𝑟0.

This operation is called a convolution, i.e. 𝑠𝑛 is a convolution of the sequences
𝑝𝑛 and 𝑟𝑛. Then the generating function of the sum 𝑋 + 𝑌 is given by the
product of the generating functions of 𝑋 and 𝑌12

𝑆(𝑠) =

∞∑

𝑛=1

𝑠𝑛𝑠
𝑛 = 𝔼

[
𝑠𝑋+𝑌

]
= 𝔼

[
𝑠𝑋
]
𝔼
[
𝑠𝑌
]
= 𝑃(𝑠)𝑅(𝑠). (7.23)

11Remember that
(𝑛)𝑘 = 𝑛(𝑛 − 1)(𝑛 − 2)⋯ (𝑛 − 𝑘 + 1).

12Here the symbol 𝑠 is slightly abused. 𝑠𝑛 is the sequence, 𝑆(𝑠) is the generating function
and 𝑠 is the variable it depends on. 𝑅(𝑠) is the generating function of 𝑌.



7.5. GENERATING FUNCTIONS FOR INTEGER RANDOM VARIABLES 93

because, for independent variables the expected value factorizes. This is so
important that it makes sense to make all passages explicitly.

If 𝑃{𝑋 = 𝑛, 𝑌 = 𝑚} = 𝑃{𝑋 = 𝑛}𝑃{𝑌 = 𝑚} = 𝑝𝑛𝑟𝑚 then

𝔼
[
𝑠𝑋+𝑌

]
=
∑

𝑛,𝑚

𝑠𝑛+𝑚𝑝𝑛𝑟𝑚 = [
∑

𝑛

𝑠𝑛𝑝𝑛] [
∑

𝑚

𝑠𝑚𝑟𝑚] = 𝔼
[
𝑠𝑋
]
𝔼
[
𝑠𝑌
]
.

The same applies to the sum of many independent random variables. A
particular case is that of independent and identically distributed (i.i.d.)13
random variables 𝑋1, … , 𝑋𝑛. Then the sum

Σ𝑛 =

𝑛∑

𝑖=1

𝑋𝑖

has the generating function

𝑃Σ𝑛(𝑠) = 𝔼
[
𝑠𝑋1+…+𝑋𝑛

]
= 𝔼

[
𝑠𝑋
]𝑛
= 𝑃𝑋(𝑠)

𝑛 (7.24)

by exactly the same argument. Taking derivatives, you can easily find that the
mean and the variance of the sum are related to that of the variable 𝑋 by

𝔼[Σ𝑛] = 𝑛𝔼[𝑋], 𝕍[Σ𝑛] = 𝑛𝕍[𝑋]. (7.25)

For example, let us consider binary random variables 𝑋𝑖 = 0, 1 with
𝑃{𝑋𝑖 = 1} = 𝑝 and 𝑃{𝑋𝑖 = 0} = 1 − 𝑝. The generating function of 𝑋𝑖 is
𝑃(𝑠) = 1 − 𝑝 + 𝑝𝑠. The variable Σ𝑛 obtained by summing 𝑛 i.i.d. binary
random variables, by Eq. (7.24), has generating function given by

𝐵𝑛,𝑝(𝑠) = (1 − 𝑝 + 𝑝𝑠)𝑛 =

𝑛∑

𝑘=0

(𝑛

𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑠𝑘

which is indeed the generating function of the binomial distribution. From
this it is very easy to compute the mean and the variance by taking derivatives,
as well as to obtain the generating function of the Poisson distribution

𝑃𝜆(𝑠) = 𝑒−(1−𝑠)𝜆 =

∞∑

𝑘=0

𝜆𝑘

𝑘!
𝑒−𝜆𝑠𝑘 (7.26)

by taking the limit 𝑛 → ∞ with 𝑝 = 𝜆∕𝑛.

13The abbreviation i.i.d. will be used frequently, so please memorise it.
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Exercise 7.4

Derive Eqs. (7.25) and (7.26). Compute the mean and variance of
the Binomial and Poisson distribution by taking derivatives of the
generating function.

Exercise 7.5

Consider a coin tossing experiment that terminates when two consecu-
tive heads occur for the first time. Compute the expected length𝔼 [𝑋𝙷𝙷]
of sequences so generated and its variance. Next, let 𝑋𝙷𝚃 be the length
of the sequence of coin tosses that terminate when a head is followed
by a tail for the first time. Is the distribution of 𝑋𝙷𝚃 the same as the
distribution of𝑋𝙷𝙷? If not, compute the expected length𝔼 [𝑋𝙷𝚃] and the
variance 𝕍 [𝑋𝙷𝚃]. What is the probability that 𝑋𝙷𝙷 < 𝑋𝙷𝚃? Comment
the result.

The argument also runs in the reverse direction. If the generating function
of a random variable𝑋 can bewritten as the 𝑛th power of a generating function
𝑄,14 i.e. 𝑃(𝑠) = 𝑄(𝑠)𝑛, then 𝑋 = 𝑍1 + … + 𝑍𝑛 can be written as the sum of 𝑛
i.i.d. random variables 𝑍𝑖 with distribution 𝑃{𝑍𝑖 = 𝑘} = 𝑞𝑘. For example, if 𝑋
has a Poisson distribution with mean 𝜆, Eq. (7.26) implies that, for any 𝑛 > 0,
𝑋 = 𝑍1, … , 𝑍𝑛 can be considered as the sum of 𝑛 i.i.d. random variables 𝑍𝑖
with generating function

𝑄(𝑠) = 𝑃(𝑠)1∕𝑛 = 𝑒−(1−𝑠)𝜆∕𝑛,

which implies that the variables 𝑍𝑖 are themselves Poisson random variables
with mean 𝜆∕𝑛. The variables 𝑍𝑖 can, in their turn, be “divided” as 𝑍𝑖 =
𝑌𝑖,1 + … + 𝑌𝑖,𝑚 into a sum of 𝑚 other i.i.d. random variables 𝑌𝑖,𝑗, each of
which has a Poisson distribution with mean 𝜆∕(𝑛𝑚), and so on. . .Because of
this property, the Poisson distribution is called infinitely divisible.15

Another interesting example is the negative binomial distributionEq. (5.15)

14This requires that 𝑄(𝑠) has a power expansion in 𝑠 with all non-negative coefficients 𝑞𝑘 .
15There are other examples of infinitely divisible distributions (see later and Feller XII.2).

One can gain intuition on infinite divisibility of the Poisson distribution recalling that it
describes the number 𝑋𝑇 of events that occur in a time interval [0, 𝑇) of a Poisson process. The
interval [0, 𝑇) can be divided in an arbitrary number 𝑛 of non-overlapping intervals [𝑡𝑖 , 𝑡𝑖+1) of
size 𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖 , with 𝑡1 = 0, and 𝑡𝑛+1 = 𝑇. Clearly 𝑋𝑇 = 𝑋𝑇1

+ 𝑋𝑇2
+ … + 𝑋𝑇𝑛

and each of
the variables 𝑋𝑇𝑖

has a Poisson distribution with parameter 𝑇𝑖𝔼 [𝑋𝑇] ∕𝑇.
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which has the generating function

𝑁𝑟(𝑠) =

∞∑

𝑛=0

(−𝑟

𝑛

)
𝑝𝑟(𝑝 − 1)𝑛𝑠𝑛 = (

𝑝

1 − (1 − 𝑝)𝑠
)

𝑟

. (7.27)

This is evidently the generating function of a random variable that is the sum
of 𝑟 random variables with a geometric distribution (Eq. (5.15) with 𝑟 = 1).
Indeed, Eq. (5.15) describes the number of failures one has to wait before
the 𝑟th success in Bernoulli trials. This is clearly the failures that one has to
wait before the first success plus the failures between the first and the second
success, and so on. The number of failures between each pair of consecutive
successes is a random variable with a geometric distribution, so 𝑁𝑟(𝑠) is the
generating function of the sum of 𝑟 such random variables.

Notice also that, if we generalise to 𝑟 ∈ ℝ+, then also the negative binomial
distribution is infinitely divisible, i.e. a negative binomial random variable
can be written as the sum of 𝑛 i.i.d. random variables with parameter 𝑟∕𝑛, for
any 𝑛.

Another interesting limit of the negative binomial is obtained for 𝑟 → ∞

with 𝑝 = 1 − 𝜆∕𝑟, i.e. when successes become more and more likely as 𝑟
increases. Then we recover the Poisson distribution

lim
𝑟→∞∶𝑝=1−

𝜆

𝑟

𝑁𝑟(𝑠) = 𝑒−(1−𝑠)𝜆.

Can you figure out why this result should be expected?16

7.5.2 Sums of a random number of random variables

A further very practical use of generating functions is in problems that involve
a sum of a random number of integer random variables, as the one discussed
at the end of the introductory Section:

Mr X checks emails every minute with probability 𝑝. He receives
on average 𝜆 emails per minute. What is the probability that Mr
X finds no email the next time he checks?

If 𝑋𝑖 is the number of emails received in the 𝑖th minute, we’re interested in
the sum

Σ𝑇 = 𝑋1 + … + 𝑋𝑇 (7.28)

16Hint: invert successes with failures.
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where 𝑇 is the number of minutes elapsed before Mr X looks at his emails. 𝑇
is a random variable with a geometric distribution

𝑔𝑡 = 𝑃{𝑇 = 𝑡} = 𝑝(1 − 𝑝)𝑡−1. (7.29)

Here the factor (1 − 𝑝)𝑡−1 is the probability that Mr X does not check emails
for the first 𝑡 − 1minutes, whereas 𝑝 is the probability that he checks email
at time 𝑡. Let

𝐺(𝑠) =

∞∑

𝑡=1

𝑔𝑡𝑠
𝑡 = 𝔼

[
𝑠𝑇
]

be the generating function of 𝑇, and 𝐹(𝑠) = 𝔼
[
𝑠𝑋
]
be the generating function

of the variables 𝑋. Then the generating function of the variable Σ𝑇 is given by

𝐻(𝑠) = 𝔼
[
𝑠Σ𝑇

]
=

∞∑

𝑡=1

𝑔𝑡𝔼
[
𝑠𝑋1+…+𝑋𝑡

]
(7.30)

=

∞∑

𝑡=1

𝑔𝑡𝔼
[
𝑠𝑋
]𝑡
=

∞∑

𝑡=1

𝑔𝑡[𝐹(𝑠)]
𝑡 (7.31)

= 𝐺 (𝐹(𝑠)) . (7.32)

In the particular case of Mr X, 𝐹(𝑠) = 𝑒−𝜆(1−𝑠) is the generating function of
a Poisson random variable and 𝐺(𝑠) = 𝑝𝑠

1−(1−𝑝)𝑠
. Therefore the generating

function of Σ𝑇 is given by

𝐻(𝑠) =
𝑝𝑒−𝜆(1−𝑠)

1 − (1 − 𝑝)𝑒−𝜆(1−𝑠)
.

The probability that Mr X will find no emails is 𝐻(0) = 𝑝

𝑒𝜆−1+𝑝
, as stated in

Eq. (1).

Exercise 7.6

Why is the probability that Σ𝑇 = 0 related to𝐻(𝑠) for 𝑠 = 0?

The mean and the variance of Σ𝑇 are obtained by taking derivatives of
𝐻(𝑠). Using Eq. (7.32) this can be related to the mean and the variance of 𝑋
and 𝑇 as

𝔼[Σ𝑇] = 𝔼[𝑇]𝔼[𝑋], 𝕍[Σ𝑇] = 𝔼[𝑇]𝕍[𝑋] + 𝑉[𝑇]𝔼[𝑋]2. (7.33)

The equation for the mean is the natural generalisation of the case where the
number of random variables in the sum is fixed (Eq. (7.25)). Yet the variance
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acquires an additional term (the second), due to the fluctuations of 𝑇. Indeed
this expression reduces to Eq. (7.25) when 𝑇 = 𝑛 is fixed.

Exercise 7.7

Derive Eq. (7.33)

Exercise 7.8

In a repeated Bernoulli trial scheme, where success occurs with proba-
bility 𝑝 and failure with probability 1 − 𝑝, let 𝑇 be the waiting time for
the first occurrence of two consecutive successes. Using the same idea
of the exercise on binary sequences ℬ11, i) derive a recursion relation
for 𝑝𝑛 = 𝑃{𝑇 = 𝑛}, ii) compute the generating function and iii) confirm
the asymptotic behaviour 𝑝𝑛 ∼ 𝑛−𝛽𝑒−𝛼𝑛 and compute 𝛼 and 𝛽.

When 𝑇 is a Poisson random variable given by Eq. (7.28) where 𝑋𝑖 are i.i.d.
RV with generating function 𝐹(𝑠), the variable Σ𝑇 has a compound Poisson
distribution. This case is of particular interest, because then the random
variable Σ𝑇 has an infinitely divisible distribution. Indeed its generating
function is given by

𝐻𝜆(𝑠) = 𝑒−𝜆[1−𝐹(𝑠)]. (7.34)

and𝐻𝜆∕𝑛(𝑠) clearly is also a generating function of a probability distribution
for any 𝑛. The converse is also true, as shown in Feller XII.2: every infinitely
divisible distribution of integer random numbers is a compound Poisson
process, i.e. its generating function has the form of Eq. (7.34). Feller XII.2
provides a practical criterium for a generating function𝐻(𝑠) to be infinitely
divisible. This requires that i)𝐻(1) = 1 and

log
𝐻(𝑠)

𝐻(0)
=

∞∑

𝑘=1

𝑎𝑘𝑠
𝑘

with ii) 𝑎𝑘 ≥ 0 for all 𝑘 > 0 and iii) 𝜆 =
∑∞

𝑘=1
𝑎𝑘 < +∞. In this case,

𝑎𝑘∕𝜆 = 𝑃{𝑋 = 𝑘} is the probability distribution of an integer random variables
𝑋, such that 𝐻(𝑠) is the generating function of the variable Σ𝑇, where 𝑇 is a
Poisson random variable with mean 𝜆.

Exercise 7.9

Show that the negative binomial distribution is a compound Poisson
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process, because it satisfies Eq. (7.34) with 𝜆 = −𝑟 log 𝑝 and

𝑓𝑛 = 𝑃{𝑋𝑖 = 𝑛} =
1

log 𝑝−1

(1 − 𝑝)𝑛

𝑛
,

for 𝑛 > 0 and 𝑓0 = 0. This is known as the logarithmic distribution.

The dependence on 𝜆 of infinitely divisible generating functions can be
derived by observing that the equation 𝐻𝜆+𝜆′(𝑠) = 𝐻𝜆(𝑠)𝐻𝜆′(𝑠) implies that
𝐻0(𝑠) = 𝐻0(𝑠)

2 = 1. Furthermore, with 𝜆′ = 𝑑𝜆 one finds, to leading order in
𝑑𝜆,

𝐻𝜆+𝑑𝜆(𝑠) = 𝐻𝜆(𝑠) [1 +
𝜕𝐻𝜆(𝑠)

𝜕𝜆

|||||||𝜆=0
𝑑𝜆] .

Upon integration in 𝜆, this leads to Eq. (7.34) with 𝐹(𝑠) = 1 −
𝜕𝐻𝜆(𝑠)

𝜕𝜆

||||||𝜆=0
.

Some further intuition on the nature of infinitely divisible distributions
can be gained by the following construction: consider a random variable
𝑋𝜆 that depends on a continuous parameter 𝜆 such that 𝑋0 = 0 and, for an
infinitesimal 𝑑𝜆,

𝑋𝜆+𝑑𝜆 = {
𝑋𝜆 with probability 1 − 𝑑𝜆

𝑋𝜆 + 𝑍 with probability 𝑑𝜆 (7.35)

where 𝑍 ∈ ℕ is an integer random variable with 𝔼
[
𝑠𝑍
]
= 𝐹(𝑠) which is

independent of 𝑋𝜆. Then

𝐻𝜆+𝑑𝜆(𝑠) = 𝔼
[
𝑠𝑋𝜆+𝑑𝜆

]
= (1 − 𝑑𝜆)𝔼

[
𝑠𝑋𝜆

]
+ 𝑑𝜆𝔼

[
𝑠𝑋𝜆+𝑍

]
(7.36)

= 𝐻𝜆(𝑠) − 𝐻𝜆(𝑠)[1 − 𝐹(𝑠)]𝑑𝜆 (7.37)

where we used the fact that 𝑍 and 𝑋𝜆 are independent random variables.
Eq. (7.34) is obtained by integrating this equation in 𝑑𝜆 from 0 to 𝜆 with
initial condition 𝐻0(𝑠) = 1 (i.e. 𝑋0 = 0). In words, every infinitely divisible
random variable 𝑋𝜆 is an increasing random function of 𝜆, which increases in
random steps, each of which is drawn independently from a distribution with
generating function 𝐹(𝑠).
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7.5.3 Cumulant generating function

There is a simpler way than Eq. (7.21) to compute 𝕍 [𝑋] from a generating
function 𝑃(𝑠). Set 𝑠 = 𝑒𝑧 and take the logarithm of the generating function17

𝜓(𝑧) ≡ logΨ(𝑧) , Ψ(𝑧) ≡ 𝑃(𝑠 = 𝑒𝑧) = 𝔼
[
𝑒𝑧𝑋

]
. (7.38)

Notice that the function18 Ψ admits the power expansion

Ψ(𝑧) =

∞∑

𝑚=0

𝔼 [𝑋𝑚]

𝑚!
𝑧𝑚

which means that the 𝑛th derivative of Ψ equals 𝔼 [𝑋𝑚]. By normalisation
Ψ(0) = 1 so 𝜓(0) = 0. The mean and the variance of 𝑋 can be obtained from
the first two derivatives of 𝜓:

𝑑𝜓(𝑧)

𝑑𝑧

|||||||𝑧=0
=

1

Ψ(0)
𝔼 [𝑋] = 𝔼 [𝑋] (7.39)

𝑑2𝜓(𝑧)

𝑑𝑧2

||||||||𝑧=0

=
1

Ψ(𝑧)

𝑑2Ψ(𝑧)

𝑑𝑧2

||||||||𝑧=0

− (
1

Ψ(𝑧)

𝑑Ψ(𝑧)

𝑑𝑧
)

2|||||||||𝑧=0

(7.40)

= 𝔼
[
𝑋2
]
− 𝔼 [𝑋]

2
= 𝕍 [𝑋] . (7.41)

The function 𝜓(𝑧) is called the cumulant generating function, because the
coefficients𝐶𝑚 of the expansion of𝜓(𝑧) in powers of 𝑧 are called the cumulants

𝜓(𝑧) = log𝔼
[
𝑒𝑧𝑋

]
=

∞∑

𝑚=0

𝐶𝑚

𝑚!
𝑧𝑚. (7.42)

Clearly 𝐶1 = 𝔼 [𝑋] and 𝐶2 = 𝕍 [𝑋]. Higher order cumulants can be related
to moments by comparing the coefficient of 𝑧𝑛 in the expansion of Ψ(𝑧) with
the coefficient of 𝑧𝑛 in the expansion of

𝑒𝜓(𝑧) =

∞∑

𝓁=0

𝜓(𝑧)𝓁

𝓁!
.

Using Eq. (7.42) in each of the 𝓁 factors 𝜓(𝑧) that appear in this equation, one
obtains

𝔼 [𝑋𝑛] =

∞∑

𝓁=0

∞∑

𝑘1=0

…

∞∑

𝑘𝓁=0

1

𝓁!

𝑛!
∏

𝑚
𝑘𝑚!

𝓁∏

𝑚=1

𝐶𝑘𝑚𝛿𝑛,
∑

𝑚
𝑘𝑚
. (7.43)

17Note that convergence of the series that defines 𝑃(𝑠) for 𝑠 ∈ [0, 1] implies that 𝜓(𝑧) is well
defined for 𝑧 ≤ 0.

18Which is why Ψ is called themoment generating function.
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Figure 13. The relation between moments and cumulants.

Curiously, there is a diagrammatic method to derive the moment of order 𝑛
in terms of the cumulants of order 𝑘 ≤ 𝑛, in terms of distribution of balls
in unordered boxes: represent the cumulant of order 𝑘 as 𝑘 balls in a box.
Then the 𝑛th moment is equal to the sum of all ways to group 𝑛 balls in
unordered (because of the factor 1∕𝓁!) boxes containing 𝑘1, … 𝑘𝓁 balls (with
𝑘1 + … + 𝑘𝓁 = 𝑛 because of the Kroeneker delta). For the first moment there
is only one ball to group, so 𝔼 [𝑋] = 𝐶1, for the second moment, there are two
balls and twoways to group them, either in a box of two or as two isolated balls.
Correspondingly 𝔼

[
𝑋2
]
= 𝐶2 + 𝐶2

1
. For 𝑛 = 3, 𝔼

[
𝑋3
]
= 𝐶3 + 3𝐶2𝐶1 + 𝐶3

1
,

where the factor 3 comes from the fact that there are three ways to choose the
isolated point. Hence 𝐶3 = 𝔼

[
𝑋3
]
− 3𝕍 [𝑋] 𝔼 [𝑋] − 𝔼 [𝑋]

3. Derive the fourth
order cumulant, as an exercise.

Exercise 7.10

Show that all cumulants of a Poisson distribution with mean 𝜆 are
equal to 𝜆.

The cumulant generating function (CGF) is also very practical when deal-
ing with sums of random variables. Indeed if 𝑋1 and 𝑋2 are two independent
random variables with CGF 𝜓1(𝑧) and 𝜓2(𝑧), respectively, then the CGF of
𝑋1 + 𝑋2 is the sum of the CGFs:

𝜓1+2(𝑧) = log𝔼
[
𝑒𝑧(𝑋1+𝑋2)

]
= log𝔼

[
𝑒𝑧𝑋1

]
+ log 𝔼

[
𝑒𝑧𝑋2

]
= 𝜓1(𝑧) + 𝜓2(𝑧).

This extends to sums of 𝑛 i.i.d. random variables Σ𝑛 = 𝑋1 + … ,𝑋𝑛 with
CGF 𝜓(𝑧). The CGF of the sum is 𝜓Σ𝑛(𝑧) = 𝑛𝜓(𝑧). From this, computing
derivatives at 𝑧 = 0, it is straightforward to see that 𝔼 [Σ𝑛] = 𝑛𝔼 [𝑋𝑖] and
𝕍 [Σ𝑛] = 𝑛𝕍 [𝑋𝑖].
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This extends also to sums Σ𝑇 of a random number of random variables.
With the notation used earlier, let

𝐹(𝑠) = 𝑒𝜙(𝑧) , 𝐺(𝑠) = 𝑒𝛾(𝑧) , 𝐻(𝑠) = 𝑒𝜂(𝑧) , 𝑠 = 𝑒𝑧

Then
𝜂(𝑧) = log𝐻(𝑠) = log𝐺 (𝐹(𝑠)) = 𝛾(𝜙(𝑧)). (7.44)

For example, this makes the derivation of Eq. (7.33) much simpler.19
For an infinitely divisible distribution with generating function𝐻𝜆+𝜆′(𝑠) =

𝐻𝜆(𝑠)𝐻𝜆′(𝑠), the CGF 𝜂𝜆(𝑧) = log𝐻′

𝜆
(𝑒𝑧) satisfies the additive relation

𝜂𝜆+𝜆′(𝑧) = 𝜂𝜆(𝑧) + 𝜂𝜆′(𝑧) . (7.45)

19The trick of deriving cumulants from derivatives of the logarithm of a generating function
is of widespread use in statistical mechanics, as we shall see.





Chapter 8

More on balls and boxes*

To understand a complex system, you must first understand its
simplest possible instance (H. Simon, 1969)

In order to consolidate what we have learned so far, consider the following
problem: imagine to distribute 𝑟 balls in 𝑛 boxes. What1 is the probability
𝑝𝑚(𝑟, 𝑛) that exactly𝑚 cells are empty?

Let us first focus on the case𝑚 = 0. If 𝐴𝑖 is the event that box 𝑖 is empty,
then the event we’re interested in is the one where none of these events
occur, i.e.,

𝐴0 = ∩𝑛
𝑖=1
𝐴̄𝑖 =

𝑛⋃

𝑖=1

𝐴𝑖.

This same problem can be formulated in terms of waiting times. Imagine
balls are drawn in the boxes one at a time. Then we can ask how many balls
need to be added in order for the condition that no box is empty, is met for the
first time. The number of balls we have to “wait” for 𝐴0 to occur is a random
variable 𝑇, which is a waiting time. Clearly 𝑝0(𝑟, 𝑛) = 𝑃{𝑇 ≤ 𝑟} which means
that the distribution of 𝑇 is given by

𝑓
(𝑛)
𝑟 ≡ 𝑃{𝑇 = 𝑟} = 𝑝0(𝑟, 𝑛) − 𝑝0(𝑟 − 1, 𝑛) (8.1)

because of the relation between the events {𝑇 ≤ 𝑟 − 1} ⊂ {𝑇 ≤ 𝑟} and {𝑇 =

𝑟} = {𝑇 ≤ 𝑟}∕{𝑇 ≤ 𝑟 − 1}.
The probability that box 𝑖 is empty is 𝑃(𝐴𝑖) = (1−1∕𝑛)𝑟 and the probability

that boxes 𝑖1, … , 𝑖𝜈 are empty is 𝑃{𝐴𝑖1
∩ 𝐴𝑖2

∩ … ∩ 𝐴𝑖𝜈
} =

(
1 −

𝜈

𝑛

)𝑟
. Then, the

1These problems are discussed also in Feller IV.2, that you are suggested to read.
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generalised sub-additivity rule (Eq. (3.11)), with

𝑆𝜈 =
∑

𝑖1<𝑖2<…<𝑖𝜈

𝑃{𝐴𝑖1
∩ 𝐴𝑖2

∩ … ∩ 𝐴𝑖𝜈
} =

(𝑛

𝜈

) (
1 −

𝜈

𝑛

)𝑟

leads to

𝑝0(𝑟, 𝑛) ≡ 𝑃{𝐴0} =

𝑛∑

𝜈=0

(−1)𝜈
(𝑛

𝜈

) (
1 −

𝜈

𝑛

)𝑟
. (8.2)

In the rest of this chapter we’ll see how the answers to the following simple
questions can be extracted from this complicated formula:

1) Is Eq. (8.2) consistent with the expectation that 𝑝0(𝑟, 𝑛) = 0 for
all 𝑟 < 𝑛?
2) How many balls we expect we have to draw to fill all the boxes
with at least one ball?
3) Can we approximate the distribution of 𝑇 for large 𝑛?

A deep understanding of a problem is not only intellectually satisfying but it
also allows to solve practical problems, such as

4) How can we draw a value of 𝑇 from the distribution (8.1)?

One way to address the first question is to build the generating function

𝑃𝑛(𝑠) =

∞∑

𝑟=0

𝑝0(𝑟, 𝑛)𝑠
𝑟 =

𝑛∑

𝜈=0

(−1)𝜈
(𝑛

𝜈

) [
1 −

(
1 −

𝜈

𝑛

)
𝑠
]−1

.

A better expression can be derived using the identity 𝑞−1 = ∫
∞

0
𝑑𝑡𝑒−𝑞𝑡, so that

one can sum the binomial expansion and find

𝑃𝑛(𝑠) = ∫

∞

0

𝑑𝑡𝑒−(1−𝑠)𝑡
(
1 − 𝑒−𝑠𝑡∕𝑛

)𝑛
=
𝑛

𝑠
𝐵(𝑛(1 − 𝑠)∕𝑠, 𝑛 + 1)

where 𝐵(𝑎, 𝑏) is the Beta function2 and we made the change of variables
𝑢 = 𝑒−𝑠𝑡∕𝑛 in the last equation. Using the recursion 𝐵(𝑎, 𝑏 + 1) =

𝑏

𝑎+𝑏
𝐵(𝑎, 𝑏)

iteratively 𝑛 + 1 times, and the identity 𝐵(𝑎, 1) = 1∕𝑎, we find

𝑃𝑛(𝑠) = 𝑛!𝑠𝑛
𝑛∏

𝑘=1

(𝑛 − 𝑘𝑠)−1. (8.3)

2The Beta function is defined as

𝐵(𝑎, 𝑏) = ∫

1

0

𝑑𝑥𝑥𝑎−1(1 − 𝑥)𝑏−1

for 𝑎, 𝑏 ∈ ℂ and Re(𝑎), Re(𝑏) > 0. It is related to the Gamma function by 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
.
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From this and Eq. (7.4), it is clear that all coefficients of 𝑠𝑟 in the expansion of
𝑃𝑛(𝑠) vanish, i.e. 𝑝0(𝑛, 𝑟) = 0, for 𝑛 < 𝑟. This answers question 1) above.

Exercise 8.1

Let 𝐴(𝑟, 𝑛) be the number of ways to distribute 𝑟 particles in 𝑛 boxes
so that no box is empty. Show, by a combinatorial argument, that

𝐴(𝑟, 𝑛 + 1) =

𝑟∑

𝑘=1

(𝑟

𝑘

)
𝐴(𝑟 − 𝑘, 𝑛).

Show that the generating function 𝐴𝑛(𝑠) =
∑∞

𝑟=0
𝐴(𝑟, 𝑛)𝑠𝑟 is given by

𝐴𝑛(𝑠) = 𝑃𝑛(𝑠𝑛) and check that Eq. (8.3) is consistent with the recursion
equation above. [Hint: using Eq. (7.4) show that

𝐴𝑛+1(𝑠) =
1

1 − 𝑠
𝐴𝑛

( 𝑠

1 − 𝑠

)
− 𝐴𝑛(𝑠),

and show that 𝐴𝑛(𝑠) = 𝑃𝑛(𝑠𝑛) satisfies this equation].

How many balls are needed to fill all boxes? In a realisation of drawing
balls in 𝑛 boxes, let 𝑇 be the smallest number of balls for which all boxes
contain at least one ball. As stated before, 𝑇 has the distribution in Eq. (8.1).
Its associated generating function can be computed using Eq. (8.3):

𝐹𝑛(𝑠) =

∞∑

𝑟=0

𝑃{𝑇 = 𝑟}𝑠𝑟 = (1 − 𝑠)𝑃𝑛(𝑠) = (𝑛 − 1)!𝑠𝑛
𝑛−1∏

𝑘=1

(𝑛 − 𝑘𝑠)−1.

One important property of this function is that its value at 𝑠 = 1 gives 𝐹𝑛(1) =∑∞

𝑟=0
𝑃{𝑇 = 𝑟} = 1. This implies that 𝑃{𝑇 = 𝑟} is correctly normalised, i.e.

that sooner or later all boxes will be filled with at least one ball. Another
property is that the expected value of the waiting time 𝑇 is given by

𝔼 [𝑇] = 𝐹′𝑛(1) = 1 + 𝑛

𝑛−1∑

𝑘=1

1

𝑘
≃ 𝑛 log 𝑛 + 𝑛𝛾 +

3

2
+ 𝑂(1∕𝑛) (8.4)

where 𝛾 = 0.5772156649… is Euler constant. This implies that, for large
𝑛, one needs approximately log 𝑛 + 𝛾 balls per box, in order to satisfy the
condition 𝐴0. This answers question 2).

The analysis of 𝐹𝑛(𝑠) can give us more information on the distribution of
𝑇. Yet extracting the asymptotic behaviour of 𝑓(𝑛)

𝑡
from 𝐹𝑛(𝑠), when 𝑛 → ∞,
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is not easy3 because the interesting range of values of 𝑇 changes with 𝑛.
What makes this problem complicated is that the events 𝐴𝑖 are not inde-

pendent. In order to see this, let us focus on a single box and let 𝐵𝑖 be the
number of balls that fall in this box after 𝑟 draws. For each ball the probability
that it will fall in box 𝑖 is 1∕𝑛. So 𝐵𝑖 has a binomial distribution that, for 𝑛 ≫ 1

is well approximated by a Poisson distribution

𝑃{𝐵𝑖 = 𝑘} =
(𝑟

𝑘

)
(
1

𝑛
)

𝑘

(1 −
1

𝑛
)

𝑛−𝑘

≃
(𝑟∕𝑛)𝑘

𝑘!
𝑒−𝑟∕𝑛

If all the variables 𝐵𝑖 were independent Poisson variables, then the total num-
ber of particles 𝑅 = 𝐵1 + … + 𝐵𝑛 would also be a Poisson random variable. A
simple way to see this is to compute the generating function of 𝑅

𝔼
[
𝑠𝑅
]
=

𝑛∏

𝑖=1

𝔼
[
𝑠𝐵𝑖
]
=
[
𝑒−(1−𝑠)𝑟∕𝑛

]𝑛
= 𝑒−(1−𝑠)𝑟,

which is the generating function of a Poisson random variable with mean
𝑟 = 𝔼[𝑅]. The origin of the difficulty of the original problem is that the number
of balls is fixed, i.e. 𝐵1+…+𝐵𝑛 = 𝑟. This is what makes the random variables
𝐵𝑖 dependent. This intuition is confirmed by the fact that, if we compute the
expected value of 𝑝0(𝑅, 𝑛), when 𝑅 is drawn from a Poisson distribution with
mean 𝑛𝜌, we find

𝔼[𝑝0(𝑛, 𝑅)] =

∞∑

𝑟=0

𝑝0(𝑛, 𝑟)
(𝜌𝑛)𝑟

𝑟!
𝑒−𝜌𝑛 = (1 − 𝑒−𝜌)

𝑛
. (8.5)

This formula is much simpler than Eq. (8.2) and it has a simple interpretation,
if we revert our argument. The expected value of balls that fall in each box
𝑖 is 𝔼[𝐵𝑖] = 𝔼[𝑅∕𝑛] = 𝜌. 𝐵𝑖 has a Poisson distribution with expected value4
𝜌 then 1 − 𝑒−𝜌 = 𝑃{𝐵𝑖 > 0} is the probability that box 𝑖 is not empty. When
the number of balls 𝑅 is drawn from a Poisson distribution, all boxes become
independent.5 Hence the probability that no box is empty takes the simple
form of Eq. (8.5).

3This function has 𝑛 − 1 simple poles at 𝑠𝑘 = 𝑛∕𝑘 for 𝑘 = 1,… , 𝑛 − 1. So 𝑓(𝑛)𝑡 ∼ (1 − 1∕𝑛)𝑡

for 𝑛 small, Yet when 𝑛 → ∞ the poles become densely concentrated in the neighbourhood of
𝑠 = 1, which complicates the analysis.

4This is because the Poisson distribution is an infinitely divisible distribution, as explained
before and in Feller XXII.2.

5This technique of removing the dependence of integer random variables due to a con-
straint 𝐵1 + … + 𝐵𝑛 = 𝑟, by substituting 𝑟 with a Poisson random variable 𝑅 with mean 𝑟 is
called poissonisation. It is a very useful trick worth being remembered. When 𝑟 ≫ 1 this
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Exercise 8.2

Let

𝑝(𝑥1, … , 𝑥𝑛|𝑟) = 𝐴𝑟

𝑛∏

𝑖=1

𝑝(𝑥𝑖)𝛿
∑

𝑖
𝑥𝑖 ,𝑟

(8.6)

be the probability that 𝐵𝑖 = 𝑥𝑖 for all 𝑖, where 𝐴𝑟 is a normalisation
constant. By Eq. (8.6), the variables 𝐵𝑖 would be independent with
𝑃{𝐵𝑖 = 𝑥𝑖} = 𝑝(𝑥𝑖), where it not for the constraint. Prove that if 𝑟 is
replaced by a random variable 𝑅 with distribution 𝑞(𝑟) = 𝐴−1

𝑟 , then

∞∑

𝑟=0

𝑝(𝑥1, … , 𝑥𝑛|𝑟)𝑞(𝑟) =

𝑛∏

𝑖=1

𝑝(𝑥𝑖).

Check that 𝑞(𝑟) is correctly normalised, and that when 𝐵𝑖 are Poisson
random variables with mean 𝜌 then 𝑞(𝑟) is the Poisson distribution
with mean 𝑛𝜌.

Exercise 8.3

Let 𝐾1, … , 𝐾𝑑, 𝐾𝑖 ∈ ℕ have a multinomial distribution with probabili-
ties 𝑝1, … , 𝑝𝑑, and

∑𝑑

𝑖=1
𝐾𝑖 = 𝑛. Show that if 𝑛 is replaced by a Poisson

random variable𝑁 with mean 𝜈𝑑, then the variables𝐾1, … , 𝐾𝑛 become
independent Poisson random variables with mean 𝔼[𝐾𝑖] = 𝜈𝑝𝑖.

Now we can go back to the issue of estimating the probability distribution
of 𝑇 for 𝑛 large. Since 𝔼[𝑇] ∼ 𝑛(log 𝑛 + 𝛾) it makes sense to make a change of
variables 𝑇 = 𝑛(log 𝑛 + 𝑋) and study the distribution of the random variable
𝑋 instead. Treating again 𝑅 as a Poisson random variable, we have

𝑃{𝑇 ≤ 𝑛[log 𝑛 + 𝑥]} = 𝔼[𝑝0(𝑛, 𝑅)] with 𝔼[𝑅] = 𝑛(log 𝑛 + 𝑥)

= (1 −
𝑒−𝑥

𝑛
)

𝑛

≃ 𝑒−𝑒
−𝑥

, (𝑛 → ∞) (8.7)

where we used Eq. (8.5) with 𝜌 = log 𝑛 + 𝑥. Note that 𝑃{𝑇 ≤ 𝑛(log 𝑛 + 𝑥)} =

𝑃{𝑋 ≤ 𝑥} yields the cumulative distribution of the variable 𝑋. Hence the pdf

approximation is accurate because the fluctuations 𝛿𝑅 of 𝑅 are of order
√
𝑟, and hence they

are small compared to the mean 𝔼[𝑅] = 𝑟. In the present case, this implies that the statistical
dependence between different boxes becomes weaker and weaker as 𝑟 increases.
Similar considerations apply in general.
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of 𝑋, asymptotically for 𝑛 → ∞, is obtained taking a derivative of Eq. (8.7):

𝑝(𝑥) = 𝑒−𝑥−𝑒
−𝑥

. (8.8)

This is called the Gumbel distribution6 and it will be discussed at length when
we discuss the distribution of the maximum of many independent random
variables. Its occurrence in this problem is not accidental. Indeed, let 𝑇𝑖 be
the number of balls that you have to draw in order to occupy box 𝑖 for the first
time. Then clearly

𝑇 = max
𝑖=1,…,𝑛

𝑇𝑖 (8.9)

is precisely given by the maximum of 𝑛 independent random variables. In
order to see why the problem in Eq. (8.9) leads asymptotically to the Gumbel
distribution, notice that

𝑃 { max
𝑖=1,…,𝑛

𝑇𝑖 ≤ 𝑡} = 𝑃 {𝑇𝑖 ≤ 𝑡 ∀𝑖 = 1,… , 𝑛}

= 𝑃 {𝑇𝑖 ≤ 𝑡}
𝑛
= [1 − 𝑃 {𝑇𝑖 > 𝑡}]

𝑛
. (8.10)

The event that box 𝑖 gets the first ball at each draw has probability 1∕𝑛,
therefore 𝑃 {𝑇𝑖 > 𝑡} = (1 − 1∕𝑛)𝑡 ≃ 𝑒−𝑡∕𝑛. Inserting this in Eq. (8.10) with
𝑡 = 𝑛(log 𝑛 + 𝑥), one finds

𝑃{𝑇 ≤ 𝑛(log 𝑛 + 𝑥)} ≃
[
1 − 𝑒− log 𝑛−𝑥

]𝑛
≃ 𝑒−𝑒

−𝑥 (8.11)

which is Eq. (8.7), as anticipated.
Let us now compute the probability 𝑝𝑚(𝑟, 𝑛) that after the draw of 𝑟 balls,

exactly𝑚 boxes remain empty. If𝑚 cells are empty, 𝑛 −𝑚 cells must be occu-
pied and there are

(
𝑛

𝑚

)
ways to chose the𝑚 empty cells. Now the probability

6Notice that, if 𝑋 has a Gumbel distribution, 𝔼 [𝑋] = 𝛾 and 𝕍 [𝑋] = 𝜋2

6
, which can be

computed by taking derivatives of

𝜓(𝜆) = log ∫

∞

−∞

𝑑𝑥𝑒−𝜆𝑥−𝑒
−𝑥

= log Γ(𝜆)

at 𝜆 = 1.
So, for large 𝑛, 𝔼 [𝑇] ≃ 𝑛(𝛾 + log 𝑛), which agrees with Eq. (8.4) to leading order, and 𝕍 [𝑇] =
𝜋2

6
𝑛2 (i.e. the fluctuations of𝑇 are of order 𝛿𝑇 ∝ 𝑛). Notice also that, assuming𝑇 = 𝑛(log 𝑛+𝑋),

with 𝑋 distributed according to Eq. (8.8), the probability that 𝑇 < 𝑛 is non-zero. Yet 𝑇 < 𝑛

corresponds to 𝑋 < − log 𝑛, and by Eq. (8.7) the probability 𝑃{𝑇 < 𝑛} ≃ 𝑃{𝑋 < − log 𝑛} ≃ 𝑒−𝑛

is negligible. This is because 𝑝(𝑥) falls off very fast as 𝑥 → −∞.
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that no ball falls in the𝑚 empty cells is (1 − 𝑚∕𝑛)𝑟 and the probability that
the remaining 𝑛 − 𝑚 cells are all occupied is 𝑝0(𝑟, 𝑛 − 𝑚). Therefore

𝑝𝑚(𝑟, 𝑛) =
(𝑛

𝑚

) (
1 −

𝑚

𝑛

)𝑟
𝑝0(𝑟, 𝑛 − 𝑚)

=
(𝑛

𝑚

) 𝑛−𝑚∑

𝜈=0

(−1)𝜈
(𝑛 − 𝑚

𝜈

)
(1 −

𝑚 + 𝜈

𝑛
)

𝑟

. (8.12)

Again poissonisation, i.e. replacing 𝑟 by a Poisson random variable with mean
𝑛𝜌 and taking the expected value, yields a much more transparent expression

𝔼[𝑝𝑚(𝑅, 𝑛)] =
(𝑛

𝑚

)
𝑒−𝑚𝜌 (1 − 𝑒−𝜌)

𝑛−𝑚
, (8.13)

which has the same, simple, interpretation as Eq. (8.5). In particular, setting
𝜌 = log(𝑛∕𝜆) and taking 𝑛 → ∞, one finds again the Poisson distribution7

lim
𝑛→∞ 𝜌=log

𝑛

𝜆

𝔼[𝑝𝑚(𝑅, 𝑛)] =
𝜆𝑚

𝑚!
𝑒−𝜆. (8.14)

Hence 𝜆 = 𝑛𝑒−𝑟∕𝑛 approximates the expected number of empty boxes, for
𝑟 ≫ 𝑛 ≫ 1.

Exercise 8.4

Derive Eq. (8.13).

Exercise 8.5

In a town of 2000 inhabitants, each citizen gives a party on his/her
birthday. Estimate the probability that there are no days without a
party.

The understanding that we have reached is not only theoretical, but it
allows us to sample values of 𝑇, for 𝑛 ≫ 1, much more efficiently than by
drawing balls one by one until no empty box is left. This latter process would
take 𝔼 [𝑇] ∼ 𝑛 log 𝑛 steps. Can we do better?

7Feller IV.2 finds the same approximation, observing that the terms that dominate the
sum in Eq. (8.12) for 𝑛 → ∞ with 𝜆 = 𝑛𝑒−𝑟∕𝑛 fixed, are those for finite 𝜈. Hence in 𝑝0(𝑟, 𝑛), for
𝑟 ≫ 𝑛 ≫ 1

(𝑛

𝜈

) (
1 −

𝜈

𝑛

)𝑟
≃

1

𝜈!

(
𝑛𝑒−𝑟∕𝑛

)𝜈
=
𝜆𝜈

𝜈!

The sum on 𝜈 can be extended to +∞ and it yields 𝑝0(𝑟, 𝑛) ≃ 𝑒−𝜆.
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Here is one idea. Imagine there are already 𝑟 balls and 𝑛0 boxes are empty.
The probability that the next ball will fall in an empty box is 𝑛0∕𝑛. Then
the number of additional balls that need to be drawn before a further box is
occupied (i.e. for 𝑛0 → 𝑛0 − 1) has the distribution

𝑃{𝛿𝑅 = 𝑚} =
𝑛0(𝑛 − 𝑛0)

𝑚−1

𝑛𝑚
,

which is the geometric distribution. Draw an integer 𝛿𝑅 from this distribution,
increase 𝑟 → 𝑟+𝛿𝑅 and decrease 𝑛0 → 𝑛0−1. Repeat this process until there
are no empty boxes (𝑛0 = 0). Then 𝑇 =

∑𝑛

𝑖=1
𝛿𝑅𝑖 is the sum of the number of

added balls in this process, starting from 𝑛0 = 𝑛 to 𝑛0 = 0. This takes 𝑛 steps.
It’s better than the naïve algorithms above by a factor log 𝑛.

We can do better though.
Start from 𝑛0 = 𝑛 and 𝑇 = 0. We know that if we draw 𝑅 as a Poisson

random variable with mean 𝑛𝜌, then the number of balls that fall in each box
is an independent Poisson random number with mean 𝜌, and the probability
that box 𝑖 is empty is 𝑒−𝜌. Therefore the number of empty boxes (𝑛′

0
) after

the 𝑅 balls are drawn is reduced, and it is a Bernoulli random variable with
𝑝 = 𝑒−𝜌 over 𝑛0 trials. Clearly 𝜌 cannot be too big otherwise you hit the 𝑛′0 = 0

condition. Set 𝑇 → 𝑇 + 𝑅 and 𝑛0 → 𝑛′
0
to the new value and you’re left with

a very similar problem. If you draw another value of 𝑅 in the same way and
distribute these balls among the boxes, each of the 𝑛′

0
empty boxes will remain

empty with probability 𝑒−𝜌. Then you can again draw the new value of 𝑛′′
0

from a binomial distribution, as before, and set 𝑇 → 𝑇 + 𝑅. This step can
be repeated until 𝑛0 = 0. In each step you need to draw only two random
numbers (𝑅 and 𝑛0) and this process will end in𝑂(log 𝑛) steps, which is much
more efficient than the previous algorithms.

Exercise 8.6

Implement these algorithms on your computer and verify that the
distribution of 𝑋 is well approximated by Eq. (8.8) for 𝑛 sufficiently
large.



Chapter 9

Randomwalks

The random walk is Nature’s way of exploring possibilities – from
particle collisions to evolutionary mutations. (Freeman J. Dyson,
Infinite in all directions, 1988).

Let 𝑋1, 𝑋2, … , 𝑋𝑛, … be a sequence of i.i.d. random variables that take
values 𝑋𝑖 = ±1 with equal probability 𝑃{𝑋𝑖 = ±1} =

1

2
. A random walk is

defined as the sum

𝑆𝑛 =

𝑛∑

𝑖=1

𝑋𝑖, 𝑆0 = 0 .

The name comes from considering 𝑛 as a “time” variable, i.e. the number
of steps in the walk and 𝑆𝑛 as the position of a particle at time 𝑛. Hence 𝑋𝑖 is
the 𝑖th step of the walk. If 𝑋𝑖 = −1, the walker moves to the left by one step
and if 𝑋𝑖 = +1 it moves to the right. The trajectory (𝑛, 𝑆𝑛) for 𝑛 ≥ 0 can be
displayed on a graph as shown in Figure 14. Each of these trajectories or paths
correspond to a realisation 𝜔 of the sample space.1 The sample space Ω of
a random walk of 𝑛 steps contains |Ω| = 2𝑛 paths 𝜔, each of which has the
same probability 𝑃(𝜔) = 2−𝑛.

Many problems in classical probability can be reduced to studying proper-
ties of random walks, as in the case of the problem of the Moskow theatre in
the introduction. Random walks are the prototype model to study diffusion
processes, which describe the erratic motion of particles under the effects of
random perturbations.

The position 𝑆𝑛 of a random walker that starts at 𝑆0 = 0 changes by one
unit, as 𝑛 increases by one unit. Hence 𝑆𝑛 always keeps the same parity of 𝑛.

1Indeed, we should write 𝑆𝑛(𝜔) because 𝑆𝑛 is a random variable. We omit to specify 𝜔 for
the sake of a lighter notation.
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Figure 14. The trajectory of a random walk.

In other words
𝑃{𝑆𝑛 = 𝑘} = 0 if 𝑛 + 𝑘 is odd.

The probability that 𝑆𝑛 = 𝑘, if 𝑛 + 𝑘 is even, is given by the number of paths
that reach 𝑘 in 𝑛 steps times the probability of each path, i.e.2

𝑃{𝑆𝑛 = 𝑘} =
( 𝑛
𝑛+𝑘

2

)
2−𝑛 if 𝑛 + 𝑘 is even.

Notice that 𝔼[𝑆𝑛] = 𝑛𝔼[𝑋𝑖] = 0 and𝕍[𝑆𝑛] = 𝑛𝕍[𝑋𝑖] = 𝑛. Hence the standard
deviation of 𝑆𝑛 increases as

√
𝑛 with 𝑛. This is the first important character-

istic of random walks that you should remember. More specifically, 𝑆𝑛 has a
binomial distribution and, because of the de Moivre-Laplace theorem, 𝑆𝑛 is
well approximated, for large 𝑛, by

𝑆𝑛 ∼
√
𝑛𝑍 , 𝑛 → ∞

where 𝑍 is a Gaussian variable with zero mean and unit variance (this is called
a Standard variable). The limit 𝑛 → ∞ can be realised by dividing a finite
continuous time interval [0, 𝑡] in infinitesimal elements of size 𝑑𝑡. This allows
us to define random walks in continuous time 𝑡 by the limit

𝑊𝑡 = lim
𝑑𝑡→0

√
𝑑𝑡𝑆𝑛=𝑡∕𝑑𝑡. (9.1)

𝑊𝑡 is a random3 function of 𝑡 which is called theWiener process, and is the
analogue of the random walk in discrete time 𝑛. Clearly 𝔼[𝑊𝑡] = 0 and

2Note that 𝑆𝑛 = 𝑛+ − 𝑛− is the difference between the number 𝑛+ of steps in the positive
direction (𝑋𝑖 = +1) and the number 𝑛− of steps in the negative direction (𝑋𝑖 = −1), whereas
𝑛 = 𝑛+ + 𝑛−. Hence in a walk of 𝑛 steps with 𝑆𝑛 = 𝑘, the number of steps 𝑋𝑖 = +1 is 𝑛+𝑘

2
.

There are
(

𝑛
𝑛+𝑘

2

)
ways of choosing the 𝑛+ steps with 𝑋𝑖 = +1.

3To be precise,𝑊𝑡(𝜔) is a function of 𝑡 for every realisation 𝜔 ∈ Ω. The limit in Eq. (9.1) is
in distribution.
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𝕍[𝑊𝑡] = 𝑡. We shall discuss further properties of the Wiener process later on
in the course.

Coming back to discrete time 𝑛, let us discuss two further applications of
random walks:

Counting votes: in an election between two candidates, candidate 𝑃 gets 𝑝
votes and candidate 𝑄 receives 𝑞 < 𝑝 votes (i.e. 𝑃 wins the election). What
is the probability that, during the counting, 𝑃 always leads? The answer, as
we’ll see later, is surprisingly simple

𝑃{𝑃 always leads 𝑄} =
𝑝 − 𝑞

𝑝 + 𝑞
. (9.2)

Kolmogorov-Smirnov (KS) test: let𝑎1, … , 𝑎𝑛 and 𝑏1, … , 𝑏𝑛 be two samples
resulting from two series of 𝑛 independent experiments. For example, think
of the case where the 𝑎𝑖’s measure the response of a group of 𝑛 patients treated
with a given drug and the 𝑏𝑖’s are collected measuring the same quantity in a
test group of 𝑛 untreated patients. One way to find out whether the treatment
is effective or not, is to consider the 𝑎𝑖’s and the 𝑏𝑖’s as independent draws
from two distributions and to ask whether the two distributions are really
different. Let𝐻 be the hypothesis that the two samples are drawn i.i.d. from
the same distributions 𝑃{𝑎𝑖 < 𝑥} = 𝑃{𝑏𝑖 < 𝑥} = 𝑃(𝑥). The KS test is based on
computing

∆ = sup
𝑥∈ℝ

|𝐴(𝑥) − 𝐵(𝑥)|

where 𝐴(𝑥) = |||{𝑖 ∶ 𝑎𝑖 < 𝑥}||| and 𝐵(𝑥) = |||{𝑖 ∶ 𝑏𝑖 < 𝑥}||| are the number of
points in the two samples that are smaller than 𝑥. First observe that, under
hypothesis 𝐻, 𝔼[𝐴(𝑥)] = 𝔼[𝐵(𝑥)] = 𝑛𝑃(𝑥). The plot of 𝐴(𝑥) − 𝐵(𝑥) on all
the points 𝑥 that coincide either with 𝑎𝑖’s or with 𝑏𝑖’s sorted in increasing
order, looks like that of a random walk 𝑆𝑘 on 2𝑛 steps, with the condition
𝑆2𝑛 = 0. This is a special type of randomwalk which is called a random bridge.
If 𝐻 is correct, then ∆ is the maximum excursion of a random bridge. The
distribution of ∆ can be computed for 𝑛 ≫ 1, and it is given by4

𝑃{∆ <
√
𝑛𝜉} ≃ 1 + 2

∞∑

𝑘=1

(−1)𝑘𝑒−2𝑘
2𝜉 .

Using this, we can find whether the value of ∆ we compute is likely or not, i.e.
whether the hypothesis𝐻 can be confirmed or whether it should be rejected.

4The proof of this statement will not be given here. We refer to [15].
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Figure 15. The random bridge 𝑆𝑘 as a function of 𝑘 in the Kolmogorov-Smirnov test.
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Figure 16. The reflection principle. The reflected path (point) is shown in blue.

The remarkable fact is that the true distributions of the points 𝑎𝑖’s and 𝑏𝑖’s do
not enter at all in the KS test. This is because we cast the problem of accepting
𝐻 into an abstract problem concerning random walks.

9.1 The reflection principle
Take two points 𝐴 and 𝐵 in the positive semi-plane. The reflection principle
is a very simple fact that states that the number 𝑁 ̸−

𝐴→𝐵
of paths of a random

walk going from 𝐴 to 𝐵 touching or crossing the horizontal axis is equal to
the number𝑁𝐴′→𝐵 of paths that go from the reflected point 𝐴′ to 𝐵. The proof
is simple. For any walk that crosses the horizontal axis, take the fist point 𝑇
where the walk touches the horizontal axis (i.e. 𝑆𝑘 = 0 at point 𝑇). Reflect
the section of the walk 𝐴 → 𝑇 around the horizontal axis. This identifies one
path going from 𝐴′ to 𝐵 through 𝑇. In this way each path that contributes
to 𝑁 ̸−

𝐴→𝐵
can be put in correspondence with one path contributing to 𝑁𝐴′→𝐵.

Conversely, every path 𝐴′ → 𝐵 can be put in correspondence with a reflected
path 𝐴 → 𝐵 that touches or crosses the horizontal axis. So paths 𝐴 → 𝐵 that
touch or cross the axis are in one to one correspondence to those going from
𝐴′ to 𝐵. Hence their number must be the same, i.e 𝑁 ̸−

𝐴→𝐵
= 𝑁𝐴′→𝐵.

The reflection principle relates a quantity𝑁 ̸−

𝐴→𝐵
which is hard to compute,

because it involves a condition (crossing the axis) that may happen in any
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point, to the number 𝑁𝐴′→𝐵 of paths from 𝐴′ to 𝐵, which is easy to compute.
As an application, let us see howwe can derive Eq. (9.2) for the ballot theorem.
Each path contributing to the event {𝑃 always leads 𝑄} must pass from the
point 𝐴 = (1, 1) and reach the point 𝐵 = (𝑝 + 𝑞, 𝑝 − 𝑞), without crossing
the horizontal axis. The number of these paths is the total number of paths
𝐴 → 𝐵 minus those crossing the axis, i.e.

𝑁𝐴→𝐵 −𝑁
̸−

𝐴→𝐵
= 𝑁𝐴→𝐵 −𝑁𝐴′→𝐵 =

(𝑝 + 𝑞 − 1

𝑝 − 1

)
−
(𝑝 + 𝑞 − 1

𝑝

)

where𝐴′ = (1, −1) is the reflected point𝐴. A simplemanipulation of binomial
coefficients shows that this number is (𝑝 − 𝑞)∕(𝑝 + 1) times the total number
of paths 𝑁𝑂→𝐵 =

(
𝑝+𝑞

𝑝

)
from the origin 𝑂 = (0, 0) to 𝐵. This yields Eq. (9.2).

9.2 Returns and first returns
A return to the origin at time 𝑛 is the event {𝑆𝑛 = 0}. Let 𝑢𝑛 = 𝑃{𝑆𝑛 = 0} be
its probability. Because of the parity of random walks, returns cannot occur
at odd times, i.e. 𝑢2𝑛−1 = 0. At even times

𝑢2𝑛 =
(2𝑛

𝑛

)
2−2𝑛 ≃

1
√
𝜋𝑛

(9.3)

where the last asymptotic expression holds for 𝑛 → ∞ and is a consequence
of Stirling’s formula. Clearly 𝑢0 = 𝑃{𝑆0 = 0} = 1.

Returns to the origin of randomwalks are an example of recurrent events.5
These are events that can occur many times and conditional to the occurrence
of an event at time 𝑛, the occurrence of future events is independent of the
occurrence of past events.

Among returns, the first one is of special importance. We say that a first
return occurs at time 2𝑛 if 𝑆𝑘 ≠ 0 for all 𝑘 < 2𝑛 and 𝑆2𝑛 = 0. We can also
define a first return time 𝑇𝑓 whose distribution is given by

𝑓2𝑛 = 𝑃{𝑇𝑓 = 2𝑛} = 𝑃{𝑆𝑘 ≠ 0, 0 < 𝑘 < 2𝑛; 𝑆2𝑛 = 0}. (9.4)

We set 𝑓0 = 0, because the random walker can only return after it leaves the
origin.

The first return distribution is related to the probability 𝑢𝑛 of returns by
the equation

𝑢𝑛 =

𝑛∑

𝜈=0

𝑓𝜈𝑢𝑛−𝜈 , 𝑛 > 0. (9.5)

5See Feller XII.
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This holds for any recurrent event and it says that in order for a recurrent
event to occurs at time 𝑛 > 0, it must first occur at some time 𝜈 (that can be
equal to 𝑛) and then it has to occur again after 𝑛 − 𝜈 steps. In principle this
equation allows us to compute 𝑓𝑛 once 𝑢𝑛 is known.

There is amore direct way to compute 𝑓𝑛 that uses the following surprising
result: the probability that the walker never returns to the origin up to time 2𝑛
equals the probability that the walker is at the origin at 2𝑛, i.e.,

𝑃{𝑇𝑓 > 2𝑛} = 𝑃{𝑆𝑘 ≠ 0, 0 < 𝑘 ≤ 2𝑛} = 𝑃{𝑆2𝑛 = 0} = 𝑢2𝑛. (9.6)

This is a remarkable result which is a consequence of the ballot theorem (i.e.
of the reflection principle). As we have seen, the number of walks not crossing
the horizontal axis that reach a point 𝐵 = (2𝑛, 2𝑏) equals the difference

𝑁(1,1)→(2𝑛,2𝑏) −𝑁(1,−1)→(2𝑛,2𝑏).

in order to compute the number of paths that never get back to the origin up to
2𝑛, staying on the positive semi-plane, we need to sum this difference over all
𝑏 = 1, 2, …. Yet 𝑁(1,1)→(2𝑛,2𝑏+2) = 𝑁(1,−1)→(2𝑛,2𝑏) by translation invariance in
the vertical direction. Hence in the sum over 𝑏 the term𝑁(1,−1)→(2𝑛,2𝑏) cancels
𝑁(1,1)→(2𝑛,2(𝑏+1)) in the next term of the sum. The only remaining term is

𝑁(1,1)→(2𝑛,2) =
(2𝑛 − 1

𝑛

)
=
1

2

(2𝑛

𝑛

)
= 22𝑛−1𝑢2𝑛 .

In order to consider also paths that do not go back to the origin staying below
the horizontal axis, this number has to be multiplied by two, which proves
Eq. (9.6).

Now it is clear that, for 𝑛 > 0

𝑓2𝑛 = 𝑃{𝑇𝑓 > 2𝑛 − 2} − 𝑃{𝑇𝑓 > 2𝑛} = 𝑢2𝑛−2 − 𝑢2𝑛 (9.7)

=
(2𝑛 − 2

𝑛 − 1

)
2−2𝑛+2 −

(2𝑛

𝑛

)
2−2𝑛 (9.8)

=
1

2𝑛 − 1

(2𝑛

𝑛

)
2−2𝑛 (9.9)

∼
1

2
√
𝜋
𝑛−3∕2 , 𝑛 → ∞ (9.10)

Because of the second equality in (9.7)
∑

𝑛>0

𝑓𝑛 = 𝑢0 = 1



9.3. LAST VISIT AND THE ARC-SINE LAW 117

which means that the random walker will surely return to the origin. We say
that the random walk is persistent.6 The asymptotic expression (9.10) shows
that the probability of a first return vanishes as 𝑛 → ∞ very slowly. Indeed
the expected value of the first return time diverges

𝔼[𝑇𝑓] =
∑

𝑛>0

𝑓𝑛𝑛 = +∞.

So the random walker will surely return to the origin, but the expected time
for this to happen diverge.7

9.3 Last visit and the arc-sine law

Let us now focus on the last visit to the origin of a random walk of 2𝑛 steps.
Let 𝐿2𝑛 be the number of steps taken by the random walk when this event
occurs. The probability of this event can be computed as

𝛼2𝑛,2𝑘 = 𝑃{𝐿2𝑛 = 2𝑘} = 𝑃{𝑆2𝑘 = 0}𝑃{𝑆𝑗 ≠ 0, 2𝑘 < 𝑗 ≤ 2𝑛} (9.11)

the second factor can be computed using Eq. (9.6) and it equals 𝑃{𝑆2𝑛−2𝑙 =
0} = 𝑢2𝑛−2𝑘. Therefore

𝛼2𝑛,2𝑘 = 𝑢2𝑘𝑢2𝑛−2𝑘 =
(2𝑘

𝑘

)(2𝑛 − 2𝑘

𝑛 − 𝑘

)
2−2𝑛. (9.12)

Surprisingly this probability is symmetric for 𝑘 → 𝑛−𝑘, i.e. 𝛼2𝑛,2𝑛−2𝑘 = 𝛼2𝑛,2𝑘.
This means that the randomwalker’s last visit to the origin is as likely to occur
close to the origin as close to its end point. What is more surprising is that
these are the regions where the last visit is most likely to occur, whereas it is
less likely to occur in the middle. This is evident in the large 𝑛 limit where

𝛼2𝑛,2𝑘 ≃
1

𝜋

1
√
𝑘(𝑛 − 𝑘)

, 𝑛 → ∞. (9.13)

6In general, a recurrent event that surely occurs in the future is called persistent. If there is
a finite probability that the event will never occur, the recurrent event is called transient.

7In each realisation, the random walk returns to the origin in a finite time. Indeed, there
can be other ways to estimate the time of the first return as e.g. 𝔼[𝑇𝛼

𝑓
]1∕𝛼 which would be finite

for 𝛼 < 1∕2 or 𝑒𝔼[log 𝑇𝑓 ] which is also finite. The divergence of 𝔼[𝑇𝑓] is due to the fact that 𝑛
grows while 𝑓𝑛 vanishes too slowly for the series to converge. This means that the expected
value does not always represent what we expect. We’ll come back to this point.
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Figure 17. The arc-sin law for last returns, the position of the maxima and the
number of steps spent by the random walk on the positive semi-plane. Result of
numerical simulations of 106 random walks of 2𝑛 = 100 steps.

Exercise 9.1

Derive Eq. (9.13).

Eq. (9.12) is called the arc-sine law for the last visit to the origin. The
reason for this name comes from the fact that, for 𝑥 ∈ (0, 1) and in the limit
𝑛 → ∞, the probability that 𝐿2𝑛 < 2𝑛𝑥 is given by

𝑃{𝐿2𝑛 < 2𝑛𝑥} =
∑

𝑘<𝑛𝑥

𝛼2𝑛,2𝑘 (9.14)

≃
∑

𝑘<𝑛𝑥

1

𝜋

1
√
𝑘(𝑛 − 𝑘)

(9.15)

≃
1

𝜋
∫

𝑥

0

𝑑𝑧
√
𝑧(1 − 𝑧)

(9.16)

=
2

𝜋
arc sin

√
𝑥 (9.17)

Here we first transformed the sum on 𝑘 into an integral on 𝑧 = 𝑘∕𝑛 and then
used the transformation 𝑧 = sin

2
𝜃. The arc-sin law holds not only for the last

visit, but also for other quantities such as the position of the maximum of a
random walk of 2𝑛 steps or the number of steps spent by the random walk on
the positive semi-plane,8 as shown in Figure 17.

8See Feller III for more details.
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9.4 Randomwalks with drift

Let us now consider random walks

𝑆𝑛 =

𝑛∑

𝑖=1

𝑋𝑖, 𝑆0 = 0

with 𝑋𝑖 = ±1 being i.i.d. random variables with 𝑃{𝑋𝑖 = +1} = 𝑝 and 𝑃{𝑋𝑖 =
−1} = 1 − 𝑝 ≡ 𝑞. In this case different paths 𝜔 = (𝑋1, … , 𝑋𝑛) can have
different probabilities

𝑃{𝜔} = 𝑝
𝑛+𝑆𝑛(𝜔)

2 𝑞
𝑛−𝑆𝑛(𝜔)

2 .

Therefore computing probabilities of events related to random walks is no
longer a counting problem. In particular, the reflection principle cannot be
used for 𝑝 ≠ 1∕2. When 𝑝 > 1∕2, paths 𝑆𝑛 that increase with 𝑛 are more
likely than those that decrease with 𝑛. We say that the random walk has a
drift (in the positive direction, in this case).

Gambling is a typical example of a situation described by random walks
with a drift. Consider a gambler that plays repeatedly a gamewhere he/she can
win one euro with probability 𝑝 and loose one euro with probability 𝑞 = 1−𝑝.
Then 𝑆𝑛 corresponds to the total gain (if positive) or loss (if negative) after 𝑛
games. We can study the fate of the gambler using generating functions. Let
us start by discussing the distribution of the waiting time 𝑇 for a gain. This is
the time when 𝑆𝑛 = 1 for the first time, i.e.

𝑃{𝑇 = 𝑛} = 𝑃{𝑆𝑘 ≤ 0, 0 ≤ 𝑘 < 𝑛; 𝑆𝑛 = 1} ≡ 𝜙𝑛

Let us introduce the generating function for 𝑇

Φ(𝑠) = 𝔼
[
𝑠𝑇
]
=

∞∑

𝑛=0

𝜙𝑛𝑠
𝑛.

In order to compute Φ(𝑠) let us analyse the first step. With probability 𝑝 the
gambler wins the first game and then 𝑇 = 1. With probability 𝑞 the gambler
looses. Then he/she has to wait a time 𝑇1 to get back to 𝑆𝑇1+1 = 0 and then
wait another 𝑇2 steps for the first gain. Hence 𝑇 = 1 + 𝑇1 + 𝑇2. Now 𝑇1 and
𝑇2 are two independent random variables and they have exactly the same



120 CHAPTER 9. RANDOMWALKS

distribution (and generating function) as 𝑇. Therefore

Φ(𝑠) = 𝑝𝔼
[
𝑠1
]
+ 𝑞𝔼

[
𝑠1+𝑇1+𝑇2

]
(9.18)

= 𝑝𝑠 + 𝑞𝑠𝔼
[
𝑠𝑇1

]
𝔼
[
𝑠𝑇2

]
(9.19)

= 𝑝𝑠 + 𝑞𝑠Φ(𝑠)2 (9.20)

=
1 −

√
1 − 4𝑝𝑞𝑠2

2𝑞𝑠
(9.21)

= −
1

2𝑞

∞∑

𝑛=1

(1∕2

𝑛

)
(−4𝑝𝑞)𝑛𝑠2𝑛−1 (9.22)

Note that the solution to the quadratic equation has two roots, of which
we choose the one in Eq. (9.21) because it is the only one consistent with
𝑃{𝑇 = 0} = Φ(0) = 0. Note also that the expansion only generates odd
powers of 𝑠. This is consistent with the fact that 𝑃{𝑇 = 2𝑛} = 0 for all 𝑛. The
expression of 𝜙𝑛 can be read from the last equation above and it can be further
simplified using trite manipulations of the binomial coefficients

𝜙2𝑛−1 = −
1

2𝑞

(1∕2

𝑛

)
(−4𝑝𝑞)𝑛 =

1

2𝑛 − 1

(2𝑛

𝑛

)(𝑝𝑞)𝑛

2𝑞
, 𝜙2𝑛 = 0. (9.23)

Note that
∞∑

𝑛=0

𝜙𝑛 = Φ(1) =
1 −

√
(1 − 2𝑝)2

2(1 − 𝑝)
= {

𝑝

1−𝑝
𝑝 < ∕12

1 𝑝 ≥ 1∕2

This means that for 𝑝 ≥ 1∕2 the gambler is sure to gain sooner or later. For
𝑝 < 1∕2 there is a probability 1−2𝑝

1−𝑝
that this will never happen. So 𝜙𝑛 is not a

probability distribution for 𝑝 < 1∕2 because it is not normalised. The term
defective probability distribution is used to describe these cases.

You can also check that, provided the gambler will sooner or later gain,
the expected time he/she has to wait is given by

𝔼 [𝑇|𝑇 < +∞] =
Φ′(1)

Φ(1)
=

1

|1 − 2𝑝|
.

This time is finite for 𝑝 ≠ 1∕2 and it diverges as 𝑝 → 1∕2.

9.4.1 Returns to the origin

The probability of a return to the origin at time 2𝑛 is now

𝑢2𝑛 = 𝑃{𝑆2𝑛 = 0} =
(2𝑛

𝑛

)
(𝑝𝑞)𝑛 =

(−1∕2

𝑛

)
(−4𝑝𝑞)𝑛
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Hence the associated generating function is

𝑈(𝑠) =

∞∑

𝑛=0

𝑢𝑛𝑠
𝑛 =

1
√
1 − 4𝑝𝑞𝑠2

(9.24)

We can find the distribution of the first return 𝑇𝑓 to the origin by the same
argument used for the first gain. If the first step is 𝑋1 = −1, that occurs with
probability 𝑞, then 𝑇𝑓 = 1 + 𝑇 where 𝑇 is the time for the first gain, starting
from the point𝐴 = (−1, 1). If the first step is𝑋1 = +1, then 𝑇𝑓 = 1+𝑇′ where
𝑇′ is the time for the first loss, starting from the point𝐴′ = (1, 1). By symmetry,
the generating function of 𝑇′ is obtained from that of 𝑇 by interchanging 𝑝
and 𝑞. Therefore

𝐹(𝑠) = 𝔼
[
𝑠𝑇𝑓

]
= 𝑞𝑠𝔼

[
𝑠𝑇
]
+ 𝑝𝑠𝔼

[
𝑠𝑇

′
]

(9.25)

= 𝑞𝑠
1 −

√
1 − 4𝑝𝑞𝑠2

2𝑞𝑠
+ 𝑝𝑠

1 −
√
1 − 4𝑝𝑞𝑠2

2𝑝𝑠
(9.26)

= 1 −
√
1 − 4𝑝𝑞𝑠2. (9.27)

Expanding this in powers of 𝑠, one finds

𝑓2𝑛 = 𝑃{𝑇𝑓 = 2𝑛} =
1

2𝑛 − 1

(2𝑛

𝑛

)
(𝑝𝑞)𝑛 , 𝑓2𝑛−1 = 0 , (𝑛 > 0)

that reverts to the result we found earlier when 𝑝 = 𝑞 = 1∕2. Note that

𝐹(1) = 1 − |1 − 2𝑝|

which means that 𝑓𝑛 is a defective probability distribution for 𝑝 ≠ 1∕2. With
probability |1− 2𝑝| the random walk will never return back to the origin. The
random walk is called transient in this case (𝑝 ≠ 1∕2) whereas it is persistent
for 𝑝 = 1∕2. Provided the random walk returns to the origin, the expected
time this takes is

𝔼
[
𝑇𝑓|𝑇𝑓 < +∞

]
=
𝐹′(1)

𝐹(1)
= 1 +

1

|1 − 2𝑝|
,

i.e. for 𝑝 ≠ 1∕2 either the random walk comes back to the origin in a finite
time or it does not come back at all.

Eq. (9.27) can also be derived from the generating function𝑈(𝑠), using the
relation Eq. (9.5) between 𝑢𝑛 and 𝑓𝑛. Multiplying both sides of this equation
by 𝑠𝑛 and summing over 𝑛 > 0 one finds 𝑈(𝑠) − 1 = 𝐹(𝑠)𝑈(𝑠), which leads to

𝐹(𝑠) = 1 −
1

𝑈(𝑠)
(9.28)
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This equation relates the generating function of the time of the first occurrence
of an event to that of its occurrence at a specific time, for a broad class of
recurrent events.9 In the present case of returns to the origin of random walks,
this equation combined with Eq. (9.24) immediately delivers Eq. (9.27).

Exercise 9.2

The simplest recurrent event is a success in repeated Bernoulli trials.
In this case 𝑢𝑛 = 𝑝 for 𝑛 > 0 and 𝑢0 = 1. Find 𝑓𝑛 using Eq. (9.28).
Check explicitly that Eq. (9.5) is satisfied.

9.4.2 Last visit to the origin

The generating function of the probability 𝑣2𝑛 = 𝑃{𝑇𝑓 > 2𝑛} that the random
walk does not return to the origin up to time 2𝑛 can be derived using Eq. (7.22),
that relates the cumulative distribution of a random variable to the distribution
itself,10 i.e.

𝑉(𝑠) =

∞∑

𝑛=0

𝑣2𝑛𝑠
2𝑛 =

1 − 𝐹(𝑠)

1 − 𝑠2
=

√
1 − 4𝑝𝑞𝑠2

1 − 𝑠2
. (9.29)

Here 𝑠2 appears instead of 𝑠 in the denominator because we sum only on even
powers of 𝑠, assuming 𝑣2𝑛−1 = 0.11 Notice that 𝑉(𝑠) = 𝑈(𝑠) for 𝑝 = 1∕2,
in agreement with Eq. (9.6), but this is not true for 𝑝 ≠ 1∕2. This has a
consequence for the probability 𝛼2𝑛,2𝑘 that the last visit of a random walk of
2𝑛 steps occurs at time 2𝑘. Again we can write 𝛼2𝑛,2𝑘 = 𝑢2𝑘𝑣2𝑛−2𝑘. Since this
depends on two indices, we introduce a double generating function 𝐴(𝑠, 𝑧)
with 𝑠 “counting” 𝑛 and 𝑧 “counting” 𝑘:

𝐴(𝑠, 𝑧) =

∞∑

𝑛=1

𝑛∑

𝑘=0

𝛼2𝑛,2𝑘𝑠
2𝑛𝑧2𝑘 (9.30)

=

∞∑

𝑛=1

𝑛∑

𝑘=0

𝑢2𝑘(𝑠𝑧)
2𝑘𝑣2𝑛−2𝑘𝑠

2𝑛−2𝑘 (9.31)

= 𝑈(𝑠𝑧)𝑉(𝑠) =

√
1 − 4𝑝𝑞𝑠2

(1 − 𝑠2)
√
1 − 4𝑝𝑞𝑠2𝑧2

(9.32)

9We refer to Feller XIII for more details.
10This relation stems from the equation 𝑓2𝑛 = 𝑣2𝑛−2 − 𝑣2𝑛.
11If instead we take 𝑣2𝑛+1 = 𝑃{𝑇𝑓 > 2𝑛 + 1} = 𝑃{𝑇𝑓 > 2𝑛} = 𝑣2𝑛 then we get an additional

factor (1 + 𝑠) in the right hand side of Eq. (9.29), and recover Eq. (7.22). The choice 𝑣2𝑛+1 = 0

is motivated by the fact that we’re using the sequence 𝑣𝑛 only for even values of 𝑛.
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First, let us check that 𝛼2𝑛,2𝑘 is correctly normalised. Observe that the coef-
ficients of 𝑠2𝑛 in the expansion in powers of 𝑠2 of 𝐴(𝑠, 1) equal

∑𝑛

𝑘=0
𝛼2𝑛,2𝑘.

Setting 𝑧 = 1, we find

𝐴(𝑠, 1) =
1

1 − 𝑠2
= 1 + 𝑠2 + 𝑠4 + …

that confirms that 𝛼2𝑛,2𝑘 is correctly normalised for all 𝑛. Second, notice that
the symmetry 𝛼2𝑛,2𝑘 = 𝛼2𝑛,2𝑛−2𝑘 that this probability satisfies for 𝑝 = 1∕2

is no longer satisfied when 𝑝 ≠ 1∕2.12 Finally, let us compute the expected
value of the time 𝐿2𝑛 of the last visit, in a walk of 2𝑛 steps. This is obtained
observing that the partial derivative of 𝐴(𝑠, 𝑧) with respect to 𝑧, evaluated at
𝑧 = 1, has a power series in 𝑠2 with coefficients that are exactly the desired
quantities

𝜕

𝜕𝑧
𝐴(𝑠, 𝑧)

|||||||𝑧=1
=

∞∑

𝑛=1

𝑛∑

𝑘=0

𝛼2𝑛,2𝑘2𝑘𝑠
2𝑛 (9.33)

=

∞∑

𝑛=1

𝔼[𝐿2𝑛]𝑠
2𝑛 (9.34)

=
4𝑝𝑞

1 − 4𝑝𝑞
[

1

1 − 𝑠2
−

1

1 − 4𝑝𝑞𝑠2
] (9.35)

⇒ 𝔼[𝐿2𝑛] =
4𝑝𝑞

1 − 4𝑝𝑞
[1 − (4𝑝𝑞)𝑛] . (9.36)

Notice that,
lim
𝑝→1∕2

𝔼[𝐿2𝑛] = 𝑛

which is consistent with the symmetry 𝑘 → 𝑛 − 𝑘. Yet for 𝑝 ≠ 1∕2

𝔼[𝐿2𝑛] ≤
4𝑝𝑞

1 − 4𝑝𝑞
.

The last visit to the origin when 𝑛 → ∞ is likely to occur at a finite time, close
to the origin.

12In order to check this, observe that this symmetry implies that 𝐴(𝑠𝑧, 1∕𝑧) = 𝐴(𝑠, 𝑧). As an
Exercise, show that this symmetry is satisfied only for 𝑝 = 1∕2.





Chapter 10

Branching processes

Branching processes1 describe the evolution of a population of individuals
(or units) that reproduce from one generation to the next. For example, in
Italy, individuals inherit their family name from the father. Then, neglecting
migrations, the number ofmale individuals in Italy with the same family name
is the sum of the offsprings of male individuals at the previous generation. A
further classical example is nuclear reactions: each atom when bombarded by
neutrons may become unstable and release more neutrons that may induce
the decay of other atoms, and so on. The way in which a viral epidemics
such as Covid-19 or influenza spreads in a population is also an example
of a branching process. Each infected individual can transmit the virus to
more individuals. The mechanism of transmission and the contact network
between individuals determines whether the epidemics will stop or whether
it will become endemic in the population. Epidemic phenomena are not
limited to diseases. It also applies to computer viruses, behaviours, fashions,
habits and many other phenomena. In all cases, a relevant question is to
understand whether the process will come to an end or continue indefinitely
in an explosive manner. We shall address this issue in a very simple setting.

In order to describe a branching process, let 𝑍𝑛 ∈ ℕ be the number of
individuals at generation 𝑛 that descend from the same ancestor at generation
zero. The next generation is composed of all the offsprings of individuals of
the 𝑛th generation

𝑍𝑛+1 =

𝑍𝑛∑

𝑖=1

𝑋
(𝑛)

𝑖
, (10.1)

1Branching processes are discussed in Feller XII.3/4/5.
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generations
1      2       3      4       5  . . .

generations
1      2       3      4       5  . . .

Figure 18. A branching process. The 2nd and the 3rd generations are highlighted.

where𝑋(𝑛)

𝑖
is the number of offsprings of the 𝑖th individual of the𝑛th generation.

We consider a very simplified situation where 𝑋(𝑛)

𝑖
are i.i.d. ∀𝑖 = 1,… , 𝑍𝑛 and

𝑛 = 0, 1, …, with
𝑃{𝑋

(𝑛)

𝑖
= 𝑘} = 𝑝𝑘. (10.2)

At generation 0, 𝑍0 = 1 because we assume that the whole population starts
with one individual, the ancestor. Note that 𝑍𝑛 is an integer random variable
for 𝑛 > 0. In addition Eq. (10.1) shows that 𝑍𝑛+1 is a sum of a random number
of random variables. Progress is then possible by introducing generating
functions.

10.1 The main equation

Let

𝑃(𝑠) = 𝔼 [𝑠𝑋
(𝑛)

𝑖 ] =

∞∑

𝑘=0

𝑝𝑘𝑠
𝑘

be the generating function of 𝑋(𝑛)

𝑖
. Then Eq. (10.1) readily yields a recursion

equation for the generating function of 𝑍𝑛:

𝑃𝑛(𝑠) = 𝔼
[
𝑠𝑍𝑛

]
.
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This reads

𝑃𝑛+1(𝑠) = 𝔼 [𝑠
𝑋
(𝑛)

1
+…+𝑋

(𝑛)

𝑍𝑛 ] = 𝔼
[
𝑃(𝑠)𝑍𝑛

]
= 𝑃𝑛 (𝑃(𝑠)) . (10.3)

Starting from 𝑃0(𝑠) = 𝑠, because 𝑍0 = 1, we get 𝑃1(𝑠) = 𝑃(𝑠), 𝑃2(𝑠) = 𝑃(𝑃(𝑠)),
and so on. This allows us to compute the generating function for all values of
𝑛, in principle. In practice, extracting the asymptotic behaviour of a branching
process from this equation is not easy.

We can also compute 𝑍𝑛+1 as the sum of the number 𝑍(𝑗)𝑛 of individuals
generated after 𝑛 generations by each of the offsprings 𝑗 of the ancestor, i.e.

𝑍𝑛+1 =

𝑋0∑

𝑗=1

𝑍
(𝑗)
𝑛

where 𝑋0 is the number of offsprings of the ancestor. Introducing again
generating functions, we find2

𝑃𝑛+1(𝑠) = 𝑃 (𝑃𝑛(𝑠)) . (10.5)

Exercise 10.1

Let’s assume that the number 𝑋(𝑛)

𝑖
of unstable atoms generated as

the result of the decay of one atom, in a nuclear reactor, is a Poisson
random variable. Its mean 𝜆 = 𝔼

[
𝑋
(𝑛)

𝑖

]
can be adjusted to control the

reaction in order to keep the expected value of unstable atoms at the
next generation 𝔼 [𝑍𝑛+1|𝑍𝑛] at a constant value 𝑧. What is the protocol
𝜆(𝑍𝑛) that should be adopted to achieve this goal?

10.2 The extinction probability
A branching process is extinct at generation 𝑛 if 𝑍𝑛 = 0. The probability of
this event is 𝑥𝑛 = 𝑃{𝑍𝑛 = 0} = 𝑃𝑛(0) and, because of Eq. (10.5), it satisfies the

2Note that 𝑍𝑛 is also given by the sum of all individuals at generation 𝜈 of the population
𝑍
(𝑗)

𝑛−𝜈 generated from them after 𝑛 − 𝜈 generations. This leads to the general equation

𝑃𝑛(𝑠) = 𝑃𝜈 (𝑃𝑛−𝜈(𝑠)) , (10.4)

which holds for any 𝜈 = 0, 1, … , 𝑛. This equation relies on the fact that, conditional on 𝑍𝜈 , the
“future” of the branching process (i.e. what happens for 𝑘 > 𝜈) is independent of the “past” (i.e.
what happened for 𝑘 < 𝜈). Processes that enjoy this property are calledMarkov processes and
they all satisfy an equation like (10.4), that is called the Chapman-Kolmogorov equation.
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<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

…

x⇤ = 1
<latexit sha1_base64="cw3JjH9p5KUUtntukBkoaJJMzdk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5KIoBeh6MVjBdMW2lg22027dLMJuxOxlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6387S8srq2npho7i5tb2zW9rbr5sk04z7LJGJbobUcCkU91Gg5M1UcxqHkjfCwc3EbzxybUSi7nGY8iCmPSUiwShayX96OL3yOqWyW3GnIIvEy0kZctQ6pa92N2FZzBUySY1peW6KwYhqFEzycbGdGZ5SNqA93rJU0ZibYDQ9dkyOrdIlUaJtKSRT9ffEiMbGDOPQdsYU+2bem4j/ea0Mo8tgJFSaIVdstijKJMGETD4nXaE5Qzm0hDIt7K2E9ammDG0+RRuCN//yIqmfVTy34t2dl6vXeRwFOIQjOAEPLqAKt1ADHxgIeIZXeHOU8+K8Ox+z1iUnnzmAP3A+fwDyVo4a</latexit><latexit sha1_base64="cw3JjH9p5KUUtntukBkoaJJMzdk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5KIoBeh6MVjBdMW2lg22027dLMJuxOxlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6387S8srq2npho7i5tb2zW9rbr5sk04z7LJGJbobUcCkU91Gg5M1UcxqHkjfCwc3EbzxybUSi7nGY8iCmPSUiwShayX96OL3yOqWyW3GnIIvEy0kZctQ6pa92N2FZzBUySY1peW6KwYhqFEzycbGdGZ5SNqA93rJU0ZibYDQ9dkyOrdIlUaJtKSRT9ffEiMbGDOPQdsYU+2bem4j/ea0Mo8tgJFSaIVdstijKJMGETD4nXaE5Qzm0hDIt7K2E9ammDG0+RRuCN//yIqmfVTy34t2dl6vXeRwFOIQjOAEPLqAKt1ADHxgIeIZXeHOU8+K8Ox+z1iUnnzmAP3A+fwDyVo4a</latexit><latexit sha1_base64="cw3JjH9p5KUUtntukBkoaJJMzdk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5KIoBeh6MVjBdMW2lg22027dLMJuxOxlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6387S8srq2npho7i5tb2zW9rbr5sk04z7LJGJbobUcCkU91Gg5M1UcxqHkjfCwc3EbzxybUSi7nGY8iCmPSUiwShayX96OL3yOqWyW3GnIIvEy0kZctQ6pa92N2FZzBUySY1peW6KwYhqFEzycbGdGZ5SNqA93rJU0ZibYDQ9dkyOrdIlUaJtKSRT9ffEiMbGDOPQdsYU+2bem4j/ea0Mo8tgJFSaIVdstijKJMGETD4nXaE5Qzm0hDIt7K2E9ammDG0+RRuCN//yIqmfVTy34t2dl6vXeRwFOIQjOAEPLqAKt1ADHxgIeIZXeHOU8+K8Ox+z1iUnnzmAP3A+fwDyVo4a</latexit><latexit sha1_base64="cw3JjH9p5KUUtntukBkoaJJMzdk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5KIoBeh6MVjBdMW2lg22027dLMJuxOxlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6387S8srq2npho7i5tb2zW9rbr5sk04z7LJGJbobUcCkU91Gg5M1UcxqHkjfCwc3EbzxybUSi7nGY8iCmPSUiwShayX96OL3yOqWyW3GnIIvEy0kZctQ6pa92N2FZzBUySY1peW6KwYhqFEzycbGdGZ5SNqA93rJU0ZibYDQ9dkyOrdIlUaJtKSRT9ffEiMbGDOPQdsYU+2bem4j/ea0Mo8tgJFSaIVdstijKJMGETD4nXaE5Qzm0hDIt7K2E9ammDG0+RRuCN//yIqmfVTy34t2dl6vXeRwFOIQjOAEPLqAKt1ADHxgIeIZXeHOU8+K8Ox+z1iUnnzmAP3A+fwDyVo4a</latexit>

s
<latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit>

P (s)
<latexit sha1_base64="oLZdznYw1S9eib35nbA4DjhAa3k=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXmjVzMahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH0MsjbY=</latexit><latexit sha1_base64="oLZdznYw1S9eib35nbA4DjhAa3k=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXmjVzMahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH0MsjbY=</latexit><latexit sha1_base64="oLZdznYw1S9eib35nbA4DjhAa3k=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXmjVzMahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH0MsjbY=</latexit><latexit sha1_base64="oLZdznYw1S9eib35nbA4DjhAa3k=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXmjVzMahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH0MsjbY=</latexit>

x0
<latexit sha1_base64="R135vjpnIa7C4FCMWzv6Aw3hypQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9R3++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAKLI2f</latexit><latexit sha1_base64="R135vjpnIa7C4FCMWzv6Aw3hypQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9R3++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAKLI2f</latexit><latexit sha1_base64="R135vjpnIa7C4FCMWzv6Aw3hypQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9R3++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAKLI2f</latexit><latexit sha1_base64="R135vjpnIa7C4FCMWzv6Aw3hypQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9R3++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAKLI2f</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>
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Figure 19. The recursion equation (10.6) and its limit.

recursion relation

𝑥𝑛+1 = 𝑃𝑛+1(0) = 𝑃 (𝑃𝑛(0)) = 𝑃 (𝑥𝑛) , 𝑛 ≥ 0 (10.6)

with the initial condition 𝑥0 = 0, because the process is not extinct at 𝑛 = 0

(𝑍0 = 1). Hence 𝑥1 = 𝑃(0), 𝑥2 = 𝑃(𝑃(0)) etc. It is evident that 𝑥𝑛 must be an
increasing sequence, because if 𝑍𝑛 = 0 then for sure 𝑍𝑛+1 = 0. Indeed, this
can be proven by induction: 𝑥1 > 𝑥0, because 𝑃(𝑠) is an increasing function,
and if 𝑥𝑛 > 𝑥𝑛−1, then 𝑥𝑛+1 = 𝑃(𝑥𝑛) > 𝑃(𝑥𝑛−1) = 𝑥𝑛, again because 𝑃(𝑠) ↗ 𝑠.
Since 𝑥𝑛 ≤ 1 is a bounded sequence, the limit of 𝑥𝑛 for 𝑛 → ∞ exists and it
satisfies

𝑥∗ = lim
𝑛→∞

𝑥𝑛 = 𝑃(𝑥∗). (10.7)

It is possible to gain insight on the behaviour of 𝑥𝑛 by a graphical analysis,
as shown in Figure 19. This plots 𝑃(𝑠) as a function of 𝑠. This is an increasing
function and all its derivatives are non-negative. 𝑃(𝑠) intersects the 45𝑜 line
at 𝑠 = 1. If this is the only intersection, as in Figure 19 (left), then 𝑥∗ = 1. In
this case the branching process will surely come to an end, i.e. 𝑥∗ = 1. If there
is another solution of the equation 𝑃(𝑠) = 𝑠, then 𝑥∗ < 1 is the smallest of the
two solutions. In this case, with probability 1 − 𝑥∗ the branching process will
continue indefinitely.

Whether the branching process will get extinct (𝑥∗ = 1) or not (𝑥∗ < 1) is
determined by the slope of 𝑃(𝑠) at 𝑠 = 1. If the slope 𝑃′(1) is smaller than one
then 𝑋∗ = 1 and if 𝑃′(1) > 1 then 𝑥∗ < 1. The slope 𝑃′(1) coincides with the
expected number of offsprings per individual

𝑃′(1) = 𝔼
[
𝑋
(𝑛)

𝑖

]
= 𝜇 (10.8)
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Figure 20. Family names can be considered as an example of a branching process. In
different countries (Belgium, Italy, US and India) the fraction of surnames that belong
to more than 𝑥 individuals in the population behaves as a power law 𝑃(𝑁 > 𝑥) ∼ 𝑥−𝛾

with an exponent 𝛾 that, apparently, is smaller the larger is the country. Can you
relate this behaviour with the theory of branching processes being discussed here?
(The data is taken from different sources on internet in Nov. 2024. In each case the
list of the𝑀 most frequent names –𝑀 = 100 for Belgium, 200 for US and 1000 for
Italy and India – was reported with the number of individuals with that surname.)

that we shall denote by 𝜇 henceforth. Therefore

𝜇 ≤ 1 ⇒ 𝑥∗ = 1 (10.9)
𝜇 > 1 ⇒ 𝑥∗ < 1 (10.10)

The rationale for this result appears more clearly if we use Eq. (10.5) to find
how the expected value of the population grows with the generations:

𝔼 [𝑍𝑛+1] = 𝑃′
𝑛+1

(1) = 𝑃′𝑛(1)𝑃
′(1) = 𝜇𝔼 [𝑍𝑛] .

Iterating this recursion, starting with 𝔼 [𝑍0] = 1, we find that

𝔼 [𝑍𝑛] = 𝜇𝑛 .

Summarising, when 𝜇 ≤ 1 the population does not grow exponentially and in-
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generations
1      2       3      4       5  . . .

generations
1      2       3      4       5  . . .

Figure 21. The total progeny of the ancestor can be split into the progenies of its
offsprings (plus itself).

deed it will surely become extinct (𝑥∗ = 1).3 When 𝜇 > 1 there is a probability
1 − 𝑥∗ that the process will continue forever, and in this case the population’s
size will explode, with an exponential behaviour.

Exercise 10.2

Show that for 𝜇 < 1 the variance 𝕍 [𝑍𝑛] remains of the same order
of the expected value 𝔼 [𝑍𝑛] whereas when 𝜇 > 1, 𝕍 [𝑍𝑛] ∝ 𝔼 [𝑍𝑛]

2.
(Hint: find a recursion relation for 𝑎𝑛 = 𝕍 [𝑍𝑛] ∕𝔼 [𝑧𝑛]).

10.3 The total progeny and universality

The total number of individuals up to generation 𝑛

𝑌𝑛 = 𝑍0 + 𝑍1 + … + 𝑍𝑛

is called the total progeny of the ancestor up to generation 𝑛. If 𝑌(𝑗)

𝑛−1
is the

3This is true because for a non-negative integer random variable we have the inequality

𝑃{𝑍𝑛 > 0} ≤ 𝔼 [𝑍𝑛]

which you can easily prove.
So if 𝔼 [𝑍𝑛] → 0 as 𝑛 → ∞, so does 𝑃{𝑍𝑛 > 0} = 1 − 𝑥𝑛.
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total progeny of the 𝑗th offspring of the ancestor after 𝑛 − 1 generations, then

𝑌𝑛 = 1 +

𝑋0∑

𝑗=1

𝑌
(𝑗)

𝑛−1
.

The associated generating function 𝑅𝑛(𝑠) = 𝔼
[
𝑠𝑌𝑛

]
then satisfies

𝑅𝑛(𝑠) = 𝔼 [𝑠1+𝑌
(1)

𝑛−1
+…+𝑌

(𝑋0)

𝑛−1 ] = 𝑠𝔼
[
𝑅𝑛−1(𝑠)

𝑋0
]
= 𝑠𝑃 (𝑅𝑛−1(𝑠)) (10.11)

for all 𝑛 > 0, with 𝑅0(𝑠) = 𝑠, because 𝑌0 = 1. By the same argument used
to show that 𝑥𝑛 is an increasing sequence in 𝑛, one can show that for each
𝑠 ∈ (0, 1), 𝑅𝑛(𝑠) is a monotonic sequence in 𝑛. Hence the limit of 𝑅𝑛(𝑠) as
𝑛 → ∞ exists and it satisfies

𝜌(𝑠) = lim
𝑛→∞

𝑅𝑛(𝑠) = 𝑠𝑃 (𝜌(𝑠)) . (10.12)

The coefficient of 𝑠𝑛 in the power expansion of 𝜌(𝑠) is the probability that the
total (asymptotic) progeny of the ancestor 𝑌∞ equals 𝑛, i.e.

𝜌(𝑠) =

∞∑

𝑛=1

𝑃{𝑌∞ = 𝑛}𝑠𝑛.

Notice that for 𝑠 = 1, the equation for 𝜌(1) reduces to Eq. (10.7). This means
that 𝜌(1) = 𝑥∗ equals the extinction probability. When 𝜇 ≤ 1, we have 𝑥∗ = 1,
which implies that 𝑃{𝑌∞ = 𝑛} is correctly normalised. When 𝜇 > 1 instead
𝜌(1) = 𝑥∗ < 1 which means that the distribution 𝑃{𝑌∞ = 𝑛} is defective.
Indeed 𝜌(1) does not account for the probability 𝑃{𝑌∞ = ∞} = 1 − 𝑥∗ of an
infinite population.

The expected size of the total progeny is infinite for 𝜇 > 1. Yet we can com-
pute the expected value of𝑌∞ conditional on𝑌∞ < +∞, as𝔼 [𝑌∞|𝑌∞<+∞]=
𝜌′(1)

𝜌(1)
. Now

𝜌′(1) = 𝑃(𝜌(1)) + 𝑃′(𝜌(1))𝜌′(1) =
𝑃(𝑥∗)

1 − 𝑃′(𝑥∗)
=

𝑥∗

1 − 𝑃′(𝑥∗)
(10.13)

For 𝜇 < 1, 𝑥∗ = 1 and 𝑃′(𝑥∗) = 𝜇. Then the expected value of 𝑌∞ diverges as
𝜇 → 1−, i.e.

𝔼 [𝑌∞|𝑌∞ < +∞] =
1

1 − 𝜇
𝜇 < 1 . (10.14)
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For 𝜇 > 1, instead, it is not possible to derived a closed form equation. How-
ever it is possible to understand the limit behavior for 𝜇 → 1+. In this limit
we expect that 𝑥∗ ≈ 1 so we can expand Eq. (10.7) around 𝑥∗ = 1

𝑥∗ = 𝑃(𝑥∗) ≃ 𝑃(1) + 𝑃′(1)(𝑥∗ − 1) +
1

2
𝑃′′(1)(𝑥∗ − 1)2 + …

which means that

𝑥∗ ≃ 1 − 2
𝜇 − 1

𝑃′′(1)
+ 𝑂((𝜇 − 1)2).

This allows us to estimate the denominator in Eq. (10.13) using

𝑃′(𝑥∗) ≃ 𝑃′(1) + 𝑃′′(1) [−2
𝜇 − 1

𝑃′′(1)
] + 𝑂((𝜇 − 1)2) ≃ 𝜇 − 1 + 𝑂((𝜇 − 1)2)

Therefore we find that

𝔼 [𝑌∞|𝑌∞ < +∞] ≃
1

𝜇 − 1
𝜇 → 1+ (10.15)

diverges in the same way, on both sides of 𝜇 = 1. This is an example of univer-
sal behaviour, because the singularity in Eq. (10.15) is the same, irrespective
of the details of the branching process.

Let us make a specific example and consider a branching process with

𝑝𝑘 =

⎧

⎨

⎩

𝑝 for 𝑘 = 2

1 − 𝑝 = 𝑞 for 𝑘 = 0

0 otherwise .

Then 𝑃(𝑠) = 𝑞 + 𝑝𝑠2 and the expected number of offsprings per individual
is 𝜇 = 𝑃′(1) = 2𝑝. The extinction probability is given by the solution of the
quadratic equation 𝑠 = 𝑞 + 𝑝𝑠2, which is

𝑥∗ =
1 −

√
1 − 4𝑝𝑞

2𝑝
= {

1 for 𝑝 ≤ 1
1−𝑝

𝑝
for 𝑝 > 1∕2 .

As expected, 𝑥∗ = 1 for 𝜇 ≤ 1, and 𝑥∗ < 1 when 𝜇 > 1. The generating
function of the total progeny is

𝜌(𝑠) = 𝑠𝑃(𝜌(𝑠)) = 𝑠
[
𝑞 + 𝑝𝜌(𝑠)2

]
=
1 −

√
1 − 4𝑝𝑞𝑠2

2𝑝𝑠
.
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Figure 22. The expected value of the total progeny, for a finite branching process.

This is the same as the generating function Φ(𝑠) for the first loss in a random
walk (see Eq. (9.21) with 𝑝 ↔ 𝑞). This coincidence is not accidental, as shown
by the following argument.

In order to count the progeny, we can form a queue starting from the
ancestor. Each time we count an individual in the queue we remove it but
we also add its offsprings at the end of the queue. Let 𝑄𝑡+1 be the length of
the queue when we have counted 𝑡 individuals. Then 𝑄𝑡+1 = 𝑄𝑡 − 1 if the tth
individual leaves no offsprings (which occurs with probability 𝑞). Otherwise
(with probability 𝑝) the tth individual leaves two offsprings and 𝑄𝑡+1 = 𝑄𝑡 + 1.
Therefore 𝑄𝑡 − 1 = 𝑆𝑡−1 behaves exactly as a random walk. The total progeny
𝑌∞ = min{𝑡 ∶ 𝑄𝑡 = 0} is the time 𝑡 when the queue is empty for the first
time. In terms of the random walk 𝑆𝑘 (with 𝑘 = 𝑡 − 1) 𝑌∞ = 𝑇 is exactly
the waiting time for the first loss.4 The analogy between queuing problems
and random walks goes beyond this specific example. It applies in general
with 𝑝𝑘 being the probability that 𝑘 new customers join the queue while the
first in the queue is served. This corresponds to a random walk that takes a
negative step 𝑋𝑛+1 = 𝑋𝑛 − 1 with probability 𝑝𝑘=0 and that otherwise takes
𝑘 − 1 steps in the positive direction (𝑋𝑛+1 = 𝑋𝑛 + 𝑘 − 1) with probability 𝑝𝑘.
The behaviour of 𝑌∞ described above implies that the expected time for the

4Compute 𝔼 [𝑌∞|𝑌∞ < +∞] for a branching process with 𝑝𝑘 = 𝑝(1 − 𝑝)𝑘 , 𝑘 = 0, 1, 2, …
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Figure 23. The total progeny of a branching process and the time for first loss in a
random walk.

first loss of this random walk, which is closely related to the first return to
the origin, has the same generic behaviour (i.e. it is universal) as a function of
𝔼 [𝑋𝑛+1 − 𝑋𝑛 − 1] = 𝜇 − 1 (see Figure 22).

Exercise 10.3

Can one use the theory of branching process to predict the evolution
of a pandemic such as Covid-19, given the past data on the number of
reported cases? What are the main problems in applying these ideas to
a real epidemics?

The distribution of the total progeny 𝑌∞ for 𝜇 = 1 also has an universal
asymptotic behaviour 𝑃{𝑌∞ = 𝑛} ∼ 𝑛−3∕2, irrespective of 𝑝𝑘. This asymptotic
behaviour is consistent with a singularity at 𝑠 = 1 of 𝜌(𝑠). Therefore, we shall
study the behavior of 𝜌(𝑠) for 𝑠 ∼ 1. In order to do this, we set 𝑠 = 1 − 𝜖 with
𝜖 ≪ 1. We also expect 𝜌(𝑠) ≃ 𝜌(1) = 1. Hence we set 𝜌(𝑠) = 1 − 𝜂(𝜖), with
𝜂 → 0 as 𝜖 → 0. Now expand the equation 𝜌(𝑠) = 𝑠𝑃(𝜌(𝑠)) to leading order:

1 − 𝜂 = (1 − 𝜖)𝑃(1 − 𝜂) (10.16)

= (1 − 𝜖) [𝑃(1) − 𝑃′(1)𝜂 +
1

2
𝑃′′(1)𝜂2 + …] (10.17)

= 1 − 𝜖 − 𝜂 + 𝜖𝜂 +
1

2
𝑃′′(1)𝜂2 + … (10.18)

Keeping only the leading order terms, this equation becomes 0 ≃ −𝜖 +
1

2
𝑃′′(1)𝜂2 + …. This shows that 𝜂(𝜖) ∼

√
𝜖, i.e. that 𝜌(𝑠) ≃ 1 − 𝑐

√
1 − 𝑠 for
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Figure 24. Lewis Fry Richardson, besides landmark contributions to meteorology,
also studied the statistics of “deadly quarrels”. Thesemay be thought of as a branching
process where, each casualty on one side causes a random number of casualties on
the other. In this simplified view, the statistics of deadly quarrels suggests that the
branching process is critical, i.e. that the logic driving deadly quarrels is an eye for an
eye [Data from the Conflict Catalogue by Peter Brecke].

𝑠 → 1−, with 𝑐 =
√
2∕𝑃′′(1). This type of singular behaviour of 𝜌(𝑠) implies

𝑃{𝑌∞ = 𝑛} ∼ 𝑛−3∕2, as anticipated.

Exercise 10.4

This derivation assumes that 𝑃(𝑠) has finite first and second derivative
at 𝑠 = 1. Thismeans that the number𝑋𝑖 of offsprings of each individual
has finite expected value and variance. Suppose that 𝑝𝑘 = 𝑃{𝑋𝑖 =

𝑘} ∼ 𝑘−𝛾−1 with 𝛾 ∈ (1, 2), so that the variance is infinite and 𝑃(𝑠) ≃
𝑠 − 𝑐(1 − 𝑠)𝛾 for 𝑠 ≃ 1 (again with 𝜇 = 1). Using the same argument,
show that in this case 𝑃{𝑌∞ = 𝑛} ∼ 𝑛−1∕𝛾−1.
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Y (j)
1

Figure 25. A random network.

10.4 An application to random networks*

A network5 𝒢 = (𝒱, ℰ) is composed of a set 𝒱 of 𝑛 nodes or vertices and a set
ℰ of edges, each of which connects two nodes 𝑖, 𝑗 ∈ 𝒱 with 𝑖 ≠ 𝑗. Random
networks are networks where the edges are drawn at random between pairs of
nodes and at most one edge connects any two nodes.6 The prototype example
are Erdös-Rényi random graphs, which are generated drawing at random
edges between each pair of nodes with a probability 𝑝. In the limit 𝑛 → ∞,
with 𝑝 = 𝜆∕𝑛, each node ends up having a number of edges 𝐸𝑖 —which is
called the degree—which has a Poisson distribution

𝑃{𝐸𝑖 = 𝑘} =
𝜆𝑘

𝑘!
𝑒−𝜆 . (10.19)

This construction can be generalised to randomnetworkswith a generic degree
distribution 𝑃{𝐸𝑖 = 𝑘} = 𝜋𝑘, 𝑘 = 0, 1, ….7

For a given𝜋𝑘, an interesting question is whether the network is composed
of a single component or by many, or whether a component of infinite size
exists or not, in the limit 𝑛 → ∞.

5This section follows [16].
6Networks have no double edge and no tadpole, which is an edge joining a node to itself.

Graphs with this properties are called simple graphs.
7In order to construct such a network, first draw at random the degree 𝐸𝑖 of each node 𝑖 ∈ 𝒱

from the distribution 𝜋𝑘 . Each node 𝑖 comes with 𝐸𝑖 “half edges” that have to be connected.
In order to do this, build a list of all half edges and recursively pick two of them at random,
connect the corresponding nodes and remove the two half edges from the list. Continue this
procedure until the list is empty. If two nodes are connected by more than one edge or if an
edge connects a node to itself, restart the procedure from scratch until you get a simple graph.
Notice that

∑

𝑖
𝐸𝑖 should be an even number.
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In order to address this question, consider picking a node 𝑖 at random, and
consider the number of nodes that can be reached from this node following
one of its links. Let 𝑗 denote this neighbour. The number of nodes that can
be reached from 𝑖 through 𝑗 is obtained following all the other links of 𝑗 thus
reaching all neighbours of 𝑗 and then to the neighbours of neighbours of 𝑗
and so on. The similarity with branching processes should now be clear: 𝑗
is the ancestor, the neighbours of 𝑗 form the first generation, the neighbours
of neighbours the second generation and so on. Notice that the size of the
first generation 𝑍1 = 𝐸𝑗 − 1 equals the number of neighbours of 𝑗 minus
one, which is the link that joins 𝑗 to 𝑖. We can relate the distribution of 𝑍1,
i.e. the distribution of the number of offsprings in the branching process, to
the degree distribution 𝜋𝑘. The key insight is that the probability to choose a
node 𝑗 is proportional to its number of links. Hence

𝑃{𝐸𝑗 = 𝑘} =
𝑘𝜋𝑘

𝔼
[
𝐸𝑗
] ,

where the denominator 𝔼
[
𝐸𝑗
]
=
∑

𝑘
𝑘𝜋𝑘 ensures normalisation. The distribu-

tion of the number of offspring in the associated branching process, therefore
is given by

𝑝𝑘 =
(𝑘 + 1)𝜋𝑘+1

𝔼
[
𝐸𝑗
] (10.20)

which accounts for the fact that node 𝑗 should have at least one link for it to be
reached. Then it is clear that the size of the network that can be reached from
𝑗 is the total progeny 𝑌(𝑗)

∞ of the branching process with offspring distribution
𝑝𝑘. The total number of nodes that are connected to 𝑖, i.e. the size of the
component of the network to which 𝑖 belongs, is obtained summing over all
neighbours 𝑗

𝑁𝑖 = 1 + 𝑌
(1)
∞ + … + 𝑌

(𝐸𝑖)
∞ (10.21)

and its generating function is

𝐺(𝑠) = 𝔼 [𝑠1+𝑌
(1)
∞ +…+𝑌

(𝐸𝑖 )

∞ ] = 𝑠𝔼
[
𝜌(𝑠)𝐸𝑖

]
= Π(𝜌(𝑠)) (10.22)

where 𝜌(𝑠) = 𝔼
[
𝑠𝑌

(𝑗)
∞

]
= 𝑠𝑃(𝜌(𝑠)) satisfies the equation of the total progeny

of a branching process with probability 𝑝𝑘 and generating function 𝑃(𝑠) =∑

𝑘
𝑝𝑘𝑠

𝑘. Therefore we see that if the expected number

𝜇 =
∑

𝑘

𝑘𝑝𝑘 =
𝔼
[
𝐸𝑗(𝐸𝑗 − 1)

]

𝔼
[
𝐸𝑗
] (10.23)
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of neighbours of a neighbour of 𝑖 (excluding 𝑖) is less then one, node 𝑖 will
surely belong to a finite component. This means that a random network with
𝜇 ≤ 1 will surely have no component of infinite size in the limit 𝑛 → ∞.
When 𝜇 > 1 instead, there is a finite probability that the branching process
will not get extinct and hence that node 𝑖 belongs to a component of infinite
size.

For an Erdös-Rényi random graphs 𝑝𝑘 = 𝜋𝑘 coincides with the degree
distribution and hence 𝜇 = 𝜆. In general, the condition 𝜇 > 1 for the existence
of a giant component in a random graph demands that the expected value of
the square of the degree should be larger than twice the expected degree, i.e.
𝔼
[
𝐸2
𝑗

]
> 2𝔼

[
𝐸𝑗
]
.

Note also that the solution 𝐺(𝑠) also provides access to the distribution
of the sizes of the components of the network. For example, at 𝜇 = 1 this
theory predicts that the fraction of components of size 𝑠 should be proportional
to 𝑠−3∕2.

As a final comment, we observe that this theory assumes that following
the links away from a given node 𝑖 one never gets back to the original site 𝑖. In
other words, this theory assumes that the network has no loops. This is wrong,
because a random graph of 𝑛 nodes can have loops. Consider for example
the case where 𝜇 > 1. Then the construction discussed above suggests that
the number of nodes at distance 𝑑 from 𝑗 grows as 𝜇𝑑. Yet this number
cannot exceed the total number 𝑛 of nodes. Therefore it is clear that when
𝑑 ≃

log 𝑛

log 𝜇
some of the nodes reached in this construction must necessarily

have been reached already. This argument suggests that loops of size log 𝑛
exist in random graphs. This implies that locally a random networks looks
like a tree, for 𝑛 → ∞. Furthermore, when 𝜇 < 1 components are all of a
finite size, hence loops are rare. So the theory, though not exact, offers a good
approximation of the statistics of component sizes of random networks for
𝜇 < 1 and for the emergence of the giant component when 𝜇 → 1−.

Exercise 10.5

Show that a random graph where all the nodes have degree 𝐸𝑖 = 2 is
a collection of loops. Compute the probability that a random node 𝑖
belongs to a loop of size 𝓁.

The transition at 𝜇 = 1 between a sparse network composed of many dis-
connected components and a dense network characterised by a giant compo-
nent, is an example of a percolation transition. Percolation is a mathematical
model defined on a 𝑑-dimensional lattice (e.g. a hyper-cubic lattice) of linear
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Figure 26. A percolation network on a 𝑑 = 2 dimensional lattice.

size 𝐿. Each pair of neighbour nodes in this lattice are connected by a link
with probability 𝑝 and the two nodes are disconnected otherwise. When 𝑝 is
small, all clusters of connected nodes are of finite size so that there is no path
of links that connects one side of the lattice to the other side, when 𝐿 → ∞.
Such a path emerges when 𝑝 reaches a critical percolation threshold 𝑝𝑐 and
the cluster of links “percolates” from one side of the system to the other for
all 𝑝 ≥ 𝑝𝑐.

The difference between random graphs and percolation is that in the latter
links can only occur between neighbours on the lattice. Since the number of
neighbours increases with the dimension 𝑑, this restriction plays a weaker
and weaker role as 𝑑 increases. Indeed random graphs may be thought of as
describing the 𝑑 → ∞ limit of percolation. Indeed the statistical behaviour
of the two problems share many similarities. For example the distribution
of cluster sizes at 𝑝𝑐 also follows a power law distribution 𝑝(𝑠) ∼ 𝑠−𝜏 and the
exponent takes its “mean-field” value 𝜏 = 3∕2 for 𝑑 ≥ 6, which coincides
with the exponent that governs the component size distribution of random
networks.





Chapter 11

Markov chains

Up to now we have discussed sequences of independent random variables
𝑋1, … , 𝑋𝑛, for which1

𝑃{𝑥1, … , 𝑥𝑛} =

𝑛∏

𝑖=1

𝑃{𝑥𝑖}.

In general, the joint distribution satisfies

𝑃{𝑥1, … , 𝑥𝑛} = 𝑃{𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1}𝑃{𝑥𝑛−1|𝑥𝑛−2, … , 𝑥1} …𝑃{𝑥2|𝑥1}𝑃{𝑥1}.

Markov processes are sequences of random variables where the index 𝑛 can
be considered as a time variable, and where the conditional probability

𝑃{𝑥𝑡+1|𝑥𝑡, 𝑥𝑡−1, … , 𝑥1} = 𝑃{𝑥𝑡+1|𝑥𝑡} , 𝑡 = 1, 2, … (11.1)

does not depend on the values 𝑥𝜏 of the process, for 𝜏 < 𝑡. In other words, for
a Markov process, conditional on the present (𝑥𝑡), the future (𝑥𝑡+1, 𝑥𝑡+2, …) is
independent of the past (𝑥𝑡−1, 𝑥𝑡−2, …). This means that the present state 𝑥𝑡
contains all the information needed to determine the future evolution. The
probability of a sequence, for a Markov process reads

𝑃{𝑥1, … , 𝑥𝑛} =
⎡
⎢

⎣

𝑛−1∏

𝑡=1

𝑃{𝑥𝑡+1|𝑥𝑡}
⎤
⎥

⎦

𝑃{𝑥1} . (11.2)

A Markov process where 𝑥𝑡 takes values in a discrete set 𝒮 is called a
Markov chain.2 The elements of 𝒮 are also called states and we shall denote

1We use 𝑥𝑖 as a shorthand for the event {𝑋𝑖 = 𝑥𝑖}.
2A full account ofMarkov chains is given in FellerXV, of whichwhat follows is a synthesis.
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them by integers,3 i.e. 𝒮 ⊆ ℕ. Because of Eq. (11.2), a Markov chain is fully
determined by an initial distribution 𝛼𝑖 = 𝑃{𝑋1 = 𝑖} and by a matrix

𝑝𝑖,𝑗 = 𝑃{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} , 𝑖, 𝑗 ∈ 𝒮 . (11.3)

The matrix 𝑃̂ = {𝑝𝑖,𝑗} is called the transition matrix, because its elements give
the probabilities of transitions between any two states.4

We have already encountered examples of Markov chains. A random walk
𝑆𝑛 is a Markov chain, because 𝑆𝑛+1 depends only on the position 𝑆𝑛 of the
walker at the previous step, not on how it got there (i.e. on 𝑆𝑡 for 𝑡 < 𝑛).
Branching processes 𝑍𝑛 are also Markov chains. In both cases, the state space
𝒮 is infinite. For simplicity, we shall limit our discussion to cases where 𝒮 is
finite, and refer to Feller for an extended treatment.

11.1 Stochastic matrices
The transition matrix 𝑃̂ satisfies positivity and normalisation, i.e.

𝑝𝑖,𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝒮 ,
∑

𝑗∈𝒮

𝑝𝑖,𝑗 = 1, (11.4)

where the latter implies that from state 𝑖 theMarkov chainwillmove to another
state 𝑗 (possibly equal to 𝑖, if 𝑝𝑖,𝑖 > 0). The two conditions (11.4) define the set
of stochastic matrices. If 𝑃̂ and 𝑄̂ = {𝑞𝑖,𝑗} are two stochastic matrices (on 𝒮),
then their product 𝑃̂𝑄̂ is also a stochastic matrix. Indeed, {𝑃̂𝑄̂}𝑖,𝑗 ≥ 0 because
it is the sum of non-negative terms and

∑

𝑗∈𝒮

{𝑃̂𝑄̂}𝑖,𝑗 =
∑

𝑗,𝑘∈𝒮

𝑝𝑖,𝑘𝑞𝑘,𝑗 =
∑

𝑘∈𝒮

𝑝𝑖,𝑘

∑

𝑗∈𝒮

𝑞𝑘,𝑗 =
∑

𝑘∈𝒮

𝑝𝑖,𝑘 = 1 . (11.5)

Therefore the set of stochastic matrices defined on a set of states 𝒮 with the
matrix multiplication is a semi-group.5

This property allows us to generate a Markov chain 𝑃̂𝑄̂ by combining two
Markov chains. By extension, the combination of any number of Markov
chains is a Markov chain. In particular, combining a Markov chain 𝑃̂ with
itself 𝑛 times yields a Markov chain with transition matrix 𝑃̂𝑛. Its matrix
elements

𝑝
(𝑛)

𝑖,𝑗
=

∑

𝑘1∈𝒮

…
∑

𝑘𝑛−1∈𝒮

𝑝𝑖,𝑘1𝑝𝑘1,𝑘2 … , 𝑝𝑘𝑛−1,𝑗 = 𝑃{𝑋𝑡+𝑛 = 𝑗|𝑋𝑡 = 𝑖} (11.6)

3The sample space of a Markov chain of 𝑛 steps is Ω = 𝒮𝑛.
4In the most general case, the transition probability can also depend on time 𝑡. We limit

our discussion to homogeneousMarkov chains, for which this is not the case.
5It is not a group, because of the absence of an inverse.
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Figure 27. Decomposition of states in a Markov chain (taken from Feller XV.4):
𝒮 = 𝒯 ∪𝑖 𝒞𝑖, where 𝒯 = {2, 6, 7} is the set of transient states, 𝒞1 = {1, 4, 9} and
𝒞2 = {3, 8} are closed sets and 𝒞3 = {5} is an absorbing state.

have a simple interpretation of transition probabilities between states in 𝑛
steps. This probability is the sum over all paths 𝑖 → 𝑘1 → 𝑘2 → …𝑘𝑛−1 → 𝑗

from 𝑖 to 𝑗 through the intermediate states 𝑘𝓁.

11.2 Classification of states

A state 𝑖 is connected to 𝑗 if it possible to go from 𝑖 to 𝑗 in one step. We denote
this as

𝑖 → 𝑗 ⇔ if 𝑝𝑖,𝑗 > 0. (11.7)

This directional relation can be visualised in a networkwhere the nodes are the
states 𝒮 and the possible transitions 𝑝𝑖,𝑗 > 0 are represented as directed links,
as shown in Figure 27. State 𝑗 can also be reached from state 𝑖 by a directed
path of more than one step, that starts in 𝑖 and reaches 𝑗. For example, in
Figure 27, state 9 can be reached from 7 (e.g. by the path 7 → 2 → 2 → 1 → 9),
but there is no path from state 9 to 7 (i.e. 7 cannot be reached from 9). This
leads to the definition of a closed set 𝒞 ⊆ 𝒮which is a subset of states such that

i) no state 𝑗 ∉ 𝒞 can be reached from any state 𝑖 ∈ 𝒞, and6

ii) all states 𝑗 ∈ 𝒞 can be reached from any state 𝑖 ∈ 𝒞.

6This differs from the definition in Feller that considers only condition i). Without ii) the
union of two closed sets would also be a closed set.
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If a closed set is composed of a single state 𝒞 = {𝓁} then 𝓁 is called an ab-
sorbing state. States that do not belong to closed sets are called transient for
reasons that will become soon clear. So the states of a Markov chain can be
decomposed as

𝒮 = 𝒯
⋃

𝑎

𝒞𝑎 ,

where 𝒯 is the set of transient states. In order to mathematically define
transient states, we resort to ideas similar to those used for random walks. Let
𝑇𝑖→𝑗 be the time that a Markov chain that starts at 𝑋0 = 𝑖 at time 𝑡 = 0, visits
state 𝑗 for the first time. This is a first passage time. Its distribution7

𝑓
(𝑛)

𝑖,𝑗
= 𝑃{𝑇𝑖→𝑗 = 𝑛} = 𝑃{𝑋𝑛 = 𝑗, 𝑋𝑡 ≠ 𝑗 ∀ 0 < 𝑡 < 𝑛|𝑋0 = 𝑖} (11.9)

is the distribution of first passage times from 𝑖 to 𝑗. Likewise one can define
first return distributions as 𝑓(𝑛)

𝑖,𝑖
(with 𝑓(0)

𝑖,𝑖
= 0 by convention). The probability

that a Markov chain that starts from state 𝑖 ever returns to 𝑖 is

𝑓𝑖,𝑖 =

∞∑

𝑛=0

𝑓
(𝑛)

𝑖,𝑖
.

If 𝑓𝑖,𝑖 = 1 the Markov chain will surely return to state 𝑖, so we call state 𝑖
persistent. If𝑓𝑖,𝑖 < 1 instead, state 𝑖 is transient: with probability 1−𝑓𝑖,𝑖 > 0 the
Markov chain will never return to state 𝑖. The first passage time distribution
is related to the probability 𝑝(𝑛)

𝑖,𝑗
, by the equation

𝑝
(𝑛)

𝑖,𝑗
=

𝑛∑

𝜈=0

𝑓
(𝜈)

𝑖,𝑗
𝑝
(𝑛−𝜈)

𝑗,𝑗
, 𝑛 > 0. (11.10)

7As an example, consider a Markov chain between states 𝒮 = {0, 1, … ,𝑁} that satisfies the
martingale property

𝔼 [𝑋𝑛|𝑋0] = 𝑋0 ↔
∑

𝑘∈𝒮

𝑝
(𝑛)

𝑖,𝑘
𝑘 = 𝑖, (11.8)

for all 𝑖 ∈ [0,𝑁] and 𝑛 > 0. Eq. (11.8) for 𝑛 = 1 and 𝑖 = 0 cannot be true unless 𝑝0,0 = 1 and
𝑝0,𝑘 = 0 for all 𝑘 > 0. Likewise, for 𝑖 = 𝑁 and 𝑛 = 1, the only possibility to satisfy Eq. (11.8) is
to have 𝑝𝑁,𝑁 = 1 and 𝑝𝑁,𝑘 = 0 for all 𝑘 < 𝑁. Hence 0 and𝑁 are absorbing states. If there is no
further closed set, then the Markov chain 𝑋𝑛 will either converge to 0 or to 𝑁 as 𝑛 → ∞. This
means that 𝑝(𝑛)

𝑖,𝑘
→ 0 as 𝑛 → ∞ for all 0 < 𝑘 < 𝑁. Then Eq. (11.8) implies that the probabilities

that the Markov chain is “absorbed” at eaither states 0 or state 𝑁 are given by

lim
𝑛→∞

𝑝
(𝑛)

𝑘,𝑁
=

𝑘

𝑁
, lim

𝑛→∞
𝑝
(𝑛)

𝑘,0
= 1 −

𝑘

𝑁
.

This shows that the martingale property imposes very strong constraints on the process. Ir-
respective of the details of the dynamics on the transient states, this property allows us to
determine the asymptotic probability that the Markov chain will be absorbed in either one of
the two absorbing states.
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This equation reads as follows: in order for the Markov chain to be at 𝑗 if it
started 𝑛 steps before from 𝑖, it must visit state 𝑗 for the first time at some
intermediate time 𝜈 ∈ [1, 𝑛], and then return back to 𝑗 after 𝑛 − 𝜈 steps. Each
𝜈 determines a disjoint set of paths 𝑖 → 𝑗, so the probability of the event
{𝑋𝑛 = 𝑗|𝑋0 = 𝑖} can be computed as the sum on the probabilities of paths
going through 𝑗 at time 𝜈 for the first time.

Exercise 11.1

Consider an urn containing 𝑁 particles, 𝑋0 of which are black and
the remaining 𝑁 − 𝑋0 are white. At each step, draw 𝑁 balls with
replacement and let 𝑋1 be the number of black balls drawn. Build a
new urn that contains 𝑋1 black balls and𝑁−𝑋1 white balls. Continue
the process in the same way, with 𝑋𝑛+1 being the number of black balls
drawn with replacement from an urn with 𝑁 balls, 𝑋𝑛 of which are
black. Show that 𝑋𝑛 is a martingale and that, as 𝑛 → ∞, all balls in the
urn will be either black or white.

If we take 𝑖 = 𝑗 and sum 𝑝
(𝑛)

𝑗,𝑗
over 𝑛 ≥ 0, we obtain

∞∑

𝑛=0

𝑝
(𝑛)

𝑗,𝑗
= 1 +

∞∑

𝑛=1

𝑝
(𝑛)

𝑗,𝑗
= 1 + 𝑓𝑗,𝑗

∞∑

𝑚=0

𝑝
(𝑚)

𝑗,𝑗
(11.11)

=
1

1 − 𝑓𝑗,𝑗
, (11.12)

where we used Eq. (11.10) for the sum on 𝑛 > 0 and we changed the sum over
𝑛 and 𝜈 into a sum over𝑚 = 𝑛 − 𝜈 and 𝜈. Therefore the series in Eq. (11.11)
converges if 𝑓𝑗,𝑗 < 1 (i.e. if 𝑗 is a transient states). Eqs. (11.10) and (11.11)
imply that the probability to find aMarkov chain on a transient state 𝑗 vanishes
as 𝑛 → ∞. First because the convergence of the series in Eq. (11.11) implies
that

if 𝑗 is transient ⇒ lim
𝑛→∞

𝑝
(𝑛)

𝑗,𝑗
= 0. (11.13)

Second, taking the limit 𝑛 → ∞ in Eq. (11.10), shows also that 𝑝(𝑛)
𝑖,𝑗

→ 0 as
𝑛 → ∞ for all 𝑖 ∈ 𝒮, i.e. the Markov chain will not visit a transient state 𝑗,
irrespective of where it starts from. The Borel-Cantelli lemma, that we shall
discuss later in the course, states that convergence in Eq. (11.11) is a sufficient
condition to ensure that state 𝑗 will be visited only a finite number of times.
As a consequence, after a transient period, the Markov chain will “enter” one
of the closed sets 𝒞𝑎. The dynamics will be confined to 𝒞𝑎 for all subsequent
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times. It is easy to see that the Markov chain restricted to states 𝑖 ∈ 𝒞𝑎 is itself
a Markov chain, because all transitions to states 𝑗 ∉ 𝒞𝑎 are impossible (i.e.
𝑝𝑖,𝑗 = 0).

11.3 The invariant distribution
In order to discuss the dynamics of a Markov chain on states belonging to
the same closed set, let us focus on Markov chains with an unique closed set
𝒞 = 𝒮 that is identical to the whole set of states (i.e. 𝑓𝑖,𝑗 = 1 for all 𝑖, 𝑗 ∈ 𝒮).
We restrict attention to the case where 𝒮 is finite (|𝒮| < +∞). Markov chains
of this type are called irreducible.8

For an irreducible Markov chain, the probability 𝑝(𝑛)
𝑖,𝑗

to visit state 𝑗 after
𝑛 steps, starting from 𝑖, converges to a limit

lim
𝑛→∞

𝑝
(𝑛)

𝑖,𝑗
= 𝑢𝑗 , ∀𝑖, 𝑗 ∈ 𝒮. (11.14)

For the proof of this statement relies on Perron-Frobenius theorem, which
states that the maximal (in modulus) eigenvalue of a real square matrix with
positive entries is real and is unique. This applies to our case because 𝑝(𝑛)

𝑖,𝑗
> 0

for all 𝑖, 𝑗 ∈ 𝒮, for sufficiently large 𝑛, because for an irreducible Markov
chain every state 𝑗 can be reached from any other state 𝑖, by a sufficiently long
path. In addition, Perron-Frobenius theorem states that the corresponding
eigenvector has strictly positive components and that the largest eigenvalue
𝜆1 is bounded by

min
𝑖∈𝒮

∑

𝑗∈𝒮

𝑝𝑖,𝑗 ≤ 𝜆1 ≤ max
𝑖∈𝒮

∑

𝑗∈𝒮

𝑝𝑖,𝑗

For a stochastic matrix this implies 𝜆1 = 1. Eq. (11.15) indeed coincides
with the statement that the matrix 𝑃̂ has an eigenvalue equal to one with left
eigenvector equal to 𝑢𝑖. Normalisation of 𝑝𝑖,𝑗 implies that the corresponding
right eigenvector has all components equal to one.9

8Irreducible Markov chains are also called ergodic. The term ergodic also denotes recurrent
states that occur with positive asymptotic probability (see Feller).

9The spectral representation of 𝑃̂ gives detailed information on the Markov chain. Indeed,
if 𝑢(𝑚)

𝑖
and 𝑣(𝑚)

𝑖
are the left and right eigenvectors corresponding to the𝑚th largest (in modulo)

eigenvalues 𝜆𝑚, then one can write

𝑝
(𝑛)

𝑖,𝑗
− 𝑢𝑗 =

∑

𝑚>1

𝑣
(𝑚)

𝑖
𝑢
(𝑚)

𝑗
𝜆𝑛𝑚 ∼ 𝜆𝑛

2
→ 0

as 𝑛 → ∞. So the convergence of 𝑝(𝑛)
𝑖,𝑗
to 𝑢𝑗 for large 𝑛 is dominated by the second largest

eigenvalue 𝜆2 of 𝑃̂. As a consequence, we expect that 𝑋𝑛 is distributed according to 𝑢𝑗 for times
𝑛 ≫ 1∕| log |𝜆2||.
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Notice that the limit does not depend on 𝑖. This means that the Markov
chain loosesmemory of the initial state, when 𝑛 → ∞.

The left eigenvector 𝑢𝑗 is a probability distribution that is called the invari-
ant distribution. This is the asymptotic probability to find the Markov chain
in state 𝑗, for 𝑛 → ∞.

Taking the limit 𝑛 → ∞ on both sides of the equation

𝑝
(𝑛+1)

𝑖,𝑗
=
∑

𝑘∈𝒮

𝑝
(𝑛)

𝑖,𝑘
𝑝𝑘,𝑗

gives
𝑢𝑗 =

∑

𝑘∈𝒮

𝑢𝑘𝑝𝑘,𝑗 . (11.15)

This equation shows that the distribution 𝑢𝑗 is invariant under the action of
𝑃̂, i.e. it is time translation invariant.

Let us now show that the probability 𝑢𝑖 to be asymptotically at a recurrent
state 𝑖 is inversely proportional to the expected time it takes to return to that
site. Indeed, for any recurrent states, we can use Eq. (11.10) to derive a relation
between the generating function 𝐹𝑖,𝑖(𝑠) of first return times 𝑇𝑖→𝑖 to 𝑖 and the
generating function

𝑈𝑖,𝑖(𝑠) =

∞∑

𝑛=0

𝑝
(𝑛)

𝑖,𝑖
𝑠𝑛

of the probability 𝑝(𝑛)
𝑖,𝑖

of returns to 𝑖 at time 𝑛. This relation is analogous to
Eq. (9.28) and it reads 𝐹𝑖,𝑖(𝑠) = 1 − 1∕𝑈𝑖,𝑖(𝑠). This allows us to compute the
expected return time to 𝑖 as

𝔼 [𝑇𝑖→𝑖] = 𝐹′
𝑖,𝑖
(1) = lim

𝑠→1−

𝑑

𝑑𝑠
[1 −

1

𝑈𝑖,𝑖(𝑠)
]

= lim
𝑠→1−

𝑈′
𝑖,𝑖
(𝑠)

𝑈𝑖,𝑖(𝑠)
2
. (11.16)

The leading singularity for 𝑠 → 1 of 𝑈𝑖,𝑖(𝑠) is given by

𝑈𝑖,𝑖(𝑠) ≃
𝑢𝑖

1 − 𝑠
+ …

because 𝑝(𝑛)
𝑖,𝑖

→ 𝑢𝑖 > 0 converges to a finite limit for 𝑛 → ∞, if 𝑖 is a recurrent
state. Then the limit in Eq. (11.16) yields

𝔼 [𝑇𝑖→𝑖] =
1

𝑢𝑖
(11.17)
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Figure 28. The Ehrenfest model of diffusion.

which is what we set out to prove. The equation 𝑢𝑖 = 1∕𝔼 [𝑇𝑖→𝑖] has an
intuitive meaning: the probability that a Markov chain is found in a recurrent
state 𝑖 is inversely proportional to the time it takes to return to 𝑖.

As an example, let us consider the Ehrenfest model of diffusion. This
describes the equilibration of a gas of 𝑁 particles in a box divided into two
equal parts. Let 𝑛 be the number of particles in the left side of the box. At
each transition, one particle, chosen at random, moves form one side to the
other. Hence the transition probability is

𝑝𝑛,𝑛′ =

⎧

⎨

⎩

𝑛

𝑁
for 𝑛′ = 𝑛 − 1

1 −
𝑛

𝑁
for 𝑛′ = 𝑛 + 1

0 otherwise

The invariant distribution satisfies the equation

𝑢𝑛 = 𝑢𝑛+1
𝑛 + 1

𝑁
+ 𝑢𝑛−1 (1 −

𝑛 − 1

𝑁
) , 0 < 𝑛 < 𝑁 (11.18)

and10 𝑢0 = 𝑢1∕𝑁, 𝑢𝑁 = 𝑢𝑁−1(1 −
1

𝑁
). A solution for 𝑢𝑛 can be found express-

ing 𝑢𝑛+1 in terms of 𝑢𝑛 and 𝑢𝑛−1. Then starting, from 𝑛 = 0, we have

𝑢1 = 𝑁𝑢0, 𝑢2 =
𝑁(𝑁 − 1)

2
𝑢0, 𝑢3 =

𝑁(𝑁 − 1)(𝑁 − 2)

6
𝑢0, …

10Note that, in order to read Eq. (11.18) you need to “invert” time: the probability to be in
state 𝑛 is the probability to be in state 𝑛 − 1 at the previous step and then to add one particle
𝑛 − 1 → 𝑛, plus the probability to be at 𝑛 + 1 and then to remove one particle (𝑛 + 1 → 𝑛). On
the right hand side of Eqs. (11.18) and (11.15) you find the contribution from those states that
can lead to state 𝑛.
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Finally 𝑢0 can be determined by imposing normalisation. This leads to

𝑢𝑛 =
(𝑁

𝑛

)
2−𝑁 .

This result is consistent with intuition. After a very long time you expect each
particle to be on the left with probability 1∕2, hence 𝑛 should have a binomial
distribution.

These discussion extends toMarkov chains that havemore than one closed
set in obvious ways. To each closed set 𝒞𝑎 we can associate an invariant
distribution 𝑢(𝑎)

𝑗
, which vanishes on all states 𝑗 ∉ 𝒞𝑎. The probability 𝑝

(𝑛)

𝑖,𝑗

will now converge to the invariant distributions 𝑢(𝑎)
𝑗

of closed set 𝒞𝑎 with a

probability 𝑞(𝑎)
𝑖

that depends on the initial state 𝑖

lim
𝑛→∞

𝑝
(𝑛)

𝑖,𝑗
=
∑

𝑎

𝑞
(𝑎)

𝑖
𝑢
(𝑎)

𝑗
.

If 𝑖 ∈ 𝒞𝑎 then 𝑞
(𝑎)

𝑖
= 1 and 𝑞(𝑎

′)

𝑖
= 0 for all 𝑎′ ≠ 𝑎.

11.4 Time reversibility
Imagine to observe a sequence of states … ,𝑋𝑛, … , 𝑋𝑛+𝑘, … generated form a
Markov chain. If we cannot distinguish it from the time reversed process
… ,𝑋𝑛+𝑘, … , 𝑋𝑛, …, then theMarkov chain is reversible, i.e. it is invariant under
time inversion. A Markov chain that starts from a state 𝑖 will keep memory
of that state for a finite time, so it makes sense to address this question only
when 𝑛 → ∞ and the sequence we’re observing does not bear memory of
its initial conditions. In this case, all transient states will not appear in the
sequence, so it makes sense to restrict our discussion on time reversibility to
irreducible chains.

The transition matrix of the (time) reversed chain can be computed using
Bayes formula

𝑞𝑗,𝑖 = 𝑃{𝑋𝑛 = 𝑖|𝑋𝑛+1 = 𝑗} (11.19)

=
𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}𝑃{𝑋𝑛 = 𝑖}

𝑃{𝑋𝑛+1 = 𝑗}
(11.20)

=
𝑢𝑖𝑝𝑖,𝑗

𝑢𝑗
(11.21)

where we used the fact that, for 𝑛 large, 𝑃{𝑋𝑛 = 𝑖} converges to the invariant
distribution 𝑢𝑖.
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If 𝑞𝑗,𝑖 = 𝑝𝑗,𝑖 then there is no way in which the reversed process can be
distinguished from the forward one. The reversibility condition 𝑞𝑗,𝑖 = 𝑝𝑗,𝑖 can
also be stated in terms of the detailed balance condition

𝑢𝑗𝑝𝑗,𝑖 = 𝑢𝑖𝑝𝑖,𝑗 , ∀𝑖, 𝑗 ∈ 𝒮 (11.22)

This equation states that a Markov chain is reversible if, asymptotically, the
probability to observe transitions from any state 𝑖 to any other state 𝑗 equals
the probability to observe the reverse transition 𝑗 → 𝑖. If the detailed balance
condition is violated, the process is not reversible. This clearly happens if
there are two states 𝑖 and 𝑗 for which transitions 𝑖 → 𝑗 are possible but the
reversed ones 𝑗 → 𝑖 are not (i.e. 𝑝𝑗,𝑖 = 0). In summary, in order to find out
whether a Markov chain is reversible or not, the first step is to compute the
invariant distribution 𝑢𝑖 and the second is to check whether Eq. (11.22) holds
for all 𝑖, 𝑗 ∈ 𝒮 or not.

Exercise 11.2

Is the Ehrenfest model of diffusion reversible?

Exercise 11.3

Can a Markov chain on |𝒮| = 2 states be irreversible?



Chapter 12

Exercises on the first part of
the course

1. Consider two dice. Let

𝐴 = {sum of the faces is odd}

and
𝐵 = {at least one ace}.

Describe the events𝐴∪𝐵,𝐴∩𝐵 and𝐴∩𝐵. Assuming that each outcome
is equiprobable, find the probabilities of all these events.

2. Find simpler expressions for

(a) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵),

(b) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵)

(c) (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)

3. In 14000 tosses of a fair coin, one observes 7428 heads. Estimate the
probability to observe a larger number of heads to two decimal digits?

4. Let 𝐴1, … , 𝐴𝑛 be mutually independent events and let 𝑃{𝐴𝑘} = 𝑝𝑘.
What is the probability that none of the events occur? Show that this
probability is always less than 𝑒−

∑

𝑘
𝑝𝑘 . Show that the same inequality

holds if the events 𝐴1, … , 𝐴𝑛 are mutually exclusive with 𝑃{𝐴𝑘} = 𝑝𝑘.
Show that the probability that none of the events occur is always less
than 𝑒−

∑

𝑘
𝑝𝑘 .

151
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5. Three dice are rolled. If no two show the same face, what is the proba-
bility that one is an ace?

6. Suppose that 5men out of 100 and 25women out of 10000 are color-blind.
A colour-blind person is chosen at random. What is the probability of
his being male?

7. In a trow of 6𝑛 dice what is the probability to observe each face exactly
𝑛 times?

8. Three dice are thrown. 𝐴 is the event that two and only two dice show
the same face. Compute the probability of 𝐴. Consider the event 𝐵 that
the sum of the outcomes is even. Are 𝐴 and 𝐵 independent?

9. Compute the probability that the sum of 𝑛 dice is even and the proba-
bility that it is divisible by three.

10. A fair coin is tossed until for the first time the same result appears twice
consecutively. 𝐴𝑛 is the event that this occurs at the 𝑛th toss. Compute
the probability of 𝐴𝑛. Prove that the probability that the event 𝐴𝑛 never
occurs is zero. Consider the same problem in the case of the throw of a
dice with 𝑘 faces.

11. Consider an experiment where balls are consecutively put at random in
𝑛 boxes. Compute the probability of the event

𝐴𝑟 = {box 1 is empty after 𝑟 draws}

Find a representation of the elementsΩ of the sample space that allows
you to compute the probability of 𝐴𝑟 and compute it. Is 𝐴𝑟 ⊂ 𝐴𝑟+1 or
𝐴𝑟+1 ⊂ 𝐴𝑟 or none of the two?

Let 𝐵𝑟 = 𝐴𝑟−1 ∩ 𝐴𝑟 with 𝐴0 = Ω. Compute 𝑃{𝐵𝑟} and compute

lim
𝑟→∞

𝑃
(
∪𝑟
𝑘=1

𝐵𝑘
)
.

12. Show that if 𝑎, 𝑏 > 0 are integers, then the number of paths of 𝑛 steps
of a random walk that are always above −𝑏 and end at 𝑎 is

|{𝜔 ∶ 𝑆𝑘(𝜔) > −𝑏, ∀𝑘, 𝑆𝑛 = 𝑎}| =
( 𝑛
𝑛+𝑎

2

)
−
( 𝑛
𝑛+𝑎

2
+ 𝑏

)

Show that if 𝑏 > 𝑎 > 0 are integers, then the number of paths of 𝑛 steps
that are always below 𝑏 and end at 𝑎 is

|{𝜔 ∶ 𝑆𝑘(𝜔) < 𝑏, ∀𝑘, 𝑆𝑛 = 𝑎}| =
( 𝑛
𝑛+𝑎

2

)
−
( 𝑛
𝑛−𝑎

2
+ 𝑏

)
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13. Let 𝑆𝑛 and 𝑆𝑚 be two independent binomial random variables, denoting
the number of successes in 𝑛 and𝑚 experiments respectively. In both
cases, the probability of success in a single trial is 𝑝. How would you
show that 𝑆𝑛 + 𝑆𝑚 = 𝑆𝑛+𝑚? Show it.

14. Let 𝑋𝜆 and 𝑋𝜇 be two independent Poisson random variables with pa-
rameters 𝜆 and 𝜇 respectively. Compute the distribution of the variable
𝑋𝜆 + 𝑋𝜇. Could the result have been guessed?

15. The term echo chamber is used for situations where the opinion of an
individual is reinforced by the opinion of others, who are themselves
influenced by him/her. Consider a situation where Mr X may have two
opinions 𝜎𝑋 = ±1 about a particular issue. Contrast the situation where
Mr X is in isolation and 𝑃{𝜎𝑋} = 𝑒ℎ𝜎𝑋∕(2 cosh ℎ) to the one where he
interacts withMs Y. In the second case, Ms Y’s opinion 𝜎𝑌 ∈ {±1} on the
same issue is influenced by that of Mr X, so that the joint distribution is

𝑃{𝜎𝑋 , 𝜎𝑌} =
1

𝑍
𝑒ℎ𝜎𝑋+𝐽𝜎𝑋𝜎𝑌

with 𝑍 a normalisation constant. Show that there is no echo chamber
effect, in the sense that the probability that 𝜎𝑋 = 1 is the same in both
cases. Show that there is an echo chamber effect in the case when Mr
X and Ms Y can also be undecided, i.e. if 𝜎𝑋 , 𝜎𝑌 can also take value 0
besides ±1. Contrast the case where 𝑃{𝜎𝑋} = 𝑒ℎ𝜎𝑋∕(1 + 2 cosh ℎ) when
Mr X is in isolation to the case where he interacts with Y with the same
joint distribution of 𝜎𝑋 , 𝜎𝑌 as above (with a different 𝑍) (see [17] for the
general case).

16. Consider the random variable 𝑋(𝜔) ∶ Ω → [0,∞) with pdf 𝑝(𝑥) =
𝐴𝑥𝑞−1𝑒−𝑥. Compute 𝐴, the mean and the variance. Compute the ex-
pected value of 𝑒−𝑠𝑥. Do the same for a random variable 𝑋(𝜔) ∈ ℝ with
𝑝(𝑥) = 𝐴𝑒𝑥−𝑒

𝑥 .

17. Let 𝑋1 and 𝑋2 be two independent uniform random variables. What is
the pdf of 𝑋1 conditional on the event 𝐴 = {𝑋1 < 𝑋2}? (Hint: consider
the event 𝐵 = {𝑋1 ∈ [𝑥, 𝑥 + 𝑑𝑥)}). Imagine now there are 𝑛 uniform
random variables. What is the pdf of 𝑋1 conditional on the event 𝐴 =

{𝑋1 < 𝑋𝑖 ∀𝑖 = 2,… , 𝑛}?

18. The show at a theater in Moskow costs 5 rubles. 2𝑛 people show up in a
random order. 𝑛 of them have only notes of 10 rubles, whereas the rest
has notes of 5 rubles. 𝐴 is the event that the cashier has no change to
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give to some customer. Translate this problems in probability. What is
Ω? What is 𝒫? Compute the probability of 𝐴.

19. 𝑁 gentlemen go to theater each leaving his hat at the wardrobe. On
exit they are assigned their hats in a random order. 𝐴 is the event that
none of the gentlemen get his own hat back. Translate this problems in
probability. What is Ω? What is 𝒫? Compute the probability of 𝐴.

20. Records: let 𝑋1, 𝑋2, … , 𝑋𝑛, … be a sequence of i.i.d. random variables
drawn from a continuous distribution with pdf 𝑝(𝑥). Let 𝐴𝑛 = {𝑋𝑛 >

𝑋𝑖 ∀ 𝑖 < 𝑛} be the event that 𝑋𝑛 is a record. Show that the events 𝐴𝑛 are
independent.

21. A group of 𝑛 couples (husband and wife) arrives in a hotel. All the
2𝑛 people get distributed at random in 𝑛 double rooms. What is the
probability that Mrs Smith and Mr Smith are assigned the same room?
What is the probability that nowife is assigned a roomwith her husband?

22. A smoker has two boxes of 𝑛 matches in the two pockets of his coat.
Each time the smoker picks a match from a pocket chosen at random.
Consider the event 𝐴𝑟 that when he picks the last match from one of
the boxes, the other still contains 𝑟 matches. Compute the probability
of 𝐴𝑟.

Consider the case where the smoker has only one box with 2𝑛 matches:
𝑛 of them are red and the other 𝑛 are blue. Let 𝐴𝑟 now be the event
that when he picks the last match of one color, there are still 𝑟 matches
of the other color in the box. What is the difference with the previous
case?

Consider the case where the two boxes contain 𝑁 ≥ 𝑛matches and a
match is chosen each time with equal probability. When the 𝑛 matches
of the same colour are chosen, what is the probability that 𝑘 more
matches are left in the box of matches of the other colour?

23. Prove that

𝑃{𝑆𝑘 ≥ 0, 0 < 𝑘 < 2𝑛; 𝑆2𝑛 = 0} = 2𝑓2𝑛+2

Hint: look at the paths.

24. How far from the origin do you expect a point drawn at random inside
a 𝑑 dimensional sphere to be? Consider the case 𝑑 → ∞.
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25. Law of succession of Laplace: imagine that in 𝑛 independent trials of an
experiment, the event 𝐴 has always occurred. What is the probability
that the event 𝐴 will occur in the 𝑛 + 1th trial?
Hint: the first 𝑛 trials can be used to estimate the probability 𝑝 = 𝑃{𝐴}

of 𝐴 in a single trial. Assume that, a priori 𝑃{𝑝 ∈ [𝑥, 𝑥 + 𝑑𝑥)} = 𝑑𝑥 if
𝑥 ∈ [0, 1) and 0 otherwise.

How you would write a program that simulates the experiment?

26. In 𝑛 successive Bernoulli trials, each with probability of success 𝑝, what
is the probability that the last success occurs at trial 𝑛 − 𝑘? What is the
expected value of 𝑘? What is the expected value of 𝑝−𝑘?

27. A particle moves on a one dimensional lattice at discrete time steps. Let
𝑥𝑡 be its position and let

𝑃{𝑥𝑡+1 = 𝑦|𝑥𝑡} =

⎧

⎨

⎩

𝑝 if 𝑦 = 𝑥𝑡 + 2

1 − 𝑝 if 𝑦 = 𝑥𝑡 − 1

0 else

and let 𝑥𝑡=0 = 𝑧. Find the probability that the particle will ever reach
the origin (this has an interpretation in terms of gambling: you play a
gamewhere youwin two euros with probability 𝑝, and you lose one euro
otherwise. If you enter the game with 𝑧 euros, what is the probability
that you will lose all?).

28. Let𝑁 have a Poisson distribution with mean 𝜆 and let𝑁 balls be placed
randomly in 𝑛 cells. Show that the probability of finding exactly𝑚 cells
empty is

𝑝𝑛,𝑚 =
(𝑛

𝑚

)
𝑒−𝜆𝑚∕𝑛

(
1 − 𝑒−𝜆∕𝑛

)𝑛−𝑚

29. Bivariate generating function: let 𝑝𝑛,𝑘 = 𝑃{𝑋 = 𝑛,𝑌 = 𝑘} be the joint
distribution of the variables 𝑋 and 𝑌. Consider the joint generating
function

𝑃(𝑠, 𝑧) = 𝐸[𝑠𝑋𝑧𝑌] =
∑

𝑛,𝑘

𝑝𝑛,𝑘𝑠
𝑛𝑧𝑘

Show that the generating function of the marginal distributions 𝑃{𝑋 =

𝑛} and 𝑃{𝑌 = 𝑘} are given by 𝑃𝑋(𝑠) = 𝑃(𝑠, 1) and 𝑃𝑌(𝑧) = 𝑃(1, 𝑧)

respectively. Find an expression for the covariance 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 −

𝐸[𝑌)] in terms of 𝑃(𝑠, 𝑧).
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30. A student is assigned every day a new problem with probability 𝑝. In
one day, s/he can solve at most one problem with probability 𝑞 (not
necessarily 𝑞 = 1 − 𝑝). If s/he does not solve the problem s/he will try
to solve it again the next day, so problems may pile up on her/is desk
and need to work on them as long as the pile is not empty. At day 𝑡 = 0,
s/he is assigned one problem. What is the probability that s/he will ever
have at least one day free?

31. In a sequence of coin tossing, let 𝑎𝑛 be the probability that the pat-
tern HHH does not occur in the first 𝑛 draws. Estimate the leading
asymptotic behaviour of 𝑎𝑛 for n large.

32. The event 𝐴𝑡 that a farmer goes and collects eggs from his chickens at
day 𝑡 = 0, 1, 2, … are independent for each 𝑡, and 𝑃{𝐴𝑡} = 𝑝. Each day 𝑡,
chickens produce a number 𝑋𝑡 of eggs that is an i.i.d. Poisson random
variable with mean 𝜆. What is the probability that the next time the
farmer goes and collects the eggs he find none?

33. Consider a branching process where each individual can have 𝑋 = 0, 1

or 2 offsprings, with probabilities (1 − 𝑝)2, 2𝑝(1 − 𝑝) or 𝑝2 respectively.
Find the extinction probability 𝑥 and verify that 𝑥 = 1 if 𝐸[𝑋] = 𝜇 ≤ 1.
Compute the generating function of the total progeny and discuss the
asymptotic behavior of the probability 𝑅𝑛 that the total progeny of one
individual is of size 𝑛. Discuss in particular the case where 𝜇 = 1.

34. Consider the sequence of numbers

𝑙0 = 2, 𝑙1 = 1, 𝑙𝑛+2 = 𝑙𝑛+1 + 𝑙𝑛, 𝑛 ≥ 0

Find the generating function and an explicit expression of 𝑙𝑛.

35. Define a sequence of integers, {𝑃𝑛} by the initial conditions 𝑃1 = 1,
𝑃2 = 2, and the recurrence 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2 for 𝑛 ≥ 3. To what real
number does the sequence (𝑃𝑛−1 + 𝑃𝑛)∕𝑃𝑛 converge?

36. Consider a randomwalk in 𝑑 dimensions 𝑆𝑛 = (𝑆
(1)
𝑛 , … , 𝑆

(𝑑)
𝑛 )where each

component 𝑆(𝑎)𝑛 is an independent randomwalk of 𝑛 steps. Compute the
probability 𝑝𝑛 that the random walk returns to the origin (i.e. 𝑆(𝑎)𝑛 = 0

∀𝑎 = 1,… , 𝑑) after 𝑛 steps. Estimate the asymptotic behavior of 𝑝𝑛.

37. The inspection time paradox. Imagine a process that occurs at times 𝑡𝑖,
with 𝑖 = … ,−2,−1, 0, 1, 2, …. Let the inter-event intervals 𝜏 = 𝑡𝑖 − 𝑡𝑖−1
be i.i.d. random variables with pdf 𝑝(𝜏). Let 𝑇 ∈ ℝ be a random time
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and 𝑇∗ = min{𝑡𝑖 ∶ 𝑡𝑖 > 𝑇} be the time of the next event. Show that,
depending on 𝑝(𝜏), the expected time 𝑇𝑟 = 𝑇∗ − 𝑇 for the next event
can be smaller, equal or larger than the expected inter-event time 𝔼 [𝜏].
In particular, show that

𝔼 [𝑇𝑟] =
𝔼
[
𝜏2
]

2𝔼 [𝜏]

so that 𝔼 [𝑇𝑟] > 𝔼 [𝜏] whenever 𝕍 [𝜏] > 𝔼 [𝜏]
2.

38. In a random population, the number 𝑘 of friends that each individual
has is an i.i.d. random variable with distribution 𝑃(𝑘). Show that in
such a population, the expected number of friends of an individual is
smaller than that of his/her friends.

39. Completion time with resetting: consider a process that takes a random
time 𝑇 to complete, i.e. to reach a final state 𝑥1 from an initial state 𝑥0.
As an example, think of a random walk starting from 𝑥0 ≠ 0 and let
the process be complete when it hits the origin 𝑥1 = 0. Let us consider
the generic case where 𝑇 is a continuous random variable with pdf 𝑝(𝑡).
Consider introducing resetting at random times. This means that, as
long as the process is not completed, in any interval [𝑡, 𝑡+𝑑𝑡) the process
re-starts from 𝑥0 with probability 𝑟𝑑𝑡 (and it continues with probability
1 − 𝑟𝑑𝑡), for an infinitesimal 𝑑𝑡. More precisely, Let 𝑇𝑟 be the time
of completion with resetting, one naïvely expects that 𝔼 [𝑇𝑟] ≥ 𝔼 [𝑇].
Show that this is not true, using the relation

𝑇𝑟 = {
𝑇 if 𝑇 ≤ 𝑅

𝑅 + 𝑇′𝑟 if 𝑇 > 𝑅

between the time 𝑇 to completion without reset, the reset waiting time
𝑅, and the time to completion with reset 𝑇𝑟 where 𝑇′𝑟 has the same dis-
tribution as 𝑇𝑟. Find an equation for 𝜏𝑟(𝑠) = log𝔼

[
𝑒−𝑠𝑇𝑟

]
and show that

𝔼 [𝑇𝑟] =
1 − 𝔼

[
𝑒−𝑟𝑇

]

𝑟𝔼 [𝑒−𝑟𝑇]
.

One may naively expect that introducing resetting delays completion.
Using the small 𝑟 expansion of this expression, show that if 𝕍 [𝑇] >
𝔼 [𝑇]

2, introducing resetting decreases the expected completion time.
Notice, in particular, that the expected time to reach the origin of a ran-
dom walk starting at 𝑥0 is infinite, but it becomes finite when resetting
is introduced. Explain why this is so.
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40. What is the number of shortest walks that start at one corner and end
at the opposite corner of a chessboard?

41. Mr X does a test for a rare disease that hits one individual in a million,
on average. The test is very reliable: the test is positive in 99% of the
cases with the disease and in 1% of the cases that do not. What is the
probability that Mr X has the disease, given that his test is positive?

42. You are at a metro stop at peak hour, trains arrive every 3minutes on
average in each direction. What is the probability that before the next
train you will see 𝑘 trains coming in the other direction? Imagine that
instead trains arrive exactly every 3minutes at the stop in each direction.
What is the probability that before the next train you will see 𝑘 trains
coming in the other direction?

43. Each package of Pokemon cards contains 1 of 𝑁 possible legendary
Pokemon. How many packs do you expect you have to buy to get all 𝑁?
We assume all 𝑁 are equally likely with each purchase.

44. A mailman delivers 𝑛 letters at random to 𝑛 recipients. The probability
that the first letter goes to the right person is 1∕𝑛, so the probability
that it doesn’t is 1 − 1∕𝑛. Thus the probability that no one gets the right
letter is (1 − 1∕𝑛)𝑛 ≈ 1∕𝑒 = 37% for 𝑛 large. This argument is clearly
wrong for 𝑛 = 2, why? Find the correct expression for this probability
and show that the prediction is right for 𝑛 → ∞.

45. Suppose there are 𝐴 defects among 𝑁 items. We sample 𝑛 items at
random. What is the probability 𝑝𝑎 of finding 𝑎 defects in this sample?
Show that if 𝐴 = 𝑝𝑁 and 𝑁 → ∞ with 𝑛, 𝑝 and 𝑎 fixed, then

𝑝𝑎 =
(𝑛

𝑎

)
𝑝𝑎(1 − 𝑝)𝑛−𝑎.

46. Let 𝑋1, 𝑋2, … , 𝑋𝑛, … be a sequence of i.i.d. random variables with
𝑃{𝑋𝑖 = +1} = 𝑃{𝑋𝑖 = −1} = 1∕2. Consider the random variable

𝑄1∶𝑛 = 𝑋1 + 𝑋1𝑋2 + 𝑋1𝑋2𝑋3 + … + 𝑋1𝑋2⋯𝑋𝑛 = 𝑋1(1 + 𝑄2∶𝑛) .

Show that 𝑃{𝑄𝑛 = 𝑥} = 𝑃{𝑆𝑛 = 𝑥}, for 𝑥 = 0, ±1, ±2, … , ±𝑛, where
𝑆𝑛 = 𝑋1 + 𝑋2 + … + 𝑋𝑛 is a random walk.

47. Amonkey is standing one step from the edge of a cliff (i.e. if he takes one
step in the direction of the cliff he falls) and takes repeated independent
steps; forward (i.e. towards the edge of the cliff), with probability 𝑝, or
backward, with probability 𝑞 = 1 − 𝑝.
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• What is the probability 𝑥 that the monkey, sooner or later, will fall
off the cliff?

• Let 𝑝 < 𝑞. Show that 𝑥 is the extinction probability not only of
the monkey, but also of a branching process with reproduction
distribution 𝑝0 = 𝑝, 𝑝2 = 𝑞, 𝑝𝑘 = 0 ∀𝑘 ≠ 0, 2.

• Conditional on the event that he falls, sooner or later from the cliff,
what is the expected waiting time?

• What is the variance of this waiting time?

48. Balls in unequal boxes. Let 𝑛 balls be drawn independently in 𝑁

boxes. For each ball, its probability to fall in box 𝑖 is 𝑝𝑖 = 𝜆𝑖∕𝑁, with
∑𝑁

𝑖=1
𝑝𝑖 = 1.

• Let 𝑛 = 2 and compute the probability that two balls fall in the
same box. Is this smaller or larger than the case where 𝑝𝑖 = 1∕𝑁

for all 𝑖?

• Compute the generating function of the number 𝑛𝑖 of balls in box
𝑖. What is the distribution of 𝑛𝑖 in the limit 𝑁 → ∞ with 𝑛 = 𝑁

when 𝑝𝑖 = 𝜆𝑖∕𝑁?

• Let 𝐼 be a subset of the integers 1, 2, … , 𝑛. Compute the generating
function of

𝑛𝐼 =
∑

𝑖∈𝐼

𝑛𝑖.

Show that the random variables 𝑛𝑖 are not independent.

• Consider the limit 𝑁 → ∞ with 𝑛 = 𝑁 of this random variable
where 𝐼 is a subset of a finite number of elements, with 𝑝𝑖 =

𝜆𝑖∕𝑁 and 𝜆𝑖 finite for all 𝑖 ∈ 𝐼. Show that in this limit 𝑛𝑖 become
independent random variables.

49. At each bus stop, one passenger drops from the bus and, with probability
𝑝𝑘 =

𝑎𝑘

𝑘!
𝑒−𝑎, 𝑘 = 0, 1, 2, … passengers get on the bus. The bus starts with

one passenger. What is the probability that the bus will never be empty
(assuming the number of stops is very large)? Write down an equation
for the generating function of the probability that the bus will be empty
for the first time at stop 𝑡.

50. Let 𝑝𝑘, 𝑘 ≥ 0 be the probability that each individual of a population,
at each generation, contribute with 𝑘 offsprings to the next generation.
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Let

𝑃(𝑠) =

∞∑

𝑘=0

𝑝𝑘𝑠
𝑘

be the corresponding generating function, and consider the branching
processwhere, froma single individual at generation𝑛 = 0, a population
of individuals is produced at any successive generation 𝑛 + 1 by each
individual of the current generation 𝑛 producing offsprings according
to 𝑝𝑘, independently. Let’s call this the branching process 𝑝.

i) Show that for any 𝑧 ∈ (0, 1), the distribution of 𝑘

𝑞𝑘(𝑧) =
𝑝𝑘𝑧

𝑘

𝑃(𝑧)

is normalised to one.

Define the 𝑞 branching process using 𝑞𝑘 as the probability of generating
𝑘 offsprings from each individual. Compute the corresponding gener-
ating function 𝑄(𝑠). Consider the case where the 𝑝 branching process
is overcritical, i.e. that the extinction probability 𝑥𝑝 is less than one. ii)
Show that for 𝑧 = 𝑥𝑝 the 𝑞 branching process defined by 𝑞𝑘 is under
critical i.e. 𝑥𝑞 = 𝑄(𝑥𝑞) = 1 and 𝜇𝑞 = 𝑄′(1) < 1. Let 𝑌(𝑝)

∞ be the total
progeny of the branching process 𝑝 and 𝑌(𝑞)

∞ be the total progeny of
the branching process 𝑞. iii) Show that, conditional on 𝑌(𝑝)

∞ < ∞, their
distribution is the same, i.e.

𝑃{𝑌
(𝑝)
∞ = 𝑛|𝑌

(𝑝)
∞ < +∞} = 𝑃{𝑌

(𝑞)
∞ = 𝑛}.

51. The tradition of the dynasty of Mr K demands that each family generates
children until they have at least one daughter and one son. Each chil-
dren reaches reproductive age with probability 𝑝 and only males carry
the surname K. Show that if 𝑝 ≤ 2∕3 the surname K will surely disap-
pear. What is the expected size of the total progeny of Mr K, conditional
on it being finite?



Part II

Typical and atypical
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A gas is formed of ∼ 1023 interacting molecules. Its detailed description
would require to integrate Newton’s law for all of them. Yet we can describe
the macroscopic behaviour of a gas in terms of few variables (e.g. temperature,
pressure, density) with a remarkable precision. Likewise the specific heat of
a piece of glass is well defined and it turns out to be the same for any other
piece of the same glass, in spite of the fact that in each piece the arrangement
of atoms is different. These are two examples of the typical behaviour that
emerges in systems of many degrees of freedom. This behaviour is remarkably
robust and largely independent of microscopic details. Indeed, gases with
different chemical composition obey the same laws in terms of appropriate
macroscopic variables, to a very good degree of accuracy, especially in particu-
lar conditions (i.e. close to critical points) as sketched in Figure 29 (see [18]
for more details).

gas A

gas B

T
/T

c

⇢/⇢c

Figure 29. (Sketch of) the equation of state (that relates temperature and density) of
real gases close to the critical point. The data points represent two different gases 𝐴
(e.g. Argon) and 𝐵 (e.g. methane).

Statistical mechanics— a discipline developed by Ludwig Boltzmann and
others in order to derive the macroscopic behaviour of physical systems from
the (classical or quantum) microscopic description — has shown that the
macroscopic behaviour is an exquisitely statistical phenomenon, whose origin
has to domore with probability than with physics. Newton’s laws of motion do
not rule out that allmolecules of the gas in a roomconcentrate in a small corner,
leaving the rest of the room empty. This is possible but it is highly unlikely.
Typically the molecules occupy uniformly the volume available to them. The
probability of seeing a substantial deviation from this typical behavior is so
small that we don’t expect it has ever happened since the Big Bang. Statistical
mechanics allows us to classify the typical behaviour of many particles into
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different phases of matter, separated by phase transitions. Quantities such as
the entropy and the temperature, whosemeaningwas elusive until Boltzmann,
found a precise formalisation. Microscopic details are even more irrelevant
at particular points of the phase diagram of a macroscopic physical system,
that separate different phases of matter. The critical phenomena that govern
the behaviour of a number of properties at second order phase transition
points are so universal that the same quantitative laws may describe systems
as different as binary alloys, ferromagnets and liquids.1

How can information be optimally represented? How can a message be
efficiently coded in bits? What is the maximal achievable compression of a
text in a given language, that optimises the use of a given storage capacity?
How can a message be coded in such a way that it can be retrieved even if it is
corrupted by noise when it is transmitted? These are apparently very differ-
ent questions, but they hinge on understanding the typical structure of the
messages we’re interested in.2 Claude Shannon and others, have shown that
understanding their structure allows us to represent messages most efficiently,
and to give a bound on the number of bits needed to compress a message.
He was undecided on how to call this bound. Apparently [19], John Von
Neumann told him: “You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have the
advantage.”

Others used similar ideas to understand how to “dress” messages with
structures that can make them robust with respect to noise. Such an error
correction algorithm works efficiently as long as the noise level is below a cer-
tain threshold, that marks a phase transition to a regime where the noise is so
strong that the original message is “lost in transmission”. Information theory
has been primarily developed in computer science and electrical engineering,
but it’s applications go well beyond these fields. For example, learning is a
distinguishing feature of life, as opposed to inanimate matter. We more and
more realise that understanding efficient information processing is key for a
quantitative approach to how living systems learn, adapt and respond. For
example, evolution has selected species that learn about their environment,

1Boltzmann himself, in a speech in 1904, remarked that “The wide perspectives opening
up if we think of applying this science [statistical mechanics] to the statistics of living beings,
human society, sociology and so on, instead of only to mechanical bodies, can here only be
hinted at in a few words”, suggesting that this general idea could be applied not only to physics
but also to other domains.

2A sentence in English is a sequence of letters of the alphabet, but not all sequences of letters
are meaningful English sentences. Typical sentences in English have a peculiar structure.
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in spite of the fact that information processing is costly. Why is this so?
Both statistical mechanics and information theory deal with the direct

problem, where the model that describes the interaction between particles,
or the way in which messages are generated, is (assumed to be) known, and
the statistical behaviour can be derived from it. Statistics deals with learning
a model from observed behaviour (i.e. data). This entails solving an inverse
problemwith respect to that of statistical mechanics: given an observed collec-
tive behaviour, what is the model that would typically generate it? Choosing
which model best describes a data-set is conceptually similar to finding which
“phase” a physical systems belongs to, under certain conditions. Phase transi-
tions separate statistical hypotheses and models as they separate behaviours
of matter in physics.

Inference in physics is often so much constrained by what we know that
statistics does not need to go much further than mean and variance.3 In life
sciences, high-throughput experiments produce massive amounts of data on
systems we know very little about (e.g. multi-electrode recordings in the brain,
gene expression profiles in cells, contacts in social networks). What can we
learn from these data? How much information is there? How relevant are the
variables we’re measuring? Can we reconstruct mathematical models that
reproduce these data? How much data do we need to do that?

In some way or another, all these questions are related to understanding
what is the typical behaviour that arises in “large” systems composed of many
variables. There is a lot that one can learn from the direct approach, studying
sequences of independent and identically distributed random variables. We
can understand why statistical regularities arise, why macroscopic behaviour
depends only on few relevant variables, what is the rôle of the entropy, and
when universal features emerge. We will see that when the interaction (i.e.
statistical dependence) among the variables is turned on, phase transitions
will emerge to separate distinct statistical behaviours (i.e phases).

It is also important to study atypical behaviour, i.e. to understand how
unlikely are deviations from the typical behaviour and how atypical deviations
are expected to occur typically. For example a living cell needs to deviate from
it’s thermodynamic equilibrium with the environment — that would coincide
with its death — by spending energy in very precise ways in order to meet
some constraints. So it’s typical state can be considered as a large deviation
with respect to thermodynamic equilibrium, i.e. as an atypical state where
these constraints are enforced. This also applies to hypothesis testing, which is

3Yet, even in physics Machine Learning is being used more and more in fields like astro-
physics, condensed matter, biophysics and even string theory, in order to cope with the huge
amounts of data coming from experiments.
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a traditional subject of statistics. An hypothesis can be rejected if it is possible
to prove that the observed data would be very atypical if the hypothesis were
correct.

Asymptotic properties of ensembles of many random variables, typical
and atypical behaviour are the central themes of this part of the course. Infor-
mation theory provides key insights as well as a language to properly describe
this behaviour. We will learn how universality and phase transitions arise, and
how these concepts can be applied to Statistical mechanics and coding theory,
as well as to statistical inference and learning.

A detailed treatment of some of these subjects is available in other texts,
specially Cover, to which we shall refer frequently.



Chapter 13

Almost surely et el.

The epistemological value of probability theory is based on the fact
that chance phenomena, considered collectively and on a grand
scale, create non-random regularity. (AN Kolmogorov, 1954)

The general type of question addressed inwhat follows concerns the laws of
probability for events or random variables which involve 𝑁 events 𝐴1, … , 𝐴𝑁

or random variables 𝑋1, … , 𝑋𝑁 in the limit 𝑁 → ∞.
There is a class of results, known as 0 − 1 laws, that concern events 𝐸𝑁

which depend on 𝑁 events or random variables, and state that, under some
conditions, 𝑃(𝐸𝑁) → 0 or 1 as 𝑁 → ∞. Events 𝐸𝑁 for which 𝑃(𝐸𝑁) → 1 as
𝑁 → ∞ are said to occur almost surely, meaning that their probability is equal
to one. It is customary to use the abbreviation

a.s. = almost surely

Almost refer to the fact that the complement of this event need not be the
empty set, i.e. it may be possible to find realisations 𝜔 ∈ Ω for which the event
𝐸𝑁 does not occur. 𝐸𝑁 occurs almost surely if the probability of all the sample
points 𝜔 for which it does not happen tends to zero, as 𝑁 → ∞.

Exercise 13.1

As an example, we say that an unbiased random walk (in one dimen-
sion) almost surely returns to the origin. Formally, if 𝐸𝑁 =

⋃

𝑘≤𝑁
{𝑆𝑘 =

0} where 𝑆𝑘 is a random walk, then 𝐸𝑁 occurs almost surely. There are
clearly many realisations of the random walk which will never return
to the origin. Yet their probability tends to zero as 𝑁 → ∞. Show that
𝑃{𝐸𝑁} → 1 as 𝑁 → ∞.
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The aim of this chapter is to familiarise with the concepts and the logic
involved in the limit behaviour of probability laws. We start by discussing the
issue of convergence.

13.1 Limits in probability
The convergence of a sequence 𝑥𝑛 to a limit 𝑥

lim
𝑛→∞

𝑥𝑛 = 𝑥

has an unambiguous meaning. It means that ∀𝜖 > 0 there is an 𝑁(𝜖) ∈ ℕ

such that for all 𝑛 > 𝑁(𝜖) the sequence 𝑥𝑛 is away from 𝑥 by at most 𝜖, i.e.
|𝑥𝑛 − 𝑥| < 𝜖. In other words, deviations of 𝑥𝑛 from the limit 𝑥 larger than 𝜖
occur only a finite number of times, for any 𝜖.

When 𝑋𝑛 is a random variable, this definition cannot be used.1 For a
sequence of random variables 𝑋𝑛(𝜔), there are different ways in which the
statement 𝑋𝑛(𝜔) → 𝑋(𝜔) can be interpreted, because we’re dealing with the
convergence of functions.

13.1.1 Almost certain convergence

For fixed𝜔, the statement𝑋𝑛(𝜔) → 𝑋(𝜔) reduces to convergence of sequences,
so it is well defined. If this happens for all 𝜔 ∈ Ω̃where 𝑃{Ω̃} = 1, we say that

𝑋𝑛(𝜔) → 𝑋(𝜔) a.s.

One way to state a.s. convergence is:
𝑋𝑛 → 𝑋 a.s. if for any 𝜖, 𝛿 > 0 there is a 𝑁(𝜖, 𝛿) such that

𝑃 {|𝑋𝑛 − 𝑋| < 𝜖, ∀𝑛 > 𝑁(𝜖, 𝛿)} ≥ 1 − 𝛿 .

In other words, the probability that there are no deviations larger than 𝜖 from
the limit, beyond a certain value of 𝑛, can be made arbitrarily close to one.

If 𝑋𝑚 → 𝑋 a.s., then for any 𝜖 > 0, the events

𝐴𝑛 = {𝜔 ∶ |𝑋𝑛(𝜔) − 𝑋(𝜔)| > 𝜖} (13.1)

should occur atmost a finite number of times. This condition can be rephrased
by saying that the probability that 𝐴𝑛 occurs infinitely often is zero, i.e.

𝑃(𝐴𝑛 i.o.) = 0 .

1This material is also discussed in Chapter 2 of [20].
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Here “i.o.” stands for “infinitely often”, which is a term of common use in
probability, that is worth discussing in more detail.

For a given 𝜔 ∈ Ω, 𝐴𝑛 occurs infinitely often if 𝜔 ∈ 𝐴𝑛 for an infinite
sub-sequence of indices 𝑛. If such a sub-sequence exists, then for any𝑚 there
must be at least one 𝐴𝑛 with 𝑛 ≥ 𝑚 that occurs. In other words we can write2

{𝐴𝑛 i.o.} =
∞⋂

𝑚=1

∞⋃

𝑛=𝑚

𝐴𝑛. (13.2)

Here the union
⋃∞

𝑛=𝑚
𝐴𝑛 indicates the event that at least one event 𝐴𝑛 with

𝑛 ≥ 𝑚 occurs and the intersection indicates that this occurs for all𝑚.

Exercise 13.2

Show that for any finite𝑀

𝐴𝑀 =

𝑀⋂

𝑚=1

𝑀⋃

𝑛=𝑚

𝐴𝑛 ≠

𝑀⋂

𝑚=1

𝑚⋃

𝑛=1

𝐴𝑛 = 𝐴1

This shows that it is important to take the limits in Eq. (13.2) in a well
defined order

∞⋂

𝑚=1

∞⋃

𝑛=𝑚

𝐴𝑛 ≡ lim
𝑀→∞

lim
𝑁→∞

𝑀⋂

𝑚=1

𝑁⋃

𝑛=𝑚

𝐴𝑛.

If the set of 𝜔 for which this happens has probability one, i.e. if there is a.s.
an infinite sub-sequence of indices 𝑛 for which the events 𝐴𝑛 occur, then we
say that 𝐴𝑛 occurs infinitely often. So while i.o. refers to events, a.s. refers to
how the probability measure is defined.

In order to help intuition, let us consider as an example the sequence of
events 𝐴𝑛 = {𝑆𝑛 = 0} where 𝑆𝑛 is the random walk discussed in a previous
chapter. Then {𝐴𝑛 i.o.} is the event that the random walk returns to the origin
infinitely often. As we discussed, an unbiased random walk (𝑝 = 1∕2) surely
returns to the origin and it does so an infinite number of times, almost surely.
Hence 𝑃(𝐴𝑛 i.o.) = 1 for 𝑝 = 1∕2. Inspection of the distribution of 𝑆𝑛 suggests
why this is so. Indeed the probability distribution of the position of the random

2In other texts you will find the notation

lim sup
𝑛→∞

𝐴𝑛 = {𝐴𝑛 i.o.}

to denote the set of points 𝜔 for which 𝐴𝑛 occurs infinitely often.
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Figure 30. Probability distribution of the position 𝑆𝑛 of a randomwalk for increasing
values of 𝑛. An unbiased randomwalk (𝑝 = 1∕2) returns infinitely often to the origin
almost surely, whereas a biased one (𝑝 ≠ 1∕2) does not.

walk remains centred around the origin for all 𝑛 and is has its maximum at
𝑆𝑛 = 0. For 𝑝 ≠ 1∕2 instead the distribution “moves” away from the origin as
𝑛 increases (see Figure 30). The reason why 𝐴𝑛 occurs only a finite number
of times, as we shall prove later, is that the probability that 𝑆𝑛 = 0 vanishes
very fast as 𝑛 increases, for 𝑝 ≠ 1∕2.

13.1.2 Convergence in probability

If ∀𝜖 > 0

lim
𝑛→∞

𝑃{|𝑋𝑛 − 𝑋| > 𝜖} = 0

then we say that 𝑋𝑛(𝜔) → 𝑋(𝜔) in probability. Almost certain convergence
implies convergence in probability.3

3Indeed the event

𝐷𝑛 =

∞⋃

𝑚=𝑛

𝐴𝑚, 𝐴𝑚 = {|𝑋𝑚 − 𝑋| > 𝜖}

that at least one 𝑋𝑚 deviates more than 𝜖 from 𝑋 for some𝑚 ≥ 𝑛, is telescopic, i.e. 𝐷𝑛 ⊇ 𝐷𝑛+1

for all 𝑛, because 𝐷𝑛+1 implies 𝐷𝑛. Therefore, their intersection Eq. (13.2) equals the limit

{𝐴𝑛 i.o.} = lim
𝑛→∞

𝐷𝑛.

If 𝑋𝑛 → 𝑋 a.s., then
lim
𝑛→∞

𝑃(𝐴𝑛) ≤ lim
𝑛→∞

𝑃(𝐷𝑛) = 0.

because 𝐴𝑛 ⊆ 𝐷𝑛.
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13.1.3 Convergence in mean square

If
lim
𝑛→∞

𝔼
[
(𝑋𝑛 − 𝑋)

2
]
= 0

then we say that 𝑋𝑛(𝜔) → 𝑋(𝜔) in mean square. Convergence in mean
square implies convergence in probability. This can be shown with the help
of Chebyshev inequality applied to the random variable 𝑋𝑛 − 𝑋.
Chebyshev inequality: For any real random variable 𝑍 and for any constant
𝑎 > 0, we have

𝑃{|𝑍| > 𝑎} ≤
𝔼
[
𝑍2
]

𝑎2
. (13.3)

The proof of the inequality (13.3) is straightforward, i.e.

𝔼
[
𝑍2
]
= ∫

∞

−∞

𝑑𝑧𝑝(𝑧)𝑧2 ≥ ∫
|𝑧|>𝑎

𝑑𝑧𝑝(𝑧)𝑧2 ≥ 𝑎2 ∫
|𝑧|>𝑎

𝑑𝑧𝑝(𝑧)

where the second inequality derives from the fact that 𝑧2 ≥ 𝑎2 for all 𝑧 in the
domain of integration.4

Using Chebyshev inequality for the random variable 𝑍 = 𝑋𝑛 − 𝑋, with
𝑎 = 𝜖, we have that if 𝑋𝑛 → 𝑋 in mean square, then

𝑃(|𝑋𝑛 − 𝑋| > 𝜖) ≤
1

𝜖2
𝔼
[
(𝑋𝑛 − 𝑋)

2
]
→ 0

as 𝑛 → ∞, i.e. 𝑋𝑛 → 𝑋 in probability.

13.1.4 Convergence in distribution

If for all continuous and bounded functions 𝑓(𝑥)

lim
𝑛→∞

𝐸[𝑓(𝑋𝑛)] = 𝐸[𝑓(𝑋)]

then 𝑋𝑛(𝜔) → 𝑋(𝜔) in distribution. Note that this is equivalent to

lim
𝑛→∞

∫ 𝑑𝑥[𝑝𝑛(𝑥) − 𝑝(𝑥)]𝑓(𝑥) = 0, ∀𝑓(𝑥) .

4We note in passing that the same proof works if the exponent 2 is replaced by 𝑝 > 1, and it
leads to

𝑃{|𝑍| > 𝑎} ≤
𝔼 [|𝑍|𝑝]

𝑎𝑝
, 𝑝 > 1 .
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This implies that the distribution of 𝑋𝑛 converges to that of 𝑋 on all points 𝑥
except at most a set of zero measure. Mean square convergence and conver-
gence in probability imply convergence in distribution. When 𝑋𝑛 converges
in distribution to a constant 𝑐, then 𝑋𝑛 → 𝑐 also in probability. We omit the
proofs of these statements.

13.2 Borel-Cantelli lemmas

The Borel-Cantelli lemma is so simple and general that is worth being remem-
bered.

Borel-Cantelli Lemma. Let 𝐴1, 𝐴2, … be an infinite sequence of events. If

∞∑

𝑗=1

𝑃(𝐴𝑗) < +∞ (13.4)

then, almost surely, at most a finite number of events occur.

This result is often stated by saying that, if Eq. (13.4) holds, then the
probability that events 𝐴𝑛, 𝑛 = 1, 2, 3, … occur infinitely often is zero, i.e.
𝑃{𝐴𝑛 i.o.} = 0.

The proof of the Borel-Cantelli lemma is simple: if 𝐴𝑛 occurs infinitely
often, then for any fixed 𝑁 > 0, there must be at least one event 𝐴𝑛 with
𝑛 ≥ 𝑁 that occurs. This means that, ∀𝑁 > 0

{𝐴𝑛 i.o.} ⊆
∞⋃

𝑗=𝑁

𝐴𝑗.

But then, sub-additivity of probability implies

𝑃{𝐴𝑛 i.o.} ≤ 𝑃
⎛

⎜

⎝

∞⋃

𝑗=𝑁

𝐴𝑗

⎞

⎟

⎠

≤

∞∑

𝑗=𝑁

𝑃(𝐴𝑗). (13.5)

The latter expression can be made as small as one wishes, by taking 𝑁 large
enough. Indeed if the series in Eq. (13.4) converges, then the partial sum in
the right hand side of Eq. (13.5) vanishes as 𝑁 → ∞.

The Borel-Cantelli lemma is a very general result. Notice that no assump-
tion on the events (e.g. on their independence) is needed.
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As an application, consider again returns to the origin of a biased random
walk. Let 𝑆𝑛 =

∑𝑛

𝑖=1
𝑋𝑖 with 𝑋𝑖 being i.i.d. binary random variables with

𝑃(𝑋𝑖 = +1) = 𝑝 = 1 − 𝑃(𝑋𝑖 = −1). Then

𝑃{𝐴𝑛} = 𝑃{𝑆2𝑛 = 0} =
(2𝑛

𝑛

)
[𝑝(1 − 𝑝)]𝑛 ≃

1
√
𝑛
𝑒−𝑎(𝑝)𝑛,

with 𝑎(𝑝) = − log[4𝑝(1 − 𝑝)]. For all 𝑝 ≠ 1∕2, 𝑎(𝑝) > 0 and the condition
Eq. (13.4) of the Borel-Cantelli lemma applies. This means that, almost surely,
a biased random walker returns to the origin only a finite number of time. In
order to deal with the case 𝑝 = 1∕2 we need a converse of the Borel-Cantelli
lemma.

For 𝑝 = 1∕2, we can apply the Borel-Cantelli lemma to the 𝑑 dimensional
random walk. This is defined by 𝑑 independent random walks

𝑆
(𝑎)
𝑛 =

𝑛∑

𝑘=1

𝑋
(𝑎)

𝑘
, 𝑎 = 1,… , 𝑑

with 𝑋(𝑎)

𝑘
i.i.d. with distribution 𝑃{𝑋(𝑎)

𝑘
= ±1} =

1

2
. Then (𝑆(1)𝑛 , … , 𝑆

(𝑑)
𝑛 ) is a

point on a 𝑑 dimensional hyper-cubic lattice. Consider the return to the origin
in 2𝑛 steps

𝐴
(𝑑)
𝑛 = {𝑆

(1)

2𝑛
= 0,… , 𝑆

(𝑑)

2𝑛
= 0}

Then
𝑃(𝐴

(𝑑)
𝑛 ) ∼ 𝑛−𝑑∕2.

For 𝑑 > 2 the series in Eq. (13.4) converges and therefore the random walk
returns to the origin at most a finite number of times, i.e. it is transient. For
𝑑 ≤ 2 the random walk is recurrent, i.e. 𝐴𝑛 occurs i.o., but that’s harder to
show.

It is clear that the converse of the Borel-Cantelli lemma does not hold,
unless we add more hypotheses. Take for example

𝐴𝑛 = {𝑋 ∈ (0, 1∕𝑛)}

where 𝑋 is a uniform random variable in (0, 1]. Then 𝑃(𝐴𝑛) = 1∕𝑛 and the
series in Eq. (13.4) diverges. Yet for any value of 𝑋 ∈ (0, 1], the event 𝐴𝑛

occurs only for 𝑛 < 1∕𝑋, so 𝑃{𝐴𝑛 i.o.} = 0. The problem with this example
is that the events 𝐴𝑛 are strongly dependent (indeed 𝐴𝑛 implies all 𝐴𝑚 for
𝑚 < 𝑛).
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The converse of Borel-Cantelli’s Lemma. Let 𝐴1, 𝐴2, … be an infinite
sequence of events. If 𝐴𝑛 are independent and

∞∑

𝑛=1

𝑃(𝐴𝑛) = ∞ (13.6)

then an infinite number of events occurs almost surely, i.e.

𝑃(𝐴𝑛 i.o.) = 1

Proof: if𝐴𝑛 does not occur i.o., then there is a maximal 𝑛 such that none of the
events 𝐴𝑘 occur for 𝑘 ≥ 𝑛. Therefore, the complement of the event {𝐴𝑛 i.o.}
can be written as

{𝐴𝑛 i.o.} =
∞⋃

𝑛=1

∞⋂

𝑘=𝑛

𝐴̄𝑘.

The probability that 𝐴𝑛 does not occur i.o. can be written as

1 − 𝑃(𝐴𝑛 i.o.) = 𝑃 (

∞⋃

𝑁=1

∞⋂

𝑛=𝑁

𝐴̄𝑛) ≤

∞∑

𝑁=1

∞∏

𝑛=𝑁

𝑃(𝐴̄𝑛) (13.7)

=

∞∑

𝑁=1

∞∏

𝑛=𝑁

[1 − 𝑃(𝐴𝑛)] (13.8)

≤

∞∑

𝑁=1

exp {−

∞∑

𝑛=𝑁

𝑃(𝐴𝑛)} = 0 (13.9)

where the first inequality arises from the sub-additivity of the probability and
the independence of events 𝐴𝑛. The second from the fact that 1 − 𝑥 ≤ 𝑒−𝑥,
and the last equality from the fact that, for a divergent series, every partial
sum diverges, i.e.

∑∞

𝑛=𝑁
𝑃(𝐴𝑛) = ∞. Hence every term in the sum is zero.

For example, take a sequence 𝑥⃗ = (𝑥1, … , 𝑥𝑚) of𝑚 binary digits (𝑥𝑖 = 0 or
1) and an infinite sequence of Bernoulli trials 𝑋1, … , 𝑋𝑛, … with 𝑝 = 1∕2. Let

𝐴𝑛 = {𝑋(𝑛−1)𝑚+1 = 𝑥1, … , 𝑋𝑛𝑚 = 𝑥𝑚}

be the event that the Bernoulli sequence reproduces 𝑥⃗ exactly at positions
(𝑛 − 1)𝑚 + 1,… , 𝑛𝑚 (so 𝐴1 is the event that the first𝑚 values of 𝑋𝑖 coincide
with 𝑥𝑖). The events 𝐴𝑛 are independent and 𝑃(𝐴𝑛) = 2−𝑚 is independent of
𝑛. Hence the series in Eq. (13.6) diverges. This means that the sequence 𝑋𝑛
contains almost surely the sequence 𝑥⃗ an infinite number of times.5

5The sequence 𝑋𝑛 can be generated by flipping a coin repeatedly and the sequence 𝑥⃗ can
be the binary representation of Hamlet. You don’t need to be Shakespeare to produce Hamlet,
you only need to be patient enough. . .
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The assumption of independence can be relaxed to pairwise indepen-
dence [21]. The proof of the converse of the Borel-Cantelli lemma for pairwise
independent events is based on using the Chebyshev inequality for the ran-
dom variable 𝑆𝑚 −𝔼 [𝑆𝑚] where 𝑆𝑚 is the number of events 𝐴𝑛 that occur for
𝑛 ≤ 𝑚. Then, using 𝑎 = 𝜖𝔼 [𝑆𝑚], we have

𝑃 {
|||||||

𝑆𝑚

𝔼 [𝑆𝑚]
− 1

|||||||
> 𝜖} ≤

𝕍 [𝑆𝑚]

𝜖2𝔼 [𝑆𝑚]
2

(13.10)

where mean and variance of 𝑆𝑚 are given by

𝔼 [𝑆𝑚] =

𝑚∑

𝑛=1

𝑃(𝐴𝑛), 𝕍 [𝑆𝑚] =

𝑚∑

𝑛=1

𝑃(𝐴𝑛)[1 − 𝑃(𝐴𝑛)]

because of pairwise independence 𝑃(𝐴𝑛 ∩ 𝐴𝑛′)=𝑃(𝐴𝑛)𝑃(𝐴𝑛′) if 𝑛≠𝑛′. The
last equation also implies that 𝕍 [𝑆𝑚] ≤ 𝔼 [𝑆𝑚] that can be used to transform
Eq. (13.10) into

𝑃 {
|||||||

𝑆𝑚

𝔼 [𝑆𝑚]
− 1

|||||||
> 𝜖} ≤

1

𝜖2𝔼 [𝑆𝑚]

Since 𝔼 [𝑆𝑚] → ∞ as 𝑚 → ∞, this shows that the ratio of the number of
events𝐴𝑛 that occur up to𝑚 to its expected value converges to one as𝑚 → ∞

𝑆𝑚

𝔼 [𝑆𝑚]
→ 1 (13.11)

in probability. In order to prove the converse of the Borel-Cantelli lemma
this result should be turned into almost sure convergence. Because then the
number of events𝐴𝑛 that occurs (up to𝑚) diverges a.s. like 𝔼 [𝑆𝑚] as𝑚 → ∞,
i.e. {𝐴𝑛 i.o.}. The trick to do this, is to consider subsequences𝑚𝑘 such that
𝔼
[
𝑆𝑚𝑘

]
≥ 𝑘2, so that the event

𝐵𝑘 = {

|||||||||

𝑆𝑚𝑘

𝔼
[
𝑆𝑚𝑘

] − 1

|||||||||

> 𝜖}

satisfies the condition Eq. (13.4) of the Borel-Cantelli lemma. Therefore
𝑃{𝐵𝑘 i.o.} = 0, which means that the limit (13.11) holds a.s. on subsequences
𝑚𝑘. The last step requires to show that this must also hold on the whole
sequence. This is intuitive since 𝑆𝑚 is an increasing function of𝑚: if a subse-
quence 𝑆𝑚𝑘

diverges, 𝑆𝑚 has to diverge too.
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Exercise 13.3

In a sequence 𝑋1, 𝑋2, … , 𝑋𝑛, … of i.i.d. random variables drawn from a
continuous distribution with pdf 𝑝(𝑥), a record𝐴𝑛 = {𝑋𝑛 > 𝑋𝑖 ∀ 𝑖 < 𝑛}

is the event that 𝑋𝑛 is larger than all the previous values 𝑋𝑖, for 𝑖 < 𝑛.
Can Eq. (13.11) be used to estimate the number 𝑆𝑚 of records that occur
before𝑚, asymptotycally for𝑚 → ∞?

Since the proof requires only to control the second moment of 𝑆𝑚, the
condition of pairwise independence in the inverse of Borel-Cantelli lemma
can be relaxed further by replacing it with the milder condition

lim
𝑛→∞

∑𝑁

𝑖≠𝑗=1
𝑃(𝐴𝑖 ∩ 𝐴𝑗)

[
∑𝑁

𝑖=1
𝑃(𝐴𝑖)]

2

= 1 .



Chapter 14

Laws of large numbers and the
Asymptotic Equipartition
property

It is common practice, when measuring a physical quantity to run several
independent experiments and then compute the average of the outcomes in
each of them. Each experiment may be affected by uncontrolled factors that
impact on the measurement introducing “errors” that are sometimes positive,
sometimes negative. When we take the arithmetic mean these errors average
out.1 Although we give it for granted, this is a remarkable fact, because if it
where not for this, quantitative science could not be possible. This fact has its
theoretical roots in the law of large numbers (LLN). The LLN states that, given
a sequence 𝑋1, 𝑋2, … , 𝑋𝑛, … of i.i.d. random variables with a finite expected
value 𝜇 = 𝔼 [𝑋𝑖], the (arithmetic) mean converges to the expected value

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖(𝜔) → 𝜇 = 𝔼 [𝑋𝑖] , (14.1)

when 𝑛 → ∞. There are different ways in which the limit could be interpreted,
but before coming to that, let us make a few remarks:

• the quantity on the left of the limit in (14.1) is a randomvariable, whereas
the limit 𝜇 is not. This type of results often go under the name of
concentration properties, referring to the fact that the distribution of
the mean concentrates on a single point.

1If they don’t we talk about systematic errors, i.e. of effects that persist in all the experiments.

177



178 CHAPTER 14. LAWS OF LARGE NUMBERS

• in a physical system such as a gas, physical quantities such as the energy,
are the sum over an astronomically large number (𝑛 ∼ 1023) of particles.
Intensive quantities (e.g. the energy density) are related to averages
over this many variables. Macroscopic physical systems correspond to
situations in which the limit is realised in practice.2 If it were not for the
law of large numbers, the specific heat of a disordered materials (such
as a piece of concrete or a glass) would depend on the specific spatial
arrangement of all atoms. Instead, the energy is the sum of many local
contributions which vary from point to point because of impurities, but
these variations “average out”. The quantities which satisfy laws of large
numbers in physics are called self-averaging.

• The same argument should apply to the per capita Gross Domestic
Product of a country, which is the sum of the contributions to economic
activity of all its citizens. For countries such as India or China (𝑛 ∼

107) we should expect that the per-capita GDP does not fluctuate. Yet
apparently [22] this is not true. Macro-economic fluctuations are much
larger than what the LLN would allow. Why?

• The law of large numbers is used when we want to estimate expected
values of random variables

𝔼 [𝑓(𝑋)] =
∑

𝜔∈Ω

𝑝𝜔𝑓[𝑋(𝜔)]. (14.2)

The way we do it is to take 𝑇 samples 𝜔𝑡, 𝑡 = 1, … , 𝑇, that in the best of
the possible worlds can be thought of as independent draws from the
distribution 𝑝𝜔. Then we compute the mean and argue that

1

𝑇

𝑇∑

𝑡=1

𝑓[𝑋(𝜔𝑡)] =
∑

𝜔∈Ω

𝑛𝜔

𝑇
𝑓[𝑋(𝜔𝑡)] ≈ 𝔼 [𝑓(𝑋)] , (14.3)

where 𝑛𝜔 is the number of times that outcome 𝜔 occurs in the sample.
When 𝑇 ≫ |Ω| is much larger than the number of possible outcomes
𝜔, then 𝑛𝜔

𝑇
provides a good approximation of 𝑝𝜔 (as we shall see), and

2In a physical system, 𝑋𝑖 can be one coordinate of particle 𝑖, or it’s magnetic moment.
Generally 𝑋𝑖 cannot be considered as independent random variables because particles interact.
Yet these interactions are short ranged. This means that each 𝑋𝑖 depends on a number of
other variables 𝑋𝑗 which is finite. These are generally called systems of weakly dependent
random variables and they obey the LLN if the interaction is weak enough. Although statistical
dependencies introduced by interactions are negligible, they play a key role in allowing the
system to equilibrate, i.e. to converge to an equilibrium state. We’ll come back to this point.
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Eq. (14.3) is not so surprising. Yet Eq. (14.3) works remarkably well also
when 𝑇 ≪ |Ω|. For example, Eq. (14.3) is routinely used in statistical
physics to estimate averages. There 𝜔 is a point in phase space that
specifies the coordinates of each particle.3 So the size of Ω can be
astronomically large (typically exponentially large in the number of
particles). In these conditions, the number 𝑛𝜔 of times that a particular
configuration 𝜔 is visited is zero most of the time and sometimes one.
The ratio 𝑛𝜔∕𝑇 does not provide a good approximation of 𝑝𝜔. How can
a handful of measures 𝜔1, … , 𝜔𝑇 allow us to compute expected values?
If Eq. (14.2) is true, something quite peculiar must happen.

As we shall see, there are particular features of samples of many independent
random variables that are not very random, in the sense that their probability
distribution concentrates on a small neighbourhood of a single point in the
space of distributions.

14.1 The weak law of large numbers (WLLN)
A sequence 𝑋1, … , 𝑋𝑛, … of independent and identically distributed (i.i.d.)
random variables with 𝔼 [𝑋𝑖] = 𝜇 satisfies the WLLN if the limit (14.1) holds
in probability. This means that, for all 𝜖 > 0, we have

lim
𝑛→∞

𝑃 {

|||||||||

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝜇

|||||||||

≥ 𝜖} = 0.

Khinchin has shown that a finite expected value 𝔼 [𝑋𝑖] = 𝜇 is a sufficient
condition for the WLLN to hold (see Gnedenko). Here we limit ourselves
to a much simpler proof based on Chebyschev inequality,4 that assumes that
the variance 𝕍 [𝑋𝑖]=𝔼

[
(𝑥 − 𝜇)2

]
=𝜎2 is finite. To prove the WLLN, we apply

Chebyshev inequality to the variable

𝑍 =
1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝔼 [𝑋]

and observe that for i.i.d. random variables, 𝔼
[
𝑍2
]
in Eq. (13.3) reads

𝕍[
1

𝑛

𝑛∑

𝑖=1

𝑋𝑖] =
1

𝑛2

𝑛∑

𝑖,𝑗=1

𝔼
[
(𝑋𝑖 − 𝔼 [𝑋𝑖])(𝑋𝑗 − 𝔼

[
𝑋𝑗
]
)
]
=
𝕍 [𝑋𝑖]

𝑛
,

3Eq. (14.3) holds if the ergodic hypothesis—that states that ensemble averages are equivalent
to time averages — is true.

4We shall see an argument that shows that |𝔼 [𝑋] | < +∞ is a sufficient condition for the
WLLN when we discuss limit theorems for sums.
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because 𝔼
[
(𝑋𝑖 − 𝔼 [𝑋𝑖])(𝑋𝑗 − 𝔼

[
𝑋𝑗
]
)
]
= 0 for 𝑖 ≠ 𝑗. Therefore Eq. (13.3)

implies that

𝑃 {

|||||||||

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝜇

|||||||||

≥ 𝜖} ≤
𝕍 [𝑋𝑖]

𝑛𝜖2

which converges to zero as 𝑛 → ∞.
The same proof shows that the WLLN holds whenever the variables 𝑋𝑖 are

uncorrelated, or when the correlation 𝔼
[
(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇)

]
is small enough.

Indeed

𝑉 [
1

𝑛

𝑛∑

𝑖=1

𝑋𝑖] =
𝑉[𝑋𝑖]

𝑛
+

1

𝑛2

∑

𝑖≠𝑗

𝐸[(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇)]

and the law of large numbers holds when the last term vanishes as 𝑛 → ∞.
The WLLN states that the probability of excursions larger than 𝜖 of the

mean away from the expected value, converges to zero for large 𝑛. It is a
statement about the limit of the probability of excursions away from the mean,
it is not a statement about the probability that the sequence ofmeans converges
to the expected value.

14.2 The strong law of large numbers (SLLN)

The strong law of large numbers (SLLN) states the almost certain convergence
of the mean to the expected value, whereas the WLLN states the convergence
in probability. The SLLN says that for almost all 𝜔 ∈ Ω the mean converges
to the expected value, i.e. that the probability that the limit of the mean is the
expected value is one. For a given 𝜔, the mean converges to the expected value
if, ∀𝜖 > 0 there exist a 𝜈(𝜖, 𝜔) such that

|||||||||

1

𝑛

∑

𝑖

𝑋𝑖 − 𝜇

|||||||||

< 𝜖,

for all 𝑛 ≥ 𝜈(𝜖, 𝜔). Saying that this holds almost surely, is equivalent to
saying that one can make the probability of points 𝜔 for which the above
condition holds for all 𝑛 large enough, as close as desired to one. In other
words, a sequence𝑋1, … , 𝑋𝑛, … of independent randomvariableswith𝔼 [𝑋𝑖] =
𝜇 satisfies the SLLN if, for all 𝜖, 𝛿 > 0 there is an 𝑁(𝜖, 𝛿) such that

𝑃 {

|||||||||

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝜇

|||||||||

< 𝜖, ∀𝑛 > 𝑁(𝜖, 𝛿)} ≥ 1 − 𝛿 .
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The SLLN can be also stated as follows: for any 𝜖 > 0, define the events

𝐴𝑛 = {

|||||||||

1

𝑛

∑

𝑖

𝑋𝑖 − 𝜇

|||||||||

> 𝜖} .

Then the SLLN is equivalent to saying that a.s. at most a finite number
of events 𝐴𝑛 occur,5 i.e. 𝑃{𝐴𝑛 i.o.} = 0. By contrast, the WLLN states that
𝑃(𝐴𝑛) → 0 as𝑛 → 0. Kolmogorov has shown that the existence of the expected
value, i.e. 𝔼 [𝑋] = 𝜇 is a sufficient condition for the SLLN (see Gnedenko).

For example, we can prove the SLLN for the convergence of the frequency
to the probability in Bernoulli trials:

𝑋𝑖 = {
1 w. p. 𝑝
0 w. p. 1 − 𝑝 , 𝑆𝑛 =

∑𝑛

𝑖=1
𝑋𝑖 .

The SLLN, in this case, is equivalent to saying that for all 𝜖 > 0, the probability
that the event

𝐴𝑛 = {
|||||||

𝑆𝑛

𝑛
− 𝑝

|||||||
> 𝜖}

occurs infinitely often, is zero. De Moivre - Laplace approximation of the
binomial distribution, states that 𝑆𝑛∕𝑛−𝑝 is asymptotically well approximated
by a Gaussian variable with mean zero and variance 𝑝(1 − 𝑝)∕𝑛. Therefore6

𝑃(𝐴𝑛) ≅

√
2

𝜋
∫

∞

√
𝑛

𝑝(1−𝑝)
𝜖

𝑑𝑥𝑒−𝑥
2∕2 <

√
2

𝜋
𝑒
−

𝑛

2𝑝(1−𝑝)
𝜖2

and the Borel-Cantelli lemma ensures us that the SLLN holds, i.e. that
𝑃{𝐴𝑛 i.o.} = 0, because

∑

𝑛>0
𝑃(𝐴𝑛) < +∞.

5Remember that for a fixed 𝜔, convergence implies the existence of an integer 𝜈(𝜖, 𝜔) such
that none of the events 𝐴𝑛 occur for 𝑛 > 𝜈(𝜖, 𝜔), i.e that 𝜔 ∉ 𝐴𝑛 for all 𝑛 > 𝜈(𝜖, 𝜔). The
threshold 𝜈(𝜖, 𝜔) is different for each 𝜔 for which the mean converges to 𝜇. Yet the fact that
the number of excursions larger than 𝜖 of the mean away from 𝜇 is finite holds for all these 𝜔’s.
This is why the SLLN is equivalent to the statement 𝑃{𝐴𝑛 i.o.} = 0.

6This is because, for all 𝑧 ≥ 1, the inequality

∫

∞

𝑧

𝑑𝑥 𝑒−𝑥
2∕2 ≤

1

𝑧
𝑒−𝑧

2∕2 ≤ 𝑒−𝑧
2∕2

holds, as you can show as an Exercise.
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Exercise 14.1

It is possible to prove something stronger in the same manner. Take

𝐵𝑛 = {

|||||||||

𝑆𝑛 − 𝑛𝑝
√
𝑛𝑝(1 − 𝑝)

|||||||||

>
√
2𝑎 log 𝑛} ,

and show that for 𝑎 > 1 the SLLN holds.

14.3 Typical samples and the Asymptotic
Equipartition Property

As a particular application of the law of large numbers, consider the probability
of a sequence 𝑋 = (𝑋1, … , 𝑋𝑛) of i.i.d. random variables. Let us first consider
the case where 𝑋𝑖 are drawn from a discrete distribution 𝑝(𝑥). In other words,
we assume that the variables𝑋𝑖 ∈ 𝜒 take a finite number of values (|𝜒| < +∞)
and that 𝑝(𝑥) > 0 or all 𝑥 ∈ 𝜒. Then the probability of a sequence is

𝑝(𝑋) =

𝑛∏

𝑖=1

𝑝(𝑋𝑖) .

Taking the logarithm and dividing by 𝑛, we have

1

𝑛
log 𝑝(𝑋) =

1

𝑛

𝑛∑

𝑖=1

log 𝑝(𝑋𝑖).

The variables log 𝑝(𝑋𝑖) are themselves random variables and their variance is
finite. Therefore they satisfy the law of large numbers, which means that, for
𝑛 → ∞, the mean converges to the average

𝔼 [log 𝑝(𝑋)] =
∑

𝑥∈𝜒

𝑝(𝑥) log 𝑝(𝑥) ≡ −𝐻[𝑋].

So we have that (Theorem 3.1.1 in Cover)
Let 𝑋 = (𝑋1, … , 𝑋𝑛) be independent draws from a discrete distribution 𝑝(𝑥)
(𝑋𝑖 ∈ 𝜒 with |𝜒| < +∞). Then

lim
𝑛→∞

1

𝑛
log 𝑝(𝑋) = −𝐻[𝑋] (14.4)

in probability.
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In brief, this theorem states that, for 𝑁 large, all sequences of random
variables that are independently drawn from 𝑝(𝑥) have essentially7 the same
probability,

𝑝(𝑋) ∽ 𝑒−𝑛𝐻[𝑋].

Sequences with this probability are called typical sequences. Non-typical
sequences occur with a probability which is exponentially small (in 𝑛) with
respect to typical ones. This does not only include those sequences with a
probability 𝑝(𝑋) which is much smaller than 𝑒−𝑛𝐻[𝑋], but also sequences
whose probability is higher than that of typical sequences. For example,
if 𝑝(𝑥0) > 𝑝(𝑥) for all 𝑥 ≠ 𝑥0 ∈ 𝜒, then the sequence 𝑋𝑖 = 𝑥0 for all
𝑖 = 1, … , 𝑛 has a probability 𝑝(𝑥0)𝑛 that is exponentially larger than the
probability 𝑒−𝑛𝐻[𝑋] of typical sequences. Yet it is very unlikely to see this
sequence because typical sequences are much more in number (see below).

The fact that typical sequences have the same probability is called Asymp-
totic Equipartition Property (AEP).8 In brief, the AEP states that:
For any 𝜖 > 0, one can define the set of 𝜖-typical sequences as

𝐴𝜖
𝑛 = {𝑋 ∶

||||||

1

𝑛
log 𝑝(𝑋) + 𝐻[𝑋]

||||||
< 𝜖}

Then an equivalent way to state the AEP is that

1. By definition, all 𝜖-typical sequences are equally likely: 𝑃(𝑋) ∽ 𝑒−𝑛𝐻[𝑋]

for all 𝑋 ∈ 𝐴𝜖
𝑛

2. As a consequence of the law of large numbers, a random sequence is
almost surely an 𝜖-typical sequence

𝑃{𝐴𝜖
𝑛} > 1 − 𝜖 .

3. As a consequence, the number of 𝜖-typical sequences is

|𝐴𝜖
𝑛| ∽ 𝑒𝑛𝐻[𝑋] .

The last statement comes from the fact that

1 ≈ 𝑃{𝐴𝜖
𝑛} =

∑

𝑋∈𝐴𝜖𝑛

𝑃(𝑋) ∽ 𝑒−𝑛𝐻[𝑋]|𝐴𝜖
𝑛|

where we used the fact that all𝑋 ∈ 𝐴𝜖
𝑛 have the same probability, by definition.

7Up to the leading exponential behaviour. Here and below we shall use the symbol 𝑎𝑛 ∽ 𝑒𝛼𝑛

to denote asymptotic equality of 1

𝑛
log 𝑎𝑛 and 𝛼.

8A more detailed treatment of this issue is given in Cover, chapter 3, which is a suggested
reading.
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The functional9

𝐻[𝑋] = −
∑

𝑥∈𝜒

𝑝(𝑥) log 𝑝(𝑥) = ℋ[𝑝] (14.5)

is called the entropy of the random variable 𝑋. The last equality above empha-
sises that the entropy is a function of the probability distribution 𝑝(𝑥) of 𝑋.
We shall discuss the entropy in more detail in what follows. For the moment,
let it suffice to say that it takes values in the interval 0 ≤ 𝐻[𝑋] ≤ log |𝜒|. The
lower limit is achieved when 𝑋 = 𝑥0 is a constant, and 𝑝(𝑥) = 1 if 𝑥 = 𝑥0 and
𝑝(𝑥) = 0 for all 𝑥 ≠ 𝑥0. In this limit, there is only one possible sequence 𝑋,
and𝐻[𝑋] = 0. The upper limit is achieved when 𝑝(𝑥) = 1∕|𝜒| is a uniform
distribution.10

Therefore, the number of typical samples |𝐴𝜖
𝑛| ∽ 𝑒𝑛𝐻[𝑋] is much smaller

than the number of all possible samples, which is |𝜒|𝑛 = 𝑒𝑛 log |𝜒|, whenever
the distribution differs from the uniform one 𝑝(𝑥) = 1∕|𝜒|, for which one has
𝐻[𝑋] = log |𝜒|. To put it differently, the probability that any sequence 𝑋 is
typical is exponentially small in 𝑛.

In order to shed more light on the nature of typical samples, consider a
sample 𝑋 of 𝑛 observations of a random variable 𝑋 ∈ 𝜒, drawn independently
from a distribution 𝑝(𝑥) = 𝑃{𝑋𝑖 = 𝑥}. Let𝑚𝑥 be the count of the points in the
sample for which 𝑋𝑖 = 𝑥 (so

∑

𝑥
𝑚𝑥 = 𝑛). Let us consider the case 𝑛 ≫ |𝜒|,

so that𝑚𝑥 ≫ 1 for all 𝑥 ∈ 𝜒. 𝑚𝑥 is related to the empirical distribution

𝑝̂𝑋(𝑥) =
𝑚𝑥

𝑛
=
1

𝑛

𝑛∑

𝑖=1

𝛿𝑋𝑖 ,𝑥. (14.6)

of the sample 𝑋, which is also called the type of 𝑋. The probability of the
sample 𝑋 can be written as

𝑃(𝑋) =

𝑛∏

𝑖=1

𝑝(𝑋𝑖) =
∏

𝑥∈𝜒

𝑝(𝑥)𝑚𝑥 = 𝑒
𝑛
∑

𝑥
𝑝̂𝑋(𝑥) log 𝑝(𝑥) . (14.7)

This shows that 𝑃(𝑋) depends on 𝑋 only through𝑚𝑥 or through its type 𝑝̂𝑋 .
Therefore, the probability to observe a given vector of counts

9A functional is a function of a function, which maps the space of functions to the real axis.
𝐻[𝑋] is a functional, because a random variable 𝑋(𝜔) is a function. We use square brackets
for functionals and parentheses (…) for functions.

10This is easily seen by solving the maximisation problem

max
𝑝

ℋ[𝑝],

subject to the normalisation constraint
∑

𝑥∈𝜒
𝑝(𝑥) = 1.
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𝑚 = {𝑚𝑥, 𝑥 ∈ 𝜒} is

𝑃{𝑚} =
𝑛!

∏

𝑥∈𝜒
𝑚𝑥!

∏

𝑥∈𝜒

𝑝(𝑥)𝑚𝑥 ,

where the combinatorial factor counts the number of samples𝑋 with the same
𝑚. Using Stirling’s approximation 𝑛! ∽ 𝑛𝑛𝑒−𝑛, we obtain 𝑃{𝑚} ∽ 𝑒−𝑑(𝑚)𝑛

where the constant
𝑑(𝑚) =

∑

𝑥∈𝜒

𝑚𝑥

𝑛
log

𝑚𝑥

𝑛𝑝(𝑥)
(14.8)

is non-negative and it vanishes only for11 𝑚𝑥 = 𝑛𝑝(𝑥). Therefore, when
𝑛 → ∞, the probability that the empirical distribution 𝑝̂𝑋(𝑥) does notmatches
the true distribution 𝑝(𝑥) becomes exponentially small. Put differently, all
typical samples have the same empirical distribution (or type), that coincides
with 𝑝(𝑥) asymptotically for 𝑛 → ∞ (i.e. 𝑝̂𝑋(𝑥) ≈ 𝑝(𝑥), for all 𝑥 ∈ 𝜒).

Loosely speaking, this explains why we can estimate expected values with
empirical averages, as in Eq. (14.1). This is possible because all typical samples
share the same empirical distribution of 𝑓(𝑋), and this approximates very
well the true distribution for large 𝑛.

Exercise 14.2

A sport newspaper gives every Friday the probabilities of the outcomes
(1, X or 2) of the 13 football matches in the italian league that are in the
schedina, a popular betting scheme in Italy. Take the examples where
the probabilities of the three different outcomes are 50%, 30% and 20%

11The proof follows from the inequality log 1

𝑧
≥ 1 − 𝑧 applied to 𝑑(𝑚) with 𝑧 = 𝑛𝑝(𝑥)∕𝑚𝑥,

which gives

𝑑(𝑚) ≥
∑

𝑥∈𝜒

𝑚𝑥

𝑛
[1 −

𝑛𝑝(𝑥)

𝑚𝑥

] = 0 ,

because of the normalisation of 𝑝(𝑥) and because
∑

𝑥∈𝜒
𝑚𝑥 = 𝑛. The constant 𝑑 in Eq. (14.8)

can also be expressed in terms of the type

𝑑 =
∑

𝑥∈𝜒

𝑝̂𝑋(𝑥) log
𝑝̂𝑋(𝑥)

𝑝(𝑥)
≡ 𝐷𝐾𝐿(𝑝̂𝑋||𝑝)

where the functional 𝐷𝐾𝐿 is called relative entropy or Kullback-Leibler divergence, and it will
be discussed in later chapters. For the time being, let it suffice to say that 𝐷𝐾𝐿(𝑞||𝑝) ≥ 0 and
𝐷𝐾𝐿(𝑞||𝑝) = 0 only if 𝑞 = 𝑝.
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in any possible order. So the forecast may look like this:

Games 1 𝑋 2

𝐴 𝑣𝑠 𝐵 50% 30% 20%

𝐶 𝑣𝑠 𝐷 30% 50% 20%

𝐸 𝑣𝑠 𝐹 20% 50% 30%

𝐺 𝑣𝑠 𝐻 50% 30% 20%

⋮ ⋮ ⋮

𝑈 𝑣𝑠 𝑉 30% 50% 20%

𝑊 𝑣𝑠 𝑋 30% 50% 20%

𝑌 𝑣𝑠 𝑍 50% 20% 30%

The simplest schedina consists of a sequence (𝜔1, … , 𝜔13) of forecasts,
one for each game, with 𝜔𝑖 ∈ {1, 𝑋, 2}.

How would you know whether a particular schedina is a typical
one? Do you expect people will play a typical schedina?

The same result holds also for continuous variables, and it goes under the
name of
Glivenko-Cantelli theorem. Let 𝑋 be a real random variable with distribu-
tion 𝐹(𝑥) = 𝑃{𝑋 ≤ 𝑥} and 𝑋1, … , 𝑋𝑛 be a sample of 𝑛 i.i.d. draws from 𝐹(𝑥)

then the fraction

𝐹𝑛(𝑥) =
1

𝑛
|||{𝑖 ∈ [1, 𝑛] ∶ 𝑋𝑖 ≤ 𝑥}|||

of 𝑋𝑖 that is smaller than 𝑥 converges a.s. to 𝐹(𝑥) for 𝑛 → ∞. More precisely

lim
𝑛→∞

sup
𝑥∈ℝ

|𝐹𝑛(𝑥) − 𝐹(𝑥)| = 0 a.s.

The proof is a consequence of the SLLN. So, here is a simple recipe to
estimate the distribution 𝐹(𝑥) from a sample 𝑋1, … , 𝑋𝑛: i) sort the sample
in ascending order, 𝑋𝑓1 < 𝑋𝑓2 < … ,𝑋𝑓𝑛 , where {𝑓𝑖} is a permutation of the
integers up to 𝑛, ii) plot 𝑖∕𝑛 versus 𝑋𝑓𝑖 . Since 𝑖∕𝑛 = 𝐹𝑛(𝑋𝑓𝑖 ), this produces
a plot that for large 𝑛 approximates the distribution 𝐹(𝑥), by the Glivenko-
Cantelli theorem, as shown in Figure 31.

It is worth to spend few more words on types (see Eq. (14.6)).12 Types
provide an alternative description for problems that involve sequences 𝑋⃗ =

{𝑋1, … , 𝑋𝑛} of 𝑛 i.i.d. random variables 𝑋𝑖 ∈ 𝜒 where 𝜒 is a finite set. As we
have seen, the probability of a sequence 𝑋⃗ is a function of its type 𝑝̂

𝑋⃗
. The set

12See Cover 11.1.
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Figure 31. The empirical distribution of a sample of 𝑛 = 200 draws from a Gaussian
distribution (full line).
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Figure 32. The space 𝜒𝑛 of sequences 𝑋⃗ of 𝑛 variables 𝑋𝑖 ∈ 𝜒 is divided into
subsets 𝑇(𝑃) of sequences with the same type 𝑝̂

𝑋⃗
= 𝑃. By the AEP, sequences of 𝑛

independent draws from a distribution 𝑄 falls with very high probability in the type
classes 𝑇(𝑃) with 𝑃 ≈ 𝑄.

of all sequences with type 𝑝̂
𝑋⃗
= 𝑃 is called the type class

𝑇(𝑃) = {𝑋⃗ ∶ 𝑝̂
𝑋⃗
= 𝑃}

Type classes partition the space of all sequences into disjoint subsets. The
number of sequences with a given type 𝑃 is computed using Stirling’s ap-
proximation of the multinomial distribution, as we did above, and it is given
by |𝑇(𝑃)| ∽ 𝑒𝑛𝐻[𝑃]. The AEP can be rephrased saying that sequences of 𝑛
independent draws from a distribution 𝑄 falls with very high probability in
type classes 𝑇(𝑄) (see Figure 32).

The AEP is the result of a trade-off between the probability of sequences
and the number of sequences with that probability. There are sequences
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𝑋 which are much more probable than typical ones,13 yet they are too few.
Likewise there are type classes which are waymore numerous than the typical
one, yet their sequences are too unlikely.

This trade-off is the same as the one between energy and entropy in physics.
In order to make this point more clear, let us consider the simplest case of
sequences 𝑋 = (𝑋1, … , 𝑋𝑛) of i.i.d. binary variables 𝑋𝑖 = 0, 1 with 𝑃{𝑋𝑖 =
1} = 𝑝 = 1 − 𝑃{𝑋𝑖 = 0}. Without loss of generality, let us take 𝑝 > 1∕2. The
probability of 𝑋 is 𝑃(𝑋) = 𝑝𝑛𝑝̂(𝑋)(1 − 𝑝)𝑛[1−𝑝̂(𝑋)] with 𝑝̂(𝑋) = 1

𝑛

∑

𝑖
𝑋𝑖 being

the fraction of 1’s in the sequence 𝑋. Let us introduce the variable, that we
shall call14 energy,

𝜖(𝑋) = −
1

𝑛
log 𝑃(𝑋) = 𝑝̂(𝑋)𝜖0 + [1 − 𝑝̂(𝑋)]𝜖1 (14.9)

with 𝜖0 = − log 𝑝 and15 𝜖1 = − log(1 − 𝑝). Clearly 𝜖(𝑋) ∈ [𝜖0, 𝜖1] (𝑝 > 1∕2).
Notice that if 𝑝̂ attains a finite limit when 𝑛 → ∞, so does 𝜖.

Let us also introduce the function

𝜎(𝜖) =
1

𝑛
log

( 𝑛

𝑛
𝜖1−𝜖

𝜖1−𝜖0

)
.

that we shall call16 the entropy. After a moment of reflection, it can be realised
that 𝜎(𝜖) is the logarithm of the number of sequences with energy 𝜖. Using
Stirling’s approximation, you can easily check that

𝜎(𝜖) ≅ −
𝜖1 − 𝜖

𝜖1 − 𝜖0
log

𝜖1 − 𝜖

𝜖1 − 𝜖0
−
𝜖 − 𝜖0

𝜖1 − 𝜖0
log

𝜖 − 𝜖0

𝜖1 − 𝜖0

attains a finite limit when 𝑛 → ∞. We can now compute the probability that
a random sequence drawn from this distribution has energy 𝜖, which is just
the product of the probability 𝑒−𝑛𝜖 of all sequences with that energy, times the
number 𝑒𝑛𝜎(𝜖) of sequences with that energy, i.e.

𝑝(𝜖) = 𝑒𝑛(𝜎(𝜖)−𝜖) .

13As for example the sequence with

𝑋𝑖 = argmax
𝑥

𝑝(𝑥)

for all 𝑖.
14Arbitrarily, for the time being.
15Note that 𝜖1 = − log(1 − 𝑒−𝜖0 ).
16Again arbitrarily, for the time being.
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Figure 33. The AEP for sequences of binary variables. The entropy is plotted against
the energy for 𝑝 = 0.8 (blue) and 𝑝 = 0.52 (green).

This distribution, for large 𝑛, is sharply peaked around the maximum of
the function 𝜎(𝜖) − 𝜖, which occurs at the point where 𝜎′(𝜖∗) = 1, and a
straightforward calculation (do it) leads to the result

𝜖∗ = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) = 𝐻[𝑋] .

Summarising, all random sequences𝑋 drawn from 𝑃(𝑋)will have the same en-
ergy 𝜖(𝑋) ≃ 𝜖∗, i.e. the same probability 𝑃(𝑋) ∽ 𝑒−𝑛𝐻[𝑋]. Because of Eq. (14.9),
all types of random sequences take the same value 𝑝̂𝑋(𝑥 = 1) ≃ 𝑝. Fur-
thermore, the point 𝜖∗ is also the point where 𝜎(𝜖∗) = 𝜖∗. This means that
the number of sequences with energy 𝜖∗ is inversely proportional to their
probability, as the AEP states.17

Figure 33 displays the interplay between energy (straight black line) and
entropy (concave lines). Sequences with energy 𝜖 < 𝜖∗ are more probable than
typical ones, but they are too few and so 𝜎(𝜖) − 𝜖 < 0 and their probability is
exponentially small. Sequences with energy larger than 𝜖∗ are more numerous,
but they are not likely enough so that again 𝜎(𝜖) − 𝜖 < 0.

14.3.1 Should we expect the expected value?

A further example to gain intuition on typical sequences is the following:
imagine a lottery whose ticket costs 1 euro, and yields a reward of 2 euros with
probability 1∕2 and of 𝑞 ∈ (0, 1∕2) euros otherwise. If the invested capital is

17Note that the condition 𝜎(𝜖∗) = 𝜖∗ is necessary in order to ensure normalisation of 𝑝(𝜖),
as shown by carrying out the normalisation integral by saddle point.
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𝑊0, after playing the game the capital is expected to be

𝔼 [𝑊1] = 𝔼 [𝑋1]𝑊0 = (1 + 𝑞∕2)𝑊0, 𝑋1 = {
2 w. p. 1∕2
𝑞 w. p. 1∕2

This looks like a convenient game because 𝔼 [𝑊1] > 𝑊0, for any 𝑞 > 0.
Indeed, if the game is repeated 𝑛 times, with𝑋𝑖, 𝑖 = 1, … , 𝑛 being i.i.d. random
variables as 𝑋1, and𝑊0 tickets are bought each time, then the LLN ensures a
positive gain per game, which is equal to 𝑞∕2 times𝑊0.

Exercise 14.3

In a faraway land long ago, girls were valuedmore than boys. So couples
kept having babies until they had a girl. Assume that each newbornwas
a female with probability 𝑝. What is the expected fraction of females
in a randomly chosen family? What was the fraction of females in the
population, assuming it is composed of a very large number of families?
(adapted from K. Binmore’s Playing for real, p. 109).

Now the gain is clearly proportional to𝑊0, so the more one invests the
higher the gain. In particular, the best thing to do seems to invest all the
capital accumulated, at each time. In this way, the capital after 𝑛 bets will be
𝑊𝑛 = 𝑋𝑛⋯𝑋1𝑊0 and one can “expect” that the capital will increase as

𝔼 [𝑊𝑛] = (1 + 𝑞∕2)𝑛𝑊0

i.e. exponentially. Great!
However, it is easy to show that if 0 < 𝑞 < 1∕2 then this strategy leads to

bankruptcy, i.e.
𝑃{𝑊𝑛 > 𝑎} → 0 as 𝑛 → ∞

for all 𝑎 > 0. Indeed

1

𝑛
log(𝑊𝑛∕𝑊0) =

1

𝑛

𝑛∑

𝑖=1

log𝑋𝑖 → 𝔼[log𝑋𝑖] =
1

2
log(2𝑞)

almost surely, as 𝑛 → ∞, by the SLLN. This means that, almost surely,

𝑊𝑛 ∽ 𝑊0𝑒
−𝑐𝑛, 𝑐 =

1

2
| log(2𝑞)| > 0

i.e. the capital will typically vanish exponentially. Here typical means with
very high probability, which tends to one as 𝑛 → ∞.
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The origin of the discrepancy of this result with the behavior of 𝔼 [𝑊𝑛]

becomes evident if one takes some care in evaluating the expected value

𝔼 [𝑊𝑛] = 𝑊0

𝑛∑

𝑘=0

(𝑛

𝑘

)
2−𝑛

[
2𝑘𝑞𝑛−𝑘

]
(14.10)

∽ 𝑊0 ∫

1

0

𝑑𝑥𝑒𝑛𝑓(𝑥) ∽ 𝑊0𝑒
𝑛𝑓(𝑥∗) (14.11)

where we compute the expected value by averaging over the number 𝑘 of
lucky outcomes (the term in […] is the corresponding gain), and then we use
Stirling’s formula for the binomial and change the sum on 𝑘 into an integral
on 𝑥 = 𝑘∕𝑛. The function 𝑓(𝑥) is

𝑓(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) + (1 − 𝑥) log(𝑞∕2).

The integral can be performed with the saddle point method, i.e. by deter-
mining the value 𝑥∗ for which 𝑓′(𝑥∗) = 0. We find that the fraction of lucky
outcomes that dominates 𝔼 [𝑊𝑛] is

𝑥∗ =
1

1 + 𝑞∕2
.

Sequences with this frequency of successes occur only with exponentially
small probability, but when they occur they yield an exponentially large gain.
The calculation of the expected value 𝔼 [𝑊𝑛] is determined by the interplay
between these two exponential behaviours. Yet the asymptotic equipartition
property, guarantees that almost surely only typical sequence with a frequency
𝑥 = 1∕2 of successes will occur. This yields a gain𝑊typical

𝑛 ∼ (2𝑞)𝑛𝑊0, that
vanishes as 𝑛 → ∞, because 2𝑞 < 1.

Exercise 14.4

It is a bit frustrating that a game which seems profitable leads to
bankruptcy. Maybe one should not invest all the capital. Consider
the strategy of investing a fraction 𝜆 ∈ [0, 1] of the capital𝑊𝑛 each
time. What is the best value of 𝜆?

The lesson is that, given a sequence 𝑋1, … , 𝑋𝑛, … of i.i.d. random vari-
ables, there are combination 𝑓(𝑋1, … , 𝑋𝑛) whose typical value is close to
the expected value 𝔼 [𝑓], in the sense that the distribution (density) 𝑝(𝑓) =
𝑃{𝑓(𝑋1, … , 𝑋𝑛) = 𝑓} is peaked around the expected value 𝔼 [𝑓]. These are
called self-averaging quantities. There are other combination of variables,
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like the product𝑊𝑛, for which this is not true. These are not self-averaging
quantities. The expectation based on the expected value is correct only when
𝑓 is a self-averaging quantity.

Exercise 14.5

On a different planet, the hypsbryx civilisation based its science on
using the geometric mean, instead of the arithmetic mean, to measure
physical quantities from experimental data. For a physical quantity
𝑋 > 0 how would the measure that the hypsbryx estimate from a
series of experiments (𝑋1, … , 𝑋𝑛) compare with the one that we would
measure on the earth, based on the same data (and the arithmetic
mean)? Would it be the same, would it be smaller or bigger?



Chapter 15

Limit theorems and
universality

The law of large numbers states that the arithmeticmean ofmany i.i.d. random
variables 𝑋𝑖 converges to the expected value1 as the number 𝑛 of variables on
which the average is taken diverges. When 𝑛 is finite but very large, how big
are the deviations and how are they distributed? Limit theorems address this
question and show that the deviations have a remarkable feature. Their distri-
bution is universal in the sense that it is the same for all random variables 𝑋𝑖
whose distribution 𝑝(𝑥) satisfies certain asymptotic conditions for 𝑥 → ±∞.

As we shall see, an universal behaviour also characterises the extremes,
i.e. maxima and minima, of many random variables.

15.1 Limit theorems for Sums of i.i.d. random
variables

Limit theorems for sums of i.i.d. random variables should be treated within a
course of its own. Here we give a non-rigorous derivation of the main results.
We refer to Gnedenko, Chapters VII, VII and IX for a detailed treatment.

Let us consider sums

𝑆𝑛 =

𝑛∑

𝑖=1

𝑋𝑖

of 𝑛 i.i.d. random variables 𝑋𝑖 ∈ ℝ with a common pdf 𝑝(𝑥). The problem we
want to address is the following:

1Whenever this is finite.
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Find two sequences 𝑎𝑛, 𝑏𝑛 ∈ ℝ such that

𝑆𝑛 = 𝑎𝑛 + 𝑏𝑛𝑌

and the random variable 𝑌 has a non-degenerate distribution
density 𝑝∗(𝑥) in the limit 𝑛 → ∞.

Non-degenerate means non-trivial. 𝑌 should not be a constant 𝑦0, i.e. its
distribution should not be concentrated on a single point. In other words
we are looking for constants 𝑎𝑛 and 𝑏𝑛 such that the centered and rescaled
random variable

𝑌𝑛(𝜔) =
𝑆𝑛(𝜔) − 𝑎𝑛

𝑏𝑛
(15.1)

converges in distribution to a proper random variable, which is not a con-
stant 𝑦0.2

Eq. (15.1) explicitly reminds us that the random variable 𝑌 ∶ Ω → ℝ is a
function of the realisation 𝜔 ∈ Ω in the sample space. Hence our objective is
to disentangle the dependence of 𝑆𝑛(𝜔) on 𝑛 from its stochastic dependence
(on 𝜔), in an explicit manner.

15.1.1 Relation to the Law of Large Numbers

The law of large numbers implies convergence of 𝑆𝑛∕𝑛 to a constant𝜇 = 𝔼 [𝑋𝑖].
If this holds, then

i) 𝑎𝑛 = 𝜇𝑛 should grow linearly in 𝑛 and

ii) 𝑏𝑛∕𝑛 → 0 should vanish as 𝑛 → ∞.

Limit theorems are a refinement of the Law of Large Numbers, in that they
also specify

• the convergence behaviour, i.e. the size 𝑏𝑛∕𝑛 of stochastic fluctuations
of 𝑆𝑛∕𝑛 around 𝜇,

• the detailed shape of the distribution of these fluctuations, given by
𝑝∗(𝑥) and

• what happens when the Law of Large Numbers does not hold.

In order to address these questions we introduce the
2To gain some intuition about the meaning of 𝑎𝑛 and 𝑏𝑛, imagine taking two sequences 𝑋

(1)

and 𝑋(2) of 𝑛 independent draws from 𝑝(𝑥), and to compute the sums 𝑆(1)𝑛 and 𝑆(2)𝑛 . Then the
difference 𝑆(1)𝑛 −𝑆

(2)
𝑛 = 𝑏𝑛(𝑌

(1)
𝑛 −𝑌

(2)
𝑛 ) is proportional to 𝑏𝑛. Therefore 𝑎𝑛 provides a measure of

the size of 𝑆𝑛 whereas 𝑏𝑛 estimates howmuch 𝑆𝑛 may vary from one realisation of the sequence
𝑋 to another.
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15.1.2 Characteristic functions

Let 𝑋 be a random variable with pdf 𝑝(𝑥). The characteristic function (CF)
of 𝑋 is:

𝜙(𝑞) ≡ 𝔼
[
𝑒−𝑖𝑞𝑋

]
= ∫ 𝑑𝑥𝑝(𝑥)𝑒−𝑖𝑞𝑥

It is also useful to introduce the logarithm of the CF

𝜓(𝑞) = ln 𝜙(𝑞).

These are the analogue of the generating function and the cumulant generating
function for discrete variables. Indeed they satisfy analogous properties:

i) 𝜙(0) = 1 and 𝜓(0) = 0 by normalisation. Also, since |𝑒−𝑖𝑞𝑥| = 1, we
have

|𝜙(𝑞)| ≤ ∫ 𝑑𝑥𝑝(𝑥)|𝑒−𝑖𝑞𝑥| = 1

and the real part of 𝜓(𝑞) should be non-positive, i.e. Re[𝜓(𝑞)] ≤ 0.

ii) Power expansion in 𝑞. When 𝜙 (and 𝜓) are analytic at the origin (which
means that all derivatives exist):

𝜙(𝑞) =

∞∑

𝑛=0

(−𝑖𝑞)𝑛

𝑛!
𝔼 [𝑋𝑛] (15.2)

The coefficients of the power expansion of 𝜙 yield the moments 𝔼 [𝑋𝑛]

of 𝑋. For this reason 𝜙 is also called the moment generating function.
Similarly 𝜓(𝑞) admits the power expansion

𝜓(𝑞) =

∞∑

𝑛=0

(−𝑖𝑞)𝑛

𝑛!
𝐶𝑛 (15.3)

where 𝐶𝑛 is the 𝑛th order cumulant of the distribution 𝑝(𝑥). These are
related to the moments by the same relations that we have discussed
for discrete variables

𝐶1 = 𝔼 [𝑥] , 𝐶2 = 𝔼
[
(𝑥 − 𝔼 [𝑥])2

]
= 𝕍 [𝑋] , …

iii) Translation: the random variable𝑋𝑎 = 𝑋+𝑎, where 𝑎 ∈ ℝ is a constant,
has pdf 𝑝𝑎(𝑥) ≡ 𝑝(𝑥 − 𝑎), and its CF is

𝜙𝑎(𝑞) = 𝑒−𝑖𝑞𝑎𝜙(𝑞), 𝜓𝑎(𝑞) = 𝜓(𝑞) − 𝑖𝑞𝑎
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iv) Scaling: for any constant 𝑏 the random variable 𝑋𝑏 = 𝑏𝑋 has pdf
𝑝𝑏(𝑥) ≡ 𝑝(𝑥∕𝑏)∕𝑏, and its CF is

𝜙𝑏(𝑞) = 𝜙(𝑏𝑞), 𝜓𝑏(𝑞) = 𝜓(𝑏𝑞)

v) Convolution: if 𝑋1 and 𝑋2 are independent variables with pdf 𝑝1(𝑥)
and 𝑝2(𝑥) and characteristic function 𝜙1(𝑞) and 𝜙2(𝑞) respectively, then
𝑋1 + 𝑋2 has pdf

𝑝1+2(𝑥) = ∫ 𝑑𝑦𝑝1(𝑦)𝑝2(𝑥 − 𝑦)

and characteristic function

𝜙1+2(𝑞) = 𝜙1(𝑞)𝜙2(𝑞), 𝜓1+2(𝑞) = 𝜓1(𝑞) + 𝜓2(𝑞).

For 𝑆𝑛 = 𝑋1 +…+𝑋𝑛, where 𝑋𝑖 are all independent, this generalizes to

𝜙1+…+𝑛(𝑞) =

𝑛∏

𝑖=1

𝜙𝑖(𝑞), 𝜓1+…+𝑛(𝑞) =

𝑛∑

𝑖=1

𝜓𝑖(𝑞).

If 𝑋𝑖 are also identically distributed and 𝜙𝑖(𝑞) = 𝜙(𝑞) = 𝑒𝜓(𝑞) for all 𝑖,
then

𝜙1+…+𝑛(𝑞) = [𝜙(𝑞)]𝑛 𝜓1+…+𝑛(𝑞) = 𝑛𝜓(𝑞).

vi) Lévy’s continuity theorem: a sequence 𝑋𝑛 of random variables con-
verges in distribution to a random variable 𝑋 if and only if the sequence
𝜙𝑛(𝑞) = 𝔼

[
𝑒−𝑖𝑞𝑋𝑛

]
of the corresponding characteristic functions con-

verges point-wise to a function 𝜙(𝑞) which is continuous at the origin.
Then 𝜙 is the characteristic function of 𝑋.

Notice that a degenerate distribution 𝑝(𝑥) = 𝛿(𝑥 − 𝑥0) corresponds to a CF
𝜙(𝑞) = 𝑒−𝑖𝑞𝑥0 and to 𝜓(𝑞) = −𝑖𝑞𝑥0.

15.1.3 Derivation of the fundamental equation

Let us consider the characteristic function 𝜙𝑛(𝑞) of 𝑌𝑛 defined in Eq. (15.1).
Then:

𝜙𝑛(𝑞) = 𝔼
[
𝑒−𝑖𝑞(𝑆𝑛−𝑎𝑛)∕𝑏𝑛

]
(15.4)

= 𝑒𝑖𝑞𝑎𝑛∕𝑏𝑛𝔼
[
𝑒−𝑖(𝑞∕𝑏𝑛)𝑆𝑛

]
(15.5)

= 𝑒𝑖𝑞𝑎𝑛∕𝑏𝑛
𝑛∏

𝑘=1

𝔼
[
𝑒−𝑖(𝑞∕𝑏𝑛)𝑋𝑘

]
(15.6)

= 𝑒𝑖𝑞𝑎𝑛∕𝑏𝑛[𝜙(𝑞∕𝑏𝑛)]
𝑛 (15.7)
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Here we used properties iii) and v) for i.i.d. variables. In terms of the function
𝜓 this means

𝜓𝑛(𝑞) =
𝑖𝑞𝑎𝑛

𝑏𝑛
+ 𝑛𝜓(𝑞∕𝑏𝑛) (15.8)

which is the starting point of our analysis. We are interested in finding se-
quences 𝑎𝑛, 𝑏𝑛 such that the limit

lim
𝑛→∞

𝜓𝑛(𝑞) = lim
𝑛→∞

[𝑖𝑞
𝑎𝑛

𝑏𝑛
+ 𝑛𝜓 (

𝑞

𝑏𝑛
)] = 𝜓∗(𝑞) (15.9)

is non-degenerate. Thismeans that𝜓∗(𝑞) is the logarithm of the CF of a proper
random variable, i.e. we should avoid that the limit results in 𝜓∗(𝑞) = −𝑖𝑞𝑦0
for some 𝑦0.

It is clear that 𝑏𝑛 → ∞ as 𝑛 → ∞, because 𝑏𝑛 quantifies the size of
fluctuations of 𝑆𝑛, and summing more and more variables we expect the
fluctuations to increase. Then the relevant information, as far as the limit
in Eq. (15.9) is concerned, is contained in the behaviour of the characteristic
function 𝜙(𝑘) of𝑋𝑖 for small 𝑘 = 𝑞∕𝑏𝑛. This, in turn, is related to the existence
of moments of low order. Note that small |𝑘|means large |𝑥|, in the sense
that the behaviour of 𝜓 for |𝑘| ≪ 1 is related to the behaviour of 𝑝(𝑥) in the
tails3 (i.e. for |𝑥| ≫ 1).

There are three main cases:

1) 𝜇 = 𝔼 [𝑋] finite and 𝜎2 = 𝕍 [𝑋] < +∞.
Then the leading terms in the expansion of 𝜓 for |𝑘| ≪ 1 are

𝜓(𝑘) = −𝑖𝜇𝑘 −
𝜎2

2
𝑘2 + 𝑐𝑘2+𝑚 + …

where 𝑐 and𝑚 > 0 are constants and … stands for higher order terms
in 𝑘. Then Eq. (15.9) becomes:

𝜓𝑛(𝑞) = 𝑖𝑞
𝑎𝑛 − 𝑛𝜇

𝑏𝑛
−
𝜎2𝑛

2𝑏2𝑛

𝑞2 +
𝑐𝑛

𝑏2+𝑚𝑛

𝑞2+𝑚 + … (15.10)

With the choice
𝑎𝑛 = 𝑛𝜇 and 𝑏𝑛 = 𝜎

√
𝑛,

we find

𝜓∗(𝑞) = lim
𝑛→∞

[−
1

2
𝑞2 +

𝑐𝑞2+𝑚

𝜎2+𝑚𝑛𝑚∕2
+ …] = −

1

2
𝑞2

3The regions |𝑥| ≫ 1 of a pdf 𝑝(𝑥) are called the tails of 𝑝(𝑥), and its behaviour in this
region is called its tail behaviour. More specifically, the region 𝑥 → ∞ is called the right tail
while the left tail indicates the limit 𝑥 → −∞.
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This is the logarithm of the CF of a gaussian variable, i.e.

𝑝∗(𝑥) =
1

√
2𝜋

𝑒−𝑥
2∕2 .

This result is called the Central Limit Theorem (CLT). It states that the
limit distribution of the sum of 𝑛 i.i.d. random variables with finite
variance 𝕍 [𝑋] = 𝜎2, when properly rescaled as

𝑌𝑛 =
𝑆𝑛 − 𝜇𝑛
√
𝑛𝜎

converges to a Gaussian.
The speed of convergence is ruled by the first non-zero cumulant𝐶2+𝑚 ≠

0 of order larger than 2. The correction to the limit is of the order 𝑛−𝑚∕2.
So if 𝑚 = 1 the deviation from the Gaussian vanishes as 1∕

√
𝑛. For

distributionswhich are symmetric around themean𝑝(𝜇+𝑥) = 𝑝(𝜇−𝑥),
𝐶3 = 0 and𝐶4 ≠ 0 so the error vanishes as 1∕𝑛. We’ll discuss this further
later.

2) 𝜇 = 𝔼 [𝑋] finite and 𝕍 [𝑋] = ∞.

This case occurs when

𝔼
[
𝑋2
]
= ∫

∞

−∞

𝑑𝑥𝑝(𝑥)𝑥2 = +∞.

This integral can diverge only if the integrand 𝑝(𝑥)𝑥2 is not integrable
for |𝑥| → ∞. This implies that for either or both the left and the right
tails

𝑝(𝑥) ∼ |𝑥|−𝛼−1 (15.11)

with 𝛼 ∈ (0, 2). The condition |𝔼 [𝑋] | < +∞ further restricts the range
of values of 𝛼, because it requires that 𝛼 > 1. The small 𝑘 expansion of
𝜙(𝑘) in Eq. (15.2) cannot be used because 𝔼 [𝑋𝑚] = +∞ for all𝑚 > 𝛼.
Rather, the function 𝜙(𝑘) develops a singular behaviour for 𝑘 ≪ 1,
of the form 𝜙(𝑘) = 1 − 𝑖𝜇𝑘 − 𝑐|𝑘|𝛼 + …, where … stands for higher
powers of 𝑘. A non-rigorous argument leading to this result is based
on dimensional analysis. If 𝑥 has dimension of [𝑋] (e.g. length) then 𝑘
must have dimensions [𝑋−1], because the argument of the exponential
(−𝑖𝑘𝑥) must be dimensionless (i.e. a number). For small 𝑘, the leading
singular term is

𝜓(𝑘) + 𝑖𝑘𝜇 ≃ 𝜙(𝑘) − 1 + 𝑖𝑘𝜇 = ∫

∞

−∞

𝑑𝑥𝑝(𝑥)
[
𝑒−𝑖𝑘𝑥 − 1 + 𝑖𝑘𝑥

]
.
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Since 𝑝(𝑥) ∼ |𝑥|−𝛼−1 for |𝑥| → ∞, the integral has dimension [𝑋]−𝛼
and hence it has to be proportional to |𝑘|𝛼. The constant 𝑐 can be
determined by the integral

𝑐 = lim
𝑘→0

𝜓(𝑘) + 𝑖𝑘𝜇

|𝑘|𝛼
= lim

𝑘→0

1

|𝑘|𝛼
∫

∞

−∞

𝑑𝑥𝑝(𝑥)
[
𝑒−𝑖𝑘𝑥 − 1 + 𝑖𝑘𝑥

]
(15.12)

that can be evaluated changing variables to 𝑧 = |𝑘|𝑥 and using the
asymptotic behaviour 𝑝(𝑥) ∼ |𝑥|−𝛼−1. In general, the latter can be
different in the left and the right tail, i.e.

lim
𝑥→±∞

|𝑥|𝛼+1𝑝(𝑥) = 𝐶±.

This implies that the result of the limit (15.12) depends on the sign of 𝑘,
and a tedious calculation shows that

𝜓(𝑘) ≃ −𝑖𝜇𝑘 + 𝑐 [1 − 𝑖𝛽
𝑘

|𝑘|
tanh

(𝜋

2
𝛼
)
] |𝑘|𝛼 + … ,

where 𝑐 > 0 is a constant and

𝛽 =
𝐶+ − 𝐶−

𝐶+ + 𝐶−
.

A non-degenerate limit in Eq. (15.9) is obtained with

𝑎𝑛 = 𝑛𝜇 and 𝑏𝑛 = (𝑐𝑛)1∕𝛼

which means that

𝜓∗(𝑞) = −|𝑞|𝛼 [1 − 𝑖𝛽
𝑞

|𝑞|
tan

(𝜋

2
𝛼
)
] (15.13)

These are called Levy stable distributions, the parameter 𝛽 ∈ [−1, 1] is
called the asymmetry parameter and 𝛼 the characteristic index. There is
not an explicit form for the corresponding pdf 𝑝∗(𝑥), except for particu-
lar cases.4

4The special case 𝛼 = 2 needs special care. For example, if

𝑝(𝑥) =
2

3
min(1, 𝑥−3), 𝑥 ≥ 0

then the distribution of 𝑆𝑛 converges to a Gaussian, as in the CLT, but with 𝑎𝑛 =
√
𝑛 log 𝑛.
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Exercise 15.1

Show that the Fourier transform of 𝑓(𝑥) = (1 + 𝑥2)−(𝛼+1)∕2 be-
haves as

𝑓(𝑘) ≃ 𝑓(0) − 𝑐|𝑘|𝛼 + …

as 𝑘 → 0. Find an expression for the constant 𝑐. Hint: use the
identity

𝐴−𝛾 =
1

Γ(𝛾)
∫

∞

0

𝑑𝑡𝑡𝛾−1𝑒−𝐴𝑡.

Exercise 15.2

Limit theorems for products: let 𝑋1, … , 𝑋𝑛 be a sequence of posi-
tive i.i.d. random variables (𝑋𝑖 > 0). Find sequences 𝑎𝑛 and 𝑏𝑛
such that the variable

𝐺𝑛 = (

𝑛∏

𝑖=1

𝑋𝑖)

1∕𝑛

= 𝑎𝑛 + 𝑏𝑛𝑌𝑛

has a non-trivial limit, such that 𝑌𝑛 converges (in distribution)
to a non-degenerate random variable 𝑌 for 𝑛 → ∞. Find the
distribution of 𝑌 depending on the distribution 𝑝(𝑥) of 𝑋𝑖 and
the conditions on 𝑝(𝑥) for the limit to exist.

Exercise 15.3

What if the two tails have a different behaviour, i.e.

𝑝(𝑥) ≃ 𝐶±|𝑥|
−𝛼±−1 } 𝑥 → ±∞

with 𝛼+ ≠ 𝛼−? One way to attack the problem is to split the
sum 𝑆𝑛 = 𝑆+𝑛 + 𝑆−𝑛 into the sums over the positive and negative
variables

𝑆+𝑚 =
∑

𝑖∶𝑋𝑖>0

𝑋𝑖 , 𝑆−𝑚 =
∑

𝑖∶𝑋𝑖<0

𝑋𝑖 .

Both sums have a limit behaviour of the form 𝑆
±
𝑛 ≃ 𝑎

±
𝑛 + 𝑏

±
𝑛𝑌±

where𝑌± has a Lévy distributionwith parameters𝛼± and 𝛽 = ±1.
This suggests that the sum has a different asymptotic behaviour
𝑝∗(𝑥) ∼ |𝑥|−𝛼±−1 in the two tails 𝑥 → ±∞. Yet the leading
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asymptotic behaviour of the whole sum is dominated by the tail
with the smallest value of 𝛼 = min{𝛼−, 𝛼+} and correspondingly,
𝛽 = ±1. Can check that this intuition is correct by a numerical
analysis?

As a corollary these results show that the law of large numbers, in its
weak form, holds as long as 𝔼 [𝑋] = 𝜇 is finite. First because 𝑏𝑛∕𝑛 → 0

implies that 𝑆𝑛∕𝑛 → 𝜇 in distribution. Second, because it can be shown
that if a random variable converges in distribution to a constant, then it
also converges in probability.

3) |𝔼 [𝑥] | = +∞ and 𝔼
[
(𝑥 − 𝔼 [𝑥])2

]
= ∞.

This occurs if for |𝑥| ≫ 1,

𝑝(𝑥) ∼ |𝑥|−𝛼−1 with 0 < 𝛼 ≤ 1.

Then, for 𝑘 ≪ 1, the cumulant generating function has a leading be-
haviour 𝜓(𝑘) ∼ |𝑘|𝛼. A non-degenerate limit in Eq. (15.9) is obtained
with considerations analogous to the previous case, with

𝑎𝑛 = 0 and 𝑏𝑛 = (𝑐𝑛)1∕𝛼.

and the limit of 𝜓𝑛(𝑞) is again given by Eq. (15.13), with 0 < 𝛼 < 1. The
case 𝛼 = 1 is special because instead of Eq. (15.13) one has:

𝜓∗(𝑞) = −|𝑞| [1 + 𝑖𝛽
𝑞

|𝑞|

𝜋

2
ln |𝑞|] .

For 𝛽 = 0 this is called Cauchy distribution, and it has an explicit form

𝑝∗(𝑥) =
1

𝜋

1

1 + 𝑥2
.

Exercise 15.4

Let 𝑄𝑛 = 𝑇1 +…+ 𝑇𝑛 be the time for the 𝑛th return to the origin
of a random walk (with 𝑝 = 1∕2). Show that 𝑌 = 𝑄𝑛∕𝑛

2 has a
limit distribution, as 𝑛 → ∞ with cumulant generating function
𝜓∗(𝑞) as predicted by Eq. (15.13). Hint: derive the generating
function 𝜙(𝑞) of 𝑇 from the expression of the generating function
we derived in earlier chapters.
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Exercise 15.5

Consider a two dimensional random walk 𝑆𝑛 = (𝑆𝑥𝑛 , 𝑆
𝑦
𝑛) where

𝑆𝑥𝑛 and 𝑆
𝑦
𝑛 are two independent (unbiased) random walks. Let

𝑇 > 0 be the first return to the 𝑥-axis, i.e. the first time for which
𝑆
𝑦

𝑇
= 0. Show that the cumulant generating function of 𝑆𝑥

𝑇
is

given by 𝜓(𝑞) = log [1 − |sin 𝑞|].
Using this, show that for 𝑚 ≫ 1, the position on the 𝑥-axis
corresponding to the𝑚th time when 𝑆𝑦𝑛 = 0 is well approximated
by 𝑚𝑌 where 𝑌 follows the Cauchy distribution. You can run
numerical simulations to confirm this conclusion.

Note that, for 𝛼 < 1, the law of large numbers does not hold because
𝑆𝑛 has fluctuations 𝑏𝑛 ∼ 𝑛1∕𝛼 which grow faster than5 𝑛. Therefore the
sum of 𝑛 elements grows faster than 𝑛, which is strange at first sight.
This occurs because the sum is dominated by few elements which are
themselves of order 𝑋𝑖 ∼ 𝑛1∕𝛼. Remember that the Glivenko-Cantelli
theorem shows that for large 𝑛, if 𝑋[𝑘] is the 𝑘th largest value among
𝑋1, … , 𝑋𝑛, then

𝑘

𝑛
≈ ∫

∞

𝑋[𝑘]

𝑑𝑥𝑝(𝑥) ∼ 𝑋−𝛼

[𝑘]

when 𝑝(𝑥) ∼ 𝑥−𝛼−1. Inverting this relation shows that the 𝑘th largest
value in the sequence is of the order

𝑋[𝑘] ∼ (
𝑛

𝑘
)

1∕𝛼

.

Hence for 𝛼 < 1 the largest element 𝑋[1] ∼ 𝑛1∕𝛼 is of the same order of
magnitude as the whole sum.

A measure of how a sum is unevenly dominated by its different terms is
given by the participation ratio, which in our case is defined as

𝑌 =

𝑛∑

𝑖=1

(
𝑋𝑖

𝑆𝑛
)

2

. (15.14)

When all terms contribute more or less equally, 𝑋𝑖 ∼ 𝑆𝑛∕𝑛 and each
of the terms of the sum is of order 1∕𝑛2. Therefore the participation
ratio vanishes as 𝑛 → ∞. The same is true in our case when 𝑋𝑖 are i.i.d.

5This is why we can set 𝑎𝑛 = 0. Taking 𝑎𝑛 = 𝜇𝑛 would not change the limit in Eq. (15.9).
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random variables with a pdf with tail behaviour as in Eq. (15.11) with
𝛼 > 1. When 𝑆𝑛 is dominated by a finite number of terms, instead, some
of the terms in Eq. (15.14) are finite and hence 𝑌 remains finite even
when 𝑛 → ∞. This applies to our discussion of sums of i.i.d. random
variables with 𝛼 < 1. In this case 𝑌 remains a random variable even in
the limit 𝑛 → ∞ with 𝔼 [𝑌] → 1 − 𝛼. 𝑌 is not self-averaging as 𝑛 → ∞

for 𝛼 < 1.6

15.1.4 Stable distributions and universality

From the previous discussion it should be clear that the sum of two indepen-
dent Gaussian variables is also a Gaussian variable, whose mean and variance
are the sum of the means and the variances of the original variables. Likewise,
you can check that the mean of two variables with a Cauchy distribution is
also distributed as a Cauchy distribution. In general, given two i.i.d. random
variables 𝑋1 and 𝑋2, with pdf 𝑝∗(𝑥), if there are constants 𝑎 and 𝑏 such that
the random variable (𝑋1 + 𝑋2 − 𝑎)∕𝑏 has the same distribution 𝑝∗(𝑥), then
𝑝∗(𝑥) is called a stable distribution.

The cumulant generating function of a stable distribution has to satisfy
the equation

𝜓∗(𝑞) =
𝑖𝑞𝑎

𝑏
+ 2𝜓∗(𝑞∕𝑏) (15.15)

The Gaussian and the Lévy distributions are all stable distributions. Stable
distributions are also infinitely divisible, in the sense that if 𝑋 has distribution
𝑝∗(𝑥) then, for any 𝑛 ∈ ℕ, there are constants 𝑎𝑛 and 𝑏𝑛 such that 𝑎𝑛 + 𝑏𝑛𝑋

is the sum of 𝑛 i.i.d. random variables 𝑋𝑖 with distribution 𝑝∗(𝑥).

Exercise 15.6

Can 𝜓∗(𝑞) = −𝑞4 be a the cumulant generating function of a stable
distribution?

One way of deriving the distribution of the sum of 𝑛 random variables with
distribution 𝑝(𝑥), in the limit 𝑛 → ∞, is to first sum the variables in pairs,
and then consider the sum of the pairs. This procedure can be iterated for 𝑘

6See [23] for more details.
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steps,7 so that the total sum 𝑆𝑛 is the sum of 𝑛∕2𝑘 independent variables 𝑆2𝑘 ,
each of which is the sum of 2𝑘 independent variables 𝑋𝑖. The distribution of
𝑆2𝑘+1 can be derived from that of 𝑆2𝑘 because 𝑆2𝑘+1 = 𝑆2𝑘 + 𝑆′

2𝑘
. It is clear that

we can obtain the asymptotic distribution of 𝑆𝑛 by studying the distribution of
𝑆2𝑘 as 𝑘 → ∞. Yet, the location and scale of the distribution of 𝑆2𝑘 will change
with 𝑘, so in order to obtain a non-degenerate distribution in the limit it is
necessary to rescale the variables 𝑆2𝑘 in an appropriate manner, defining

𝑌𝑘 =
𝑆2𝑘 − 𝑎2𝑘

𝑏2𝑘

in such a way that the location and scale of 𝑌𝑘 are independent of 𝑘. For
example, 𝑎2𝑘 and 𝑏2𝑘 can be computed imposing that 𝑃{𝑌𝑘 > 0} = 𝑃{𝑌𝑘 < 0}

and 𝑃{|𝑌𝑘| ≤ 1} = 1∕2 for all 𝑘. If 𝑝(𝑘)(𝑦) is the pdf of the variables 𝑌𝑘, then
the distribution 𝑝(𝑘+1) of 𝑌𝑘+1 can be obtained using the recursion relation

𝑌𝑘+1 =
𝑌𝑘 + 𝑌′

𝑘
− 𝐴𝑘

𝐵𝑘

where 𝑌𝑘 and 𝑌′

𝑘
are i.i.d. with pdf 𝑝(𝑘), 𝐴𝑘 = (𝑎2𝑘+1 − 2𝑎2𝑘 )∕𝑏2𝑘 and 𝐵𝑘 =

𝑏2𝑘+1∕𝑏2𝑘 . This defines a transformation8

𝑝(𝑘+1) = ℛ
(
𝑝(𝑘)

)
(15.16)

𝑝(𝑘+1)(𝑥) = ∫

∞

−∞

𝑑𝑥1𝑑𝑥2𝑝
(𝑘)(𝑥1)𝑝

(𝑘)(𝑥2)𝛿 (𝑥 −
𝑥1 + 𝑥2 − 𝐴𝑘

𝐵𝑘
)

where 𝐴𝑘 and 𝐵𝑘 are determined by the conditions

∫

∞

0

𝑑𝑥𝑝(𝑘+1)(𝑥) = ∫

0

−∞

𝑑𝑥𝑝(𝑘+1)(𝑥), ∫

1

−1

𝑑𝑥𝑝(𝑘+1)(𝑥) =
1

2
.

7

𝑆𝑛 = 𝑋1 + 𝑋2 + … + 𝑋𝑛

= 𝑆
(1)

2
+ 𝑆

(2)

2
+ … + 𝑆

(𝑛∕2)

2

⋮

= 𝑆
(1)

2𝑘
+ 𝑆

(2)

2𝑘
+ … + 𝑆

(𝑛∕2𝑘 )

2𝑘

⋮

The sum 𝑆𝑛 of 𝑛 random variables can be described in terms of “block” variables 𝑆2𝑘 at different
“scales” 𝑘.

8In terms of the cumulant generating function, this transformation takes the simpler form

𝜓(𝑘+1)(𝑞) = ℛ
(
𝜓(𝑘)

)
≡ −𝑖𝑞𝐴𝑘 + 2𝜓(𝑘)(𝑞∕𝐵𝑘)
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ℛ defines a transformation 𝑝(𝑘) ↦→ 𝑝(𝑘+1) in the space of distributions with
the same scale and location, that starts from the original distribution 𝑝(0) = 𝑝.
This is the simplest example of a Renormalisation Group transformation, that
relates the statistical description of a system (here 𝑆𝑛) at two different “scales”
𝓁 and 𝓁′, i.e. in terms of “block” variables 𝑆𝓁 and 𝑆𝓁′ (here 𝓁 = 2𝑘 = 𝓁′∕2).
This transformation is used in statistical physics to study the critical behaviour
of systems at second order phase transition points.9 This transformation is
based on two steps i) coarse graining, i.e. 𝑍𝑘 = 𝑌𝑘 + 𝑌′

𝑘
and ii) rescaling

𝑌𝑘+1 = (𝑍𝑘 − 𝐴𝑘)∕𝐵𝑘.
The “flow” induced byℛ in the space of probability distributions converges

to fixed points

lim
𝑘→∞

𝑝(𝑘) = 𝑝∗ = ℛ(𝑝∗), lim
𝑘→∞

𝐴𝑘 = 𝐴∗, lim
𝑘→∞

𝐵𝑘 = 𝐵∗

that define the distribution of properly rescaled sums (with constants 𝐴∗ and
𝐵∗) of infinitely many random variables with pdf 𝑝(𝑥). In terms of CF, the
equation 𝑝∗ = ℛ(𝑝∗) coincides with Eq. (15.15). Note that:

• only for appropriately chosen values𝐴∗ and𝐵∗ the transformation (15.16)
has a fixed point 𝑝∗.

• The transformation ℛ preserves the tail properties of the distributions,
i.e. if 𝑝(𝑘)(𝑥) has a finite variance, then 𝑝(𝑘+1)(𝑥) has also a finite vari-
ance. If 𝑝(𝑘)(𝑥) ∼ |𝑥|−𝛼−1 with 𝛼 < 2 then 𝑝(𝑘+1)(𝑥) has the same
behaviour.10

9In statistical physics the renormalisation group is a way of defining appropriately the ther-
modynamic limit by relating the description of a system at length-scale 2𝐿 to that of systems of
size 𝐿. In this limit, appropriately rescaled quantities should have the same fluctuation proper-
ties at different (large enough) scales. The renormalisation group is also used in particle physics
in order to deal with the microscopic limit. Theories of interacting particles (e.g. electrons and
photons) suffer from ultra-violet divergences (i.e. arising from processes taking place at very
small scales). These divergences can be “cured” by the same “renormalisation” procedure,
which relates the description of a system at two different scales. The parameters of the theory
(e.g. the mass and the charge of the electron) can be adjusted so that the renormalisation
transformation admits a fixed point which describes a well defined ultra-violet limit.
Renormalisability implies limits to what we can learn by studying systems at one scale, on
systems at a different scale. When the theory of a macroscopic system is renormalisable, which
means that this program can be successfully carried out, the behaviour of the system it describes
is completely independent of microscopic details. This means that there is no measure on the
macroscopic properties that can reveal microscopic properties. Likewise, in particle physics, if
particles like electrons and photons are fully described by a renormalizable theory, then it is
not possible to learn about more fundamental constituents of matter (e.g. quarks) by studying
how electrons and protons interact. For more, see the essay of Tian Yu Cao in [24].

10This is more clearly seen from the fact that the singular behaviour of 𝜓(𝑘)(𝑞) is the same as
that of 𝜓(𝑘+1)(𝑞) for 𝑞 → 0.
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• The equation 𝑝∗ = ℛ(𝑝∗) admits different fixed points corresponding
to different tail behaviors. The space of distributions is divided into the
basins of attraction of each of them. For example, all distributions with
a finite variance belong to the basin of the Gaussian fixed point. The tail
behaviour of 𝑝(𝑥) determines to which fixed point 𝑝∗ the distribution
𝑝(𝑘) will converge to. In this sense, the distribution 𝑝∗ is universal
because it is attained asymptotically, starting fromwhatever distribution
𝑝 with the same tail behaviour.

• Asymptotically the scale parameter 𝐵𝑘 converges to 𝐵∗ This means that
for 𝑛 = 2𝓁 the combined scale parameter from the original distribution
𝑝 to 𝑝(𝓁) should be equal to

𝑏𝑛 =

𝓁∏

𝑘=1

𝐵𝑘 ≃ (𝐵∗)𝓁 = 𝑛1∕𝛼,
1

𝛼
= log

2
𝐵∗.

The fact that the coefficient 𝑏𝑛 takes the scaling form 𝑏𝑛 = 𝑛1∕𝛼 is a
direct consequence of scale invariance, i.e. of invariance under the scale
transformations ℛ (where “scale” here refers to the “size” of the sums
in each block).

15.1.5 Sums as stochastic processes

Take 𝑋𝑖 with 𝔼 [𝑋𝑖] = 0 and plot the sum 𝑆𝑛 of 𝑛 i.i.d. random variables 𝑋𝑖 as
a function of 𝑛. Imagine doing the plot for two values of 𝑛 which are large
enough that you can’t distinguish individual dots on the plots (say 𝑛 = 104

and 105) and remove the tick labels from both axes, in both plots. A concrete
manifestation of the existence of a limit theorem for sums is that you should
not be able to distinguish which plot was generated with the larger value of
𝑛 and which was generated with the smaller one by just looking at the plots.
Put differently, if for both plots you rescale the 𝑥 axis by 𝑛 and the 𝑦-axis by
𝑛1∕𝛼 you’ll get two curves which are statistically indistinguishable11 You’re
encouraged to generate these curves numerically and to verify this statement.

11Indeed, if you zoom in Figure 34 in any interval of size 𝑏 and rescale the 𝑥-axis by 𝑏 and
the 𝑦-axis by

√
𝑏, then you get a curve that is statistically indistinguishable from the original

one. If 𝑛 is really very large, the same is true if you zoom into a part of the part and so on.
Since you cannot distinguish the scale of the interval by the shape of the curve, these curves
are called self-similar. Objects that enjoy this self-similarity property are called fractals. A
curve such as sin(𝑥) does not enjoy this property, because there is a special scale 𝑥 ∼ 2𝜋 that
corresponds to the period. If you zoom in on a small interval the curve will look like a straight
line, which is different from the original curve.
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Figure 34. Two independent rescaled sums 𝑆𝑘∕
√
𝑛 of 𝑘 random variables with finite

variance and zero mean are plotted versus 𝑘∕𝑛, with 𝑘 = 1,… , 𝑛, for 𝑛 = 104 and
𝑛 = 105. Which is which?

So, the existence of a limit for 𝑛 → ∞ of 𝑆𝑛∕𝑏𝑛 implies that one can define
these trajectories in a continuous time. More precisely, we can set 𝑡 = 𝑛∆𝑡

and look for an appropriate rescaling

𝑍(𝑡) = (∆𝑡)𝛽𝑆𝑛=𝑡∕∆𝑡

such that 𝑍(𝑡) is finite when ∆𝑡 → 0. It is clear that 𝑏𝑛 ∼ 𝑛1∕𝛼 implies that a
finite limit is achieved for 𝛽 = 1∕𝛼 and

𝑍(𝑡) = 𝑡1∕𝛼𝑌

where 𝑌 has Gaussian distribution for 𝛼 = 2 and a Levy distribution for
0 < 𝛼 < 2. In the former case 𝑍(𝑡) is called the Wiener process, in the latter it
is called a Levy process. What are the properties of the trajectory?

First, notice that 𝑍(𝑡) is a process with independent increments. This
means that for 𝑡 > 𝑡0, 𝑍(𝑡) − 𝑍(𝑡0) = |𝑡 − 𝑡0|

1∕𝛼𝑌 where 𝑌 is independent of
𝑍(𝑡0) and has an universal distribution (either Gaussian or Levy).

Next, we can ask: is 𝑍(𝑡) a continuous function of 𝑡?
Usually a function is continuous at 𝑡0 if for any 𝜖 > 0 one can find a 𝛿 > 0

such that for all 𝑡 ∈ [𝑡0 − 𝛿, 𝑡0 + 𝛿] we have |𝑍(𝑡) − 𝑍(𝑡0)| < 𝜖. Now, this
definition cannot be used in the present case, because 𝑍(𝑡) = 𝑍(𝑡, 𝜔) is a
random variable.

We should define what convergence means. For example if we adopt an 𝐿2
norm, we would say that the process is continuous if 𝔼

[
|𝑍(𝑡) − 𝑍(𝑡0)|

2
]
→ 0

as 𝑡 → 𝑡0. Now clearly the expected value diverges for all 𝛼 < 2, suggesting
that Levy processes are not continuous. However, if one instead uses an 𝐿𝑝
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z(t)

t

↵ =
1

2

↵ =
3

2

↵ = 4

Figure 35. Rescaled function 𝑍(𝑡) obtained from sums 𝑆𝑛 of 𝑛 ≤ 103 random
variables with a symmetric distribution with asymptotic behaviour 𝑝(𝑥) ∼ |𝑥|−𝛼−1

for 𝛼 = 1∕2 (black) 𝛼 = 3∕2 (red) and 𝛼 = 4 (blue). The random variables 𝑋𝑖 are
generated taking 𝑋𝑖 = 𝜎𝑖𝑈

−1∕𝛼

𝑖
where 𝜎𝑖 = ±1 with equal probability and 𝑈𝑖 is an

uniform random variable. Note that for 𝛼 < 1 the largest jump accounts for a large
part of the total excursion of 𝑆𝑛.

norm, requiring 𝔼 [|𝑍(𝑡) − 𝑍(𝑡0)|
𝑝] → 0 as 𝑡 → 𝑡0, one would conclude that

processes with 𝛼 > 𝑝 are continuous whereas those with 𝛼 ≤ 𝑝 are not. Now
if you look at the plots of 𝑍(𝑡) in Figure 35, it seems this can’t be true.

A different way to approach the problem is the following: consider an
interval [𝑡0, 𝑡1] and divide it into𝑚 smaller intervals of size ∆𝑡 = (𝑡1 − 𝑡0)∕𝑚.
Let 𝛿𝑧𝑖 be the increment of 𝑍(𝑡) in the 𝑖th interval (𝑖 = 1, … ,𝑚). Then we say
that the process is continuous if, for any 𝜖 > 0 we have

lim
𝑚→∞

𝑃{|𝛿𝑧𝑖| < 𝜖 ∀𝑖 = 1,… ,𝑚} = 1.

If this is not true, then there is a finite probability that𝑍(𝑡) has a discontinuous
jump larger than 𝜖 in the interval [𝑡0, 𝑡1]. Since intervals are independent, it
suffices to compute the probability 𝑃{|𝛿𝑧| < 𝜖} of the deviation in one interval.
In general we have

𝑃{|𝛿𝑧𝑖| < 𝜖 ∀𝑖 = 1,… ,𝑚} = 𝑃{|𝛿𝑧| < 𝜖}𝑚 (15.17)

= [1 − 𝑃{|𝛿𝑧| > 𝜖}]
𝑚
≃ 𝑒−𝑚𝑃{|𝛿𝑧|>𝜖}

where we assumed that 𝑃{|𝛿𝑧| > 𝜖} → 0 as 𝑚 → ∞. In the regime of the
central limit theorem (𝛼 ≥ 2) we have

𝑃{|𝛿𝑧| > 𝜖} ≃

√
2|𝑡1 − 𝑡0|

𝜋𝜖𝑚
𝑒
−

𝑚𝜖2

2|𝑡1−𝑡0|
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which vanishes exponentially as 𝑚 → ∞. Therefore 𝑚𝑃{|𝛿𝑧| > 𝜖} → 0 for
𝑚 → ∞ and Eq. (15.17) yields 𝑃{|𝛿𝑧𝑖| < 𝜖 ∀𝑖 = 1,… ,𝑚} → 1 in the same
limit. From this we conclude that the Wiener process is continuous.

In the case of the Levy process, instead, we have

𝛿𝑧𝑖(𝜔) = (
|𝑡1 − 𝑡0|

𝑚
)

1∕𝛼

𝑌𝑖(𝜔)

where 𝑌𝑖 are all i.i.d. with Levy distribution. Hence, since 𝑌 has a pdf 𝑝(𝑥) ≃
𝐶𝑥−𝛼−1 for large 𝑥,

𝑃{|𝛿𝑧𝑖| > 𝜖} ≃ 2𝐶 ∫

∞

𝜖𝑚1∕𝛼

|𝑡1−𝑡0|
1∕𝛼

𝑥−𝛼−1𝑑𝑥 =
2𝐶

𝛼

|𝑡1 − 𝑡0|

𝑚𝜖𝛼
.

Therefore the limit in Eq. (15.17) is

lim
𝑚→∞

𝑃{|𝛿𝑧𝑖| < 𝜖 ∀𝑖 = 1,… ,𝑚} = lim
𝑚→∞

[1 −
2𝐶

𝛼𝜖𝛼

|𝑡1 − 𝑡0|

𝑚
]

𝑚

= 𝑒
−
2𝐶|𝑡1−𝑡0|

𝛼𝜖𝛼 (15.18)

which is finite.Therefore with a finite probability there is at least one infinites-
imally small interval where the process has increments larger than 𝜖. The
process is not continuous. Notice that as 𝜖 → 0 in every interval with prob-
ability very close to one you will find jumps larger than 𝜖, so the function is
no-where continuous.

Exercise 15.7

Notice the similarity of Eq. (15.18) with the probability that a Poisson
random variable with mean

𝜆 =
2𝐶|𝑡1 − 𝑡0|

𝛼𝜖𝛼

takes value 𝑘 = 0. Show that the probability to observe 𝑘 jumps |𝛿𝑧𝑖| >
𝜖 in the time interval [𝑡0, 𝑡] is given by the Poisson distribution

𝜆𝑘

𝑘!
𝑒−𝜆.

Is this a coincidence?

In the case of the Wiener process, we can further ask whether the function
𝑍(𝑡) is differentiable or not. The derivative of a function 𝑍(𝑡) at 𝑡 is defined as

𝑑𝑍

𝑑𝑡
= lim

ℎ→0

𝑍(𝑡 + ℎ) − 𝑍(𝑡)

ℎ
.
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One way to address this question is to compute the probability that the in-
crement 𝑍(𝑡 + ℎ) − 𝑍(𝑡) is smaller than 𝐾ℎ, for an arbitrarily large constant
𝐾, i.e.

𝑃{|𝑍(𝑡 + ℎ) − 𝑍(𝑡)| < 𝐾ℎ}

where 𝐾 is an arbitrarily large positive constant. Please verify that the limit of
this probability when ℎ → 0 is zero. This means that the Wiener process is
no-where differentiable.

15.2 Limit theorems for extremes

Finding the minimum or the maximum of a number of random variables is
a classical subject in probability theory that goes under the name of extreme
value theory. Situations where maxima and minima occur are called extreme
events. There are many situations where we may be interested in extreme
events. For example, engineers need to ensure that the structure they build
(e.g. a bridge) will resist perturbations (e.g. floods) for a long time (at least
longer than their lifetime). Hence they need to estimate what is the maximal
size of the perturbation they can expect over a certain period of time. World
records in athletics is another example of extreme random variables.

Here we focus on the simple case of finding the maxima and minima

𝑍𝑛 = max{𝑋1, … , 𝑋𝑛}, 𝑊𝑛 = min{𝑋1, … , 𝑋𝑛}

of 𝑛 i.i.d. random variables 𝑋1, … , 𝑋𝑛 with common pdf 𝑝(𝑥). If we change
the sign of each random variable 𝑋′

𝑖
= −𝑋𝑖, then the problem of finding the

minimum becomes that of finding the maximum, i.e. 𝑍′𝑛 = −𝑊𝑛. Hence, it is
enough to consider 𝑍𝑛 only. The problem can be stated as follows.

Find sequences 𝑎𝑛, 𝑏𝑛 ∈ ℝ such that12

𝑍𝑛 = 𝑎𝑛 + 𝑏𝑛Λ𝑛 (15.19)

and Λ𝑛 → Λ, in distribution as 𝑛 → ∞, where Λ has a non-degenerate
distribution. In other words, 𝑎𝑛 and 𝑏𝑛 should be such that the limit

𝐻(𝑥) = lim
𝑛→∞

𝑃{Λ𝑛 < 𝑥}

12As for sums of random variables, 𝑎𝑛 provides a measure of how large we expect the
maximum to be, whereas 𝑏𝑛 gives an estimate of howmuch themaximumcan vary between two
different realisations of the sequence of 𝑛 independent random variables, because 𝑍(1)

𝑛 −𝑍
(2)
𝑛 =

𝑏𝑛(Λ
(1)
𝑛 − Λ

(2)
𝑛 ).
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yields the cumulative distribution of a non-degenerate random variable. The
key idea is that

𝑃{Λ𝑛 < 𝑥} = 𝑃{𝑍𝑛 < 𝑎𝑛 + 𝑏𝑛𝑥} (15.20)
= 𝑃{𝑋𝑖 < 𝑎𝑛 + 𝑏𝑛𝑥, ∀𝑖} (15.21)

= (1 − ∫

∞

𝑎𝑛+𝑏𝑛𝑥

𝑑𝑥′𝑝(𝑥′))

𝑛

(15.22)

In words, if 𝑍𝑛 < 𝑎𝑛 + 𝑏𝑛𝑥 then all 𝑋𝑖 must be less than 𝑎𝑛 + 𝑏𝑛𝑥, and the
last equality is due to the fact that the variables are all i.i.d. . In order for the
limit as 𝑛 → ∞ to be non-trivial, the integral in the last equation must be
proportional to 𝑛−1. Indeed, if 𝑎𝑛 and 𝑏𝑛 are chosen so that

lim
𝑛→∞

𝑛 ∫

∞

𝑎𝑛+𝑏𝑛𝑥

𝑑𝑥′𝑝(𝑥′) = 𝑐(𝑥) (15.23)

then, for large 𝑛 the right hand side of Eq. (15.22) is≃
(
1 −

𝑐(𝑥)

𝑛

)𝑛
and we have

𝐻(𝑥) = lim
𝑛→∞

𝑃{Λ𝑛 < 𝑥} = 𝑒−𝑐(𝑥). (15.24)

The pdf of the random variable Λ is obtained as

ℎ(𝑥) =
𝑑𝐻(𝑥)

𝑑𝑥
= −𝑐′(𝑥)𝑒−𝑐(𝑥). (15.25)

The problem is then condensed in finding 𝑎𝑛 and 𝑏𝑛 such that the limit in
Eq. (15.23) is well defined. This limit probes the tail of the distribution, i.e.
that region of 𝑥 such that the probability that 𝑋𝑖 > 𝑥 is of the order of13 1∕𝑛.

There are three main cases:

1) Power law distributions 𝑝(𝑥) ≃ 𝐴𝑥−𝛾−1 for 𝑥 ≫ 1. Then the integral in
Eq. (15.23) can be done explicitly

𝑛 ∫

∞

𝑎𝑛+𝑏𝑛𝑥

𝑑𝑥′𝑝(𝑥′) ≃
𝐴𝑛

𝛾
(𝑎𝑛 + 𝑏𝑛𝑥)

−𝛾

Then the choice

𝑎𝑛 = 0

𝑏𝑛 = (
𝐴𝑛

𝛾
)

1∕𝛾

∼ 𝑛1∕𝛾

13This is intuitive, because the maximum of 𝑛 random variables 𝑋𝑖 is expected to fall in this
region with finite probability.
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leads to the result

𝑐(𝑥) = 𝑥−𝛾, ⇒ 𝐻(𝑥) = 𝑒−𝑥
−𝛾

𝜃(𝑥)

ℎ(𝑥) = 𝛾𝑥−𝛾−1𝑒−𝑥
−𝛾

(𝑥 > 0) . (15.26)

Note that ℎ(𝑥) preserves the same behaviour of 𝑝(𝑥) for large 𝑥 and
is universal, in the sense that it does not depend on any other details
of 𝑝(𝑥).

It is interesting to compare the behaviour of sums and of extremes, for
distributions with a power law tail.

• For 𝛾 > 2, the sum 𝑆𝑛 is asymptotically described by the Central
Limit Theorems whereas the distribution of the maximum retains
the same tail behaviour of the distribution of 𝑋𝑖 (see Eq. (15.26)).
In addition, the sum is of the order 𝑆𝑛 ∼ 𝑛 with fluctuations 𝛿𝑆𝑛
of order

√
𝑛. The maximum 𝑍𝑛 is the largest element in the sum

𝑆𝑛, and since 𝑍𝑛 ∼ 𝑛1∕𝛾, it is negligible with respect to both the
sum and its fluctuations:

𝑍𝑛 ≪ 𝛿𝑆𝑛 ≪ 𝑆𝑛 (𝛾 > 2)

• For 1 < 𝛾 < 2 the sum and the maximum have pdf’s with the same
asymptotic behaviour. The sum is still of order 𝑛 with fluctuations
𝛿𝑆𝑛 ∼ 𝑛1∕𝛾 which are of the same order of 𝑍𝑛, i.e.

𝑍𝑛 ∼ 𝛿𝑆𝑛 ≪ 𝑆𝑛 (1 < 𝛾 < 2)

• For 𝛾 < 1 the maximum grows as fast as the whole sum, and both
grow faster than 𝑛 (as 𝑛1∕𝛾):

𝑍𝑛 ∼ 𝛿𝑆𝑛 ∼ 𝑆𝑛 (𝛾 < 1)

The maximum accounts for a finite fraction of the whole sum.

2) Distribution with a support bounded to 𝑥 ≤ 𝜔. If for 𝑥 ≈ 𝜔

𝑝(𝑥) ≃ {
(𝜔 − 𝑥)𝛾−1 𝑥 ≤ 𝜔

0 𝑥 ≥ 𝜔
,

the integral in Eq. (15.23) yields

𝑛 ∫

𝜔

𝑎𝑛+𝑏𝑛𝑥

𝑑𝑥′𝑝(𝑥′) ≃
𝐴𝑛

𝛾
(𝜔 − 𝑎𝑛 − 𝑏𝑛𝑥)

𝛾
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Then the choice

𝑎𝑛 = 𝜔

𝑏𝑛 = (
𝛾

𝐴𝑛
)

1∕𝛾

∼ 𝑛−1∕𝛾

leads to the result

𝑐(𝑥) = (−𝑥)𝛾, ⇒ 𝐻(𝑥) = 𝑒−(−𝑥)
𝛾

(𝑥 < 0)

ℎ(𝑥) = 𝛾(−𝑥)−𝛾−1𝑒−(−𝑥)
−𝛾

and𝐻(𝑥) = 1, ℎ(𝑥) = 0 for 𝑥 ≥ 0.

Again, the singular behaviour of ℎ(𝑥) for 𝑥 → 0− coincides with that
of 𝑝(𝑥) ∼ (𝜔 − 𝑥)𝛾−1 for 𝑥 → 𝜔−. This is the only relevant feature that
the limit distribution retains of the original distribution 𝑝(𝑥).

Note that ℎ(𝑥) for 𝛾 = 1 coincides with the exponential distribution for
𝑥 ≤ 0. This implies that the minimum of many random variables with
a support which has a finite inferior limit 𝜔 and whose pdf as 𝑥 → 𝜔+

is finite, is an exponential random variable. In particular the minimum
of many exponential random variables is itself an exponential random
variable.

3) 𝑝(𝑥) with unbounded support, that falls off faster than any power for
𝑥 → ∞. This includes distributions for which the moments 𝔼 [|𝑋|𝑚] | <
+∞ are finite for any𝑚. Rather than carrying out the limit in general,
we consider a specificif example, the stretched exponential distribution

𝑝(𝑥) = {
𝜈𝑥𝜈−1𝑒−𝑥

𝜈

𝑥 ≥ 0

0 𝑥 ≤ 0
, (15.27)

for which the limit can be carried out easily. Eq. (15.23) reads

𝑛 ∫

∞

𝑎𝑛+𝑏𝑛𝑥

𝑑𝑧𝜈𝑧𝜈−1𝑒−𝑧
𝜈

= 𝑛𝑒−(𝑎𝑛+𝑏𝑛𝑥)
𝜈 (15.28)

= 𝑛𝑒
−𝑎𝜈𝑛−𝜈𝑎

𝜈−1
𝑛 𝑏𝑛𝑥−

𝜈(𝜈−1)

2
𝑎𝜈−2𝑛 𝑏2𝑛𝑥

2+…

We can get rid of the factor 𝑛 by taking 𝑎𝑛 = (log 𝑛)1∕𝜈. Fixing 𝑏𝑛 such
that the coefficient of 𝑥 in the second term of the exponential equals
one (i.e. 𝜈𝑎𝜈−1𝑛 𝑏𝑛 = 1), yields

𝑏𝑛 =
1

𝜈
(log 𝑛)1∕𝜈−1 . (15.29)
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It is easy to check that all other terms in the expansion vanish as 𝑛 → ∞.
Therefore, with this choice of 𝑎𝑛 and 𝑏𝑛, the limit in Eq. (15.23) becomes
𝑐(𝑥) = 𝑒−𝑥. For a general distribution in this class, the coefficient 𝑎𝑛
can be chosen as the value of 𝑥 for which the expected number of points
larger than 𝑎𝑛, in a sample of 𝑛 i.i.d. draws, equals one, i.e.

𝑛𝑃{𝑋 > 𝑎𝑛} = 𝑛 ∫

∞

𝑎𝑛

𝑑𝑥𝑝(𝑥) = 1. (15.30)

In this way, 𝑎𝑛 provides a measure of the value that we expect for the
maximum of 𝑛 i.i.d. random variables. The coefficient 𝑏𝑛 can be taken
as a measure of the scale of fluctuations of 𝑋𝑖 conditional to 𝑋𝑖 > 𝑎𝑛, i.e.

𝑏𝑛 = 𝔼 [𝑋 − 𝑎𝑛|𝑋 > 𝑎𝑛] = 𝑛∫

∞

𝑎𝑛

𝑑𝑦 ∫

∞

𝑦

𝑑𝑥𝑝(𝑥) . (15.31)

Then it can be shown that the limit in Eq. (15.23) yields 𝑐(𝑥) = 𝑒−𝑥 and

𝐻(𝑥) = 𝑒−𝑒
−𝑥

, ℎ(𝑥) = 𝑒−𝑥−𝑒
−𝑥

. (15.32)

Eq. (15.32) is known as the Gumbel distribution.14

It is interesting to note that 𝑏𝑛 in Eq. (15.29) diverges if 𝜈 < 1 whereas
𝑏𝑛 → 0 for 𝜈 > 1. This means that the maximum 𝑍𝑛 is well approxi-
mated by the deterministic sequence 𝑎𝑛 for 𝜈 > 1, because |𝑍𝑛−𝑎𝑛| → 0

in probability as 𝑛 → ∞.15 Conversely, for 𝜈 < 1 the fluctuations of 𝑍𝑛
become larger for larger values of 𝑛. The case 𝜈 = 1, which corresponds
to the exponential, is special, because then 𝑏𝑛 = 1 independently of 𝑛.

This last case can be considered as the limit 𝛾 → ∞ of the first case.
Indeed there is a general formula that, apart from an affine transforma-
tion, includes the three cases discussed above, which is the Fisher-Tippet
distribution

𝑃𝜉(𝑥) = 𝑃{Λ ≥ 𝑥} = 𝑒−(1+𝜉𝑥)
1∕𝜉 for 𝜉𝑥 > −1 , (15.33)

whereas when 𝜉𝑥 ≤ −1, 𝑃𝜉(𝑥) = 0 for 𝜉 > 0 and 𝑃𝜉(𝑥) = 1 if 𝜉 < 0.
The first case corresponds to 𝜉 = 1∕𝛾 > 0 whereas the second to 𝜉 =
−1∕𝛾 < 0. The third case to the limit 𝜉 → 0.

14Also the other limit distributions have names, but they are less used.
15The limit does not always exists. E.g. for 𝑝(𝑥) = 1∕[𝑥(ln 𝑥)2] there are no coefficients 𝑎𝑛

and 𝑏𝑛 for which (𝑍𝑛 − 𝑎𝑛)∕𝑏𝑛 has a non-degenerate distribution. Indeed there is a limit for
𝑍̃𝑛 = max{ln𝑋1, … , ln𝑋𝑛} = ln𝑍𝑛
of the form 𝑍̃𝑛 = 𝑎̃𝑛 + 𝑏̃𝑛𝑌̃. Therefore, for 𝑛 ≫ 1, the maximum of 𝑋𝑖 is well approximated by
𝑍𝑛 = 𝑒𝑎̃𝑛+𝑏̃𝑛𝑌̃ . This explains why there cannot be a non-degenerate limit of (𝑍𝑛 − 𝑎𝑛)∕𝑏𝑛.
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15.2.1 Some applications*

The Gillespie algorithm. Consider the dynamics of a system that can be
in any of 𝑛 states and that can make transitions from states 𝑖 to 𝑗 at any time
𝑡 ∈ ℝ.16 More precisely, if the system is in state 𝑖 at time 𝑡, it can jump to
state 𝑗 in the interval [𝑡, 𝑡 + 𝑑𝑡) with a probability 𝑤𝑖,𝑗𝑑𝑡. For infinitesimal
𝑑𝑡 the probability that two transitions occur in the same interval [𝑡, 𝑡 + 𝑑𝑡) is
proportional to 𝑑𝑡2 and it is therefore negligible. The dynamics is a sequence
of transitions between states at different times. The constant 𝑤𝑖,𝑗 is called the
transition rate.

Imagine that we want to generate a trajectory of this system with a com-
puter code. In order to do so — i.e. to simulate the dynamics — one can fix a
small time increment ∆𝑡 and then, with probability 𝑤𝑖,𝑗∆𝑡 perform transition
𝑖 → 𝑗, for all 𝑗. The problem is that at most one transition should occur,
which implies that ∆𝑡 should be taken very small. This is computationally
very inefficient.17 This method gets more accurate the smaller is ∆𝑡, i.e. the
more it is inefficient. There is a smarter way to simulate this process that
relies on the realisation that the waiting time for the transition 𝑖 → 𝑗 to occur
is exponential

𝑝𝑖,𝑗(𝑡) = 𝑤𝑖,𝑗𝑒
−𝑤𝑖,𝑗𝑡

Hence, it is possible to draw 𝑛 waiting times 𝑇𝑖,𝑗 for all 𝑗 = 1,… , 𝑛 from the
corresponding exponential distribution and find the transition 𝑖 → 𝑗∗ that
will occur first, i.e.

𝑗∗ = arg min
𝑗=1,…,𝑛

𝑇𝑖,𝑗 .

Then one can execute the transition and advance time by ∆𝑡 = 𝑇𝑖,𝑗∗ . This is
exact but it still requires to draw 𝑛 random variables for each transition. We
can do better because we can compute the probability that 𝑗∗ takes any value,

16A large number of systems can be described in these terms. For example, in a mixture of
molecules, state 𝑖 will correspond to a particular composition of the mixture, and state 𝑗 to the
composition that attains if a certain chemical reaction takes place. For completeness, let us
mention that the probability 𝑝𝑖(𝑡) to find the system in state 𝑖 at time 𝑡 satisfies the so called
Master Equation

𝑑𝑝𝑖

𝑑𝑡
=
∑

𝑘≠𝑖

[
𝑝𝑘𝑤𝑘,𝑖 − 𝑝𝑖𝑤𝑖,𝑘

]
.

This states that changes in 𝑝𝑖 either occur because of transitions from other states 𝑘 to 𝑖 (the
first term in […]) or because of transitions out of 𝑖, to other states 𝑘 (second term in […]).

17In order to find outwhether jump 𝑖 → 𝑗 occurs in the time interval [𝑡, 𝑡+∆𝑡) in a simulation,
draw a uniform random number 𝑅 ∈ [0, 1] and compare it with 𝑤𝑖,𝑗∆𝑡. If 𝑅 < 𝑤𝑖,𝑗∆𝑡 then the
jump occurs. Doing this for each 𝑗 implies that 𝑛 random numbers are needed to perform one
transition.
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by computing the probability that the corresponding time is smaller than all
the others, i.e.

𝑃{𝑗∗ = 𝑗} = 𝑃{𝑇𝑖,𝑗 < 𝑇𝑖,𝑘, ∀𝑘 ≠ 𝑗}

= ∫

∞

0

𝑑𝑡𝑤𝑖,𝑗𝑒
−𝑤𝑖,𝑗𝑡

∏

𝑘≠𝑗

𝑒−𝑤𝑖,𝑘𝑡

=
𝑤𝑖,𝑗

𝑊𝑖

, 𝑊𝑖 =

𝑛∑

𝑘=1

𝑤𝑖,𝑘

where we used the fact that 𝑃{𝑇𝑖,𝑘 > 𝑡} = 𝑒−𝑤𝑖,𝑘𝑡 for exponential random
variables. Therefore with one draw from the distribution 𝑃{𝑗∗ = 𝑗} we can
find the transition 𝑖 → 𝑗∗ that will occur. In addition, the waiting time for
the transition is the minimum of the waiting times for all the processes, i.e.
𝑇𝑖,𝑗∗ = min𝑘 𝑇𝑖,𝑘, and we can compute its probability distribution as

𝑃{𝑇𝑖,𝑗∗ > 𝑡} = 𝑃{𝑇𝑖,𝑘 > 𝑡, ∀𝑘 = 1,… , 𝑛} =

𝑛∏

𝑘=1

𝑒−𝑤𝑖,𝑘𝑡 = 𝑒−𝑊𝑖𝑡.

Hence ∆𝑡 = 𝑇𝑖,𝑗∗ can be drawn form this distribution directly. We need just to
draw two randomnumbers for each transition, instead of 𝑛, to simulate exactly
the process. This reasoning is the basis of the Gillespie algorithm, which is
routinely used to simulate stochastic processes.

On the validity of the CLT. Let𝑋𝑖 be i.i.d. random variables with𝐸[𝑋] = 𝜇

and variance 𝜎2. Then the CLT says that the variable

𝑌𝑛 =
𝑋1 + 𝑋2 + … + 𝑋𝑛 − 𝜇𝑛

𝜎
√
𝑛

converges in distribution to a Gaussian variable with zero mean and unit
variance. This means that 𝑝(𝑥) = 𝑒−𝑥

2∕2∕
√
2𝜋 is a good approximation for

the pdf 𝑝𝑛(𝑥) of 𝑌𝑛. Yet, for finite 𝑛, this is only true in an interval [−𝑦0, 𝑦0]
around the origin. How does the size of the interval 𝑦0 depends on 𝑛?

Let us first discuss the case where all the moments of 𝑋𝑖 are finite. Then

𝑝𝑛(𝑥) = ∫

∞

−∞

𝑑𝑞

2𝜋
𝑒𝑖𝑞𝑥+𝜓𝑛(𝑞)

where

𝜓𝑛(𝑞) = log 𝐸[𝑒−𝑖𝑞𝑌𝑛] = −
𝑞2

2
+
(−𝑖𝑞)3

3!
√
𝑛
𝐶3 +

(−𝑖𝑞)4

4!𝑛
𝐶4 + …
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Figure 36. The distribution of the variable 𝑌𝑛 deviates from the Gaussian in the tails.
The pdf of 𝑌𝑛 is estimated with the empirical distribution of 𝑌𝑛 for 105 draws, for
𝑛 = 102 and 𝑝(𝑥) ∼ |𝑥|−4 for |𝑥| ≫ 1.

and 𝐶𝑚 is the𝑚th order cumulant of the variables 𝑋𝑖. In the integral defining
𝑝𝑛(𝑥), we can expand

𝑒𝜓𝑛(𝑞) = 𝑒−𝑞
2∕2 [1 +

(−𝑖𝑞)3

3!
√
𝑛
𝐶3 + (

(−𝑖𝑞)4

4!
𝐶4 +

(−𝑖𝑞)6

2(3!)2
𝐶2
3
)
1

𝑛
+ …]

Now, each power of (−𝑖𝑞) in the integral acts as a derivative− 𝑑

𝑑𝑥
taken outside

the integral, therefore

𝑝𝑛(𝑥) = [1 −
𝐶3

3!
√
𝑛

𝑑3

𝑑𝑥3
+ (

𝐶4

4!

𝑑4

𝑑𝑥4
+

𝐶2
3

2(3!)2

𝑑6

𝑑𝑥6
)
1

𝑛
+ …]

1
√
2𝜋

𝑒−𝑥
2∕2

= [1 −
𝐶3

3!
√
𝑛
𝐻3(𝑥) + (

𝐶4

4!
𝐻4(𝑥) +

𝐶2
3

2(3!)2
𝐻6(𝑥))

1

𝑛
+ …]

1
√
2𝜋

𝑒−𝑥
2∕2

where we have used the relation 𝑑𝑚

𝑑𝑥𝑚
𝑒−𝑥

2∕2 = 𝐻𝑚(𝑥)𝑒
−𝑥2∕2 that defines the

Hermite polynomial of degree𝑚. For a given value of 𝑛, the approximation of
the CLT is accurate as long as the correction terms are small. Since𝐻𝑚(𝑥) =

𝑥𝑚 + …, this requires that |𝑥|3 ≪
√
𝑛 when 𝐶3 ≠ 0, i.e. |𝑥| ≪ 𝑦0 ∼ 𝑛1∕6.

Notice that, 𝑛1∕6 ≃ 2.15 for 𝑛 = 100, so one should be careful to apply the
CLT to deviations of sums 𝑌𝑛 which are not small.

Things get better if 𝐶3 = 0 and 𝐶4 ≠ 0. Then the range of validity of the
CLT is larger, i.e. 𝑦0 ∼ 𝑛1∕4. In general if the first non-zero cumulant is 𝐶𝑚,
then the range of validity of the CLT depends on 𝑛 as 𝑦0 ∼ 𝑛1∕2−1∕𝑚.

When instead the distribution of 𝑋𝑖 has divergent moments, i.e. when
𝑝(𝑥) ∼ |𝑥|−𝛼−1, with 𝛼 > 2, we can argue in the following manner. Consider



218 CHAPTER 15. LIMIT THEOREMS AND UNIVERSALITY

the case where 𝑋𝑖 > 0 and let’s focus on the right tail, for simplicity, i.e.
𝑝(𝑥) ∼ 𝛼𝑐𝑥−𝛼−1 for 𝑥 ≫ 1. Clearly the event {𝑋1 + … + 𝑋𝑛 < 𝑥} implies the
event {max(𝑋1, … , 𝑋𝑛) < 𝑥}, and hence

𝑃{𝑋1 + … + 𝑋𝑛 < 𝑥} ≤ 𝑃{max(𝑋1, … , 𝑋𝑛) < 𝑥}

assuming that we’re in the range of validity of the CLT, and taking 𝑥 = 𝑛𝜇 +√
𝑛𝜎𝑦, we approximate the l.h.s. as

𝑃{𝑋1 + … + 𝑋𝑛 < 𝑛𝜇 +
√
𝑛𝜎𝑦} ≃ 1 −

1
√
2𝜋𝑦

𝑒−𝑦
2∕2, 𝑦 ≫ 1

whereas

𝑃{max(𝑋1, … , 𝑋𝑛) < 𝑛𝜇 +
√
𝑛𝜎𝑦} ≃ [1 − 𝑐(𝜇𝑛)−𝛼]

𝑛

≃ 𝑒−𝑐
′𝑛1−𝛼 ≃ 1 − 𝑐′𝑛1−𝛼

where we assumed 𝜇𝑛 ≫ 𝜎
√
𝑛𝑦, i.e. 𝑦 ≪

√
𝑛. Therefore the inequality above,

after some straightforward manipulations, leads to 𝑦2 ≤ 2(𝛼 − 1) log 𝑛 + …

where … stands for subleading terms. Neglecting these, we arrive at

𝑦 ≤

√

2(𝛼 − 1) log 𝑛

This means that if 𝑦 exceeds the value 𝑦0 =
√
2(𝛼 − 1) log 𝑛 then something

in the above derivation necessarily goes wrong. The only real assumption
that we made is that of the validity of the CLT. So we conclude that the CLT
does not hold if 𝑦 ≫

√
2(𝛼 − 1) log 𝑛. The interval in which the CLT holds,

therefore, grows extremely slowly with 𝑛 when the pfd of 𝑋 has power law
tails.

Knowns and unknowns. In many cases, we are interested in phenomena
which are — or so we think — the result of an optimisation problem. For
example, we think of the sequence 𝑠 = (𝑠1, … , 𝑠𝑛) of amino-acids of a protein
as optimising a specific biological function in an organism. Yet in reality
the optimisation may also involve many other variables 𝑠, besides 𝑠, which
may not be observed or even known.18 We may describe this situation as a
generic optimisation problem of a function 𝑈(𝑠) over a certain number of

18There are many examples of problems of this type. The choice of the city (i.e. 𝑠) in which
John decides to live, does not only depend on the name 𝑠 of the city, but also on other factors
(𝑠) that enter in John’s decision.
A plant selects its reproductive strategy depending on the environment where it lives. There
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variables 𝑠 = (𝑠, 𝑠), where only a fraction of the variables — the “knowns” 𝑠
— are observable, whereas the other variables 𝑠— the “unknowns” — are
unobservable. To what extent does the available knowledge allows us to
predict the real behaviour of the system? Howmuch should we know in order
to be predictive?

Formally, we can define that part of the objective function that is known
as 𝑢𝑠 = 𝔼

[
𝑈(𝑠)|𝑠

]
, where the expected value is taken over the distribution

that encodes all the knowledge available on𝑈, for a given value of 𝑠. We shall
call 𝑢𝑠 the model, because it is the best possible description of the system on
the basis of what is known. Accordingly, we can write

𝑈(𝑠) = 𝑢𝑠 + 𝑣𝑠|𝑠 (15.34)

where 𝑣𝑠|𝑠 = 𝑈(𝑠) − 𝔼
[
𝑈(𝑠)|𝑠

]
is an unknown function of 𝑠 and 𝑠. Because

it is unknown, we assume it to be drawn randomly and independently for
each 𝑠 = (𝑠, 𝑠) from a given distribution 𝑝(𝑣). The assumption that 𝑣𝑠|𝑠 are
independent draws from 𝑝(𝑣) is the simplest possible, but it also encodes a
state of (almost) complete ignorance.19 This is a very complex system, as the
full specification of 𝑈(𝑠) for each value of 𝑠 requires a number of parameters
𝑣𝑠|𝑠 that grows exponentially with the number of unknown variables 𝑠.

The behaviour of the system is given by the solution

𝑠∗ = (𝑠∗, 𝑠∗) ≡ argmax
𝑠
𝑈(𝑠). (15.35)

Notice that, since𝑈(𝑠) is a random function, 𝑠∗ and its observable component
𝑠∗ are random variables. The behaviour of the observable variables predicted
by the model, on the other hand, is given by

𝑠
0
≡ argmax

𝑠
𝑢𝑠. (15.36)

Therefore, the predictability of the model is quantified by the probability

𝑝𝑠
0
= 𝑃{𝑠∗ = 𝑠

0
} (15.37)

are measurable characteristics e.g. of its flowers, that can be classified according to a discrete
variables 𝑠. The fitness of that species is optimised over amuch broader set of variables 𝑠 = (𝑠, 𝑠)

which include unobserved variables 𝑠, that influence other traits of the phenotype.
We can think that Shakespeare, in writing Hamlet, chose a particular sentence 𝑠 in an optimal
manner. Each sentence 𝑠 in the text has been chosen by Shakespeare, depending on the words
𝑠 that precede and follow it.

19I.e. if 𝑣𝑠|𝑠 were dependent and/or not identical, we should know how they depend and/or
how they differ.
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that themodel reproduces the behaviour of the system. This probability can be
derived for the following generic complex optimisation problem: we focus on
the case where all the moments of 𝑣𝑠|𝑠 are finite and, without loss of generality,
we take 𝑠 = (𝑠1, … , 𝑠𝑛) and 𝑠 = (𝑠′

1
, … , 𝑠′𝑚), with the variables 𝑠𝑖, 𝑠′𝑖 = ±1 taking

two values. If 𝑛 and𝑚 were small, the problem would not be that complex. So
we consider the limit where both 𝑛 and𝑚 are very large (ideally 𝑛,𝑚 → ∞),
with𝑚 = 𝜇𝑛, which may be more appropriate for a complex system such as
those discussed above.

For all 𝑠, extreme value theory implies that

max
𝑠
𝑣𝑠|𝑠 ≅ 𝑎𝑚 +

𝜂𝑠

𝛽𝑚
, (15.38)

where 𝑎𝑚 is a constant, 𝛽𝑚 depends on the tail behaviour of the distribution
of 𝑣𝑠|𝑠 (see later) and, because of our assumption on 𝑣𝑠|𝑠, 𝜂𝑠 are i.i.d. Gumbel
distributed, i.e. 𝑃{𝜂𝑠 < 𝑥} = 𝑒−𝑒

−𝑥 . Therefore

𝑃{𝑠∗ = 𝑠} = 𝑃{𝛽𝑚𝑢𝑠 + 𝜂𝑠 ≥ 𝛽𝑚𝑢𝑠′ + 𝜂𝑠′ , ∀𝑠
′ ≠ 𝑠} (15.39)

= ∫

∞

−∞

𝑑𝜂𝑠𝑒
−𝜂𝑠−𝑒

−𝜂𝑠 ∏

𝑠′≠𝑠

∫

𝜂𝑠+𝛽𝑚(𝑢𝑠−𝑢𝑠′ )

−∞

𝑑𝜂𝑠′𝑒
−𝜂𝑠′−𝑒

−𝜂
𝑠′

=
1

𝑍(𝛽𝑚)
𝑒
𝛽𝑚𝑢𝑠 , 𝑍(𝛽𝑚) =

∑

𝑠′

𝑒
𝛽𝑚𝑢𝑠′ (15.40)

where, in the second line, we used the change of variables 𝑧𝑠 = 𝑒
−𝜂𝑠 to ease

the calculation of the integral.20 Hence limit theorems on extremes dictate
20In the case where 𝑝(𝑣) has a tail behaviour

𝑝(𝑣) ∼ 𝑣−𝛾−1

for 𝑣 → ∞, an analogous calculation leads to

𝑃{𝑠∗ = 𝑠} = ∫

∞

0

𝑑𝑡𝑒
−𝑡(1+

∑

𝑠′≠𝑠
(1+𝛽𝑚(𝑢𝑠−𝑢𝑠′ )𝑡

1∕𝛾)−𝛾)

= ∫

∞

0

𝑑𝑡𝑒
−𝑡

∑

𝑠′
(1+𝛽𝑚(𝑢𝑠−𝑢𝑠′ )𝑡

1∕𝛾)−𝛾

.

Given that 𝛽𝑚 = 𝛽0𝑒
−𝑚∕𝛾 ≪ 1, it is possible to expand the argument of the exponential,

leading to

𝑃{𝑠∗ ≃ 𝑠} = ∫

∞

0

𝑑𝑡𝑒
−2𝑛𝑡[1−𝛾𝛽𝑚(𝑢𝑠−𝑢̄)𝑡

1∕𝛾+…]

≃
1

2𝑛
[1 + 𝑐2

−
𝑛+𝑚

𝛾 (𝑢𝑠 − 𝑢̄) + …]
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the form of 𝑃{𝑠∗ = 𝑠}, that for the class of models for which 𝑣𝑠|𝑠 has all finite
moments, coincides with Eq. (15.40). This distribution is known under the
name of Gibbs-Boltzmann distribution in statistical physics and of Logit model
in statistics, choice theory and economics. We will see that there are other
ways to derive the same result (Eq. (15.40)) from an assumption of maximal
ignorance. Notice that when 𝛽𝑚 →∞ the distribution 𝑃{𝑠

0
= 𝑠∗} gets more

and more peaked around the maximum 𝑠
0
of 𝑢𝑠, whereas when 𝛽𝑚 → 0 it gets

more and more uniform on all 2𝑛 states.

Exercise 15.8

If 𝑝(𝑣) ∼ (𝜔 − 𝑣)𝛾−1 for 𝑣 < 𝜔 and 𝑝(𝑣) = 0 for 𝑣 > 𝜔, then 𝑃{𝑠∗ ≃
𝑠} ≃ 𝛿𝑠∗=𝑠

0
for 𝑛,𝑚 large. Show it.

Let us specialise our discussion to the specific case of 𝑝(𝑣) = 𝛾𝑣𝛾−1𝑒−𝑣
𝛾

(as in Eq. (15.27) with 𝛾 ↔ 𝜈 and 𝑣 ↔ 𝑥). Then Eq. (15.29) with 𝑛 ↦→ 2𝑚,
gives

𝛽𝑚 = 𝛾 [𝑚 log 2]
1−1∕𝛾 (15.41)

One may naïvely expect that the predictability of the model gets worse, i.e.
that 𝑃{𝑠

0
= 𝑠∗} decreases, when the number 𝑚 of unknown variables in-

creases. This is only true for 𝛾 < 1, as indeed 𝛽𝑚 decreases as the number
𝑚 of unknown unknowns increases in this case. When 𝑝(𝑣) decays faster
than exponential (𝛾 > 1), which includes the case of Gaussian variables, 𝛽𝑚
diverges with the number 𝑚 of unknowns. For 𝛾 > 1, if the number 𝑛 of
observed variables stays finite, we expect that 𝑃{𝑠

0
= 𝑠∗} → 1 in the limit

𝑚 → ∞ of an infinite number of unknown variables. For 𝛾 > 1, the more we
don’t know the better we can predict.

An ensemble of random optimization problems. We can make further
progress if we assume that also 𝑢𝑠 is drawn from a distribution 𝑝(𝑢) with the
same behaviour,21 i.e. 𝑃{𝑢𝑠 > 𝑢} = 𝑒−(𝑢∕∆)

𝛾 . The number of states with 𝑢𝑠 > 𝑢

is given by
|||||

{
𝑠 ∶ 𝑢𝑠 > 𝑢

}|||||
∼ 2𝑛𝑒−(𝑢∕∆)

𝛾

, 𝑢 > 0. (15.42)

with 𝑐 = 𝛾Γ (2 +
1

𝛾
) 𝛽0 a constant. The integral is evaluated first changing variables to 𝑥 = 2𝑛𝑡

and then expanding the exponential to leading order. Therefore, for 𝑝(𝑣) ∼ 𝑣−𝛾−1 no prediction
is possible.

21This problem is similar to the RandomEnergyModel [25] studied in statistical mechanics as
a toy model for disordered systems, where the energy 𝐸𝑠 = 𝐸0 −

√
𝑛𝑢𝑠 is drawn independently

from a Gaussian distribution with mean 𝐸0 and variance 𝑛.
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Figure 37. Left: phase transition as a function of the ratio 𝜇 = 𝑚∕𝑛 between the
number of unknown and known variables. The vertical axis reports the value of the
exponential rate with which the probability 𝑃{𝑠

0
= 𝑠∗} → 0 vanishes. Right: phase

diagram in the (𝛾, ∆) plane for different values of 𝜇. Notice that the upper region
where 𝑃{𝑠

0
= 𝑠∗} is finite expands as 𝜇 increases for 𝛾 > 1, whereas it shrinks as 𝜇

increases for 𝛾 < 1.

The parameter ∆ provides a scale of the known part of the function 𝑈 with
respect to the unknown part, i.e. 𝑢𝑠∕𝑣𝑠|𝑠 ∼ ∆. For ∆ ≫ 1 we expect the
optimisation to depend weakly on the variables 𝑠, and to be dominated by the
term 𝑢𝑠. Hence we expect that 𝑃{𝑠0 = 𝑠∗} → 1 for large ∆. The largest value
of 𝑢𝑠 predicted by the limit theorems for extremes, is given by

𝑢0 = max
𝑠
𝑢𝑠 ≃ ∆(𝑛 log 2)1∕𝛾.

Using this and Eq. (15.41), the probability that the model predicts the right
outcome is

𝑃{𝑠∗ = 𝑠
0
} =

1

𝑍
𝑒𝛽𝑚𝑢0 ≃

1

𝑍
𝑒𝑛(log 2)∆𝛾𝜇

1−1∕𝛾

is also exponential in 𝑛. The partition sum 𝑍 can be computed within a
saddle point approximation. When the sum is dominated by the state 𝑠

0
, then

𝑃{𝑠∗ = 𝑠
0
} attains a finite value, otherwise 𝑃{𝑠∗ = 𝑠

0
} → 0 as 𝑛 → ∞. The

behaviour of 𝑃{𝑠
0
= 𝑠∗} as a function of the parameters 𝛾, ∆ and 𝜇 = 𝑚∕𝑛

in the limit 𝑛 → ∞, has been studied in ref. [26]. We refer to this paper and
report the main results in Figure 37.

The probability 𝑃{𝑠
0
= 𝑠∗} features a phase transition between a phase

where it is exponentially small in 𝑛, and one where it is finite. When 𝛾 > 1,
𝑃{𝑠

0
= 𝑠∗} is exponentially small in 𝑛 for

𝑚

𝑛
= 𝜇 < 𝜇𝑐 = ∆−𝛾∕(𝛾−1), (𝛾 > 1)
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whereas for 𝜇 > 𝜇𝑐 it is finite. As shown in Figure 37 (left), the transition
is continuous. For 𝛾 < 1, instead, the transition is reversed and it becomes
discontinuous. More precisely, 𝑃{𝑠

0
= 𝑠∗} → 0 as 𝑛 → ∞ when

𝑚

𝑛
= 𝜇 > 𝜇𝑐 = (𝛾∆)

𝛾∕(1−𝛾)
(𝛾 < 1). (15.43)

and 𝑃{𝑠
0
= 𝑠∗} suddenly jumps to finite values for 𝜇 < 𝜇𝑐. The phase diagram

of the system in the (𝛾, ∆) plane is shown in Figure 37 (right).
The case of an exponential distribution (𝛾 = 1) is very peculiar, because

then the transition point is independent of 𝜇. This invariance is argued to be
a peculiar property of systems that learns, in the paper cited above.





Chapter 16

Information theory

All knowledge degenerates into probability.
(David Hume, 1739)

How can we quantify information?1 Let us take a specific example: Alice
(A) is in a state of ignorance about a certain variable 𝑋 which is known to
Bob (B). She anticipates that the answer 𝑋 ∈ 𝒳 can be one of 𝑛 = |𝒳|

possible ones. One way to quantify the information content of 𝑋 is to count
the number of binary questions (yes/no) that A needs to pose to B in order to
know the answer 𝑋. Indeed, A’s uncertainty will be dispelled after she hears
the answers because she will know what 𝑋 is. Therefore, the number 𝑁𝑄 of
binary questions needed to dispel A’s ignorance is an operative definition of
the information content of 𝑋, and it is measured in bits.2

Take for example the case𝒳 = {𝑎, 𝑏, 𝑐, 𝑑}. Then Amay ask a first question

𝑄1: is 𝑋 ∈ {𝑎, 𝑏} or not?

and depending on the answer, A may ask

𝑄2: if 𝑋 ∈ {𝑎, 𝑏} is 𝑋 = 𝑎 or not?

Else, if 𝑋 ∉ {𝑎, 𝑏} is 𝑋 = 𝑐 or not?

The answers to these two questions reveal the correct outcome 𝑋. Hence the
information is 𝑁𝑄 = 2 bits. Yet there are many other ways in which A could
ask questions, and hence 𝑁𝑄 could vary accordingly.

For example A can modify her questions as follows:

1This chapter heavily draws from Cover, Chapter 2, and Chapter 4 of [27].
2A bit is a variable that takes two values, 0 (for no) or 1 (for yes).
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Figure 38. Different ways of asking binary questions.

𝑄′
1
: is 𝑋 = 𝑎 or not?

only if 𝑋 ≠ 𝑎 A will need to pose a further question. Then she may ask:

𝑄′
2
: is 𝑋 = 𝑏 or not?

Only if the result is no, she will need to ask

𝑄′
3
: is 𝑋 = 𝑐 or not?

in which case the number of binary questions can be𝑁𝑄(𝑎) = 1,𝑁𝑄(𝑏) = 2 or
𝑁𝑄(𝑐) = 𝑁𝑄(𝑑) = 3, depending on the value of 𝑋. Indeed,𝑁𝑄(𝑋) is a random
variable, because it is a function of 𝑋.

Formally, the state of uncertainty of A is encoded in the probability distribu-
tion 𝑃{𝑋 = 𝑥} = 𝑝𝑥, of 𝑋. We’re looking for a measure of information content
of 𝑋 that can quantify the uncertainty of A before the questions are posed
and the answers are heard. Therefore, it makes sense to define a measure of
information content as the expected number 𝔼

[
𝑁𝑄

]
of binary questions that

are needed to elicit the value of 𝑋.
The expected value

𝔼
[
𝑁𝑄

]
=
∑

𝑥∈𝜒

𝑝𝑥𝑁𝑄(𝑥)

depends on the distribution 𝑝𝑥, that we assume is known to A, and on the way
in which the answers are posed. For example, if A didn’t know 𝑝𝑥, there is
nothing that would distinguish the different outcomes, e.g.𝑋 = 𝑎 from𝑋 = 𝑏,
so there is nothing that suggests that 𝑝𝑎 should be smaller or larger than 𝑝𝑏.
Hence, she would have to assume that 𝑝𝑥 = 1∕4 for all 𝑥. This distribution in-
deed encodes a state of maximal ignorance, as we shall see. Then asking ques-
tions (𝑄1, 𝑄2) yields 𝔼

[
𝑁𝑄

]
= 2 whereas formulating questions (𝑄′

1
, 𝑄′

2
, 𝑄′

3
)
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leads to a larger value of 𝔼
[
𝑁𝑄′

]
= 9∕4. If instead 𝑝𝑎 = 1∕2, 𝑝𝑏 = 1∕4 and

𝑝𝑐 = 𝑝𝑑 = 1∕8, then again 𝔼
[
𝑁𝑄

]
= 2, but

𝔼
[
𝑁𝑄′

]
= 𝑝𝑎 ⋅ 1 + 𝑝𝑏 ⋅ 2 + 𝑝𝑐 ⋅ 3 + 𝑝𝑑 ⋅ 3 =

7

4
. (16.1)

The optimal way of answering questions is different in the two cases. The
minimal expected number of binary questions that A needs to pose to elicit 𝑋
is a measure of her irreducible ignorance about 𝑋. Hence, we provisionally
define

The information content𝐻[𝑋] of a random variable 𝑋 is themin-
imal expected number of binary questions needed to elicit the
value of 𝑋,

𝐻[𝑋] = min
𝑄

𝔼
[
𝑁𝑄

]
(16.2)

where the expected value is taken with respect to the distribution
𝑃{𝑋 = 𝑥} = 𝑝𝑥 that defines the state of knowledge on 𝑋, and
the minimum is taken over all possible ways of posing yes/no
questions.

Note that the information content

𝐻 ∶ 𝑋 → ℝ

is a functional that associates a real number𝐻[𝑋] to a function

𝑋 ∶ Ω → ℝ.

This is why we use square brackets in𝐻[⋅].
The way in which Alice poses question associates to each values of 𝑋 a

strings of binary variables that we can take to be 1 for yes and 0 for no. Such a
transformation between values of𝑋 and strings of bits is called a code. Imagine
that Alice asks Bob the same question many times (e.g. what’s the weather
today?) and that they communicate through a binary channel, i.e. a device
that allow Bob and Alice to send either a 0 or a 1 to the other end at any time.
Alice and Bob might be interested in finding the code which makes them
exchange the shortest possible strings of bits. This problem is the same as the
problem of finding the best way to ask questions.

Indeed, each protocol 𝑄 for asking questions corresponds to a scheme to
encode the possible answers 𝑋. For example, the protocol 𝑄 above would
correspond to the code

𝑎 → 00; 𝑏 → 01; 𝑐 → 10; 𝑑 → 11 .
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The bit strings associated to a given value of 𝑋 is called its codeword.3 This
code will require 2 bits for each answer transmitted from B to A. Protocol 𝑄′

corresponds to a different association of values of 𝑋 to codewords, i.e.

𝑎 → 1; 𝑏 → 01; 𝑐 → 001; 𝑑 → 000

Notice that each codeword has length 𝓁𝑄(𝑋) = 𝑁𝑄(𝑋) which is equal to the
number of binary questions needed to elicit 𝑋 under protocol 𝑄.

Therefore the problem of finding the code that is expected to use the least
number of bits (i.e. that minimises 𝔼

[
𝓁𝑄
]
) is exactly the same as the problem

of finding the best way to pose questions. The fact that these two apparently
different problems — A posing questions to B optimally and B transmitting
answers to A efficiently — have the same solution, is interesting.

Note also that the optimal way 𝑄∗ of posing questions, and hence𝐻[𝑋],
depends only on the probabilities 𝑝𝑥, and not onwhat𝑋 is.4 In particular, if an
answer 𝑥 is more likely than 𝑥′, then it is natural that5 𝓁𝑄∗(𝑥) ≤ 𝓁𝑄∗(𝑥

′). For
example, the knowledge of 𝑝𝑥 in the example above, carries some information
on the answer, which can be quantified in the difference between 𝔼

[
𝑁𝑄

]
in

the two cases, and is 1∕4 of a bit in that case.

16.1 Shannon entropy and Shannon theorem
The minimal number of binary questions needed to elicit 𝑋, or equivalently
the expected length of the optimal code for 𝑋, is given by the Shannon entropy

𝐻[𝑋] = 𝔼
[
log

2
1∕𝑝𝑋

]
= −

∑

𝑥∈𝒳

𝑝𝑥 log2 𝑝𝑥 (16.3)

of the random variable 𝑋, that we shall simply call entropy, henceforth. The
entropy depends on the distribution 𝑝𝑥, and we will equivalently denote it as
ℋ[𝑝], when referring to it as a functional of the probability distribution 𝑝𝑥.

It is easy to check that this is the correct answer in the examples above,
where codewords have length exactly equal to log

2
1∕𝑝𝑥, but one can argue

that Eq. (16.3) works for all discrete random variables 𝑋, provided that we
considermessages 𝑋 = (𝑋1, … , 𝑋𝑛) where each of the 𝑛 characters 𝑋𝑖 ∈ 𝜒, are
drawn i.i.d. from the distribution 𝑝𝑥. Then, in the limit 𝑛 → ∞, almost surely,

3In coding theory jargon, 𝑋 are called words.
4𝑋 could be football teams in the Premier League or species of bird on some island. As long

as the probabilities 𝑝𝑥 are the same, the information content is the same.
5Think of the first binary question you would ask to know which team won the last Premier

League championship.



16.1. SHANNON ENTROPY AND SHANNON THEOREM 229

we need at most𝐻[𝑋] bits per character. This result, that goes under the name
of Shannon theorem, is a direct consequence of the Asymptotic Equipartition
Property. The idea of the proof is simple. Remember that the Asymptotic
Equipartition Property ensures us that, for any 𝜖 > 0, a message 𝑋 belongs to
the 𝜖-typical set

𝐴
(𝜖)
𝑛 = {𝑋 ∶

||||||

1

𝑛
log 𝑃(𝑋) + 𝐻[𝑋]

||||||
< 𝜖}

almost surely, as 𝑛 → ∞. Imagine that Alice and Bob assign to all messages
𝑋 ∈ 𝐴

(𝜖)
𝑛 a different integer 𝑄(𝑋) from one to |𝐴(𝜖)

𝑛 |, and to messages 𝑋 ∉ 𝐴
(𝜖)
𝑛

integers 𝑄(𝑋) larger than |𝐴(𝜖)
𝑛 |. Then each message will require a codeword

of length 𝓁𝑄(𝐗) = log
2
𝑄(𝑋), which is given by the binary representation of

𝑄(𝑋). Then, almost surely, Alice and Bob will need less than

1

𝑛
max
𝑋∈𝐴

(𝜖)
𝑛

log
2
𝑄(𝑋) =

1

𝑛
log

2
|𝐴

(𝜖)
𝑛 |

bits per character, as 𝑛 → ∞. In this limit, the Asymptotic Equipartition
Property also implies that

lim
𝑛→∞

1

𝑛
log

2
|𝐴

(𝜖)
𝑛 | = 𝐻[𝑋].

because |𝐴(𝜖)
𝑛 | ∽ 2𝑛𝐻[𝑋]. Therefore, at most𝐻[𝑋] bits per character 𝑋 need to

be used to transmit the message, almost surely.

Exercise 16.1

The Rényi entropy is defined as

𝐻𝑎[𝑋] =
1

1 − 𝑎
log

∑

𝑥∈𝜒

𝑝𝑎𝑥

with𝑎 > 0. Show that𝐻𝑎[𝑋] is a generalisation of the Shannon entropy,
which is recovered in the limit 𝑎 → 1. Show that if 𝑋 and 𝑌 are
independent

𝐻𝑎[𝑋, 𝑌] = 𝐻𝑎[𝑋] + 𝐻𝑎[𝑌].

Show that, if the conditional Rényi entropy is defined as

𝐻𝑎[𝑋|𝑌] =
1

1 − 𝑎
𝔼
⎡
⎢

⎣

log
∑

𝑥∈𝜒

𝑝𝑎(𝑥|𝑌)
⎤
⎥

⎦
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then the chain rule

𝐻𝑎[𝑋, 𝑌] = 𝐻𝑎[𝑌] + 𝐻𝑎[𝑋|𝑌]

holds only for 𝑎 → 1.

Exercise 16.2

Tsallis entropy is defined as

𝐻𝑞[𝑋] =
1

1 − 𝑞

(
1 − 𝔼

[
𝑝
𝑞−1

𝑋

])
.

Show that i)𝐻𝑞[𝑋] reduces to the Shannon entropy for 𝑞 → 1, and that
ii)𝐻𝑞 is not additive for 𝑞 ≠ 1, i.e. if 𝑋 and 𝑌 are independent random
variables, then

𝐻𝑞[𝑋, 𝑌] = 𝐻𝑞[𝑋] + 𝐻𝑞[𝑌] + (1 − 𝑞)𝐻𝑞[𝑋]𝐻𝑞[𝑌] .

There are other ways to derive this result. For example, the same result
can be obtained observing that the optimal number of bits needed to code 𝑋,
should be a function 𝑓(𝑝𝑋) of 𝑝𝑋 . Then the expected number of bits needed
has to be of the form

𝐻[𝑋] = 𝔼 [𝑓(𝑝𝑋)] =
∑

𝑥∈𝜒

𝑝𝑥𝑓(𝑝𝑥) .

If 𝑋 = (𝑌, 𝑍) where 𝑌 ∈ 𝜒𝑌 and 𝑍 ∈ 𝜒𝑍 are independent random variables,
then 𝐻[𝑋] = 𝐻[𝑌] + 𝐻[𝑍], because knowing 𝑌 does not give any clue on
what 𝑍 could be. Hence

∑

𝑌∈𝜒𝑌 ,𝑍∈𝜒𝑍

𝑝𝑦𝑝𝑧𝑓(𝑝𝑦𝑝𝑧) =
∑

𝑌∈𝜒𝑌 ,𝑍∈𝜒𝑍

𝑝𝑦𝑝𝑧
[
𝑓(𝑝𝑦) + 𝑓(𝑝𝑧)

]

for any 𝑝𝑦 and 𝑝𝑧. Therefore 𝑓(𝑝𝑦𝑝𝑧) = 𝑓(𝑝𝑦) + 𝑓(𝑝𝑧), which means that
𝑓(𝑝) = 𝑎 log 𝑝. If in addition we want to measure information in bits, then
𝑓(1∕2) = 1, i.e. 𝑓(𝑝) = − log

2
𝑝. The entropy quantifies how much B’s reply

can be surprising for A. Indeed if both A and B knows that 𝑝𝑥 = 1 if 𝑥 = 𝑎 and
𝑝𝑥 = 0 for all 𝑥 ≠ 𝑎, then B’s reply cannot be surprising. Actually A doesn’t
even need to ask because both of them know that 𝑋 = 𝑎. So no bit needs to
be exchanged and, accordingly 𝐻[𝑋] = 0. As we said, 𝐻[𝑋] quantifies the
uncertainty of Alice about Bob’s answer before she hears the answer. After
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she hears the answer, she knows that one answer occurs with probability one
and the others with probability zero, i.e.𝐻 = 0. Then𝐻 measures how much
Alice has decreased her degree of uncertainty.

Conversely, the entropy is maximal when 𝑋 is maximally uncertain: 𝑝𝑥 =
1∕|𝒳|. Accordingly

0 ≤ 𝐻[𝑋] ≤ log |𝜒|.

The entropy can be generalised to any number of random variables
𝑋1, … , 𝑋𝑛 in a straightforward fashion, i.e.

𝐻[𝑋1, … , 𝑋𝑛] = −𝔼
[
log

2
𝑃{𝑋1, … , 𝑋𝑛}

]
.

Likewise, we can define the conditional entropy

𝐻[𝑋|𝑌] = −𝔼
[
log

2
𝑃{𝑋|𝑌}

]
= −

∑

𝑦∈𝒴

𝑝(𝑦)
∑

𝑥∈𝒳

𝑝(𝑥|𝑦) log
2
𝑝(𝑥|𝑦)

as the entropy of the conditional distribution 𝑝(𝑥|𝑦), averaged over 𝑦. The
law of conditional probability imply that

𝐻(𝑋|𝑌) = 𝐻(𝑋,𝑌) − 𝐻(𝑌) . (16.4)

In words, the conditional entropy is the expected reduction of the uncertainty
about 𝑋 if 𝑌 where known. Put differently, 𝐻(𝑋|𝑌) quantifies the residual
uncertainty on 𝑋 that Alice expects to reach if she asks Bob about 𝑌. In
particular, for a sequence of random variables 𝑋1, … , 𝑋𝑛, we have that

𝐻[𝑋1, … , 𝑋𝑛] =

𝑛∑

𝑚=2

𝐻[𝑋𝑚|𝑋𝑚−1, … , 𝑋1] + 𝐻[𝑋1].

If the sequence is a Markov chain, then𝐻[𝑋𝑚|𝑋𝑚−1, … , 𝑋1] = 𝐻[𝑋𝑚|𝑋𝑚−1],
because𝑋𝑚 given𝑋𝑚−1 is independent of𝑋𝑘, for all 𝑘 < 𝑚−1. If the transition
probability𝑝𝑖,𝑗 = 𝑃{𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑖} does not depend on 𝑛, and if theMarkov
chain is irreducible, then

𝐻[𝑋2|𝑋1] = −𝔼
[
log 𝑝𝑋1,𝑋2

]

is called the entropy rate, because𝐻[𝑋1, … , 𝑋𝑛]∕𝑛 → 𝐻[𝑋2|𝑋1] as 𝑛 → ∞.

Exercise 16.3

Derive Eq. (16.4).
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16.1.1 Entropy for continuous variables

The generalisation6 of the concept of entropy to continuous variables is prob-
lematic. Indeed, imagine that Alice asks to Bob what is the area 𝑋 of a unit
circle. She will need to ask an infinite number of binary questions in order
to know that 𝑋 = 𝜋 exactly, because an irrational number is represented
by an infinite number of bits. This does not match with the straightforward
generalisation of Eq. (16.3)

ℎ[𝑋] = 𝐸[log
2
1∕𝑝(𝑋)] = −∫ 𝑑𝑥𝑝(𝑥) log

2
𝑝(𝑥) (16.5)

which is finite, barring pathological cases. Furthermore, Eq. (16.5) seems
problematic, since you may get negative numbers! So what is the meaning of
ℎ[𝑋]?

Exercise 16.4

Compute ℎ[𝑋] in Eq. (16.5) for 𝑝(𝑥) = 1∕[𝑥(log 𝑥)2] for 𝑥 ≥ 𝑒 and
𝑝(𝑥) = 0 for 𝑥 < 𝑒.

Exercise 16.5

Check that ℎ[𝑋] = −3 for a uniform random variable 𝑋 ∈ [0, 1∕8].

Coming back to Alice and Bob, Alice may be happy to know 𝑋 to a pre-
assigned precision ∆. So imagine that Alice “quantizes” the random variable
𝑋 into the random variable 𝑋∆ that takes values 𝑥𝑖 which are defined as7

𝑝(𝑥𝑖)∆ = ∫

(𝑖+1)∆

𝑖∆

𝑑𝑥𝑝(𝑥) , (16.6)

for all integer 𝑖 = 0, ±1, ±2, …. With this definition, the distribution of 𝑋∆ is
defined as 𝑃{𝑋∆ = 𝑥𝑖} = 𝑝(𝑥𝑖)∆, which is the probability that 𝑋 ∈ [𝑖∆, (𝑖 +

1)∆). She can now give a precise estimate of the information content of Bob’s

6See Chapter 8 of Cover.
7Because of the mean value theorem for integrals, 𝑥𝑖 ∈ [𝑖∆, (𝑖 + 1)∆] is inside the interval

of integration.
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answer, which is the entropy𝐻[𝑋∆] of𝑋∆. For∆ ≪ 1, this can be expressed as

𝐻[𝑋∆] = −
∑

𝑖

𝑝(𝑥𝑖)∆ log2 [𝑝(𝑥𝑖)∆] (16.7)

= −
∑

𝑖

∫

(𝑖+1)∆

𝑖∆

𝑑𝑥𝑝(𝑥) log
2
𝑝(𝑥𝑖) − log

2
∆ ≃ ℎ[𝑋] − log

2
∆

where the approximation gets more an more precise as ∆ → 0. Here ℎ[𝑋] is
defined in Eq. (16.5), and it is called differential entropy. Its meaning is that
ℎ[𝑋]− log

2
∆ is the expected number of bits needed to specify 𝑋 to a precision

∆, for ∆ → 0. The fact that ℎ[𝑋] may not be positive is not a problem. For
example, a uniform random variable 𝑋 ∈ [0, 𝑎] has ℎ[𝑋] = log

2
𝑎 which is

negative if 𝑎 < 1. If 𝑎 = 1∕8 and you want to determine𝑋 up to the 𝑛th binary
digit (i.e. ∆ = 2−𝑛), you will need 𝑛 − 3 bits, because the first three bits will
be zero anyhow.

One property of the entropy that we used, is that𝐻[𝑋] does not actually
depends on what values 𝑋 takes. It only depends on the value of the prob-
abilities 𝑝𝑥 = 𝑃{𝑋 = 𝑥}. In particular, if we do a bijective transformation
𝑋 → 𝑌 = 𝑓(𝑋)— i.e. such that to every possible value of 𝑋 there corresponds
one and only one value of 𝑌— then𝐻[𝑋] = 𝐻[𝑌].

This is not true for the differential entropy, because even when 𝑓(𝑥) is
monotonous — and hence to every 𝑋 there correspond one and only one
𝑌 = 𝑓(𝑋)— the pdf transforms as 𝑝𝑌(𝑦) = 𝑝𝑋(𝑥)∕|𝑓

′(𝑥)|𝑥=𝑓−1(𝑦). Therefore

ℎ[𝑌] = ℎ[𝑋] + 𝔼
[
log

2
|𝑓′(𝑋)|

]
. (16.8)

Hence, the differential entropy is not reparametrization invariant. A simple
application of this is that, if 𝑎 is a constant, then ℎ[𝑋 + 𝑎] = ℎ[𝑋] and
ℎ[𝑎𝑋] = ℎ[𝑋] + log

2
|𝑎|.

Exercise 16.6

Compute the differential entropy for a Gaussian with mean 𝜇 and
variance 𝜎2, for an exponential distribution 𝑝(𝑥) = 𝑎𝑒−𝑎𝑥, 𝑎, 𝑥 > 0,
and for a multi-dimensional Gaussian with mean 𝜇⃗ and covariance
Cov[𝑋𝑖, 𝑋𝑗] = 𝐴𝑖,𝑗.

16.1.2 Relative entropy

Imagine now that A has a wrong estimate 𝑞𝑥 of the probability 𝑝𝑥 of B’s
answers 𝑥. How much this impacts on the efficiency of the questions she’s
going to ask?
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Given 𝑞, A is going to effectively encode B’s answers in such a way that
answer 𝑥 will require log

2
1∕𝑞𝑥 bits, so the number of questions she will ask,

on average, is

𝔼 [log
2

1

𝑞
] =

∑

𝑥∈𝒳

𝑝𝑥 log2
1

𝑞
𝑥

the difference between this and the most efficient way of asking questions,
which requiresℋ[𝑝] bits, is

𝐷𝐾𝐿[𝑝||𝑞] =
∑

𝑥∈𝒳

𝑝𝑥 log2
𝑝𝑥

𝑞𝑥

which is known as the Kullback-Leibler divergence or relative entropy. It tells
us how costly is the error in the estimate of probabilities, in bits. In this sense,
𝐷𝐾𝐿 is a measure of how “far” Alice is from the true distribution. This is why
𝐷𝐾𝐿 is often considered as a distance, though it is not symmetric and it does
not satisfy the triangle inequality.8

Exercise 16.7

A coin can either be fair with 𝑃{head} = 𝑃{tail} = 1∕2, or biased, with
𝑃{head} = 𝑝 and 𝑃{tail} = 1 − 𝑝. Show that it is worse to assume that
the coin is biased when it is not, than to assume that it is fair when it is
biased.

Though it is not evident 𝐷𝐾𝐿[𝑝||𝑞] ≥ 0 and it vanishes only for 𝑞 = 𝑝. The
way to prove it, is to use the convexity of the logarithm log

2
𝑥 ≤ (𝑥 − 1)∕ log 2

in the definition of 𝐷𝐾𝐿, i.e.

𝐷𝐾𝐿[𝑝||𝑞] = −
∑

𝑥∈𝒳

𝑝𝑥 log2
𝑞𝑥

𝑝𝑥
(16.9)

≥ −
1

log 2

∑

𝑥∈𝒳

𝑝𝑥 [
𝑞𝑥

𝑝𝑥
− 1] = 0 (16.10)

because of normalisation of 𝑝𝑥 and 𝑞𝑥.
The Kullback-Leibler divergence (or relative entropy) generalises to con-

tinuous variables as

𝐷KL[𝑝||𝑞] = ∫ 𝑑𝑥𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
(16.11)

8See Theorem 11.6.1 in Cover for an example where 𝐷𝐾𝐿(𝑝||𝑞) satisfies the opposite of the
triangle inequality.
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Contrary to the differential entropy, the relative entropy is reparametrization
invariant. If 𝑝 and 𝑞 represent two possible distributions for the random
variable 𝑋, their divergence remains the same if one changes parametrization
𝑌 = 𝑓(𝑋). As for discrete variables, it is easy to see that 𝐷KL[𝑝||𝑞] ≥ 0 with
equality holding only if 𝑝 = 𝑞.

Exercise 16.8

Show that the Kullback-Leibler divergence is invariant under changes
of variables.

16.1.3 Mutual information

Imagine you have two random variables 𝑋 ∈ 𝒳 and 𝑌 ∈ 𝒴 with joint distribu-
tion 𝑝(𝑥, 𝑦) and marginals 𝑝(𝑥) and 𝑝(𝑦).9 One way to quantify their mutual
dependence is to compute how much information is lost by assuming that
they are independent. This is given by

𝐼[𝑋, 𝑌] = 𝐷𝐾𝐿 [𝑝(𝑥, 𝑦)||𝑝(𝑥)𝑝(𝑦)] (16.12)

=
∑

𝑥∈𝒳,𝑦∈𝒴

𝑝(𝑥, 𝑦) log
2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
(16.13)

= 𝐻[𝑋] + 𝐻[𝑌] − 𝐻[𝑋, 𝑌] (16.14)

and it is called themutual information between 𝑋 and 𝑌. The last equality,
which follows from simple algebra, with the positivity of 𝐷𝐾𝐿 implies that
𝐻[𝑋,𝑌] ≤ 𝐻[𝑋] + 𝐻[𝑌]. In other words, the state of maximal ignorance
about two random variables 𝑋 and 𝑌 corresponds to the case where they are
independent.

In the same way, one can define the mutual information 𝐼[𝑋, 𝑌] between
continuous variables as

𝐼[𝑋, 𝑌] = 𝐷KL[𝑝(𝑥, 𝑦)||𝑝(𝑥)𝑝(𝑦)] = ℎ[𝑋] + ℎ[𝑌] − ℎ[𝑋, 𝑌] (16.15)

where
𝑝(𝑥) = ∫ 𝑑𝑦𝑝(𝑥, 𝑦), 𝑝(𝑦) = ∫ 𝑑𝑥𝑝(𝑥, 𝑦),

are the marginal distributions. This implies that 𝐼[𝑋, 𝑌] ≥ 0 with equality if
and only if 𝑋 and 𝑌 are independent. So the mutual information provides a
universal measure of statistical dependence. It is universal also because, the

9The abuse of the symbol 𝑝(⋅) follows the notation of Cover. It should be understood that
𝑝(𝑥) and 𝑝(𝑦) are different functions of their arguments.
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mutual information is invariant under any transformation (𝑋, 𝑌) → (𝑈,𝑉)

of the random variables, where 𝑈 = 𝑓(𝑋) and 𝑉 = 𝑔(𝑌) with 𝑓(𝑥) and
𝑔(𝑦)monotonous functions. These transformations changes the “shape” of
the distributions of the two variables, but leaves their statistical dependence
invariant. This invariance becomes manifest if we apply the transformation
𝑓(𝑥) = 𝑃{𝑋 ≤ 𝑥} and 𝑔(𝑦) = 𝑃{𝑌 ≤ 𝑦} which transforms 𝑋 and 𝑌 into two
uniform random variables 𝑈 and 𝑉. The mutual information can then be
expressed as

𝐼[𝑋, 𝑌] = ∫

1

0

𝑑𝑢 ∫

1

0

𝑑𝑣𝑐(𝑢, 𝑣) log
2
𝑐(𝑢, 𝑣), (16.16)

where

𝑐(𝑢, 𝑣) =
𝜕2

𝜕𝑢𝜕𝑣
𝐶(𝑢, 𝑣).

and the function 𝐶(𝑢, 𝑣) is the joint cumulative distribution of 𝑈 and 𝑉,
defined as

𝑃{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦} = 𝐶 (𝑃{𝑋 ≤ 𝑥}, 𝑃{𝑌 ≤ 𝑦}) . (16.17)

The function 𝐶(𝑢, 𝑣) is called the copula function of the two random variables
𝑋 and 𝑌.10

Exercise 16.9

Prove Eqs. (16.16) and (16.17).

In order to illustrate the meaning of 𝐼 consider the following problem. We
are interested in estimating a random variable 𝑋 of which at present we know
the distribution 𝑝(𝑥), and the corresponding entropy𝐻[𝑋] which quantifies
our state of uncertainty about𝑋. You can think of𝑋 as a parameter of a theory
of a given system.11 Now we have the possibility to perform an experiment,

10Eqs. (16.16) and (16.17). suggest an easy way to check whether two variables are dependent
or not, based on a sample (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) of 𝑛 joint observations. Let 𝑈(𝑥) and 𝑉(𝑦) be
the fraction of points for which 𝑋𝑖 ≤ 𝑥 and 𝑌𝑗 ≤ 𝑦, respectively. Plot the points (𝑈(𝑋𝑖), 𝑉(𝑌𝑖))

in the (𝑢, 𝑣) plane. If 𝑋 and 𝑌 are independent, the 𝑛 points should be uniformly distributed
in the unit square [0, 1]2. Statistical dependence is spotted by the clustering of points in some
region. This plot reveals not only whether 𝑋 and 𝑌 are dependent or not, but also how they
depend on each other. For example a monotonous dependence (e.g. if 𝑋 increases 𝑌 tends to
increase or decrease) corresponds to points clustering on one of the diagonals of the square.
This is the kind of dependence which is usually quantified by covariance measures. Yet there
are many other possibilities of how 𝑋 and 𝑌 can depend on each other, some of which may
not be detectable by covariance.

11𝐼[𝑋, 𝑌] is the reduction of Alice’s uncertainty on 𝑋 if, instead of asking Bob about 𝑋, she
asks Carl about a different variable 𝑌.
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i.e. to measure a random variable 𝑌, of which we know, before doing the
experiment, its distribution. We also know the joint distribution 𝑝(𝑥, 𝑦) of
the two variables. How much information do we expect the experiment will
convey on 𝑋? The reduction in the uncertainty is given by

𝐻[𝑋] − 𝐻[𝑋|𝑌] = 𝐼[𝑋, 𝑌]

as can be shown by a direct calculation. So the mutual information tells us
how much we learn, on average, about 𝑋 if we know 𝑌. Note that the mutual
information is symmetric

𝐼[𝑋, 𝑌] = 𝐼[𝑌, 𝑋] = 𝐻[𝑌[−𝐻[𝑌|𝑋].

In other words, the amount of information that we can gain about a theory by
performing an experiment, is exactly equal to the uncertainty that the theory
provides on the outcome of the experiment.

Exercise 16.10

Let there be 𝑛 + 1 boxes labeled 𝜔 = 0, 1, … , 𝑛, with 𝑛 even. One of the
boxes contains a prize, the others are empty. The probability that the
prize is in box 𝜔 is 𝑝0 for 𝜔 = 0 and (1 − 𝑝0)∕𝑛 for all 𝜔 > 0. We have
two available strategies:

1) open the box 𝜔 = 0

2) open the last 𝑛∕2 boxes (𝜔 > 𝑛∕2)

Which one is the most convenient? Which one conveys more informa-
tion on where the prize actually is?
Draw a plot of the threshold 𝑝∗

0
for which strategies 1 and 2 are equiva-

lent, according to the two criteria. Show that the second is at least as
informative as the first for 𝑝0 = 1∕(𝑛+1) and hence 𝑝∗

0
(𝑛) ≥ 1∕(𝑛+1).

This is a toy model for a situation where a phenomenon can be
explained by alternative theories, one of which is the prevailing one,
whereas the others are very unlikely but are many. The two options cor-
respond to two possible experiments, one that tries to refute or confirm
the prevailing theory, the other that can exclude half of the unlikely
ones. Check that even if 𝑝0 = 0.99 it might be more informative to
exclude unlikely theories if 𝑛 > 270.
(Adapted from problem 131 of Bialek’s book, Biophysics).

Another important point is that knowledge of 𝑌 reduces a priori the un-
certainty on 𝑋, since𝐻[𝑋|𝑌] ≤ 𝐻[𝑋], but a posteriori this might not be the
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case! Take, for example, two random variables 𝑋,𝑌 ∈ {1, 2}, with a joint
distribution:

𝑝(𝑥, 𝑦) =

⎧

⎨

⎩

0 if 𝑥 = 𝑦 = 1

3∕4 if 𝑥 = 2 and 𝑦 = 1

1∕8 if 𝑥 = 1 and 𝑦 = 2 or if 𝑥 = 𝑦 = 2

(16.18)

Then 𝐻[𝑋] ≃ 0.544 and 𝐻[𝑋|𝑌] = 0.25 bits, i.e. 𝐼[𝑋, 𝑌] ≃ 0.294 bits. How-
ever if the outcome 𝑌 = 2 occurs, the uncertainty on 𝑋 actually increases,
because 𝐻[𝑋|𝑌 = 2] = 1 bit. It is instructive to check the opposite. Does
the uncertainty on 𝑌 decreases no matter what value 𝑋 turns out to take or
not? This should give you a sense of what are the conditions under which the
uncertainty may increase after a measurement.

Exercise 16.11

Generalise this example to the case where 𝑃{𝑋 = 2, 𝑌 = 1} = 𝑎 and
𝑃{𝑋 = 1, 𝑌 = 2} = 𝑏 and 𝑃{𝑋 = 2, 𝑌 = 2} = 1 − 𝑎 − 𝑏. What is the
values of 𝑎 and 𝑏 for which no measurement of one of the variables can
increase the uncertainty on the other? Are there values of 𝑎, 𝑏 such
that measuring any of the two variables will increase the uncertainty
on the other?

16.2 The data processing inequality
Information is degraded at every passage, as we know from everyday life.
Imagine that Alice communicates a message 𝑋 to Bob, and Bob refers the
message to Carl. The message 𝑌 that Bob receives may be corrupted by noise,
so 𝑌 ≠ 𝑋, likewise Carl receives a message 𝑍 that may be different from
𝑌. Formally we represent the situation by saying that 𝑋,𝑌 and 𝑍 are three
random variables that form aMarkov chain, denoted as12

𝑋 → 𝑌 → 𝑍

which means that
𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑧|𝑦).

As a consequence, conditional to 𝑌, 𝑋 and 𝑍 are independent, because
𝑝(𝑥, 𝑧|𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦). Note also that the directions of the arrows can
be reversed by using Bayes rule, so 𝑋 → 𝑌 → 𝑍 is equivalent to 𝑍 → 𝑌 → 𝑋.

12We mention in passing that this notion generalises to Markov fields, that specify the
dependence between𝑛 randomvariableswith a graphicalmodel of𝑛 nodeswhich are connected
by links (or hyperlinks) if the corresponding variables are dependent.
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For a Markov chain𝑋 → 𝑌 → 𝑍, theData-processing inequality states that

𝐼[𝑋, 𝑍] ≤ 𝐼[𝑋, 𝑌] . (16.19)

In words, the information that 𝑌 contains on 𝑋 cannot be increased,13 what-
ever transformation𝑌 → 𝑍 one can apply. This result is important in statistics,
because it suggests that any manipulation of the data can only decrease the
information content of the data.

The proof of the inequality (16.19) is simple. The mutual information
between 𝑋 and𝑊 = (𝑌, 𝑍) can be written in two ways

𝐼[𝑋,𝑊] = 𝔼 [log
2

𝑝(𝑋, 𝑌, 𝑍)

𝑝(𝑋)𝑝(𝑌, 𝑍)
] (16.20)

= 𝔼[log
2

𝑝(𝑋, 𝑍|𝑌)

𝑝(𝑋)𝑝(𝑍|𝑌)

𝑝(𝑋|𝑌)

𝑝(𝑋|𝑌)
] (16.21)

= 𝐼[𝑋, 𝑌] + 𝐼[𝑋, 𝑍|𝑌] (16.22)
= 𝐼[𝑋, 𝑍] + 𝐼[𝑋, 𝑌|𝑍] (16.23)

where

𝐼[𝑋, 𝑌|𝑍] = 𝔼 [log
2

𝑝(𝑋, 𝑌|𝑍)

𝑝(𝑋|𝑍)𝑝(𝑌|𝑍)
]

is the conditional mutual information of 𝑋 and 𝑌 given 𝑍. In Eq. (16.22) the
term 𝐼[𝑋, 𝑍|𝑌] = 0 vanishes, because 𝑋 and 𝑍 are independent, conditional
on 𝑌. The inequality (16.19) follows from the fact that 𝐼[𝑋, 𝑌|𝑍] ≥ 0.

16.3 The entropy of Markov Chains

Let us consider Markov chains, i.e. sequences 𝑋 = (𝑋1, … , 𝑋𝑁) of random
variables generated by a transition probability matrix

𝑃{𝑋𝑡 = 𝑠|𝑋𝑡−1 = 𝑠′} = 𝑝𝑠,𝑠′

with 𝑠, 𝑠′ being elements of a finite set 𝒮. We restrict attention to irreducible
chains, for which we know that the probability to observe state 𝑋𝑡 = 𝑠 con-
verges to the invariant measure 𝜇𝑠 =

∑

𝑠′
𝑝𝑠,𝑠′𝜇𝑠′ . We further assume that we

13There are other general inequalities that can be derived from basic laws. For example the
mutual information between 𝑋1 and 𝑋2 cannot be larger than the average of the two entropies.
See the book [28].
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know that the sequence is sampled in the stationary state, i.e. 𝑃{𝑋1 = 𝑠} = 𝜇𝑠.
Then, the probability of the sequence is given by

𝑃{𝑋} = 𝑝𝑋𝑁 ,𝑋𝑁−1𝑝𝑋𝑁−1,𝑁−2 ⋯𝑝𝑋2,𝑋1𝜇𝑋1 . (16.24)

Note that the time index goes from right (𝑡 = 1) to left (𝑡 = 𝑁) in this equation.
Taking the logarithm and dividing by 𝑁, please check that the law of large
numbers implies

lim
𝑁→∞

−
1

𝑁
log 𝑃{𝑋} = 𝐻[𝑋𝑡|𝑋𝑡−1] ≡ −

∑

𝑠,𝑠′

𝑝𝑠,𝑠′𝜇𝑠′ log 𝑝𝑠,𝑠′ . (16.25)

Note that the entropy of the sequence is smaller than 𝑁 times 𝐻[𝑋𝑡] =
−
∑

𝑠
𝜇𝑠 log 𝜇𝑠 which is the entropy of a sequence of i.i.d. random variables,

because knowledge of𝑋𝑡−1 provides information on𝑋𝑡. From the point of view
of the Asymptotic Equipartition property, sequences of 𝑁 random variables
explore a smaller space than that of 𝑁 i.i.d. random variables drawn from 𝜇𝑠.

16.3.1 Irreversibility and the arrow of time

Imagine that we do not know whether the sequence 𝑋 generated from a
Markov chain with transition matrix 𝑝𝑠,𝑠′ has been given to us in the right
order — with time going from 1 to 𝑁— or in the reverse one — with time
going from 𝑁 to 1. Can we figure this out? In order to do this, let us refine
our notation and call 𝑃{𝑋} = 𝑃→{𝑋}, as defined in Eq. (16.24), to distinguish
it from the backward probability

𝑃←{𝑋} = 𝑝𝑋1,𝑋2 …𝑝𝑋𝑁−2,𝑁−1𝑝𝑋𝑁−1,𝑋𝑁𝜇𝑋𝑁 . (16.26)

Exercise 16.12

Show that the naïve generalisation of Eq. (16.25)

log 𝑃←{𝑋} ≃ −𝑁𝐻[𝑋𝑡−1|𝑋𝑡]

is wrong.
Show also that 𝐻[𝑋𝑡−1|𝑋𝑡] = 𝐻[𝑋𝑡|𝑋𝑡−1] in the stationary state. In
loose words, given the present, the past is as uncertain as the future in
a Markov chain.

The probability of the sequence 𝑋 can also be expressed in terms of the
reverse Markov chain with transition matrix 𝑞𝑠,𝑠′ = 𝑝𝑠′,𝑠𝜇𝑠∕𝜇𝑠′ , as

𝑄←{𝑋} = 𝑞𝑋1,𝑋2 …𝑞𝑋𝑁−2,𝑁−1𝑞𝑋𝑁−1,𝑋𝑁𝜇𝑋𝑁 = 𝑃→{𝑋} (16.27)

𝑄→{𝑋} = 𝑞𝑋𝑁 ,𝑋𝑁−1𝑞𝑋𝑁−1,𝑁−2 ⋯𝑞𝑋2,𝑋1𝜇𝑋1 = 𝑃←{𝑋} (16.28)
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where the proof of the last equalities relies on repeated use of the identities
𝑞𝑋𝑡−1,𝑋𝑡𝜇𝑋𝑡 = 𝑝𝑋𝑡 ,𝑋𝑡−1𝜇𝑋𝑡−1 . The probability of the sequence in the reverse
process is given by

1

𝑁
log 𝑃←{𝑋} =

1

𝑁

𝑁∑

𝑡=2

log 𝑝𝑋𝑡−1,𝑋𝑡 +
1

𝑁
log 𝜇𝑋𝑡 (16.29)

=
∑

𝑠,𝑠′

𝑘𝑠,𝑠′

𝑁
log 𝑝𝑠′,𝑠 +

1

𝑁
log 𝜇𝑋𝑡 (16.30)

where 𝑘𝑠,𝑠′ is the number of transitions from 𝑠′ to 𝑠 in the sequence 𝑋. As
𝑁 → ∞, the fraction 𝑘𝑠,𝑠′∕𝑁 of transitions 𝑠′ → 𝑠 converges to the probability
𝑝𝑠,𝑠′𝜇𝑠′ . Therefore

lim
𝑁→∞

1

𝑁
log 𝑃←{𝑋} =

∑

𝑠,𝑠′

𝑝𝑠,𝑠′𝜇𝑠′ log 𝑝𝑠′,𝑠 =
∑

𝑠,𝑠′

𝑝𝑠,𝑠′𝜇𝑠′ log 𝑞𝑠,𝑠′ (16.31)

where the proof of the last equality is left as an exercise. Therefore, for large𝑁

𝑃←{𝑋} ≃ 𝑃→{𝑋}𝑒
−𝑁Σ (16.32)

where

Σ ≡ 𝐷𝐾𝐿[𝑃→||𝑃←] =
∑

𝑠,𝑠′

𝑝𝑠,𝑠′𝜇𝑠′ log
𝑝𝑠′,𝑠

𝑝𝑠,𝑠′
=
∑

𝑠,𝑠′

𝑝𝑠,𝑠′𝜇𝑠′ log
𝑝𝑠,𝑠′

𝑞𝑠,𝑠′
(16.33)

is called the entropy production. As long as 𝑞𝑠,𝑠′ ≠ 𝑝𝑠,𝑠′ , the probability of
the forward process is exponentially (in 𝑁) more likely than the backward
one, because 𝐷𝐾𝐿[𝑃→||𝑃←] > 0. Hence given the transition matrix 𝑝𝑠,𝑠′ , we
can detect the arrow of time because the two transition probabilities 𝑝𝑠,𝑠′ and
𝑞𝑠,𝑠′ are different and they define two distinguishable stochastic processes.
Furthermore, notice that the Kullback-Leibler divergence is symmetric in this
case, i.e. 𝐷𝐾𝐿[𝑃←||𝑃→] = 𝐷𝐾𝐿[𝑃→||𝑃←]. This reflects the mirror symmetry of
the directions of the time arrow: the forward arrow of time under the reverse
process is as unlikely as the backward arrow under the forward Markov chain.

If, instead, the Markov chain is reversible, i.e. 𝑞𝑠,𝑠′ = 𝑝𝑠,𝑠′ , then there is no
way in which the arrow of time can be detected.

The entropy production is a measure of how much the forward process
is more likely than the reversed one, which is expressed in Eq. (16.33) as the
difference between the logarithms of the forward and the backward transition
probabilities. Indeed irreversibility is related to the existence of a probabil-
ity current, whereby these two terms do not cancel each other and the net
probability flow is non-zero.
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Exercise 16.13

Show that a Markov chain with two states is always reversible. Irre-
versibility requires at least three states and a probability current that
either runs clockwise or counter-clockwise through the states.

16.4 Data compression and coding theory
Data compression deals with the problem of optimally representing messages.
We refer to Chapter 5 of Cover for a detailed discussion. This is a short
summary of the main ideas. The relation between information theory and
coding was already hinted at in the introduction. As discussed there, the
typical setting is the one where Alice and Bob need to communicate using
a binary channel. Then Alice will encode her messages to Bob in a string of
bits, transmit this string over the channel, and Bob will read it and decode
it to get the original message. A message 𝑋 = (𝑋1, … , 𝑋𝑛) is a sequence of
symbols𝑋𝑖 ∈ 𝜒 drawn from an alphabet 𝜒. The simplest example is a text (e.g.
a book) which is a sequence of ASCII characters (letters, numbers, spaces,
punctuation, etc). But you can likewise think of images, e.g. digital pictures of
paintings, as sequences of RGB values for each pixel. Ultimately, eachmessage
is stored in digital devices in the form of sequences of zeros and ones, so there
is a function 𝐶(𝑋) that associates to each message 𝑋 a string 𝐶(𝑋) of bits.
Coding theory deals with the problem of finding ways of representing the data
as efficiently as possible, i.e. with the minimal number of bits. Each bit can
be thought of as the answer to a yes/no question, so efficient coding, i.e. the
problem of optimally14 representing information, coincides with the problem
of eliciting information in an optimal manner, that we already discussed.

Coding theory enters into play, for example, when you use a data compres-
sion algorithm (e.g. gzip) on your computer that transforms a text file written
in ASCII code into a file that occupies less space on the hard disk of your
computer. Compression is possible because messages contain regularities.
For example, if the character “q” is always followed by “u” in a text, a code
that translates “q” and “u” by different sequences of bits (called codewords)
is less efficient than one that codes the pair “qu” directly. Indeed, what the
compression program does when you invoke it, is to scan the file you want to
compress in search of regularities, i.e. of patterns that occur very frequently.
Formally we shall consider messages as being generated as random draws
from a probability distribution. Then the knowledge of the probability distri-

14In the sense of most parsimoniously.
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bution is what makes optimal compression possible. This is why probability
theory, coding theory and information theory are so intimately connected.15

The main result in coding theory, due to Shannon, makes this connection
explicit in the simple case of messages generated as i.i.d. draws from a distri-
bution 𝑝(𝑥) with 𝑥 ∈ 𝜒. We already discussed Shannon’s theorem when we
introduced information theory. Let us briefly recall it. Shannon theorem is a
consequence (or restatement) of the Asymptotic Equipartition Property. The
latter says that, almost surely a message 𝑋 = (𝑋1, … , 𝑋𝑛) composed of charac-
ters drawn independently from the same distribution 𝑝(𝑥) belongs to the set
𝐴𝑛 of typical sequences, which contains |𝐴𝑛| ∼ 2𝑛𝐻[𝑋] elements. If we label all
messages 𝑋 ∈ 𝐴𝑛 with an integer 𝐶(𝑋) we can take the binary representation
of 𝐶(𝑋) as the code.16 Then, almost surely for 𝑛 → ∞, 𝐶(𝑋) ≤ 2𝑛𝐻[𝑋] which
means that at most𝐻[𝑋] bits per character are needed to transmit a message.

This strategy, however, is not very practical because the calculation of𝐶(𝑋)
requires ranking all messages which are exponentially many in 𝑛. This is
practically unfeasible. Also if amessage is composed of two parts𝑋 = (𝑋

1
, 𝑋

2
)

the code of 𝑋 is not easily related to those of its parts. For messages where
𝑋𝑖 are drawn as i.i.d. variables from the same distribution, it may be more
practical to consider codes such that

𝐶(𝑋) = (𝑐(𝑋1), … , 𝑐(𝑋𝑛))

that are sequences of codewords 𝑐(𝑥) each of which corresponds to a character
𝑥 ∈ 𝜒. So the key question is, how should the function 𝑐(𝑥) be chosen?

We already encountered examples of codes in the introduction, for the

15A theatre play, such as Othello, is an example of a message, because it is a sequence of
letters. It is definitely true that any understanding of the production of Shakespeare has to do
with a better understanding of the regularities that one can find in his works. Yet, thinking of
his works as being generated as a random draw from a probability distribution seems somewhat
extreme, and it is at best an approximation. The simplest such approximation is to think of
each letter as being drawn independently at random from a probability distribution. The
fact that letters from ‘a’ to ‘z’ do not occur with the same probability allows a certain degree
of compression of Othello. Furthermore, one realises that certain words (e.g. ‘the’ or ‘and’)
occur much more frequently than others (e.g. ‘Iago’) and some (e.g. ‘yqat’) never occur. This
leads to better approximations of the generative process, which affords further compression.
Furthermore, the occurrence of words depends on the occurrence of other words in the same
act or even in other acts. The more regularities one detects the better one can compress Othello.
Note that some of these features are generic of English texts some are generic of Shakespeare’s
production and some are specific of Othello.

16A good way of labelling messages is by their rank in probability, from the most probable to
the least probable. You can check that in this way at most𝐻[𝑋] bits per character are needed
to transmit a message.
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case where 𝜒 = {𝑎, 𝑏, 𝑐, 𝑑} has four elements, reported on the right.17 This
should allow one to translate each sequence of bits, such as

0010110101001…

into a sequence of characters in 𝜒. A minimal requirement for codes is that
they be uniquely decodable. This means that any sequence of bits that is
produced by translating a sequence of characters should be decodable in a
unique manner. This does not happen if there are two or more sequences
of characters 𝑋 that correspond to the same sequence of bits. The three
codes 𝑐1, 𝑐2 and 𝑐3 satisfy this property. For example, 𝑐1 would translate that
sequence into 𝑐𝑏𝑎𝑏𝑏𝑐 … whereas 𝑐2 will give 𝑑𝑏𝑎𝑐𝑐𝑑 …. In both cases, the
translated sequence can be computed as we scan the sequence of bits from
left to right. Codes that have this property are called instantaneous codes,
because they allow to instantaneously translate bit-strings into messages. The
key property that makes a code an instantaneous code is that no codeword is
the prefix of another codeword, i.e. no codeword coincides with the leftmost
part of another codeword.

This is not true for 𝑐3 for which 𝑐3(𝑎) is a prefix of 𝑐3(𝑏) and 𝑐3(𝑐), for
example. In this case it is not possible to figure out what the translation of the
leftmost bits is unless one considers also the bits that come after. For example,
according to 𝑐3, the first 0 in the sequence above could correspond to 𝑎 or to
the beginning of the codewords for 𝑏 or 𝑐. However the latter two options
should be discarded because the second bit is a 0, which is not compatible
with either a 𝑏 or a 𝑐. If the first character is an 𝑎 the second can be a 𝑏 or
a 𝑐. Yet it cannot be a 𝑏 because otherwise the bits that follow (11…) do not
correspond to a decodable sequence (𝑐3 has no codewords that starts with 11).
So the first characters should be 𝑎𝑐𝑐𝑑𝑑𝑑 … but the next characters depend
on what the following characters are. Hence 𝑐3 is not an instantaneous code.
Finally code 𝑐4 is not uniquely decodable. For example the bit string 000000
could either be 𝑎𝑎𝑎 or 𝑑𝑑.

We shall focus on instantaneous codes only. Each code admits a rep-
resentation as a tree, as shown in Figure 39. For instantanous codes, the
codewords correspond to the leaves of the tree (the terminal nodes) and the

17Four examples of codes:

𝜒 𝑐1(𝑥) 𝑐2(𝑥) 𝑐3(𝑥) 𝑐4(𝑥)

𝑎 1 11 0 00

𝑏 01 10 010 01

𝑐 001 01 01 10

𝑑 000 00 10 000
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a cb d

1 0
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11 10 01 00
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Figure 39. Representation of the codes 𝑐1, 𝑐2, 𝑐3 and 𝑐4 as trees.

length 𝓁(𝑥) = |𝑐(𝑥)| of each codeword (i.e. the number of bits) corresponds to
the distance of the corresponding node from the root (which is the top most
node). For instantaneous codes, the lengths 𝓁(𝑥) satisfy Kraft’s inequality

∑

𝑥∈𝜒

2−𝓁(𝑥) ≤ 1. (16.34)

This is very easily proven.18

With somemore effort one can show (see Cover) that for any set of lengths
ℒ = {𝓁1, 𝓁2, … , 𝓁|𝜒|} that satisfy Kraft’s inequality Eq. (16.34), i.e. such that∑

𝑖
2−𝓁𝑖 ≤ 1, there is at least one instantaneous code 𝑐(𝑥) such that the lengths

|𝑐(𝑥)|match exactly the 𝓁𝑖’s.

Exercise 16.14

There is more than one code that corresponds to the same lengths.
Count the number of codes which have the same lengths as the codes
𝑐1 and 𝑐2.

18Proof: let 𝓁̄ = max𝑥∈𝜒 𝓁(𝑥). Then continue the tree to all nodes at distance 𝓁̄ from the root.
For each word 𝑥, this results in 2𝓁̄−𝓁(𝑥) nodes at distance 𝓁̄ down the codeword corresponding
to 𝑥. The number of these nodes is

∑

𝑥∈𝜒
2𝓁̄−𝓁(𝑥). This number has to be smaller than the total

number of nodes at distance 𝓁̄ from the root, which is 2𝓁̄. This leads to Eq. (16.34).
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Among all instantaneous codes, we want to find those that make the ex-
pected length of the bit-string it produces as short as possible, when characters
are drawn from a distribution 𝑃{𝑋 = 𝑥} = 𝑝𝑥. The two results above imply
that it is enough to find a set ℒ of lengths that satisfy Kraft’s inequality and
we’re guaranteed that an instantaneous code with those lengths exists. So it is
enough to solve the problem

min
𝓁∈ℒ

𝔼 [𝓁(𝑋)] (16.35)

over all sets ℒ = {𝓁(𝑥) ∶
∑

𝑥∈𝜒
2−𝓁(𝑥) ≤ 1} of lengths that satisfy Kraft’s

inequality. Introducing this constraint with a Lagrange multiplier, leads to
the problem19

min
𝓁∈ℒ,𝜆

⎡
⎢

⎣

∑

𝑥∈𝜒

𝑝𝑥𝓁(𝑥) − 𝜆
⎛

⎜

⎝

∑

𝑥∈𝜒

2−𝓁(𝑥) − 1
⎞

⎟

⎠

⎤
⎥

⎦

. (16.36)

What makes this problem complicated is that 𝓁(𝑥)must be an integer variable.
If we neglect this problem and minimise over real values of 𝓁(𝑥), then we’re
going to obtain a lower bound. The latter problem is simple and is solved by
setting to zero the first order derivative of the objective function in Eq. (16.36).
This yields 𝓁(𝑥) = − log

2
𝑝𝑥 and

min
𝓁∈ℒ

𝔼 [𝓁(𝑋)] ≥ 𝐻[𝑋] = −
∑

𝑥∈𝜒

𝑝𝑥 log2 𝑝𝑥. (16.37)

If you take the smallest integer 𝓁(𝑥) which is larger than − log
2
𝑝𝑥, then you

can get better estimate of the minimal expected length. The smallest integer
larger than − log

2
𝑝𝑥 is smaller than − log2 𝑝𝑥 + 1. Therefore the expected

length must be smaller than𝐻[𝑋]+ 1. Taken together these results show that
for any 𝑋 there is an instantaneous code that allows to represent 𝑋 with an
expected number of bits that is bounded by

𝐻[𝑋] ≤ min
𝓁∈ℒ

𝔼 [𝓁(𝑋)] ≤ 𝐻[𝑋] + 1. (16.38)

This result can be improved by invoking block coding. This means that,
in sending a message 𝑋 = (𝑋1, … , 𝑋𝑛) with 𝑛 ≫ 1, instead of using codes
that translate each 𝑋𝑖 separately, we can look for the instantaneous codes

19Note the sign of the 𝜆 term. The most efficient codes are those which have shorter code-
words, so those for which the left hand side of Eq. (16.34) is as large as possible, i.e. for which
Eq. (16.34) is satisfied as an equality.
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that translate a pair 𝑋𝑖, 𝑋𝑖+1 of successive variables, or a subsequence 𝑋
(𝑚)

𝑖
=

(𝑋𝑖+1, … , 𝑋𝑖+𝑚) of𝑚 successive characters. The same argument that we have
applied above implies that

𝐻[𝑋
(𝑚)

𝑖
] ≤ min

𝓁∈ℒ
𝔼
[
𝓁(𝑋

(𝑚)

𝑖
)
]
≤ 𝐻[𝑋

(𝑚)

𝑖
] + 1.

However 𝐻[𝑋(𝑚)

𝑖
] = 𝑚𝐻[𝑋] which means that block coding can achieve a

compression that satisfies

𝐻[𝑋] ≤
1

𝑚
min
𝓁∈ℒ

𝔼
[
𝓁(𝑋

(𝑚)

𝑖
)
]
≤ 𝐻[𝑋] +

1

𝑚
. (16.39)

This result, for𝑚 → ∞, coincides with Shannon’s bound that ensures that at
most𝐻[𝑋] bits per character need to be exchanged by Alice and Bob in order
to communicate messages generated from the distribution 𝑝𝑥.

This derivation also tells us how optimal codes should look like. Indeed
the equation 𝓁(𝑥) = − log

2
𝑝𝑥 tells us that short codewords should be assigned

to most probable characters. The Huffman coding algorithm, for example, is
based on the idea of iteratively assigning bits to the least probable values of 𝑥,
by grouping them together.20 We refer to Cover for a detailed discussion of
this and other algorithms.

Exercise 16.15

Check that 𝑐1 and 𝑐2 satisfy Kraft’s inequality as an equality whereas
𝑐3 does not satisfy it. What about 𝑐4? Can you find an instantaneous
code for which Kraft’s inequality is not satisfied as an equality?

Data compression is only the simplest of the problems discussed in coding
theory. A different class of problems have to do with the fact that most daily
life communication channels are affected by noise. The string of bits in output
is not equal to the one in input, because some bits may be turned from 0 to 1
or viceversa. Communication over noisy channels requires error correcting
codes, i.e. codes with a built in redundancy that can help recover the original

20Huffman codes: Huffman coding algorithm reconstruct the tree from the bottom, starting
from a partition of the set 𝜒 of words into singleton sets {𝑥} with an associated probability
𝑝𝑥 . At every step, the algorithm generates a new partition from the old one by merging the
two sets 𝒮 and 𝒮′ with the smallest probability, assigning to the new set 𝒮 ∪ 𝒮′ the sum of the
probabilities 𝑝𝒮∪𝒮′ = 𝑝𝒮 + 𝑝𝒮′ . At the same time, the algorithm assigns bits 0 and 1 to the
edges joining the nodes corresponding to 𝒮 and 𝒮′ to 𝒮 ∪ 𝒮′. The algorithm ends when the
partition formed by the single set 𝜒 is reached, i.e. when all words are merged in the same set.
The codeword of 𝑥 is given by the sequence of bits associated to all the merging of sets 𝒮 that
contain 𝑥, starting from the root 𝜒, down to the set {𝑥}.
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message, even if that was corrupted by noise. This is a fascinating subject
which we will not discuss, however. Yet again, the solution has to do with
understanding what the typical messages that need to be transmitted are and
how typically they would be corrupted by noise. This allows to get precise
bounds, again in terms of entropies, on the amount of redundancy that needs
to be embedded in messages, in order to achieve an error free communication.

If you understood the main gist of the arguments discussed above, then
you may consider pondering on the following questions:

1. What do you expect the sequence of bits of an optimally compressed
sequence 𝑋1, … , 𝑋𝑛 should look like? What is the probability that a
(randomly chosen) bit is equal to one? What is the difference of this
sequence from a sequence of random i.i.d. bits?

2. In all our discussion we have assumed a binary alphabet for the codes.
Yet the same results can be derived for codes in an alphabet with three
different characters (e.g. 0, 1 and 2), or the 26 characters of the En-
glish alphabet. How would this change the results, e.g. Eq. (16.34) and
Eq. (16.39)?

3. Languages (e.g. English, French, Chinese, etc) might be though of as
the codes that we use to communicate. A text is a representation of
something (an object, a concept, an idea, etc) that is coded as a sequence
of characters. Yet, if you look at texts as coded messages, the coding
looks rather inefficient. For example, you may delete a certain fraction
of characters from a text but still be able to reconstruct the entire text
or grasp the gist of the text. The most frequent words in a text (e.g.
“the”, “and”, “this”, etc) do not carry any meaning21 and the least fre-
quent words are very informative on the content of the text. There is a
lot of (apparently useless) redundancy in language. Why did humans
converged to such inefficient ways of communicating?

21George Zipf found that for a text like the Holy Bible, the frequency with which the 𝑟th most
frequent word occurs is roughly inversely proportional to 𝑟. This is true for many texts (but not
for phone directories) and for texts written in different languages. This implies that the number
of words that occur 𝑘 times is proportional to 1∕𝑘2, or that the number of occurrences of words
used 𝑘 times is inversely proportional to 𝑘. This is reminiscent of the Asymptotic Equipartition
Property, that states that the number of typical sequences is inversely proportional to their
probability. Is this a coincidence or does it hints to the fact that our language has evolved so
that text shares some statistical properties with typical sequences?
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Exercise 16.16

Let a text be generated by first drawing a subject 𝑍 ∈ 𝒵 and then a
message 𝑋 = (𝑋1, … , 𝑋𝑛) of 𝑛 characters 𝑋𝑖 ∈ 𝒳 drawn independently
from a distribution 𝑝(𝑥|𝑧) = 𝑃(𝑋𝑖 = 𝑥|𝑍 = 𝑧). There are two possible
strategies: A) use the same code irrespective of the subject, and B) first
code the subject 𝑍 and then code the text 𝑋 depending on the subject
(two way code). Note that code B represents each text 𝑋 optimally, at
the expense of the extra cost of coding 𝑍, whereas texts 𝑋 are never
coded optimally with strategy A, with an over expenditure of bits that
should grow with 𝑛. Show that, irrespective of this, the two way code
B is never the best one.





Chapter 17

Large deviation theory

“It is just more likely, that is all. It is a good guess. And we always
try to guess the most likely explanation, keeping in the back of the
mind the fact that if it does not work we must discuss the other
possibilities.” (R.P. Feynmann, 1965)

Having discussed typical events, let us discuss a-typical events.1 There
are two reasons (at least) why a-typical events may be of interest. First we
may be interested in rare events that involve fluctuations of quantities that are
larger than what one typically expects. For example, the credit rating of an
insurance company is based on its estimated default probability. This occurs if
an unexpectedly large number of contracts in its portfolio demand claims that
exceed the equity2 𝐴 of the insurance company. The claims 𝑋𝑖 from contracts
𝑖 = 1, … , 𝑛 can be modeled as random variables and the default corresponds
to the event

𝐷 = {𝑆𝑛 ≥ 𝐴} , 𝑆𝑛 =

𝑛∑

𝑖=1

𝑋𝑖.

If 𝑛 ≫ 1, which is the case in this example, we know that as long 𝔼 [𝑆𝑛] < 𝐴

this even does not typically occur. So default 𝐷 is an a-typical event.
Communications engineers face a similar problem: they need to calcu-

late safe buffer and bandwidth sizes for network traffic which arises from a
population of many users. This entails estimating the probability of traffic
overflow, making sure that these will be very rare events. In both cases, we

1There are several textbooks devoted to Large Deviation Theory, as e.g. [29].
2The equity is a measure of the value of the company, and it equals the amount of money

that would result if all of the assets of the company were liquidated and all debts were paid off.
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want to estimate how small is the probability of the large deviation and how
do we expect it to occur.

In a stylised picture, biological evolution occurs through random muta-
tions. Most of them have neutral or deleterious effects, and the accumulation
of such deleteriousmutations generally decreases the reproduction probability
— the fitness — of descendants. Yet some rare mutation bring advantages
that increase the fitness of individuals carrying them, whose descendants will
reproduce faster. So the fitness of the population as a whole does not decrease,
because evolution is propelled by rare events.

More in general, when we study a phenomenon we might represent our
current state of knowledge with a distribution 𝑄(𝜔) defined on the sample
space of all possible realisations𝜔 ∈ Ω of that phenomenon. Youmay think of
𝜔 as a complete description of that phenomenon and of 𝑄 as the distribution
encoding all known (experimental) facts. The distribution 𝑄 is the theory that
allows us to predict the value 𝜇𝑄 = 𝔼𝑄 [𝑋] of a quantity 𝑋(𝜔). Clearly, we’re
interested in predictions of the theory 𝑄 going beyond the range of events that
have been used to derive it.

This prediction can be tested in a repeated series of independent experi-
ments 𝑋 = (𝑋1, … , 𝑋𝑛) and, if 𝔼𝑄 [𝑋] is finite, we expect that 𝑆𝑛∕𝑛 ≅ 𝔼𝑄 [𝑋]

for 𝑛 large. If this expectation is confirmed by the experiment, then the exper-
iment brings no new information. But if 𝑆𝑛∕𝑛 is very different from 𝔼𝑄 [𝑋],
then the experimental result calls for a revised theory 𝑃 that can accommodate
all existing knowledge and the new observation. In this case, the experiment
is an a-typical event because the theory 𝑄 is wrong.3 How should we revise
the theory 𝑄 → 𝑃 in order to incorporate the new information? And how
much did we learn?

The study of rare (a-typical) events is the domain of Large Deviation Theory.
Let us start by formalising the main questions and concepts in the case of
sequences 𝑋 = (𝑋1, … , 𝑋𝑛) of i.i.d. random variables. Let us assume that the
variance 𝕍 [𝑋𝑖] = 𝜎2 < ∞ is finite, so that both the Law of Large Numbers
(LLN) and the Central Limit Theorem (CLT) hold. Then, for large 𝑛, the
mean 𝑆𝑛∕𝑛 will be very close to 𝜇 = 𝔼 [𝑋] (LLN) and the sum 𝑆𝑛 is well
approximated by 𝑆𝑛 ≃ 𝑛𝜇 + 𝜎

√
𝑛𝜁 where 𝜁 is a Gaussian random variable

with zero mean and unit variance (CLT). This is what we typically expect.
3This logic is routinely applied in statistics, when we want to test an hypothesis. Then 𝑄(𝜔)

stands for the distribution that we expect if a certain hypothesis 𝐻0 is satisfied. A practical
example is that of subjects that receive a treatment for a certain disease. Then one wants to
rule out the null hypothesis𝐻0 that the treatment is completely ineffective, on the basis of a
sample 𝑋 of measurement of a quantity 𝑋 that is known to be relevant. In hypothesis testing,
we take 𝑄(𝑥) as the distribution that 𝑋 would follow in untreated patients. In this case, if the
treatment is effective then the sample 𝑋 is a-typical.
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Yet it may happen to observe large deviations,4 i.e. events such that, for some
𝜖 > 0,

𝐴𝑛(𝑥̄) = {𝑋 ∶

|||||||||

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝑥̄

|||||||||

< 𝜖} (17.1)

with 𝑥̄ ≠ 𝜇. These are clearly a-typical events that we expect to occur with a
vanishingly small probability, as 𝑛 → ∞.

The questions that we shall focus on are:

1. what is the probability𝑃{𝐴𝑛(𝑥̄)} of the large deviation? More specifically,
since 𝑃{𝐴𝑛(𝑥̄)} → 0 as 𝑛 → ∞, we shall be interested in the leading
behaviour of 𝑃{𝐴𝑛(𝑥̄)} with 𝑛.

2. Conditional on the fact that 𝐴𝑛(𝑥̄) occurs, what is the distribution of
the 𝑋𝑖? In other words, how are large deviations typically realised?

The answers to these questions depend on the distribution from which the
sample 𝑋 is drawn. We shall discuss separately the different cases.

17.1 Large deviations for i.i.d. variables with finite
support

Consider5 a sequence of 𝑛 i.i.d. random variables 𝑋 = (𝑋1, … , 𝑋𝑛) drawn
from a distribution 𝑄(𝑥) over a finite alphabet 𝑥 ∈ 𝒳 (i.e. |𝒳| < +∞). The
probability of a sample 𝑋 is given by6

𝑃{𝑋} =

𝑛∏

𝑖=1

𝑄(𝑋𝑖) =
∏

𝑥∈𝒳

𝑄(𝑥)
𝑛𝑃𝑋(𝑥) = 𝑒

−𝑛ℋ[𝑃𝑋]−𝑛𝐷𝐾𝐿[𝑃𝑋||𝑄]. (17.2)

where
𝑃𝑋(𝑥) =

1

𝑛
|{𝑖 ∶ 𝑋𝑖 = 𝑥}| (17.3)

4NY Times reports on Dec. 11, 2021 that Kentuky “was hit by four tornadoes [. . . ] including
one that stayed on the ground for more than 200 miles.” The Governor of Kentuky said “This
has been the most devastating tornado event in our state’s history, [. . . ] The level of devastation
is unlike anything I have ever seen.” This is a very unlikely event according to the distribution
of past events. Scientists suspect that this suggests that the distribution of severity of these
events has changed because of climate change.

5This part is discussed in Cover, Chapter 11.
6Remember that

ℋ[𝑃] = −
∑

𝑥∈𝒳

𝑃(𝑥) log 𝑃(𝑥)

is the entropy as a functional of 𝑃(𝑥).
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is the empirical distribution,7 which is the fraction of points in the sample that
are equal to 𝑥. In particular, the probability of a sample 𝑃{𝑋} only depends
on its type 𝑃𝑋 . The event 𝐴𝑛 also can be defined in terms of types, as a
subset in the space of distributions8 𝒫 or of types 𝒫𝑛 ⊆ 𝒫 of samples of 𝑛
points. More precisely, the event defined in Eq. (17.1) can be rewritten as
𝐴𝑛 = {𝑃𝑋 ∈ 𝒜𝑛 ⊆ 𝒫𝑛} where

𝒜𝑛 = {𝑃 ∈ 𝒫𝑛 ∶ |𝔼𝑃 [𝑋] − 𝑥̄| < 𝜖} , 𝔼𝑃 [𝑋] =
∑

𝑥∈𝒳

𝑃(𝑥)𝑥 (17.4)

is a subset of the space of distributions defined on 𝒳.
The probability that an event 𝐴𝑛 occurs can be written as

𝑃{𝐴𝑛} =
∑

𝑋∈𝐴𝑛

𝑃{𝑋} =
∑

𝑋∈𝐴𝑛

𝑒
−𝑛ℋ[𝑃𝑋]−𝑛𝐷𝐾𝐿[𝑃𝑋||𝑄] (17.5)

=
∑

𝑃∈𝒜𝑛

∑

𝑋∶ 𝑃𝑋=𝑃

𝑒−𝑛ℋ[𝑃]−𝑛𝐷𝐾𝐿[𝑃||𝑄] (17.6)

=
∑

𝑃∈𝒜𝑛

𝑒−𝑛ℋ[𝑃]−𝑛𝐷𝐾𝐿[𝑃||𝑄]
|||||

{
𝑋 ∶ 𝑃𝑋 = 𝑃

}|||||
(17.7)

∽
∑

𝑃∈𝒜𝑛

𝑒−𝑛𝐷𝐾𝐿[𝑃||𝑄] (17.8)

where we used the fact that, by Eq. (17.2) 𝑃{𝑋} only depends on 𝑃𝑋 in the

first equation, and the fact that the number
|||||

{
𝑋 ∶ 𝑃𝑋 = 𝑃

}|||||
of samples with

𝑃𝑋 = 𝑃 is ∽ 𝑒𝑛ℋ[𝑃], by the Asymptotic Equipartition Property.9
If |𝑥̄ − 𝔼𝑄 [𝑋] | < 𝜖 then the event 𝐴𝑛 is typical, which means that there is

at least one distribution 𝑃 ∈ 𝒜𝑛 that is very close to𝑄, and that asymptotically
converges to it. Therefore for these distributions 𝐷𝐾𝐿[𝑃||𝑄] → 0 as 𝑛 → ∞

and, as a consequence, 𝑃{𝐴𝑛} → 1. If 𝑥̄ is significantly different from 𝔼𝑄 [𝑋]

7𝑃𝑋(𝑥) is called the type of 𝑋. We refer to Cover, Chapter 11 for a detailed discussion
of types.

8The space of disrtibutions is defined as

𝒫 = {𝑃 ∶ 𝒳 → ℝ, 𝑃(𝑥) ≥ 0,
∑

𝑥∈𝒳

𝑃(𝑥) = 1} .

The set 𝒫𝑛 of types is a subset of 𝒫 of distributions where, for all 𝑥 ∈ 𝒳, 𝑝(𝑥) = 𝑘𝑥∕𝑛 with
𝑘𝑥 = 0, 1, … , 𝑛 and

∑

𝑥∈𝒳
𝑘𝑥 = 𝑛. 𝒫𝑛 is a discrete set of points in 𝒫. For each 𝑥 ∈ 𝒳, 𝑘𝑥

can take 𝑛 + 1 values, so the number of points in 𝒫𝑛 can be at most |𝒫𝑛| ≤ (𝑛 + 1)|𝒳|. As 𝑛
increases, the number of points in 𝒫𝑛 becomes denser and denser, so that each 𝑃 ∈ 𝒫 can be
approximated to arbitrary precision by a 𝑃 ∈ 𝒫𝑛 if 𝑛 is sufficiently large.

9Let us remind that 𝑎𝑛 ∽ 𝑒𝑐𝑛, where 𝑐 is a constant, means that 1

𝑛
log 𝑎𝑛 → 𝑐 as 𝑛 → ∞.
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Figure 40. Sketch of the minimisation problem in large deviation theory. We note in
passing that the relative entropy 𝐷𝐾𝐿[𝑃||𝑄] ≥ 𝐷𝐾𝐿[𝑃||𝑃

∗] + 𝐷𝐾𝐿[𝑃
∗||𝑄] satisfies the

opposite of the triangle inequality (see Cover Theorem 11.6.1).

then 𝑄 is “far” from any 𝑃 ∈ 𝒜𝑛. Then 𝐴𝑛 is an a-typical event and its
probability vanishes as 𝑛 → ∞. Every type 𝑃 ∈ 𝒜𝑛 contributes with a term
which is exponentially small in 𝑛, with a coefficient that is proportional to
𝐷𝐾𝐿[𝑃||𝑄]. Then for 𝑛 large, we expect that the sum will be dominated by the
type

𝑃∗ = arg min
𝑃∈𝒜𝑛

𝐷𝐾𝐿[𝑃||𝑄] (17.9)

that is “closest” to𝑄, in terms of𝐷𝐾𝐿 divergence. Indeed, taking only the term
𝑃 = 𝑃∗ in the sum over 𝒜𝑛 in Eq. (17.8), one gets 𝑃{𝐴𝑛} ≥ 𝑒−𝑛𝐷𝐾𝐿[𝑃

∗||𝑄]. On
the other hand, 𝑒−𝑛𝐷𝐾𝐿[𝑃||𝑄] ≤ 𝑒−𝑛𝐷𝐾𝐿[𝑃

∗||𝑄] that provides an upper bound

𝑃{𝐴𝑛} ≤ 𝑒−𝑛𝐷𝐾𝐿[𝑃
∗||𝑄]|𝒜𝑛| (17.10)

≤ (1 + 𝑛)|𝒳|𝑒−𝑛𝐷𝐾𝐿[𝑃
∗||𝑄] (17.11)

wherewe used the fact that the number |𝒜𝑛| of types𝑃 ∈ 𝒜𝑛 is upper bounded
by the total number of types |𝒫𝑛|, which is less than (𝑛 + 1)|𝒳|. This means
that 𝑃{𝐴𝑛} decays exponentially with a rate which is equal to𝐷𝐾𝐿[𝑃∗||𝑄]. This
is the content of Sanov’s theorem, i.e.

lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛} = −𝐷𝐾𝐿[𝑃

∗||𝑄]. (17.12)

Summarising, the leading order in the behaviour of the probability of an a-
typical event 𝐴𝑛 when 𝑛 → ∞, is given by 𝑃{𝐴𝑛} ∽ 𝑒−𝑛𝐷𝐾𝐿[𝑃

∗||𝑄] where 𝑃∗ is
the solution of Eq. (17.9).

Let us illustrate this for the case

𝒜𝑛 = {𝑃 ∶
∑

𝑥∈𝒳

𝑃(𝑥)𝑓(𝑥) ≥ 𝑓}
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that corresponds to event 𝐴𝑛 where the average of 𝑓(𝑋) over a sample 𝑋 of
points drawn independently from 𝑄(𝑥), is larger than 𝑓. If

𝔼𝑄 [𝑓(𝑋)] ≡
∑

𝑥∈𝒳

𝑄(𝑥)𝑓(𝑥) ≥ 𝑓

then𝑄 ∈ 𝒜𝑛 and the event is typical. The interesting case is when𝔼𝑄 [𝑓(𝑋)] <
𝑓 because then 𝐴𝑛 is an a-typical event where the sample average

1

𝑛

𝑛∑

𝑖=1

𝑓(𝑋𝑖) ≥ 𝑓

does not satisfies the law of large numbers. In order to compute 𝑃{𝐴𝑛} we
should first solve the problem Eq. (17.9). This is done introducing Lagrange
multipliers and solving the problem

min
𝑃,𝛽,𝜆

[𝐷𝐾𝐿[𝑃||𝑄] + 𝛽 (
∑

𝑥∈𝒳

𝑃(𝑥)𝑓(𝑥) − 𝑓0) + 𝜆 (
∑

𝑥∈𝒳

𝑃(𝑥) − 1)] ,

where 𝑓0 ≥ 𝑓 has to be chosen so as to satisfy Eq. (17.9). Equating the
derivative of the objective function in this minimisation problem to zero,
shows that the solution has the form

𝑃𝛽(𝑥) =
𝑄(𝑥)𝑒−𝛽𝑓(𝑥)

𝑍(𝛽)
(17.13)

where
𝑍(𝛽) = 𝔼𝑄

[
𝑒−𝛽𝑓(𝑋)

]
=

∑

𝑥∈𝒳

𝑄(𝑥)𝑒−𝛽𝑓(𝑥) (17.14)

is the normalisation constant.10 The parameter 𝛽 has to be fixed so that

𝔼𝛽 [𝑓(𝑋)] =
∑

𝑥∈𝒳

𝑃𝛽(𝑥)𝑓(𝑥) = −
𝑑

𝑑𝛽
log 𝑍(𝛽) (17.15)

where we used 𝔼𝛽 […] for expectations over the distribution 𝑃𝛽. Notice that
when 𝛽 = 0 then 𝑃𝛽(𝑥) = 𝑄(𝑥) is the original distribution. For this reason,
the curve 𝔼𝛽 [𝑓(𝑋)] takes the value 𝔼𝑄 [𝑓(𝑋)] for 𝛽 = 0. In other words, the
point 𝛽 = 0 corresponds to typical events, where the law of large numbers
holds. Varying 𝛽 one “explores” rare events with large fluctuations of the

10𝑍(𝛽) is often called the partition function. Note that the derivatives of log 𝑍(𝛽) is closely
related to the cumulant generating function of 𝑋, 𝜙(ℎ) = log 𝑍(−ℎ). We use this property to
relate the derivatives of log 𝑍(𝛽) to the cumulants of 𝑋 under the distribution 𝑃𝛽 .
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Figure 41. The shaded region corresponds to the event 𝒜𝑛.

sample mean of 𝑓. In particular, 𝔼𝛽 [𝑓(𝑋)] is a decreasing function of 𝛽 (see
Figure 41), because

𝑑𝔼𝛽 [𝑓(𝑋)]

𝑑𝛽
= −

{
𝔼𝛽

[
𝑓2(𝑋)

]
− 𝔼𝛽 [𝑓(𝑋)]

2
}
= −𝕍𝛽 [𝑓(𝑋)] ≤ 0.

So the event𝒜𝑛 corresponds to all those 𝛽 for which 𝔼𝛽 [𝑓(𝑋)] ≥ 𝑓, i.e. to the
region 𝛽 ≤ 𝛽∗ where 𝛽∗ is such that 𝔼𝛽∗[𝑓(𝑋)] = 𝑓.

Among all the distributions 𝑃𝛽 with 𝛽 ≤ 𝛽∗ we should chose that one with
the smallest 𝐷𝐾𝐿[⋅||𝑄]. Now

𝐷𝐾𝐿[𝑃𝛽||𝑄] = −𝛽𝔼𝛽 [𝑓(𝑋)] − log 𝑍(𝛽)

and
𝑑𝐷𝐾𝐿[𝑃𝛽||𝑄]

𝑑𝛽
= 𝛽𝕍𝛽 [𝑓(𝑋)]

has the same sign of 𝛽. Therefore, 𝐷𝐾𝐿[𝑃𝛽||𝑄] has a minimum at 𝛽 = 0 and
its minimum for 𝛽 ≤ 𝛽∗ ≤ 0 is attained at 𝛽∗. Summarizing,

𝑃{𝐴𝑛} ∼ 𝑒−𝑛𝐷𝐾𝐿[𝑃
∗||𝑄], 𝐷𝐾𝐿[𝑃

∗||𝑄] = −𝛽∗𝑓 − log 𝑍(𝛽∗)

where 𝛽∗ satisfies 𝔼𝛽∗[𝑓(𝑋)] = 𝑓 and 𝑃∗ = 𝑃𝛽∗ .
What is the meaning of the distribution 𝑃𝛽∗? In order to address this

question, let us compute the marginal distribution of the first 𝑚 variables
𝑋 = (𝑋1, … , 𝑋𝑚)

𝑃
(
𝑋|𝐴𝑛(𝑥̄)

)
= 𝑃{𝑋1 = 𝑥1, … , 𝑋𝑚 = 𝑥𝑚|𝐴𝑛(𝑥̄)}
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when 𝑛 → ∞ with𝑚 finite, conditional on the occurrence of the large devia-
tion 𝐴𝑛(𝑥̄). We observe that11

𝑃
(
𝑋|𝐴𝑛(𝑥̄)

)
=
𝑃{{𝑋1 = 𝑥1, … , 𝑋𝑚 = 𝑥𝑚}

⋂
𝐴𝑛−𝑚(𝑥̄

′)}

𝑃{𝐴𝑛(𝑥̄)}
(17.16)

=
𝑄(𝑥1)⋯𝑄(𝑥𝑚)𝑃{𝐴𝑛−𝑚(𝑥̄

′)}

𝑃{𝐴𝑛(𝑥̄)}
(17.17)

≃ 𝑃𝛽∗(𝑥1)⋯𝑃𝛽∗(𝑥𝑚) (17.18)

where in the first equality, the event 𝐴𝑛−𝑚(𝑥̄
′) is the event that the 𝑛 − 𝑚

variables (𝑋𝑚+1, … , 𝑋𝑛) sum up to
𝑛∑

𝑖=𝑚+1

𝑋𝑖 = 𝑛𝑥̄ −

𝑚∑

𝑖=1

𝑥𝑖 ≡ (𝑛 − 𝑚)𝑥̄′. (17.19)

In Eq. (17.17) we use the fact that the variables 𝑋𝑖 are independent and they
are drawn from 𝑄. Finally, Eq. (17.18) holds because12

𝑃{𝐴𝑛−𝑚(𝑥̄
′)}

𝑃{𝐴𝑛(𝑥̄)}
≃ 𝑒−(𝑛−𝑚)𝐷𝐾𝐿[𝑃𝛽′ ||𝑄]+𝑛𝐷𝐾𝐿[𝑃𝛽||𝑄] (17.20)

≃ 𝑒(𝑛−𝑚)𝛽
′𝑥̄′−𝑛𝛽𝑥̄−𝑛[log 𝑍(𝛽)−log 𝑍(𝛽′)]−𝑚 log 𝑍(𝛽′)

≃
1

𝑍(𝛽∗)𝑚
𝑒−𝛽

∗
∑𝑚

𝑖=1
𝑥𝑖 (17.21)

for 𝑛 → ∞. Eq. (17.17) shows that in the limit 𝑛 → ∞ the joint distribution of
𝑋 coincides with the distribution of𝑚 variables 𝑋1, … , 𝑋𝑚 which are drawn
independently from the same distribution 𝑃𝛽(𝑥). In loose words, the large
deviation is realised as a typical sample of independently drawn variables from
a distribution 𝑃𝛽(𝑥), which is different from 𝑄.

11We use the previous results with 𝑓(𝑥) = 𝑥 for simplicity.
12Here we use the shorthand 𝛽 = 𝛽∗(𝑥̄) and 𝛽′ = 𝛽∗(𝑥̄′). The second line follows from the

fact that
𝐷𝐾𝐿[𝑃

∗||𝑄] = −𝛽𝑥̄ − log 𝑍(𝛽).

In the first term of the exponent we use Eq. (17.19) so that

(𝑛 − 𝑚)𝛽′𝑥̄′ − 𝑛𝛽𝑥̄ = 𝑛(𝛽′ − 𝛽)𝑥̄ −

𝑚∑

𝑖=1

𝑥𝑖

The first term cancels with

log 𝑍(𝛽′) − log 𝑍(𝛽) ≃ −(𝛽′ − 𝛽)𝑥̄ + …

that is obtained expanding log 𝑍(𝛽′) around 𝛽 (note that 𝛽 − 𝛽′ ∼ 𝑥̄ − 𝑥̄′ is of order 1∕𝑛) using
𝑥̄ = −

𝑑

𝑑𝛽
log 𝑍(𝛽).
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Exercise 17.1

Compute the function

𝐼(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)}

for a Poisson distribution with mean 𝔼𝑄 [𝑋] = 𝜆. Show that the solu-
tion satisfies the relation 𝐼(𝑥̄) = 𝜆𝑓(𝑥̄∕𝜆). Show that the same relation
should hold for any infinitely divisible distribution.

There are in principle many other ways in which a sample that satis-
fies 𝐴𝑛(𝑥̄) could be realised. Any other distribution 𝑃 ∈ 𝒜𝑛(𝑥̄) such that
𝔼𝑃 [𝑋] = 𝑥̄ would generate samples that satisfies 𝐴𝑛(𝑥̄), typically. However,
the probability to generate samples with type 𝑃𝑋 = 𝑃 is 𝑒−𝑛𝐷𝐾𝐿[𝑃||𝑄], which is
exponentially smaller (in 𝑛) than the probability of typical samples generated
as i.i.d. draws from 𝑃∗ in Eq. (17.9). The distribution that is most likely to be
observed is the “closest” to 𝑄 in terms of the KL divergence.13

17.2 Large deviations for i.i.d. continuous variables
with thin tails

The same solution can be derived14 by a direct calculation for the cases where
𝑋𝑖 ∈ ℝ are continuous i.i.d. random variables whose common pdf 𝑞(𝑥) decays
at least exponentially fast.15 We refer to this case by saying that 𝑞(𝑥) has thin
tails. The case of fat tails, where 𝑞(𝑥) decays slower than an exponential, will
be discussed later.

Let 𝐴𝑛(𝑥̄) be the event that the mean falls in an interval [𝑥̄, 𝑥̄ + 𝑑𝑥̄) for an
infinitesimal 𝑑𝑥̄. Then 𝑃{𝐴𝑛(𝑥̄)} = 𝑝𝑛(𝑥̄)𝑑𝑥̄ where 𝑝𝑛(𝑥̄) is the pdf of 𝑥̄. This

13Remember that the type 𝑃𝑋 of a random sample of i.i.d. draws from a distribution is not
random at all when 𝑛 → ∞, by the Glivenko-Cantelli theorem.

14This derivation can be found also in the appendix of [30].
15I.e. distributions such that for some 𝜆, 𝐾 > 0

lim
𝑥→±∞

𝑞(𝑥)𝑒𝜆|𝑥| ≤ 𝐾 .
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can be computed using the integral representation of the delta function16

𝑝𝑛(𝑥̄) = 𝑛 ∫

∞

−∞

𝑛∏

𝑖=1

𝑑𝑥𝑖𝑞(𝑥𝑖)𝛿 (
∑

𝑖

𝑥𝑖 − 𝑛𝑥̄) (17.22)

= 𝑛 ∫

∞

−∞

𝑑𝑘

2𝜋
𝑒𝑖𝑘𝑛𝑥̄ [∫ 𝑑𝑥𝑞(𝑥)𝑒−𝑖𝑘𝑥]

𝑛

(17.23)

= 𝑛 ∫

∞

−∞

𝑑𝑘

2𝜋
𝑒𝑛𝑔(𝑖𝑘) (17.24)

where the function 𝑔(𝛽) is defined as.

𝑔(𝛽) = 𝛽𝑥̄ + log ∫ 𝑑𝑥𝑞(𝑥)𝑒−𝛽𝑥

The integral in Eq. (17.24) can be evaluated by the saddle point method. This
entails looking at the stationary point of 𝑔(𝛽) and expanding around it. The
maximum of 𝑔(𝛽) is attained at 𝛽∗(𝑥̄) that satisfies the equation 𝑔′(𝛽) = 0, i.e.

𝑥̄ =
1

𝑍(𝛽)
∫ 𝑑𝑥𝑥𝑞(𝑥)𝑒−𝛽𝑥, 𝑍(𝛽) = ∫ 𝑑𝑥𝑞(𝑥)𝑒−𝛽𝑥 = 𝔼𝑄

[
𝑒−𝛽𝑋

]
(17.25)

Then one can perform the integral in Eq. (17.24) by substituting

𝑔(𝑖𝑘) = 𝑔(𝛽∗) +
𝑔′′(𝛽∗)

2
(𝑖𝑘 − 𝛽∗)2 + 𝑂(𝑖𝑘 − 𝛽∗)3

Upon changing variables to 𝑦 =
√
𝑛𝑔′′(𝛽)(𝑘 + 𝑖𝛽∗) one can check that higher

order terms in the expansion of 𝑔 beyond the second one are small for 𝑛 large
and can be neglected. Therefore one can compute the Gaussian integral with
the result

𝑝𝑛(𝑥̄) ≃

√
𝑛

2𝜋𝑔′′(𝛽∗)
𝑒𝑛𝑔(𝛽

∗) ∼ 𝑒𝑛𝑔(𝛽
∗) (17.26)

where the leading order behavior in 𝑛 is retained in the last equation.

16TheDirac’s 𝛿(𝑥) function is defined as that (generalized) function such that for any function
𝑓(𝑥)

∫

∞

−∞

𝑑𝑥𝑓(𝑥)𝛿(𝑥 − 𝑥0) = 𝑓(𝑥0)

In particular with 𝑓(𝑥) = 1 this shows that 𝛿(𝑥 − 𝑥0) is a pdf whose mass is concentrated in
𝑥0. With 𝑓(𝑥) = 𝑒𝑖𝑘𝑥 the relation above shows that the Fourier transform of 𝛿(𝑥) is 1. Hence

𝛿(𝑥) = ∫

∞

−∞

𝑑𝑘

2𝜋
𝑒−𝑖𝑘𝑥 .

Also note that 𝛿(𝑎𝑥) = 𝛿(𝑥)∕𝑎.
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Exercise 17.2

There are other ways in which a large deviation 𝑥̄ can be realised.
Imagine that a large deviation 𝑥̄ = 𝔼𝑄 [𝑋] + 𝑎 is observed, with 𝑎 > 0.
The “explanation” of large deviation theory is that the event 𝐴𝑛(𝑥̄)

occurs because 𝑋𝑖 are actually not drawn from 𝑞(𝑥) but from 𝑝𝛽(𝑥)

of Eq. (17.27), with 𝛽 determined by the condition 𝑥̄ = 𝔼𝛽 [𝑋]. A
different explanation is that, instead, the 𝑋𝑖 are drawn i.i.d. from a
“shifted” distribution 𝑝𝑎(𝑥) = 𝑞(𝑥 − 𝑎). Show, for the specific example
of exponential random variables, 𝑞(𝑥) = 𝑒−𝑥 for 𝑥 ≥ 0 and 𝑞(𝑥) = 0 for
𝑥 < 0, that the “shifted” distribution hypothesis is much less plausible
than the one offered by large deviation theory.

There are few things to observe in this result:

1. The form of Eq. (17.25) that fixes 𝛽∗ is of the form 𝑥̄ = 𝔼𝛽 [𝑋] where
the expectation is taken on the modified distribution

𝑝𝛽(𝑥) =
𝑞(𝑥)𝑒−𝛽𝑥

𝑍(𝛽)
(17.27)

This is not a coincidence, as we’re going to see.

2. The second derivative of 𝑔 is positive as it is the variance of a random
variable 𝑋 with pdf 𝑝𝛽(𝑥)

𝑔′′(𝛽) = 𝔼𝛽
[
𝑋2
]
− 𝔼𝛽 [𝑋]

2
= 𝕍𝛽 [𝑋]

3. The marginal joint distribution of a finite number𝑚 of variables, say
𝑋 = (𝑋1, … , 𝑋𝑚) conditional on the occurrence of 𝐴𝑛(𝑥̄), defined as

𝑝
(
𝑋|𝐴𝑛(𝑥̄)

)
𝑑𝑥1⋯𝑑𝑥𝑚

= 𝑃{𝑋1 ∈ [𝑥1, 𝑥1 + 𝑑𝑥1), … , 𝑋𝑚 ∈ [𝑥𝑚 + 𝑑𝑥𝑚)|𝐴𝑛(𝑥̄)}

can be estimated as before, and

lim
𝑛→∞

𝑝 (𝑥1, … , 𝑥𝑚|𝐴𝑛(𝑥̄)) = 𝑝𝛽(𝑥1)⋯𝑝𝛽(𝑥𝑚)

This shows that the large deviation is realised as an independent draw
of variables from the distribution 𝑝𝛽(𝑥).
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4. The expression of the rate of exponential decay of the probability𝑃{𝐴𝑛(𝑥̄)}

can be written as

lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)} = 𝑔(𝛽∗) = −𝐷𝐾𝐿[𝑝𝛽∗||𝑞]

as shown by a direct calculation. This is the same result as Sanov’s the-
orem Eq. (17.12). The fact that 𝑃{𝐴𝑛(𝑥̄)} is related to a relative entropy
is not accidental, as we discussed earlier.

17.3 Large deviations and the Legendre transform
The function

𝐼(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)} (17.28)

is called the Cramer’s function or the large deviation (rate) function. As shown
above, 𝐼(𝑥̄) = 𝐷𝐾𝐿[𝑃𝛽∗(𝑥̄)||𝑄] is a relative entropy. Rephrasing the steps we
did above, the practical recipe to compute the Cramer’s function is condensed
in the following steps:17

1. Compute the cumulant generating function

𝜙(ℎ) = log ∫ 𝑑𝑥𝑞(𝑥)𝑒ℎ𝑥 = log𝔼𝑄
[
𝑒ℎ𝑋

]

2. Take a derivative of 𝜙 and compute

𝑥̄(ℎ) =
𝑑𝜙

𝑑ℎ
(17.29)

3. invert this function and compute ℎ(𝑥̄)

4. compute
𝐼(𝑥̄) = 𝑥̄ℎ(𝑥̄) − 𝜙[ℎ(𝑥̄)]

The variables ℎ and 𝑥̄ are called conjugate variables. Notice that the function
𝜙(ℎ) has to be concave, i.e. its second derivative must be positive. This is
always true in the present case, because 𝜙′′(ℎ) = 𝕍𝛽 [𝑋] > 0 is given by the
variance of 𝑋 on the distribution 𝑃𝛽 (with 𝛽 = −ℎ). Indeed the steps above

17In the derivation above we had

𝐼(𝑥̄) = −𝑔(𝛽∗), ℎ = −𝛽

and 𝜙(ℎ) = log 𝑍(𝛽). The reason for this change of notation will become clear in what follows.
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“map” a concave function 𝜙(ℎ) into another concave function 𝐼(𝑥̄), because
you can easily check that 𝐼′′(𝑥̄) = 1∕𝜙′′(ℎ) > 0.

As a general remark, note that the function 𝐼(𝑥̄) contains (and it has to be
consistent with) both the law of large numbers and the central limit theorem.
The first implies that 𝐼(𝑥̄) = 0 when 𝑥̄ = 𝔼𝑄 [𝑋]. The second implies that the
pdf of 𝑥̄ is well approximated by a Gaussian for 𝑥̄ ≃ 𝔼𝑄 [𝑋], i.e.

𝑝𝑛(𝑥̄) ≃

√
𝑛

2𝜋𝕍𝑄 [𝑋]
𝑒
−
𝑛(𝑥̄−𝔼𝑄[𝑋])

2

2𝕍𝑄[𝑋] .

Therefore, 𝐼(𝑥̄) ≃ (𝑥̄−𝔼𝑄[𝑋])
2

2𝕍𝑄[𝑋]
+… is well approximated by a quadratic function

for 𝑥̄ ≃ 𝔼𝑄 [𝑋]. This can indeed be checked explicitly, because the second
derivative of 𝐼(𝑥̄) for 𝑥̄ = 𝔼𝑄 [𝑋] is the inverse of the second derivative of the
cumulant generating function 𝜙(ℎ) for ℎ = 0, which is the variance 𝕍𝑄 [𝑋].

Exercise 17.3

Compute the Cramer function 𝐼(𝑥̄) for the exponential distribution
𝑝(𝑥) = 𝑒−𝑥, 𝑥 ≥ 0.

The mathematics described here is that of Legendre transforms.18 This
mathematical construction does not arise accidentally. Consider the following
constrained optimisation problem

𝐼(𝑥̄) = min
𝑃∶ 𝑥(𝑃)=𝑥̄

𝑈(𝑃) (17.30)

where 𝑃 ∈ ℝ𝑑 is a 𝑑-dimensional vector and the function 𝑈(𝑃) is concave.19
In the case of large deviations for distributions with finite support, 𝑃 is a
distribution,𝑈(𝑃) = 𝐷𝐾𝐿[𝑃||𝑄] and 𝑥(𝑃) =

∑

𝑥
𝑃(𝑥)𝑥 is a linear function of 𝑃

(an expected value). 𝑃 identifies a point in the (𝑥,𝑈) plane, with 𝑥 = 𝑥(𝑃), and
the solution of the problem lies on the boundary in the (𝑥,𝑈) plane between
points that can be achieved for some value of 𝑃 and points that cannot be
achieved. This boundary is the function 𝐼(𝑥̄) that we want to characterise (see
Figure 42).

18A warmly suggested reading on the Legendre transform, which discusses its geometric
interpretation and gives much intuition on its nature, can be found in [31].

19I.e.
𝑈(𝜆𝑃1 + (1 − 𝜆)𝑃0) ≤ 𝜆𝑈(𝑃1) + (1 − 𝜆)𝑈(𝑃0).

for 𝜆 ∈ [0, 1].
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Figure 42. Construction of the large deviation function for 𝑄(𝑥) defined for 𝑥 ∈

𝜒 = {1, 2, 3, 4} and 𝑄(1) = 2𝑄(2) = 4𝑄(3) = 4𝑄(4) = 1∕2 and 𝑛 = 20 points. The
red curves show the construction implied by the Legendre transform for ℎ = 1.

With the introduction of Lagrange multipliers, we transform the problem
in Eq. (17.30) into20

𝐼(𝑥̄) = min
𝑃

max
ℎ
{𝑈(𝑃) − ℎ[𝑥(𝑃) − 𝑥̄]} (17.31)

= max
ℎ
{𝑥̄ℎ − 𝜙(ℎ)} (17.32)

𝜙(ℎ) = max
𝑃
{ℎ𝑥(𝑃) − 𝑈(𝑃)}. (17.33)

In this way we relate the original optimisation problem Eq. (17.30) to a dual
problem Eq. (17.33).

In order to understand the meaning of ℎ, consider the same problem, but
for a value 𝑥̄ + 𝑑𝑥̄ of the constraint. Then if 𝑃∗(𝑥̄) is the point where the
extreme is achieved in the original problem,

𝐼(𝑥̄ + 𝑑𝑥̄) = 𝑈 (𝑃∗(𝑥̄ + 𝑑𝑥̄)) = 𝑈 (𝑃∗(𝑥̄)) + ∇𝑃𝑈 ⋅ 𝛿𝑃∗ + …

where 𝛿𝑃∗ = 𝑃∗(𝑥̄+𝑑𝑥̄)−𝑃∗(𝑥̄). The first order conditions of the optimisation
in Eq. (17.31) on 𝑃 imply that ∇𝑃𝑈 = ℎ∇𝑃𝑥. Hence the equation above reads
𝐼(𝑥̄ + 𝑑𝑥̄) = 𝐼(𝑥̄) + ℎ∇𝑃𝑥𝛿𝑃

∗ + …. The equation 𝑥(𝑃(𝑥̄)) = 𝑥̄, on the other

20The fact that the optimisation over ℎ is a maximisation derives from the fact that it is the
solution of the optimisation of a concave function ℎ𝑥(𝑃) − 𝑈(𝑃). As 𝐼(𝑥̄) inherits its concavity
from 𝑈(𝑃), 𝜙(ℎ) inherits its convexity from ℎ𝑥(𝑃) − 𝑈(𝑃).
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hand, implies that ∇𝑃𝑥𝛿𝑃
∗ = 𝑑𝑥̄. These, taken together, show that

ℎ =
𝑑𝐼

𝑑𝑥̄

is the slope of the tangent of the curve that is the locus of the set of solutions of
the optimisation in the (𝑥̄, 𝑈) plane. This set can equivalently be described by
the coordinate ℎ. Indeed, because of the concavity of 𝑈(𝑃), the function ℎ(𝑥̄)
is an increasing function. Furthermore, this description is totally equivalent
to the one in terms of 𝑥̄. If we let 𝑃(ℎ) be the solution of the problem in
Eq. (17.33), then one has

𝜙(ℎ + 𝑑ℎ) = 𝑥(𝑃(ℎ + 𝑑ℎ))(ℎ + 𝑑ℎ) − 𝑈(𝑃(ℎ + 𝑑ℎ))

= 𝜙(ℎ) + 𝑥̄(ℎ)𝑑ℎ + [ℎ∇𝑃𝑥 − ∇𝑃𝑈] 𝛿𝑃 + …

The term in braces vanishes because of the first order conditions of the problem
in Eq. (17.33). Therefore one concludes that

𝑥̄ =
𝑑𝜙

𝑑ℎ
.

Indeed the relation between 𝐼(𝑥̄) and 𝜙(ℎ) is completely symmetric, i.e.

𝐼(𝑥̄) + 𝜙(ℎ) = 𝑥̄ℎ,

so 𝐼 is the Legendre transform of 𝜙 and 𝜙 is the Legendre transform of 𝐼.
Indeed, notice that Eq. (17.33) can be rewritten as

𝜙(ℎ) = max
𝑥̄

[ℎ𝑥̄ − min
𝑃∶ 𝑥(𝑃)=𝑥̄

𝑈(𝑃)] = max
𝑥̄

[ℎ𝑥̄ − 𝐼(𝑥̄)] . (17.34)

The Legendre transform is not a mere change of variables. Rather it
is a mapping of the solution (𝑥̄, 𝐼) of a constrained optimisation problem
Eq. (17.30) into the solution (ℎ, 𝜙) of a dual unconstrained optimisation prob-
lem (Eq. (17.33)). The Legendre transform provides a precise prescription for
identifying the conjugate variable ℎ that should be used in the transformed
problem.21

21The Legendre transform is the bread and butter of statistical mechanics. As we shall see,
the thermodynamics of an isolated system is described by distributions of maximal entropy,
which is called themicrocanonical ensemble. In an isolated system the energy 𝐸 is a constant
of the motion and hence it is fixed, as well as the volume 𝑉 and the number of particles. This
problem can be related to the description of a system in equilibrium with its environment (the
heat bath) removing the constraint on 𝐸. In this description, which is the canonical ensemble,
the new variable is the temperature 𝑇 and the objective function is the free energy 𝐹 = ⟨𝐸⟩−𝑇𝑆.
Likewise, the constraint on fixed volume 𝑉 can be removed with a Legendre transform that
maps the problem in one where the pressure 𝑃 is fixed, and the constraint on𝑁 can be removed
introducing the chemical potential 𝜇. As an Exercise, identify in each of these cases what are
the variables 𝑥̄ and ℎ and what are the functions 𝐼(𝑥̄) and 𝜙(ℎ).
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Let us illustrate the properties of 𝐼(𝑥̄) for sums 𝑆𝑛 =
∑𝑛

𝑘=1
𝑋𝑘 of binary

variables that take values 𝑋𝑘 = ±1 with equal probability. Then, both the
recipe above and a direct calculation using Stirling’s approximation of the
binomial coefficient, show that

𝐼(𝑥̄) =
1 − 𝑥̄

2
ln(1 − 𝑥̄) +

1 + 𝑥̄

2
ln(1 + 𝑥̄)

which is just the relative entropy 𝐷𝐾𝐿[𝑃𝛽||𝑄] between the distribution 𝑃𝛽 =
(
1−𝑥̄

2
,
1+𝑥̄

2
) and the uniform distribution 𝑄 = (1∕2, 1∕2), as it should.

Exercise 17.4

Compute 𝐼(𝑥̄) in both ways for the case of binary variables discussed
in the text.

The expansion for |𝑥̄| ≪ 1 yields 𝐼(𝑥̄) ≃ 1

2
𝑥̄2 + 𝑂(𝑥̄4) for 𝑥̄ ≪ 1, which

is consistent with the law of large number and the central limit theorem for
|𝑥̄| ∼ 1∕

√
𝑛 ≪ 1. For larger values of 𝑥̄ the function 𝐼(𝑥̄) provides muchmore

informations on the large deviation properties of the mean 𝑆𝑛∕𝑛. Note that
𝐼(𝑥̄) is defined only for 𝑥̄ ∈ [−1, 1]. Indeed also |𝑆𝑛∕𝑛| ≤ 1 by definition in
this case. Next note that 𝐼(±1) = ln 2, and indeed the probability that 𝑆𝑛 = ±𝑛

is exactly 2−𝑛.

17.4 Howmuch do we learn?*

Let us go back to our discussion22where the distribution𝑄 encodes our current
state of knowledge, i.e. our theory. The theory 𝑄 predicts that an observable 𝑋
should take a value ≈ 𝔼𝑄 [𝑋]. When we perform an experiment and measure
𝑋, the measurement may be consistent with this prediction or not. In the
latter case we need to revise our theory 𝑄 and replace it by 𝑃𝛽, depending on
the observed value 𝑥̄ of 𝑋. How much do we learn?

The uncertainty is reduced from ℋ[𝑄] to ℋ[𝑃𝛽]. Hence the acquired
information is

−∆ℋ = ℋ[𝑄] −ℋ[𝑃𝛽] (17.35)

= 𝐼(𝑥̄) + 𝔼𝑄
[(
𝑒ℎ𝑋−𝜙(ℎ) − 1

)
log𝑄

]
, (17.36)

where the second line results from a trite calculation using the results in previ-
ous sections. The first term 𝐼(𝑥̄) = 𝐷𝐾𝐿[𝑃𝛽||𝑄] quantifies how surprising the

22This section is a side remark, and it should be taken as a digression for curious students.
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Figure 43. Probing the space of distributions around𝑄. Each experiments𝑋 explores
the space along a different trajectory 𝑃ℎ.

result of the experiment is. The second instead, has the form of a covariance23
between 𝑒ℎ𝑋−𝜙(ℎ) and log𝑄. Hence it depends on what observable 𝑋 has been
probed in the experiment. This allows us to ask, given 𝑄, what quantity 𝑋
should be probed in order for the experiment to be as informative as possible?
Yet ∆ℋ also depends on ℎ, i.e. on the observed value 𝑥̄ of 𝑋. One way to
address this question is to “explore the neighbourhood” of 𝑄, searching for
“directions” 𝑋 where the reduction in uncertainty ∆ℋ increases faster. Hence
we expand ∆ℋ for small values of ℎ and, after some work, we find24

∆ℋ ≃ −ℎCov𝑄(𝑋, log𝑄)

−
1

2
ℎ2 {𝕍𝑄 [𝑋] + Cov𝑄 [

(
𝑋 − 𝔼𝑄 [𝑋]

)2
, log𝑄]} + 𝑂(ℎ3)

which is an interesting result. The leading linear term implies that the largest
change in ∆ℋ occurs when 𝑋 = log𝑄, which is the 𝑋 that maximises the
covariance with log𝑄. Note indeed that, by the Asymptotic Equipartition
Property, the value of − log𝑄 ≈ ℋ[𝑄] permits to identify the set of typical
outcomes.

The choice 𝑋 = log𝑄 explores the space of distributions along the curve
of parametric distributions25

𝑃ℎ(𝑥) =
1

𝔼𝑄 [𝑄
ℎ]
𝑄1+ℎ(𝑥).

23Note that 𝔼𝑄
[
𝑒ℎ𝑋−𝜙(ℎ)

]
= 1.

24We remind that the covariance is defined as

Cov𝑄(𝑋, 𝑌) = 𝔼𝑄
[
(𝑋 − 𝔼𝑄 [𝑋])(𝑌 − 𝔼𝑄 [𝑌])

]

where the index specifies that the expectation is taken with respect to 𝑄.
25In a statistical mechanics analogy, as we shall see 𝑄 takes the form 𝑄(𝑥) =

1

𝑍
𝑒−𝐸(𝑥)∕𝑇 ,

where 𝑇 is the temperature. Then also 𝑃ℎ(𝑥) has the same form, with 𝑇′ = 𝑇∕(1 + ℎ). In
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The change ∆ℋ can however be either positive or negative, depending on
whether ℎ < 0 or ℎ > 0. In order to make sure that the measurement reduces
the uncertainty on the system, the measured quantity 𝑋 should be such that
Cov𝑄(𝑋, log𝑄) = 0, so that the linear term vanishes.

The first term of order ℎ2 is 𝐼(𝑥̄) ≃ 1

2
ℎ2𝕍𝑄 [𝑋], which suggests that the

most potentially surprising experiments, are those that probe quantities with
large fluctuations. This is indeed a well established recipe in experimental
design.

17.5 Weakly correlated variables: phase transitions
and the Gartner-Ellis theorem

The results we have derived so far for large deviations extend to the case where
the random variables 𝑋𝑖 are weakly dependent. How weak the dependence
can be will be clarified below.26

Consider the following situation: we have a sample 𝑋1, … , 𝑋𝑛 drawn i.i.d.
from a distribution, but we’re not sure what the distribution is. With proba-
bility 𝑎 the sample comes from the distribution 𝑃 and with probability 1 − 𝑎

it comes form the distribution 𝑄. Both 𝑃 and 𝑄 have either finite support or
thin tails. What is the probability 𝑃{𝐴𝑛(𝑥̄)} in this case? Clearly

𝔼 [𝑋] = 𝑎𝔼𝑃 [𝑋] + (1 − 𝑎)𝔼𝑄 [𝑋] ,

where 𝔼𝑃 […] and 𝔼𝑄 […] stand for expectations on the distributions 𝑃 and 𝑄,
respectively. Do we expect that the law of large numbers

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 → 𝑎𝔼𝑃 [𝑋] + (1 − 𝑎)𝔼𝑄 [𝑋]

holds?
addition

∆ℋ = −
ℎ

𝑇2
𝕍𝑄 [𝐸]

−
ℎ2

2𝑇2
[𝕍𝑄 [𝐸] +

1

𝑇
𝔼𝑄

[
(𝐸 − 𝔼𝑄 [𝐸])

3
]
] + …

and the coefficient of the linear term in ℎ is the specific heat.
26To give an idea, one example where the theory applies is when random variables interact

only “locally”. This means that for each 𝑋𝑖 there is a finite subset 𝜕𝑖 ⊂ {1, … , 𝑛} of indices such
that, conditional on the values of the variables 𝑋𝑗 for 𝑗 ∈ 𝜕𝑖 , 𝑋𝑖 is independent of all the other
variables 𝑘 ∉ 𝜕𝑖 , i.e.

𝑃{𝑋𝑖|𝑋𝑗 , ∀𝑗 ≠ 𝑖} = 𝑃{𝑋𝑖|𝑋𝑗 , ∀𝑗 ∈ 𝜕𝑖}.

AMarkov process, where𝑋𝑖 only depends on𝑋𝑖−1 and𝑋𝑖+1 (i.e. 𝜕𝑖 = {𝑖−1, 𝑖 +1}), is a sequence
of weakly dependent random variables.
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EP[X] EQ[X]

I(x)

 x

IQ(x)IP(x)

Figure 44. The construction of the Cramer function 𝐼(𝑥̄) for the example discussed
in the text.

The answer can be found by a direct calculation:

𝑃{𝐴𝑛(𝑥̄)} = 𝑎𝑃{𝐴𝑛(𝑥̄)|𝑃} + (1 − 𝑎)𝑃{𝐴𝑛(𝑥̄)|𝑄} (17.37)

∽ 𝑎𝑒−𝑛𝐼𝑃(𝑥̄) + (1 − 𝑎)𝑒−𝑛𝐼𝑄(𝑥̄) (17.38)

where 𝑃{𝐴𝑛(𝑥̄)|𝑊} is the probability of the large deviation, conditional on the
assumption that the variables 𝑋𝑖 are drawn i.i.d. from the distribution𝑊 = 𝑃

or 𝑄, and

𝐼𝑊(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)|𝑊} = min

𝑃∈𝒜𝑛(𝑥̄)
𝐷𝐾𝐿[𝑃||𝑊] .

It is now clear that

𝐼(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)} = min[𝐼𝑃(𝑥̄), 𝐼𝑄(𝑥̄)]. (17.39)

Notice that:

• The curve 𝐼(𝑥̄) touches the 𝑥̄ axis in two points 𝑥̄ = 𝔼𝑃 [𝑋] and 𝑥̄ =

𝔼𝑄 [𝑋]. This means that, typically we expect that the sample mean
converges to either 𝔼𝑃 [𝑋] or to 𝔼𝑄 [𝑋], but not to 𝔼 [𝑋]. This violation
of the law of large numbers occurs because the variables 𝑋1, … , 𝑋𝑛 are
not independent. Indeed, knowledge of a subset 𝑘 of the 𝑋𝑖 allows us to
infer whether the right distribution is 𝑃 or 𝑄, and hence informs us on
the values of the remaining 𝑛 − 𝑘.

• The curve 𝐼(𝑥̄) is not convex. Locally it is convex, apart from the point
𝑥̄𝑐 where 𝐼𝑃(𝑥̄𝑐) = 𝐼𝑄(𝑥̄𝑐), where it has a cusp.
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• The derivative ℎ of 𝐼(𝑥̄) is no longer a continuous function of 𝑥̄. Rather
it has a jump at the point 𝑥̄𝑐, i.e. lim𝑥̄→𝑥̄

±
𝑐
𝐼′(𝑥̄) = ℎ±.

• Following the geometric construction of the function 𝜙(ℎ), one finds
that the function 𝜙(ℎ) is not single valued in the interval ℎ ∈ [ℎ+, ℎ−]

and that it is not continuous.

TheMaxwell construction and the Gärtner-Ellis theorem. The fact
that 𝐼(𝑥̄) derived above is non convex makes the recipe based on the Legendre
transform, that we discussed for i.i.d. variables inapplicable. The Gärtner-Ellis
theorem describes what happens if we apply this recipe anyhow. Suppose that
the function

𝜙̄(ℎ) = lim
𝑛→∞

1

𝑛
log 𝔼

[
𝑒ℎ(𝑋1+…+𝑋𝑛)

]
(17.40)

exists and is finite, for ℎ in a neighbourhood of the origin. Then the convex
hull 𝐼(𝑥̄) of the large deviation function is given by the Legendre transform of
𝜙̄(ℎ).

Exercise 17.5

Let 𝑋 = (𝑋1, … , 𝑋𝑛) where 𝑋𝑖 = 𝑌0𝑌𝑖, with 𝑌0 = ±1 with equal
probability, and 𝑌𝑖 ∈ {0, 1} are i.i.d. random variables with 𝑃{𝑌𝑖 = 1} =

𝑝 = 1 − 𝑃{𝑌𝑖 = 0}, and they are all independent of 𝑌0. Compute the
large deviation function for the random variables 𝑋𝑖, i.e.

𝐼(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃 {

𝑛∑

𝑖=1

𝑋𝑖 ∈ [𝑥̄, 𝑥̄ + 𝜖)}

for some 𝜖 > 0. Compute the function 𝐼(𝑥̄) by Gärtner-Ellis theorem,
i.e. as the Legendre transform of 𝜙̄. What is the posterior distribution
that the true distribution is 𝑃, given 𝐴𝑛(𝑥̄)?

Let us see how this works for the problem we discussed above, of a se-
quence 𝑋 of variables which is drawn i.i.d. from either 𝑃 or 𝑄. It is easy to
see that 𝔼

[
𝑒ℎ(𝑋1+…+𝑋𝑛)|𝑊

]
= 𝑒𝑛𝜙𝑊(ℎ), where 𝜙𝑊(ℎ) is drawn in Figure 45 for

𝑊 = 𝑃 or 𝑄. Then

𝜙̄(ℎ) = lim
𝑛→∞

1

𝑛
log

[
𝑎𝑒𝑛𝜙𝑃(ℎ) + (1 − 𝑎)𝑒𝑛𝜙𝑄(ℎ)

]

= max
[
𝜙𝑃(ℎ), 𝜙𝑄(ℎ)

]
(17.41)
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ɸ(h)

h

Figure 45. The functions 𝜙𝑃 and 𝜙𝑄 for the example discussed in the text.

EP[X] EQ[X]  x

I(x)

ɸ(h)

h EP[X] EQ[X]  x

I(x)

ɸ(h)

h

Figure 46. The Gärtner-Ellis theorem applied to the problem of a sequence 𝑋 drawn
i.i.d. from either 𝑃 or 𝑄.

as shown in Figure 46 (left). Notice that 𝜙̄(ℎ) has a cusp — i.e. a discontinuity
in its first derivative — for ℎ = 0. The derivative of 𝜙̄(ℎ) as ℎ → 0+ equals
𝔼𝑄 [𝑋] whereas when ℎ → 0− one finds 𝜙̄′(ℎ) = 𝔼𝑃 [𝑋].

The Legendre transform 𝐼(𝑥̄) of 𝜙̄(ℎ) is shown in Figure 46 (right). This
function 𝐼(𝑥̄) is identical to 𝐼(𝑥̄), except for the part in the interval 𝑥̄ ∈
[
𝔼𝑃 [𝑥] , 𝔼𝑄 [𝑥]

]
, where 𝐼(𝑥̄) is replaced by a straight line.

The Gärtner-Ellis theorem provides the solution to a different yet related
problem, which is the case where an unknown fraction of the variables are
drawn from 𝑃 and the rest from 𝑄. Specifically, let 𝑋𝑖 be drawn from 𝑃 if
𝑖 ≤ 𝜈𝑛 and from 𝑄 if 𝑖 > 𝜈𝑛, with 𝜈 ∈ [0, 1] which is unknown.

Again we consider the event𝐴𝑛(𝑥̄), i.e. that the mean of a sample𝑋1, …𝑋𝑛
of points obtained in this way equals 𝑥̄, andwewant to compute the probability
of 𝐴𝑛(𝑥̄). The probability of finding a large deviation with a sample mean
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equal to 𝑥̄ is

𝑃{𝐴𝑛(𝑥̄)} = ∫

1

0

𝑑𝜈 ∫ 𝑑𝑥̄𝑃 ∫ 𝑑𝑥̄𝑄𝑃{𝐴𝜈𝑛(𝑥̄𝑃)|𝑃}𝑃{𝐴(1−𝜈)𝑛(𝑥̄𝑄)|𝑄}

𝛿(𝑥̄ − 𝜈𝑥̄𝑃 − (1 − 𝜈)𝑥̄𝑄)

∼ ∫

1

0

𝑑𝜈 ∫ 𝑑𝑥̄𝑃 ∫ 𝑑𝑥̄𝑄𝑒
−𝑛[𝜈𝐼𝑃(𝑥̄𝑃)+(1−𝜈)𝐼𝑄(𝑥̄𝑄)]

𝛿(𝑥̄ − 𝜈𝑥̄𝑃 − (1 − 𝜈)𝑥̄𝑄)

where we assume a uniform prior on 𝜈. For all values of 𝑥̄ ∈
[
𝔼𝑃 [𝑋] , 𝔼𝑄 [𝑋]

]

thismultiple integral is dominated by the values 𝑥̄𝑃 = 𝔼𝑃 [𝑋] and 𝑥̄𝑄 = 𝔼𝑄 [𝑋],
and 𝜈 such that 𝑥̄ = 𝜈𝔼𝑃 [𝑋]+(1−𝜈)𝔼𝑄 [𝑋], because then 𝐼𝑃(𝑥̄𝑃) = 𝐼𝑄(𝑥̄𝑄) = 0,
and one finds that

𝐼𝜈(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴

(𝜈)
𝑛 (𝑥̄)} = 0 ∀ 𝑥̄ ∈

[
𝔼𝑃 [𝑋] , 𝔼𝑄 [𝑋]

]
.

Put differently, for every 𝑥̄ ∈
[
𝔼𝑃 [𝑋] , 𝔼𝑄 [𝑋]

]
it is possible to find a value

𝜈 =
𝔼𝑄 [𝑋] − 𝑥̄

𝔼𝑄 [𝑋] − 𝔼𝑃 [𝑋]
∈ [0, 1] (17.42)

such that the above construction allows us to realise the large deviation 𝑥̄ as a
typical event (i.e. with 𝐼𝜈(𝑥̄) = 0).

As we’re going to discuss (see footnote 17) the replacement of the non-
concave part of 𝐼(𝑥̄) with a straight line is conceptually identical to the
Maxwell’s construction in thermodynamics. In physics this construction
relates the thermodynamics of homogenous but unstable states to that of
inhomogeneous states, which are a mixture of two homogeneous states. Here,
it relates the (large deviation) properties of a system which is either in one
pure state (𝑃) or in another (𝑄), to one which is amixture 𝑃𝜈 = 𝜈𝑃 + (1 − 𝜈)𝑄

of the two states. Mathematically, the first case is described by the Cramer
function 𝐼(𝑥̄) while the mixture is described by its convex hull 𝐼(𝑥̄), defined in
Eq. (17.39), which is the Legendre transform of 𝜙̄(ℎ) in Eq. (17.41).

Exercise 17.6

Consider yet a different problemwhere each of the variables𝑋𝑖 is drawn
from 𝑃, with probability 𝜈, or from 𝑄 with probability 1 − 𝜈. What
is the large deviation function 𝐼(𝑥̄) in this case when 𝜈 is known and
when 𝜈 is unknown?
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Figure 47. Pictorial representation of the space of typical samples 𝑋 drawn i.i.d.
from either 𝑃 or 𝑄 (a) or from mixtures 𝜈𝑃 + (1 − 𝜈)𝑄 (b).

Notice the difference in the structure of the typical set in the different cases.
When the sample is drawn from one of the distributions but we do not know
which one, the typical set is the union of two disjoint sets, the typical set of
samples generated from 𝑃 and of those generated from 𝑄. When instead each
point may be generated from either 𝑃 or 𝑄 with unknown probabilities, then
the typical set extends to the union of typical sets of all mixtures 𝜈𝑃+ (1−𝜈)𝑄
for all 𝜈 ∈ [0, 1]. This will be an important point when we will discuss
statistical inference, which deals with finding those models 𝑄 such that a
given data set 𝑋 may be considered a typical draw.

17.5.1 Large deviations for Markov Chains

A further example of a sequence of weakly dependent random variables is
given by Markov Chains. Let us recall that a Markov Chain 𝑍0, 𝑍1, … , 𝑍𝑡, … is
a sequence of random variables that take values in a discrete set 𝒮, and which
is defined by a transition matrix

𝑝𝑠,𝑠′ = 𝑃{𝑍𝑡 = 𝑠|𝑍𝑡−1 = 𝑠′}, 𝑠, 𝑠′ ∈ 𝒮. (17.43)

We restrict our attention to irreducible Markov Chains for which the distri-
bution 𝑝{𝑍𝑡 = 𝑠} converges, as 𝑡 → ∞, to the unique invariant measure 𝜇𝑠
which satisfies the equation 𝜇𝑠 =

∑

𝑠′
𝑝𝑠,𝑠′𝜇𝑠′ .

For an observable 𝑋𝑡 with a distribution 𝑃{𝑋𝑡 = 𝑥|𝑍𝑡 = 𝑠} = 𝑞(𝑥|𝑠) that
depends only on the state 𝑍𝑡 at time 𝑡, we expect that its time average between
times 𝜏 + 1 and 𝜏 + 𝑁 converges as 𝑁 → ∞ to the expected value of 𝑋𝑡 on 𝜇𝑠,
for 𝜏 → ∞, i.e.

lim
𝜏→∞

lim
𝑁→∞

1

𝑁

𝜏+𝑁∑

𝑡=𝜏+1

𝑋𝑡 → 𝔼𝜇 [𝑋𝑡] ≡
∑

𝑥,𝑠

𝑥𝑞(𝑥|𝑠)𝜇𝑠.
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What is the probability to observe instead a value 𝑥̄ different from 𝔼𝜇 [𝑋𝑡]? In
order to apply Eq. (17.40) we need to compute the expected value

𝔼
[
𝑒ℎ

∑

𝑡
𝑋𝑡
]
=

∑

𝑠𝜏 ,𝑠𝜏+1,…,𝑠𝜏+𝑁

𝜏+𝑁∏

𝑡=𝜏+1

𝑝𝑠𝑡 ,𝑠𝑡−1𝔼
[
𝑒ℎ𝑋𝑡 |𝑠𝑡

]
𝑃0(𝑠𝜏) (17.44)

=
∑

𝑠𝜏 ,𝑠𝜏+𝑁

{𝑈̂𝑁}𝑠𝜏+𝑁 ,𝑠𝜏𝑃0(𝑠𝜏), (17.45)

where {𝑈̂𝑁}𝑠𝜏+𝑁 ,𝑠𝜏 is the 𝑠𝜏+𝑁 , 𝑠𝜏 element of the𝑁
th power of the matrix𝑈𝑠,𝑠′ =

𝔼
[
𝑒ℎ𝑋𝑡 |𝑠

]
𝑝𝑠,𝑠′ . In the repeated matrix multiplication, the dominant compo-

nent is the one corresponding to the largest eigenvalue of 𝑈̂, corresponding
to the right eigenvector

𝜆𝑣𝑠 =
∑

𝑠′

𝑈𝑠,𝑠′𝑣𝑠′ =
∑

𝑠′

𝔼
[
𝑒ℎ𝑋𝑡 |𝑠

]
𝑝𝑠,𝑠′𝑣𝑠′ (17.46)

which leads to 𝔼
[
𝑒ℎ

∑

𝑡
𝑋𝑡
]
∼ 𝜆𝑁 . Note that, by virtue of the Perron-Frobenius

theorem, 𝜆 and all components of 𝑣𝑠 are positive, because, if the chain is
irreducible, thematrix 𝑈̂𝑁 has all strictly positive elements for𝑁 large enough.
Hence the limit in Eq. (17.40) leads to 𝜙̄(ℎ) = log 𝜆.

Summarising, the recipe of large deviations for a Markov Chain is i) com-
pute the matrix 𝑈̂, ii) compute its largest eigenvalue 𝜆 as a function of ℎ, iii)
compute the rate function 𝐼(𝑥̄) from the Legendre transform of 𝜙̄(ℎ) = log 𝜆.
The distribution of 𝑍𝑡 conditional on the large deviation is given by the nor-
malised right eigenvector

𝑃{𝑍𝑡 = 𝑠|𝐴𝑛(𝑥̄)} =
𝑣𝑠

∑

𝑠′
𝑣𝑠′

(which implicitly depends on ℎ, which is the solution of 𝑑𝜙̄
𝑑ℎ

= 𝑥̄). Note that
when ℎ → 0, this distribution reverts back to the invariant measure 𝜇𝑠.

17.6 Large deviations for fat tailed distributions

The Cramer function 𝐼(𝑥̄) has the property that it is positive and it vanishes
for 𝑥̄ = 𝔼 [𝑋], which corresponds to the point ℎ = 0. The machinery above
works if 𝜙(ℎ) exists at least for ℎ in an open neighbourhood of the origin. This
requires that the pdf of 𝑋 decays at least as an exponential for |𝑥| → ∞. What
happens if this is not true?
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We shall call fat tailed distribution any distribution 𝑄(𝑥) for which

lim
|𝑥|→∞

1

|𝑥|
log𝑄(𝑥) = 0 (17.47)

for 𝑥 → +∞ or 𝑥 → +∞, or both. In this limit, 𝑒ℎ𝑥𝑄(𝑥) diverges for at least
one value of ℎ in the neighbourhood of ℎ = 0 as 𝑥 → ±∞.

For simplicity, we focus on the right tail of the pdf, and assume that 𝑄(𝑥)
vanishes at least exponentially fast as 𝑥 → −∞. This includes stretched ex-
ponential distributions 𝑄(𝑥) ∼ 𝑒−𝑎𝑥

𝛼 with 𝛼 < 1 and power law distributions
𝑄(𝑥) ∼ 𝐴𝑥−𝛾 for 𝑥 ≫ 1. Again we focus on the event

𝐴𝑛(𝑥̄) = {𝑋 ∶

|||||||||

1

𝑛

𝑛∑

𝑖=1

𝑋𝑖 − 𝑥̄

|||||||||

< 𝜖}

for some arbitrarily small 𝜖 > 0 and our goal is to compute the Cramer’s
function 𝐼(𝑥̄) in Eq. (17.28). For ℎ ≤ 0we can follow the recipe outlined in the
previous sections because 𝔼

[
𝑒ℎ𝑋

]
, and hence 𝜙(ℎ), is finite. This allows us to

define the Cramer function 𝐼(𝑥̄) for all 𝑥̄ ≤ 𝔼𝑄 [𝑋], which is expected to vanish
as 𝑥̄ → 𝔼𝑄 [𝑋] with a quadratic behaviour 𝐼(𝑥̄) ≃

1

2𝕍𝑄[𝑋]

(
𝑥̄ − 𝔼𝑄 [𝑋]

)2
+ …

for 𝑥̄ ≲ 𝔼𝑄 [𝑋].
However, for ℎ > 0 this recipe does not work because the integral that

defines 𝜙(ℎ) diverges. In order to explore the behaviour of 𝐼(𝑥̄) for 𝑥̄ > 𝔼𝑄 [𝑋],
let us consider the event

𝐴̃𝑛(𝑥̄) =

𝑛⋃

𝑖∗=1

⎧

⎨

⎩

𝑋 ∶

||||||||||

1

𝑛 − 1

∑

𝑖≠𝑖∗

𝑋𝑖 − 𝔼𝑄 [𝑋]

||||||||||

< 𝜖, 𝑋𝑖∗ = 𝑥∗𝑛

⎫

⎬

⎭

𝑥∗𝑛 = 𝑛𝑥̄ − (𝑛 − 1)𝔼𝑄 [𝑋] (17.48)

In words, 𝐴̃𝑛(𝑥̄) describes a large deviation event where the mean
1

𝑛

∑

𝑖
𝑋𝑖 =

𝑥̄ deviates from the expected value 𝔼𝑄 [𝑋], but all the excess of the mean
is concentrated on only one variable 𝑋𝑖∗ = 𝑥∗𝑛, which is proportional to 𝑛,
whereas all the other variables are “typical”, i.e. 𝑋𝑖 ≈ 𝔼𝑄 [𝑋]. The probability
of this event is

𝑃{𝐴̃𝑛(𝑥̄)} ≥ (1 − 𝜖)𝑛𝑄
(
𝑛𝑥̄ − (𝑛 − 1)𝔼𝑄 [𝑋]

)

where the factor 1 − 𝜖 comes from the fact that the 𝑛 − 1 variables 𝑖 ≠ 𝑖∗ take
typical values, the factor 𝑛 accounts for the fact that 𝑖∗ can take 𝑛 values, and
the last factor is the probability of 𝑋𝑖∗ = 𝑥∗𝑛.
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Figure 48. Large deviations for a (right) fat tailed distributions: Sketch of the Legen-
dre transform construction for ℎ ≤ 0 (left) and the resulting Cramer function (right).

The event 𝐴̃𝑛(𝑥̄) is only one way in which the large deviation can occur,
therefore 𝐴̃𝑛(𝑥̄) ⊆ 𝐴𝑛(𝑥̄). As a consequence 𝑃{𝐴𝑛(𝑥̄)} ≥ 𝑃{𝐴̃𝑛(𝑥̄)} and

𝐼(𝑥̄) = − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴𝑛(𝑥̄)} (17.49)

≤ − lim
𝑛→∞

1

𝑛
log 𝑃{𝐴̃𝑛(𝑥̄)} = 0 (17.50)

where the last equality is a consequence of Eq. (17.47). Therefore, for all
𝑥̄ ≥ 𝔼𝑄 [𝑋] the Cramer function vanishes, 𝐼(𝑥̄) = 0.

In loose words, “democratic” ways to realise large deviations, where 𝑥̄ is
obtained as the average of i.i.d. draws from a modified distribution, are not
typical. For fat tailed distributions, large deviations typically concentrate on
a single variable 𝑋𝑖∗ which is responsible for the whole excess of the mean
𝑥̄. The symmetry between the variables, which are identically distributed a
priori, is broken spontaneously, because one of them takes an extensive value
(i.e. a value proportional to 𝑛). Spontaneously refers to the fact that, a priori,
any variable 𝑋𝑖∗ can carry the excess deviation.

The fact that 𝐼(𝑥̄) = 0 for all 𝑥̄ ≥ 𝔼𝑄 [𝑋] implies that 𝐼(𝑥̄) has a singularity
at 𝑥̄ = 𝔼𝑄 [𝑋] in the second derivative. This is the analogue of a second order
phase transition in statistical physics,27 that generally occur when a symmetry
of the system is spontaneously broken,28 precisely as in the current situation
where the a priori (permutation) symmetry between the variables𝑋𝑖 is broken.

27In thermodynamics, the order of a transition is defined as the order of the derivative of the
thermodynamic potential that develops a singularity at the critical point. As we shall see, 𝐼(𝑥̄)
is related to the entropy in statistical mechanics.

28The typical example is the spontaneous magnetisation of metals when the temperature is
decreased below the Curie temperature.
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This phenomenon is similar to the typical behaviour of sums of i.i.d. ran-
dom variables with a pdf 𝑝(𝑥) that decays slower than |𝑥|−2. As we have seen,
in that case averages are dominated by few variables which are of the same
order of the whole sum.29 Yet in that case the expected value of 𝑋 does not
exist so large deviations cannot be defined.

29In the special case where 𝑋 are Cauchy variables 𝑝(𝑥) = 𝜋−1(1 + 𝑥2)−1, you can check
that the

∑

𝑖
𝑋𝑖∕𝑛 is itself a Cauchy variable. Therefore the probability of a large deviation

𝑃{𝐴𝑛(𝑥̄)} =
1

𝜋

1

1 + 𝑥̄2

does not decay exponentially with 𝑛. Actually it does not decay at all.





Chapter 18

States of knowledge

Now that we have a quantitative notion of information, we can address the
problem of finding distributions that are consistent with a given state of
knowledge. Just like Socrates has been claimed to say that

The only true wisdom is in knowing you know nothing

it seems the only state of knowledge we can precisely identify is the one where
we “know nothing”. If lack of information can be measured by the entropy,
the state where we know nothing corresponds to a probability distribution of
maximal entropy. In addition, as we shall see, large deviation theory allows
us to be precise in understanding how new information can be incorporated
in our current state of knowledge (i.e. in probability distributions). This
“becomes a methodology for a very general type of scientific reasoning”, as
claimed by E. T. Jaynes [32]. We shall discuss this general approach and then,
statistical mechanics as one of its particular applications.

18.1 Maximum entropy
Consider the case of a discrete randomvariable𝑋 ∈ 𝜒 drawn fromafinite set𝜒.
The state of maximal ignorance corresponds to a distribution 𝑝(𝑥) = 𝑃{𝑋 = 𝑥}

of maximal entropy1

𝑝(𝑥) =
1

|𝜒|
. (18.1)

Indeed, in order to dispel uncertainty the number of binary questions we need
to ask is as large as possible, i.e. 𝐻[𝑋] = log

2
|𝜒|. In this state, we’re also

1You can show this by studying themaximisation ofℋ[𝑝]with the normalisation constraint
∑

𝑥
𝑝(𝑥) = 1.

279
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maximally uncertain on what is the best way to ask questions.2 The state of
maximal ignorance is also such that the distribution of 𝑋 is invariant under
any permutation of the possible values 𝑥 ∈ 𝜒. This is consistent with a state of
knowledge where we don’t know anything that can distinguish event {𝑋 = 𝑥}

from event {𝑋 = 𝑥′}.
Now assume that we know that

𝔼 [𝐹(𝑋)] =
∑

𝑥∈𝜒

𝑝(𝑥)𝐹(𝑥) = 𝑓 (18.2)

for a function3 𝐹(𝑋). Then the distribution that encodes this and only this
information, is given by the one that maximises the entropy, subject to these
constraints. This implies that we have to solve the problem:

max
𝑝,𝜆,𝜈

⎧

⎨

⎩

−
∑

𝑥∈𝜒

𝑝(𝑥) log 𝑝(𝑥) + 𝜆
⎡
⎢

⎣

∑

𝑥∈𝜒

𝑝(𝑥)𝐹(𝑥) − 𝑓
⎤
⎥

⎦

+ 𝜈
⎡
⎢

⎣

∑

𝑥∈𝜒

𝑝(𝑥) − 1
⎤
⎥

⎦

⎫

⎬

⎭

.

The solution is
𝑝𝜆(𝑥) =

1

𝑍(𝜆)
𝑒𝜆𝐹(𝑥) (18.3)

where 𝑍(𝜆) ensures normalisation, and the value of 𝜆 should be adjusted in
such a way that Eq. (18.2) is satisfied, i.e.

𝔼 [𝐹(𝑋)] =
𝑑 log 𝑍

𝑑𝜆
= 𝑓 . (18.4)

2In this case, the optimal way to elicit information is to ask questions that split the number
of possible alternatives in half each time. If |𝜒| = 2𝐻 , there are

(
2𝐻

2𝐻−1

)
ways to choose how to

make the first question,
(
2𝐻−1

2𝐻−2

)2
ways to pose the second and so on. In total there are

𝒩 =

𝐻−1∏

𝑘=0

( 2𝐻−𝑘

2𝐻−𝑘−1

)2
𝑘

ways to ask the𝐻 questions. Which of these ways one choses to ask questions is irrelevant. If
𝑝(𝑥) were not independent of 𝑥, some of these ways would be better than others. In a state of
maximal ignorance there is no clue of how to pose questions in a smart way.

3We expect that 𝔼 [𝐹(𝑋)] = 𝑓 based on theoretical grounds, or this knowledge may come
from the fact that, in a series of 𝑁 ≫ 1 independent experiments where we measure the
variables 𝑌𝑖 = 𝐹(𝑋𝑖) for 𝑖 = 1, … ,𝑁, we observe that

1

𝑁

𝑁∑

𝑖=1

𝐹(𝑋𝑖) ≃ 𝑓 ,

and that we expect the Law of Large Numbers to hold.



18.1. MAXIMUM ENTROPY 281

Note that the solution to this problem is unique. The way to show this is
to observe that 𝜆 is the solution of a convex optimisation problem. Indeed
Eq. (18.4) corresponds to the first order condition of the maximisation of the
entropy as a function of 𝜆

Σ(𝜆) = ℋ[𝑝𝜆] = log 𝑍(𝜆) − 𝜆𝔼 [𝐹(𝑋)] .

where 𝔼 [𝐹(𝑋)] is a function of 𝜆. Note that

𝑑Σ

𝑑𝜆
= −𝜆

𝑑𝔼 [𝐹(𝑋)]

𝑑𝜆
= −𝜆𝕍 [𝐹(𝑋)]

has the opposite sign of 𝜆, where 𝕍 [𝐹(𝑋)] ≥ 0 is the variance of 𝐹(𝑋) under
the distribution 𝑝𝜆. So Σ(𝜆) has a unique maximum at 𝜆 = 0, because it
increases for 𝜆 < 0 and it decreases for 𝜆 > 0.

Yet it is important to stress that the entropy

𝑆(𝑓) = max
𝑝∶𝔼[𝐹(𝑋)]=𝑓

ℋ[𝑝] (18.5)

is a function of 𝑓, which is the independent variable. The variables 𝑓 and 𝜆
are conjugate under the Legendre transform that maps the problem Eq. (18.5)
into the conjugate problem4

𝜓(𝜆) = min
𝑝

[−ℋ[𝑝] − 𝜆𝔼 [𝐹]] (18.6)

The solution of Eq. (18.5) is given by 𝑆(𝑓) = log 𝑍(𝜆) − 𝜆𝑓, where 𝜆 = 𝜆(𝑓)

is given by the solution of Eq. (18.4), whereas the solution of Eq. (18.6) is
given by

𝜓(𝜆) = min
𝑓
[−𝑆(𝑓) − 𝜆𝑓] = − log 𝑍(𝜆). (18.7)

The function 𝜓 is not an entropy.5 It is called a free energy.

4This follows from

𝑆(𝑓) = min
𝜆
max
𝑝

{ℋ[𝑝] + 𝜆(𝔼 [𝐹] − 𝑓)}

= min
𝜆
{−𝜆𝑓 −min

𝑝
[−ℋ[𝑝] − 𝜆𝔼 [𝐹]]}

= min
𝜆
{−𝜆𝑓 − 𝜓(𝜆)}

5Note that −𝜓(𝜆) is the cumulant generating function of the random variable 𝐹(𝑋).
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Summarising, themaximisation of the entropy at a fixed value of 𝑓 = 𝔼 [𝐹]

corresponds to the minimisation of the free energy 𝜓 at a fixed value of the
conjugate parameter 𝜆. Because of this

𝜆(𝑓) = −
𝑑𝑆

𝑑𝑓
and 𝑓(𝜆) = −

𝑑𝜓

𝑑𝜆
(18.8)

and the functions 𝑆 and 𝜓 stand in the relation 𝑆 + 𝜓 = −𝜆𝑓.

Exercise 18.1

The construction discussed in this section is identical to the one we
have followed in large deviation theory. for 𝑄(𝑥) = 1∕|𝜒|. What is
the relation between the parameters ℎ, 𝑥̄ and 𝜆, 𝑓, and between the
functions 𝐼, 𝜙 and 𝑆, 𝜓?

This construction generalises in a straightforward manner to the case
where𝐹(𝑋)=(𝐹1(𝑋), … , 𝐹𝐾(𝑋)) is a vector of𝐾 observables and𝑓=(𝑓1, … , 𝑓𝐾)
is a vector of measurements. The solution of the maximisation of the entropy
is again given by Eq. (18.3) with 𝜆 = (𝜆1, … , 𝜆𝐾) being a vector of parameters,
fixed by eqs. (18.4), where the derivative is replaced by the gradient, and
𝜆𝐹(𝑥) =

∑

𝑘
𝜆𝑘𝐹𝑘(𝑥) is given by the dot product.

There are several ways to see that Eq. (18.3) is the correct choice that
encodes only the information that 𝔼 [𝐹(𝑋)] = 𝑓 in the probability of 𝑋, as
discussed in [33]. Let us discuss one of them. Imagine the situation where
you have a sample of 𝑛 ≫ 1 values of 𝑋, that you think are drawn from a
distribution 𝑝(𝑥). Then the analogous of Eq. (18.2) is

𝑓 =
1

𝑛

𝑛∑

𝑖=1

𝐹(𝑋𝑖) =
∑

𝑥∈𝜒

𝑃𝑋(𝑥)𝐹(𝑥) . (18.9)

where 𝑃𝑋(𝑥) is the fraction of times that the outcome 𝑥 occurs in the sample
𝑋 = (𝑋1, … , 𝑋𝑛). The number of samples 𝑋 that correspond to a given 𝑃𝑋 =
𝑃 is

|||||

{
𝑋 ∶ 𝑃𝑋 = 𝑃

}|||||
=

𝑛!
∏

𝑥
[𝑛𝑃(𝑥)]!

≃ 𝑒𝑛ℋ[𝑃]

where the second relation is a trite application of Stirling’s formula. Then it
is clear that, among all the possible distributions 𝑃 that are consistent with
Eq. (18.9) those for whichℋ[𝑃] is maximal correspond to an overwhelmingly
larger number of samples. So the probability that the observed sample is not
one of these, is negligibly small as 𝑛 → ∞.
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Distributions of maximal entropy are special because the probability of a
sample 𝑋 = (𝑋1, … , 𝑋𝑛)

𝑝(𝑘)(𝑋) =
1

𝑍𝑛
exp {

∑

𝑘

𝜆𝑘

𝑛∑

𝑖=1

𝐹𝑘(𝑋𝑖)}

depends on the data only through the empirical averages

𝑓𝑘(𝑋) =
1

𝑛

𝑛∑

𝑖=1

𝐹𝑘(𝑋𝑖)

of 𝐹𝑘. Therefore these averages contain all the information that is needed
to identify the parameters 𝜆 of the distribution 𝑝(𝑘). All other information
in the sample is uninformative noise. This is why the empirical averages
𝑓𝑘 are called sufficient statistics. This should not be surprising. Indeed, the
distribution 𝑝(𝑘) has been derived precisely as the one that encodes the state
of knowledge in which the values of 𝐹, and only these, are known.

18.1.1 Generalised thermodynamics

Equilibrium: the principle of maximum entropy can also be applied to
a system composed of two or more parts, of which we know the value of
an aggregate quantity. More precisely, let 𝑋1+2 = (𝑋1, 𝑋2) be the variables
that specify the state of the combined system, where 𝑋𝑖 are the variables of
subsystem 𝑖 (with 𝑖 = 1 or 2). These can be the coordinates that specify
microscopic states in physical systems, but we shall deal with them as (vectors
of) random variables in the general case. Let 𝐹(𝑋) be an additive quantity.6
𝐹(𝑋1+2) = 𝐹(𝑋1) + 𝐹(𝑋2). Then the state of maximal entropy where this
quantity takes a specific expected value

𝑓1+2 = 𝔼 [𝐹(𝑋1+2)] (18.10)

is given by the maximum entropy distribution

𝑝1+2(𝑥) =
1

𝑍(𝜆)
𝑒𝜆[𝐹(𝑥1)+𝐹(𝑥2)] = 𝑝1(𝑥1)𝑝2(𝑥2). (18.11)

where the variables 𝑋1 and 𝑋2 are independent, which is indeed consistent
with a maximum entropy state. In addition, the distribution of the states of

6In physics, additive quantities are proportional to the size of the system and they are called
extensive. Examples include the entropy, the volume, the energy and the number of particles.
Variables that are independent of the system’s size — such as the temperature, the pressure
and the particle density — are called intensive.
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the subsystems are also maximum entropy states 𝑝𝑖(𝑥𝑖) =
1

𝑍𝑖(𝜆𝑖)
𝑒𝜆𝑖𝐹(𝑋𝑖). This

is again consistent with the principle of maximum entropy. Furthermore, the
conjugate variable takes the same value of 𝜆𝑖 = 𝜆. This is again a consequence
of maximum entropy. Indeed the entropy𝐻[𝑋1+2] = 𝑆1+2(𝑓1+2) is related to
the entropy of the subsystems𝐻[𝑋𝑖] = 𝑆𝑖(𝑓𝑖) by the relation

𝑆1+2(𝑓1+2) = max [𝑆1(𝑓1) + 𝑆2(𝑓1+2 − 𝑓1)] (18.12)

The first order condition of this maximisation problem requires that 𝑓1 be
such that

𝑑

𝑑𝑓1
[𝑆1(𝑓1) + 𝑆2(𝑓1+2 − 𝑓1)] =

𝑑𝑆1

𝑑𝑓1
−
𝑑𝑆2

𝑑𝑓2

|||||||𝑓2=𝑓1+2−𝑓1

= 0 .

This, in view of Eq. (18.8) applied to each subsystem, implies

𝜆1=𝜆2=𝜆 (18.13)

In words, the maximum entropy principle is associated to a notion of equilib-
rium where each of the parts has the same value of the conjugate variables
𝜆𝑖. In physics, conjugate variables of extensive variables are called intensive,
meaning that they are independent of system size. This is because thermo-
dynamic potentials — i.e. the functions 𝑆 and 𝜓— are themselves extensive,
so the conjugate variable to an extensive variable cannot be extensive. In a
maximum entropy equilibrium all the intensive variables take the same value
in each part of the subsystem. In other words, equilibrium states are homoge-
neous. This is called the zeroth law in thermodynamics. This generalises to
systems composed of many parts 𝑋𝓁, 𝓁 = 1,… , 𝐿 in a straightforward manner.

The first law of thermodynamics: consider now a different problem
where the observables 𝐹𝑘(𝑋) change slightly, i.e. 𝐹𝑘 → 𝐹𝑘 + 𝛿𝐹𝑘 and the
measurement also changes 𝑓𝑘 → 𝑓𝑘 + 𝛿𝑓𝑘. This transformation involves an
arbitrary (infinitesimal) change of both the “internal” parameters 𝐹𝑘 and of
the “external” variables 𝑓𝑘, and it can be regarded as a generalised infinitesi-
mal “thermodynamic” transformation. The new system is described by new
parameters 𝜆′

𝑘
= 𝜆𝑘 +𝛿𝜆𝑘, which are again given by the solution of eqs. (18.4).
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The change in the entropy, to leading order, can be written as7

𝛿ℋ = ℋ[𝑝𝜆+𝛿𝜆] −ℋ[𝑝𝜆] ≃

𝐾∑

𝑘=1

𝜆𝑘𝛿𝑄𝑘 (18.14)

where
𝛿𝑄𝑘 = −𝛿𝑓𝑘 + 𝔼 [𝛿𝐹𝑘(𝑋)] (18.15)

is a generalised “heat”, that is composed of two parts. The first is due to
the action 𝛿𝑓𝑘 of the external variables on the system and the second is the
change of the internal observables. Put differently, the change 𝛿𝑓𝑘 of 𝑓𝑘 in
any transformation between maximum entropy states is given by two terms,
one is the “work” 𝔼 [𝛿𝐹𝑘(𝑋)] done on the system and the other is due to the
change 𝛿𝑄𝑘 in the information content. Eq. (18.15) is the analog of the first
law of thermodynamics in physics.

18.1.2 Maximum entropy learning*

Maximal entropy— sometimes calledmaxent—provides a procedure to learn
theories from data. Imagine we’re interested to acquire knowledge about an
unknown quantity 𝑋, that we know takes values in a finite set 𝑋 ∈ 𝜒. Our
goal is to learn the distribution 𝑝(𝑥) = 𝑃{𝑋 = 𝑥} and to reduce our uncertainty
about 𝑋. If we’re in a state of total ignorance about 𝑋 then our starting point
is the maximum entropy distribution 𝑝(0)(𝑥) = 1∕|𝜒|. Imagine that we make
an experiment and measure8 the observable 𝔼 [𝑌1] = 𝔼 [𝑓1(𝑋)]. If the value
𝑓1 = 𝔼 [𝑌1] that we obtain is consistent with the theory, i.e. if

𝑓1 =
∑

𝑥∈𝜒

𝑝(0)(𝑥)𝐹1(𝑥)

7The entropy at the maximum is given by

ℋ[𝑝𝜆] = −𝜆𝑓 + log 𝑍(𝜆)

where 𝜆𝑓 =
∑

𝑘
𝜆𝑘𝐹𝑘 stands for the scalar product. The change in the first term is given by

𝛿(𝜆𝑓) = 𝛿𝜆 𝑓 + 𝜆 𝛿𝑓. The change in the second term instead is given by 𝛿 log 𝑍 = 𝛿𝜆𝔼 [𝐹] +

𝜆𝔼 [𝛿𝐹], where expected values are taken with respect to 𝑝𝜆, and hence 𝔼 [𝐹] = 𝑓 so that the
terms proportional to 𝛿𝜆 cancel.

8For example, we can take a sample 𝑌
1
= (𝑌

(1)

1
, … , 𝑌

(𝑁)

1
) and estimate

𝔼 [𝑌] ≃
1

𝑁

𝑁∑

𝑖=1

𝑌
(𝑖)

1
,

if 𝑁 is very large.
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then the experiment confirms the theory. If it does not, then, in order to
include this observation, the theory has to be modified as

𝑝(1)(𝑥) =
1

𝑍(1)(𝜆1)
𝑒𝜆1𝐹1(𝑥),

where 𝜆1 has to be fixed so that
∑

𝑥∈𝜒
𝑝(1)(𝑥)𝐹1(𝑥) =

𝜕 log 𝑍(1)

𝜕𝜆1
= 𝑓1. This

procedure can be repeated by performing further experiments on other ob-
servables 𝑌𝑘 = 𝐹𝑘(𝑋), for 𝑘 = 2, 3, …. At each step, if the prediction of the
current theory 𝑝(𝑘−1) does not match the outcome 𝑓𝑘 of the experiment, i.e. if
𝑓𝑘 ≠

∑

𝑥∈𝜒
𝑝(𝑘−1)(𝑥)𝐹𝑘(𝑥), then the theory has to be refined 𝑝(𝑘−1) ↦→ 𝑝(𝑘)

with the procedure given above. In this way the theory 𝑝(𝑘) encodes, at each
step, all the knowledge that has been accumulated in past experiments. Notice
that if 𝜆𝑘 = 0 then 𝑝(𝑘) = 𝑝(𝑘−1).

The entropyℋ[𝑝(𝑘)] is clearly a non-increasing function of 𝑘, so it gener-
ally decreases in the process of refining the theory.9 The difference𝐻[𝑝(𝑘−1)]−
𝐻[𝑝(𝑘)] is the amount of information that is learned in the 𝑘th step.

There are different ways in which the principle of maximal entropy enters
statistical inference. For example, one should be aware that each statistical
method which are based on the covariance of the data — as e.g. principal
component analysis or K-means clustering — implicitly assume that the data
followsGaussian statistics. Indeed, the conclusions drawn from thesemethods
would be exactly the same if the data were drawn from a Gaussian distribution
that reproduces the empirical covariance. All information contained on higher
order statistics (e.g. three point correlations) is lost.

In other situations maximum entropy distributions are assumed precisely
because one intends to focus on specific properties. For example, in the
problem of the reconstruction of the three dimensional structure of proteins
from their sequence, one can assume that the stability of the structure depends
on the presence of contacts between amino acids that attract each other. These
are amino-acids which are close in space even if they are far apart along the
sequence. Because of their relevance for the stability of the three dimensional
structure, these amino-acid pairs should be conserved by evolution, or rather
they should co-evolve. This means that a mutation on one of them should be
accompanied by a compensatory mutation on the other.

In a data set of many sequences of proteins with the same structure, this
9Remember our discussion on the mutual information: the knowledge of a random variable

𝑌 decreases our uncertainty on 𝑋 a priori, but a posteriori there may be values of 𝑌 such that
the entropy of 𝑋 is actually larger. Why is this not the case in the situation we’re discussing
here?
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Figure 49. The three dimensional structure of a protein.

reflects in the distribution of pairwise correlations between amino-acids sug-
gesting that contacts can be identified by fitting amodel of pairwise interacting
amino-acids on the data. For more information on this, see [34].

18.1.3 Continuous variables

It seems natural to generalise the discussion above to continuous variables 𝑋
with pdf 𝑝(𝑥), by adopting the differential entropy ℎ[𝑋] instead of 𝐻[𝑋] and
replacing partial with functional derivatives. So, for example, the distribution
of maximal (differential) entropy for 𝑋 ∈ [0,∞) with 𝐸[𝑋] = 𝜇 is the expo-
nential 𝑝(𝑥) = 𝜇−1𝑒−𝑥∕𝜇 and the distribution of maximal entropy for 𝑋 ∈ ℝ

with 𝐸[𝑋] = 𝜇 and 𝑉[𝑋] = 𝜎2 is the Gaussian

𝑝(𝑥) =
1

√
2𝜋𝜎

𝑒
−
(𝑥−𝜇)2

2𝜎2 .

Themain problemwith this approach is that re-parametrisation invariance
is lost. Imagine two observers that want to make inference on the same
system and measure the same quantity 𝜙. Yet the first observer represent the
observables𝜙(𝑥) as a function of 𝑥 and the second as a function of 𝑦, where 𝑦 =
𝑓(𝑥), with 𝑓(𝑥) a strictly increasing function of 𝑥. Hence, the second observer
represents the same quantity with a different function 𝜙̃(𝑦) = 𝜙(𝑓−1(𝑦)). On
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the basis of the same data 𝜙 = (𝜙1, … , 𝜙𝑛) and the same measurement

𝜙̄ =
1

𝑛

𝑛∑

𝑖=1

𝜙𝑖

their states of knowledge would be encoded in the two distributions

𝑝(𝑥) =
1

𝑍
𝑒𝜃𝜙(𝑥) , 𝑝̃(𝑦) =

1

𝑍̃
𝑒𝜃̃𝜙̃(𝑦)

respectively, where we assume that the two distributions are normalisable
(i.e. 𝑍, 𝑍̃ < +∞). Yet these correspond to two different states of knowledge.
Indeed, by a change of variable, the pdf 𝑝̃(𝑦) for the second observer would
correspond to

𝑝̃(𝑥) = 𝑝̃ (𝑓(𝑥))
𝑑𝑓(𝑥)

𝑑𝑥
=
1

𝑍̃
𝑒𝜃̃𝜙(𝑥)

𝑑𝑓(𝑥)

𝑑𝑥

which is different from 𝑝(𝑥). Indeed it is not even a maximum (differential)
entropy distribution.10 Indeed, the two observers maximise two different
functions ℎ[𝑋] and ℎ[𝑌] subject to the same constraint. It is no wonder that
their states of knowledge are different. The problem is that for continuous
variables the differential entropy does not provide a way to encode a state of
complete ignorance, rather it allows us only to quantify changes in our state
of knowledge. The issue of how to represent, from first principles, a state of
ignorance for continuous variables, corresponds to the problem of choosing
the non-informative prior in Bayesian statistics that is discussed in [8]. The
bottom line is that, when possible, symmetries of the problem can be used to
determine the prior. In order to give a flavour of the argument, imagine we
want to find the pdf 𝑝0(𝑥) that encodes the state of complete ignorance for a
random variable 𝑋 ∈ ℝ. We shall call this a prior because this pdf represents
what is known on𝑋 beforewemake anymeasurement. Imagine two observers,
one that measures the variable𝑋 and the other that measures𝑌 = 𝑋+𝑎, with
𝑎 ∈ ℝ a constant. Because of translation invariance, the state of knowledge
of the two observers must be the same, they both have no clue of what the
value of 𝑋 (or 𝑌) is, i.e. they should both use the same prior 𝑝0. They must
also assign the same probability 𝑝0(𝑥)𝑑𝑥 = 𝑝0(𝑦)𝑑𝑦 to the same intervals of
𝑋. This means that 𝑝0(𝑥) = 𝑝0(𝑥 + 𝑎) for all values of 𝑎, which means that

𝑝0(𝑥) = 𝑐

10For discrete variables 𝑋 this problem does not arise. Both observers assign the same
probabilities to corresponding values of 𝑋 and 𝑌, because 𝑓 is a bijection between discrete
values.
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must be a constant. The problem is that in order for this pdf to be normalisable
one should have 𝑐 → 0, i.e. 𝑝0(𝑥) is an improper prior.

Exercise 18.2

Using the same argument, show that the prior that encodes a state
of complete ignorance on a positive real random variable 𝑋 > 0 is
𝑝0(𝑥) = 𝑐∕𝑥. This is again an improper prior.

In order to understand the origin of the problem, let’s go back to the
discrete case. There, the state of complete ignorance is the one which is
further away from the state of complete knowledge 𝑋 = 𝑥, in terms of the
minimal number of binary questions that need to be asked to determine 𝑋.
If 𝑋 is continuous, it is clear that the minimal number of binary questions
should be infinite. This tallies with the fact that, when symmetries can be
used, one finds improper (i.e. non normalisable) priors, i.e. priors for which
ℎ[𝑋] = +∞.

Even if it is disturbing, the fact that 𝑝0 is not normalisibale, does not
prevents us from using it in learning. Imagine indeed that we collect a sample
𝜙 of 𝑁 independent observations of the variable 𝜙(𝑋), and we observe that

1

𝑁

𝑁∑

𝑖=1

𝜙(𝑋𝑖) = 𝜙̄.

Then we can use the machinery of large deviation theory to incorporate this
information in the state of knowledge 𝑝0. Formally, the updated state of
knowledge now would read

𝑝(𝑥|𝜙̄) =
𝑝0(𝑥)𝑒

𝜆𝜙(𝑥)

𝑍(𝜆)
, 𝑍(𝜆) = ∫

∞

−∞

𝑑𝑥𝑝0(𝑥)𝑒
𝜆𝜙(𝑥). (18.16)

If we substitute 𝑝0(𝑥) = 𝑐, the constant 𝑐 cancels in both the numerator and
the denominator. So the fact that 𝑝0(𝑥) is improper, does not prevent 𝑝(𝑥|𝜙̄)
to be a proper pdf, provided that 𝑍(𝜆) < ∞.11

11A limiting procedure that could be applied is to limit the values of 𝑋 to the interval
[−1∕(2𝑐), 1∕(2𝑐)], do the calculation, and then let 𝑐 → 0. This is an example of a regularisation,
a technique used to remove singularities from a problem. The prior 𝑝0 should be invariant
under affine transformation 𝑋′ = 𝑎 + 𝑏𝑋 for all 𝑎 ∈ ℝ and all 𝑏 > 0. This suggests that
location and scale of a random variable 𝑋 both need improper priors and both introduce a
singularity that needs to be regularised. An interesting question, which is open to the best of
my knowledge, is: are these the only (primitive) singularities or can there be other ones?
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Yet there’s another problem with Eq. (18.3). Take the example where our
current state of knowledge 𝑝(0) implies that 𝑋 is a Gaussian random variable
with mean 𝜇 and variance 𝜎2. On the basis of this, you would predict that
𝑆 = 𝐸[𝑋3] should take the value 𝑆 = 𝜇3 + 3𝜇𝜎2. Imagine you observe that 𝑆
is significantly different from this value. What should you conclude?

If you try to incorporate this information in the distribution, you end with
a distribution

𝑝(1)(𝑥) =
1

𝑍
𝑒𝜆1𝑥+𝜆2𝑥

2+𝜆3𝑥
3

that cannot be normalised, so the recipe of maximum entropy fails.
There is a way to accommodate the observation 𝑆 ≠ 𝜇3+3𝜇𝜎2 that requires

a minimal modification of the distribution 𝑝(0). Take

𝑝̃(1)(𝑥) = 𝜖𝛿(𝑥 − Λ) + (1 − 𝜖)𝑝(0)(𝑥)

then, a trite calculation leads to

𝔼 [𝑋] = 𝜇 + 𝜖(Λ − 𝜇) (18.17)
𝕍 [𝑋] = 𝜎2 + 𝜖[𝜎2 + (1 − 𝜖)𝜇(𝜇 − 2Λ)] (18.18)
𝔼
[
𝑋3
]
= 𝜇3 + 3𝜇𝜎2 + 𝜖

[
Λ3 − 3𝜇𝜎2 − 3𝜇3

]
. (18.19)

If we take
Λ =

(
𝑆 − 𝜇3 − 3𝜇𝜎2

)1∕3
𝜖−1∕3

then in the limit 𝜖 → 0we recover all the three observedmoments. At the same
time, in this limit, 𝑝(1) → 𝑝(0) which is the original distribution. Formally this
is correct, but what does it mean?

The fact that ℎ[𝑝̃(1)] = ℎ[𝑝(0)] implies that the observation on 𝑆 does not
dispel any uncertainty on 𝑋. 12 The distribution 𝑝(1) can be realised by a
sample of 𝑛 ∼ 𝜖−1 observations of 𝑆𝑖 = 𝑋3

𝑖
, in 𝑛 − 1 of which, 𝑋𝑖 is a typical

draw from𝑝(0), and one of them takes value𝑋𝑖∗ = Λ ∼ 𝑛1∕3which is very large.
All this is reminiscent of the discussion we had concerning large deviations
of fat tailed distributions.

Indeed the pdf of 𝑆, behaves asymptotically as

𝑃{𝑆 ∈ [𝑠, 𝑠 + 𝑑𝑠)} ∼ 𝑒−𝑐|𝑠|
2∕3

𝑑𝑠 , |𝑠| → ∞ .

12This discussion suggests that statistical analysis should be carried out on variables whose
distribution has thin tails. For example, gene expression is measured in experiments based on
PCR (Polymerase Chain Reaction), which is a method by which a weak signal is amplified in a
multiplicative process. As a result, the outcome of PCR is a concentration (of mRNA) which
has a very broad distribution. For this reason, it is customary to base statistical analysis on
the logarithm of the concentration and to discuss gene activation or suppression in terms of
fold-increase or decrease of the measured concentration.
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Therefore 𝑆 has a fat tailed distribution. As we have seen in the previous
chapter, we expect that large deviations (or unexpected events) of samples
drawn from such distributions occur in a peculiar manner, where one of the
points in the sample attains an anomalously large (or small) value, whereas all
the others take typical values. In this situation, the observation on 𝑆 cannot
change the state of knowledge on the variable 𝑋.

This indicates what type of observables will bring new information, in
the sense that unexpected events allow us to update our state of knowledge
on 𝑋, and what observables do not. This suggests that it is useless to sample
observables which have a fat tailed distribution under the current state of
knowledge, if our goal is to test a theory 𝑝(0).

18.1.4 What can we learn?

Remember our discussion on complex systems that maximise a complex
function 𝑈(𝑠, 𝑠) over a set of variables 𝑠 = (𝑠, 𝑠) which are known only in
part, because 𝑠 are unknown unknowns. We concluded that the probability to
observe a certain value 𝑠 is given by

𝑃{𝑠∗ = 𝑠} =
1

𝑍(𝛽)
𝑒
𝛽𝑢𝑠 ,

where 𝑢𝑠 = 𝔼
[
𝑈(𝑠, 𝑠)|𝑠

]
is the known part of the function that is optimised

and 𝛽 > 0 depends on the optimisation over unknown variables.
If we do not know the function 𝑢𝑠, can we use the procedure outlined

above to learn it? In other words, can the function 𝑢𝑠 be learned from a series
of experiments?

Let 𝑝(0)(𝑠) be the distribution that encodes the current state of knowledge
about the system. For a quantity 𝑞𝑠, it is possible to compute its distribution

𝑝(0)(𝑞) =
∑

𝑠

𝑝(0)(𝑠)𝛿(𝑞 − 𝑞𝑠)

Imagine running an experiment where the value 𝑞exp is measured. In par-
ticular, for a complex system, we can assume that 𝑠 is a high dimensional
vector of weakly dependent variables. So that the distribution of 𝑞 should be
sharply peaked around its expected value 𝔼(0)[𝑞] =

∑

𝑠
𝑝(0)(𝑠)𝑞𝑠, and hence

𝑞exp ≈ 𝔼(0)[𝑞].
If 𝑞exp ≈ 𝔼(0)[𝑞] within experimental errors, then the state of knowledge

𝑝(0) does not need to be updated. Otherwise it has to be revised.13 In the latter
13There is a long tradition of experiments designed to test our state of knowledge in physics.

For example, until 1964, we expected that the laws of Nature should be invariant under
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case, the standard recipe to update 𝑝(0) is given by Large Deviation Theory.
This maintains that the new distribution should be such that 𝔼(1)[𝑞] = 𝑞exp,
without assuming anything else. More precisely, the amount of information
that the measurement gives on the state 𝑠 is given by the mutual information
𝐼(𝑠, 𝑞) = 𝐷𝐾𝐿[𝑝

(1)||𝑝(0)]. Hence, 𝑝(1) should be the distribution with 𝔼(1)[𝑞] =
𝑞exp for which 𝐷𝐾𝐿[𝑝(1)||𝑝(0)] is minimal. The distribution that satisfies this
requirement is

𝑝(1)(𝑠) =
1

𝑍(𝑔)
𝑝(0)(𝑠)𝑒

𝑔𝑞𝑠 , 𝑍(𝑔) = ∫ 𝑑𝑞𝑝(0)(𝑞)𝑒𝑔𝑞 (18.20)

where 𝑔 is adjusted in such a way to satisfy 𝔼(1)[𝑞] = 𝑞exp. This process can
be continued with additional measures of different observables 𝑞′𝑠, 𝑞′′𝑠 , …, and,
in principle, it leads to infer

𝛽𝑢𝑠 = log 𝑝(0)(𝑠) + 𝑔𝑞𝑠 + 𝑔′𝑞′𝑠 + 𝑔′′𝑞′′𝑠 + … (18.21)

to the desired accuracy from a series of experiments.
This recipe, however, only works for quantities which have a distribution

which falls off faster than exponential as 𝑞 → ±∞. If − log 𝑝(0)(𝑞) ≃ 𝑐|𝑞|𝛾

for |𝑞| → ∞ with 𝛾 < 1, then the integral defining 𝑍(𝑔) in Eq. (18.20) is
not defined. There is no well defined way to incorporate an observation
𝑞exp ≠ 𝔼 [𝑞] in the current state of knowledge in this case. This clearly applies
to 𝑢𝑠 itself. The only models 𝑢𝑠 that can be learned are those for which the
density of states

𝒩(𝑢)𝑑𝑢 = |{𝑠 ∶ 𝑢𝑠 ∈ [𝑢, 𝑢 + 𝑑𝑢)}|

has thin tails, i.e. decays like or faster than an exponential as 𝑢 → ∞. In
this sense, systems where𝒩(𝑢) have an exponential behaviour with 𝑢 are
special, because they separates the region of learnable systems — those for
which𝒩(𝑢) has thin tails — from unlearnable ones — those where 𝑢𝑠 has
a fat tailed distribution. Interestingly, these are the systems that are best at
learning according to [35, 36].

time reversal 𝑇. The 𝐶𝑃𝑇 theorem states that the laws of Nature should be invariant under
the combined transformation 𝐶𝑃𝑇, where 𝐶 stands for charge conjugation and 𝑃 for parity
transformations. The discovery of the violation of the 𝐶𝑃 symmetry in experiments on the
decays of neutral kaons, changed our state of knowledge in particle physics.



Chapter 19

Statistical mechanics

Statistical mechanics describes the macroscopic behaviour of systems of many
particles. Let us briefly recall the standard approach to statistical mechanics,
following ref. [37] — to which we refer as Landau— or [38] — to which
we refer as Kardar. A configuration 𝑋 = (𝑋1, … , 𝑋𝑛) of a physical systems
is a vector of the 𝑛 coordinates 𝑋𝑖 of the particles, where 𝑛 ≈ 6 ⋅ 1023 is of
the order of Avogadro’s number.1 The coordinates 𝑋𝑖 satisfy Newton’s law
of classical mechanics, that defines a trajectory 𝑋(𝑡) of the configuration in
phase space Γ. These provide a completemicroscopic description of the system.
Statistical mechanics aims at deriving a statistical description frommechanics,
in which the information on the microscopic configuration 𝑋 is lost. The idea
of statistical mechanics is that time averages can be replaced by statistical
averages on an ensemble of systems with a distribution 𝑝(𝑋) on Γ. This means
that, for any observable 𝑂(𝑋),

lim
𝑇→∞

1

𝑇
∫

𝑡0+𝑇

𝑡0

𝑑𝑡𝑂
(
𝑋(𝑡)

)
= ∫

Γ

𝑑𝑋𝑝(𝑋)𝑂(𝑋) . (19.1)

The objective of statistical mechanics is to compute 𝑝(𝑋), so that the values
of observables can be computed theoretically.

For an isolated systems that is not subject to external forces, the energy
𝐸(𝑋) is a constant of the motion. So the dynamics 𝑋 only spans the manifold
of Γ with a fixed value of 𝐸(𝑋) = 𝑈. In addition, Liouville’s theorem2 ensures
that the probability 𝑝(𝑋) is also a constant of the motion. Under the ergodic

1In classical mechanics the coordinates 𝑋𝑖 = (𝑞𝑖 , 𝑝𝑖) of a particle specify its position 𝑞𝑖 and
its momentum 𝑝𝑖 , each of which is a 𝑑 dimensional vector.

2The Liouville theorem concerns the evolution of the probability distribution 𝑝(𝑋, 𝑡) under
Hamiltonian dynamics.

293



294 CHAPTER 19. STATISTICAL MECHANICS

hypothesis, that affirms that all states 𝑋 with the same energy 𝐸(𝑋) = 𝑈 are
visited,3 one concludes that for an isolated system whose initial energy is in a
narrow interval 𝐸(𝑋) ∈ [𝑈,𝑈 + ∆) around 𝑈

𝑝(𝑋) = {

1

∆Γ(𝑈)
if 𝐸(𝑋) ∈ [𝑈,𝑈 + ∆)

0 otherwise
(19.2)

where ∆Γ(𝑈) is the volume of Γ such that 𝐸(𝑋) = [𝑈,𝑈 + ∆). Eq. (19.2)
is called the microcanonical ensemble. There is no proof that the ergodic
hypothesis is true in general, and there are several counter-examples. In prac-
tice, however, for systems of many degrees of freedom the ergodic hypothesis
typically holds because the set of initial conditions for which Eq. (19.1) fails
vanishes as 𝑛 → ∞. These arguments are discussed in detail by Baldovin et
al. [56], which is a recommended reading.

For a subsystem of a larger isolated system, instead, one can argue that

𝑝(𝑋) =
1

𝑍(𝛽)
𝑒−𝛽𝐸(𝑋), 𝑍(𝛽) = ∫

Γ

𝑑𝑋𝑒−𝛽𝐸(𝑋) , (19.3)

where 𝛽 is the inverse temperature.4 Eq. (19.3) is called the canonical ensemble.

It combines Hamilton’s equations

𝑝̇𝑖 = −
𝜕𝐸

𝜕𝑞𝑖
𝑞̇𝑖 =

𝜕𝐸

𝜕𝑝𝑖

with the continuity equation in phase space 𝜕𝑝

𝜕𝑡
+ ∇𝑋(𝑝𝑋̇) = 0, that states that the change in

𝑝(𝑋, 𝑡) in any volume 𝑑𝑋 is due to trajectories 𝑋(𝑡) entering or leaving 𝑑𝑋. As a result, the
Liouville theorem states that

𝑑𝑝

𝑑𝑡
=
𝜕𝑝

𝜕𝑡
+
[
∇𝑋𝑝

]
𝑋̇ = 0 .

3The ergodic hypothesis has the same flavour of irreducibility in the case of Markov chains.
In an irreducible chain, every state can be reached from any other state by a sequence of
transitions with positive probability. In Markov chains irreducibility ensures the uniqueness of
the invariant distribution, i.e. it ensures that the asymptotic distribution is the same, irrespective
of the initial conditions. Likewise, the ergodic hypothesis ensures that all states 𝑋 with energy
𝑈 can be reached from any other state 𝑋′ with the same energy.

4One way to reach this conclusion is the one offered by Landau: if 𝑝(𝑋(𝑡)) is a constant of
the motion, then it has to be a function of the constants of the motion. For a system at rest,
this means that 𝑝(𝑋) = 𝑓

(
𝐸(𝑋)

)
must be a function of the energy. The function 𝑓(⋅) can be

identified by requiring that if 𝑋
1
and 𝑋

2
are two subsystems of a larger system in equilibrium,

and if the interaction between particles are short ranged, then𝑋
1
and𝑋

2
should be independent,

i.e. 𝑝1+2(𝑋1
, 𝑋

2
) = 𝑝1(𝑋1

)𝑝2(𝑋2
). At the same time, the energy of the combined system is

additive, i.e. 𝐸1+2(𝑋1
, 𝑋

2
) = 𝐸1(𝑋1

) + 𝐸2(𝑋2
). This implies that 𝑓(𝐸) = 𝑒𝑎+𝑏𝐸 should have an

exponential form, as in Eq. (19.3). Note that the assumption of independence of 𝑋
1
and 𝑋

2

implies that𝐻[𝑋
1
, 𝑋

2
] is maximal.
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Both Eqs. (19.2) and (19.3) have the form of a maximum entropy distribu-
tion. Indeed Boltzmann spent considerable effort to show that the distribution
𝑝(𝑥, 𝑡) of the coordinates of a single particle in a classical fluid, satisfies an
equation — later named after him— that admits −ℋ[𝑝] as a Lyapunov func-
tion.5 In other words, the entropy cannot decrease, i.e.

𝑑ℋ[𝑝]

𝑑𝑡
≥ 0 . (19.4)

This is called the Boltzmann 𝐻-theorem. This result relies on the so-called
molecular chaos hypothesis that states that when two particles of the fluid col-
lide, we can assume that their velocities are independent random variables.6
This is not true, strictly speaking, because the same two molecules collide
many times with each other, so in principle the velocity of one of the parti-
cles depends on the exchanges of momentum it had with previous particles,
including the other one. Yet this hypothesis makes a lot of sense, because
between two consecutive collisions between the same two particles, both of
them collide with so many other particles that the memory of past encounters
is “lost in collisions”.

The molecular chaos hypothesis has nothing to do with physics. It is a
purely statistical hypothesis, that however has remarkable consequences. In-
deed, the laws of motion of classical mechanics are invariant for time reversal
whereas Eq. (19.4) states that the entropy is not. The 𝐻 theorem is also in
contradiction with Poincaré recurrence theorem that states that an Hamilto-
nian system that starts in a given state will return to it, or arbitrarily close to
it, after a sufficiently long time. Apparently also time reversal invariance is
“lost in collisions”. How is this possible?

Loosely speaking, this is because “sufficiently long” means an astronomi-
cally long time. The time a system spends in equilibrium states is astronom-
ically longer than that spent in non-equilibrium states, because the latter
are astronomically more numerous than the latter. This is a statement of
the same nature as the Asymptotic Equipartition Property. Hence, a system
prepared in a non-equilibrium state will soon relax to equilibrium, but it is
practically impossible to observe an equilibrium state that will evolve into a
non-equilibrium one. Furthermore, the molecular chaos hypothesis assumes
that particles loose memory of their previous encounters. Understandably,

5A Lyapunov function is a function that decreases on all the trajectories of the dynamics.
6Without this assumption, the equation for the distribution of the coordinates of a single

particle would depend on the joint distribution of the coordinates of two particles. The latter,
in turn, satisfies an equation that involves the joint distribution of even more particles. This is
the so-called BBGKY hierarchy of equations (see Kardar). The molecular chaos hypothesis
closes this hierarchy, by assuming independence.
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a system that looses memory will converge to a state of maximal ignorance,
i.e. a state of maximum entropy. Note, furthermore, that the molecular chaos
hypothesis itself entails maximum entropy at themolecular scale, by assuming
independence of the momenta of two colliding particles.

In this derivation, the appearance of the entropy as the functional whose
maximisation describes equilibrium states looks like a coincidence. In hind-
sight it makes a lot of sense:7 the equilibrium state of macroscopic systems
can be described even if all microscopic details are ignored completely, which
is exactly what the maximum entropy principle implies. The fact that equilib-
rium states of a system are described by a state of maximal ignorance means
that they can’t be distinguished. Non-equilibrium states can be distinguished
because there are many ways of driving a system out of equilibrium. The
information on how a system is driven out of equilibrium, is precisely the
information which is lost when the system relaxes back to equilibrium— a
state of maximal ignorance.

Ultimately, the macroscopic behaviour arises from the interplay of two
key quantities: the probability 𝑝(𝑋) of configurations, or its logarithm which
is proportional to the energy, and the number𝑊(𝐸) of configurations with
the same probability (or with the same energy), which is the entropy 𝑆(𝐸) =
log𝑊(𝐸). The tradeoff between energy and entropy has its roots in typical
behaviour, and it is of the same nature of the one that relates the probability of
typical sequences to their number in the Asymptotic Equipartition Property.

Before continuing, it is worth to remark that the same system can be
described at three different levels:

Configurations. Classical mechanics describes the system at the level of
configurations 𝑋, which is the vector of coordinates and momenta for
all particles.

States. The same system can be described in terms of the single particle
probability distribution 𝑝(𝑥). For example, the Boltzmann equation
(see Kardar) is based on the distribution 𝑝(𝑥) of the coordinates of
single particles.

Thermodynamic variables. The macroscopic description of the equilib-
rium of the system is described by thermodynamic variables. Some of

7From what we have learned so far, the entropy measures exactly how much information
is “lost in collisions”, i.e. how much the uncertainty on a system whose microscopic state is
initially described by a state 𝑝0(𝑋) increases in time. It is worth remembering, at this point,
that the exact knowledge of the state of a system is theoretically impossible, because an infinite
number of bits would be needed to specify exactly the position of even a single particle.
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these are extensive, like the internal energy, the entropy and the volume,
in the sense that they are proportional to the number 𝑛 of particles.
Some are intensive, such as the temperature the pressure or the chemi-
cal potential. Some of these have a mechanical origin, like the energy,
in the sense that they are functions of the coordinates 𝑋 of the system.
Others have a purely statistical origin, such as the entropy, in the sense
that they depend on the distribution 𝑝(𝑋).

We have seen these different levels of description when we described the prop-
erties of sequences𝑋 of many i.i.d. random variables. As a consequence of the
Asymptotic Equipartition Property, we have seen that all typical sequences cor-
respond to the same type 𝑃𝑋 (which corresponds to a state) and that averages
1

𝑛

∑

𝑖
𝑓(𝑋𝑖), such as e.g. the energy, become deterministic (i.e. non-random)

quantities, much like thermodynamic variables. The limit𝑛 → ∞ corresponds
to the thermodynamic limit, when the number of particles in the system and
its volume both diverge. A macroscopic physical system with a number of
particles which is of the order of Avogadro’s number 𝑛 ≃ 6 ⋅ 1023, is very close
to this limit.

The coordinates of the particles are not independent random variables,
because of the presence of interactions. Yet these interactions are local, which
means that each particle interacts with only a finite number of other particles.
Particles which are sufficiently far apart are in practice independent. So the
vector 𝑋 can be considered as a sequence of weakly interacting particles, for
which the description of the Asymptotic Equipartition Property applies.8

19.1 Statistical mechanics as maximum entropy
inference

The attempt to derive the macroscopic behaviour — i.e. thermodynamics —
from the laws of classical mechanics relies on the ergodic and the molecular
chaos hypotheses, and it arrives at themaximumentropy principle. Yet neither
of these hypotheses is strictly necessary. The Hamiltonian, which is the energy
of the system as a function of its coordinates, contains all information on
its dynamics. The energy itself is a constant of the motion. Therefore, the

8It is important to note that interaction between particles (e.g. collisions in a gas) are
essential for the system to reach an homogeneous equilibrium. If particles did not interact,
each would follow its trajectory with its own conserved quantities (e.g. momentum and kinetic
energy). We can consider the coordinates of particles as random variables precisely because in
between two observations at different point in time, the same particle has undergone so many
interactions with other particles, that its state is totally unpredictable.
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maximum entropy principle can be invoked at the outset to predict the state
of the system: the best description of a system is the one that does not make
unnecessary assumptions. This leads to Eq. (19.2) for an isolated system at
energy 𝐸 and to Eq. (19.3) for a system in contact with a larger system with
which it can exchange energy.9 This approach to statistical mechanics was
proposed by Jaynes [32], to which we refer for more details.

As we have seen, the microcanonical and the canonical distributions are
direct consequences of the maximum entropy principle. The second law of
thermodynamics is implicit with it, whereas the zeroth (Eq. (18.13)) and the
first (Eq. (18.15)) law of thermodynamics, as we have seen, are also a direct
consequence of it. Let us review them here. The equilibrium entropy of the
system with internal energy 𝑈 = 𝔼

[
𝐸(𝑋)

]
is defined as

𝑆(𝑈) = max
𝑝∶𝔼[𝐸]=𝑈

ℋ[𝑝]. (19.5)

The inverse temperature 𝛽 = 1

𝑘𝐵𝑇
is defined as10

𝛽 =
𝑑𝑆

𝑑𝑈

The zeroth law says that the temperature of systems in thermal equilibrium
must be the same. For a system composed of two parts, the entropy satisfies

𝑆(𝑈) = max
𝑈1

[𝑆1(𝑈1) + 𝑆2(𝑈 − 𝑈1)] (19.6)

where 𝑆1 and 𝑆2 are the entropies of subsystems 1 and 2, each of which is the
solution of the maximisation of the entropy on the respective subsystem, with
𝔼
[
𝐸𝑖(𝑋𝑖

)
]
= 𝑈𝑖 (𝑖 = 1, 2). The first order condition of the maximisation in

Eq. (19.6) yields

𝑑𝑆1

𝑑𝑈1

−
𝑑𝑆2

𝑑𝑈2

|||||||𝑈2=𝑈−𝑈1

= 𝛽1 − 𝛽2 = 0

which implies that the temperatures in the two subsystems must be the same,
in equilibrium. If the system is slightly out of equilibrium and 𝛽1 ≠ 𝛽2, then
we expect the equilibrium will be restored by means of an exchange in energy
between the two parts of the system. If the energy of system 1 increases by

9Indeed, the energy 𝐸(𝑋) is a sufficient statistics of Eqs. (19.2), (19.3).
10With respect to the notation used in the derivation of Eq. (18.15), here 𝑓 = 𝑈 is the internal

energy, 𝛽 = −𝜆 is the inverse temperature and 𝛽𝐹(𝛽) = 𝜙(𝜆) defines the free energy 𝐹(𝛽).
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𝑑𝑈1 then that of system 2 decreases by the same amount, because the energy
of the combined system is conserved. Hence the increase in 𝑆 is given by

𝑑𝑆 = (𝛽1 − 𝛽2)𝑑𝑈1 ≥ 0.

This states that energy (i.e. heat) will pass from hotter to colder bodies, and not
vice-versa.11 This is Clausius statement of the second law of thermodynamics.

In a thermodynamic transformation where the energy levels 𝐸(𝑋) change
by 𝛿𝐸(𝑋) and the internal energy 𝑈 changes by 𝑑𝑈, the change in entropy
𝑆(𝑈) is given by the same argument leading to Eq. (18.15), i.e.
𝑑𝑆 = 𝛽

(
𝑑𝑈 − 𝔼

[
𝛿𝐸(𝑋)

])
. This can be rewritten as

𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 . (19.7)

which is the first law of thermodynamics. In Eq. (19.7) 𝛿𝑄 = 𝑑𝑆∕𝛽 is the heat
supplied to the system, whereas 𝛿𝑊 = 𝔼

[
𝛿𝐸(𝑋)

]
is the work done on the

system. Note that 𝑑𝑈 is an exact differential (i.e. it is the differential of a state
variable), whereas 𝛿𝑄 and 𝛿𝑊 are not.

For an isolated system of 𝑛 particles in a finite volume 𝑉, the entropy
𝑆(𝑈,𝑉, 𝑛) is a function of 𝑈, 𝑉 and 𝑛. The thermodynamics description
of systems in thermal equilibrium at temperature 1∕𝛽 is obtained from the
Legendre transform, and it is given by the free energy

𝐹(𝛽, 𝑉, 𝑛) =
1

𝛽
min
𝑝

[𝛽𝔼 [𝐸] −ℋ[𝑝]] = −
1

𝛽
log 𝑍(𝛽, 𝑉, 𝑛). (19.8)

Hence, in practice, the equilibrium of a system at (inverse) temperature 𝛽 is
derived from the partition function 𝑍 in Eq. (19.3) using Eq. (19.8) to compute
the free energy.

The same recipe of Legendre transform can be applied to obtain a de-
scription where the volume or the number of particles are allowed to change.
The first step is to identify the conjugate variable and the second to find the
corresponding thermodynamic potential. For example, for systems that can
freely expand in their environment (i.e. 𝑉 is not fixed), at temperature 1∕𝛽,
the conjugate variable that replaces 𝑉 is the pressure

𝑃 = −
𝜕𝐹

𝜕𝑉

11If 𝛽1 > 𝛽2, i.e. if 1 is colder than 2, then 𝑑𝑈1 ≥ 0, which means that heat will flow from
2 to 1.
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and the thermodynamic potential is 𝐺(𝛽, 𝑃, 𝑛) = 𝐹 + 𝑃𝑉. Likewise, the
conjugate variable to 𝑛 is the chemical potential 𝜇 = 𝜕𝐹

𝜕𝑛
and the potential12 is

Ω(𝛽, 𝑉, 𝜇) = 𝐹−𝜇𝑛. We refer to Landau or Kardar for a detailed discussion.
In the rest of this Chapter, we shall focus on applying the recipe of statistical

mechanics in few interesting cases, where we shall put to use what we have
learned.

19.2 The classical ideal gas
In order to illustrate the concepts discussed so far, let us consider a gas of 𝑛
non-interacting particles of mass𝑚 in a box of volume 𝑉 at temperature 1∕𝛽.
The Hamiltoninan, in terms of the canonical coordinates (𝐪, 𝐩), is given by

𝐸(𝐪, 𝐩) =

𝑛∑

𝑖=1

𝑝2
𝑖

2𝑚

where 𝐪 = (𝑞1, … , 𝑞𝑛) is the vector of positions of the particles and 𝐩 the
vector of momenta. In 𝐷 dimensions these are 𝑛𝐷 dimensional vectors. The
canonical partition function is obtained integrating over all coordinates, i.e.

𝑍(𝛽, 𝑉, 𝑛) = ∫ 𝑑𝐪𝑑𝐩𝑒−𝛽𝐸(𝐪,𝐩) (19.9)

= 𝑉𝑛 [∫

∞

−∞

𝑑𝑝𝑒
−
𝛽𝑝2

2𝑚 ]

𝑛𝐷

(19.10)

= 𝑉𝑛 (
2𝜋𝑚

𝛽
)

𝑛𝐷

2

. (19.11)

Hence the free energy is given by

𝐹 = −
1

𝛽
log 𝑍 = −

𝑛

𝛽
log

⎡
⎢

⎣

𝑉 (
2𝜋𝑚

𝛽
)

𝐷

2 ⎤
⎥

⎦

. (19.12)

All thermodynamics quantities of interest, like the energy

𝑈 =
𝜕

𝜕𝛽
(𝛽𝐹) =

𝑛𝐷

2𝛽

12This is called the grand potential and it corresponds to a distribution 𝑝 that is called the
grand-canonical ensemble.
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or the pressure

𝑃 = −
𝜕𝐹

𝜕𝑉
=

𝑛

𝛽𝑉

are obtained from 𝐹.
A disturbing fact of this result is that the free energy of the ideal gas is not

extensive. Indeed 𝐹∕𝑛 diverges in the thermodynamic limit 𝑛 → ∞with 𝑉∕𝑛
finite (see Eq. (19.12)). The root of the problem lies in the entropy

𝑆 = 𝛽(𝑈 − 𝐹) = 𝑛 log𝑉 +
𝑛𝐷

2
log (

2𝜋𝑒𝑚

𝛽
) (19.13)

which is non-extensive, because of the first term. This fact, known as the
Gibbs paradox is not a mistake. The entropy is exactly what it should be, i.e.

𝑆 = −𝑛 ∫ 𝑑𝑞𝑑𝑝⃗𝜌(𝑞, 𝑝⃗) log 𝜌(𝑞, 𝑝⃗) (19.14)

where 𝜌(𝑞, 𝑝⃗) is the single particle probability density function

𝜌(𝑞, 𝑝⃗) =
1

𝑉
(

𝛽

2𝜋𝑚
)

𝐷∕2

𝑒
−𝛽

𝑝2

2𝑚 .

The origin of the “paradox” lies in the distribution of positions, which is
uniform in the volume occupied by the gas. The fact that there is no paradox,
is illustrated by comparing the state of a gas of 𝑛 particles in a volume 𝑉 at
temperature 1∕𝛽 with that of the same system which is divided in two equal
parts of volume 𝑉∕2, each of which contains 𝑛∕2 particles. The free energy
of the split system is smaller than that of the original system by an amount
𝑛 log 2. This is precisely the number of bits needed to specify in which part
each of the molecules is confined when the gas is divided in two parts. The
calculation leading to Eq. (19.12) correctly accounts for this loss of information.
Ultimately, the “paradox” arises because the particles are distinguishable and
they carry their own identity as they travel around the system. Note that there
is no Gibbs paradox if instead of a gas one considers a solid, where each atom
is localised in its specific location. It is only when particles are allowed to
exchange their rôles by physics that problems with extensivity arise.

There are two ways to recover an extensive free energy. The first is to con-
sider indistinguishable particles. For example, you can check that in a Bose
gas the free energy is extensive. The second is to remember the discussion we
had on generating functions for labelled objects Eq. (7.19). There we learned
that when counting distinguishable (i.e. labelled) objects we need to mod-
ify our mathematical counting device, in order to preserve the composition
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property. After all, the partition function is nothing but a generating function,
so that discussion suggests that we should use a modified partition function,
dividing it by 𝑛!. In this way the free energy

𝐹 = −
1

𝛽
log

𝑍

𝑛!
= −

𝑛

𝛽
log

⎡
⎢

⎣

𝑉

𝑛
(
2𝜋𝑚

𝛽
)

𝐷

2 ⎤
⎥

⎦

−
𝑛

𝛽

regains its extensive character. Yet, this mathematical artifice spoils the inter-
pretation of the entropy in information theoretic terms.

Exercise 19.1

Note that 𝑝⃗ and 𝑞 are continuous variables and Eq. (19.14) is a differen-
tial entropy. Does introducing a finite precision in our measurement of
the positions andmomenta, e.g. as suggested byHeisenberg uncertainty
principle, fixes Gibbs paradox?

Exercise 19.2

In a Bose gas, particles occupy single particle states with energy
ℏ𝑘2∕(2𝑚) with each component of 𝑘 taking discrete values 2𝜋𝓁∕𝐿,
and 𝑉 = 𝐿3. Compute the free energy of the ideal Bose gas and check
that it is extensive.

Summarising, non-extensivity derives from the assumption of distinguisha-
bility of classical mechanics. Quantummechanics shows that this assumption
is wrong: particles are indistinguishable. Yet one could envisage a system
of classical distinguishable particles and one could ask whether the non-
extensive part of the free energy could have some physical effect, and if so, can
it be used? In other words, can the information on which particle is which be
used to do work?

19.2.1 The Slilárd information engine*

Far from providing an answer, let us see how (some) information can be
turned into work in a simple case. Let us consider the same system, but in a
box that is partitioned into 𝑞 different compartments, by 𝑞 − 1 vertical walls.
Let 𝓁𝑎 be the longitudinal length of compartment 𝑎 = 1,… , 𝑞. We assume the
box to have unit area in the perpendicular direction, so 𝓁𝑎 is also the volume
of partition 𝑎. We denote by 𝑋𝑖 the partition to which particle 𝑖 belongs. The
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with previous work. The general case is then treated in
Sec. IV.

II. MUTUAL INFORMATION AND WORK

We consider a Szilárd engine, generalized to N parti-
cles inside a container of longitudinal size L and trans-
verse unit area, into which walls can be inserted, to divide
along the longitudinal axis into q partitions. These par-
titions have lengths `

i

for i = 1, . . . , q, and
P

q

i=1

`
i

= L
(see Fig. 1a). The observer then measures the num-
ber of particles in each partition, k

i

, for i = 1, . . . , q.
It is assumed that ` = (`

1

, . . . , `
q

) and N are known,
while k = (k

1

, . . . , k
q

) has to be obtained through mea-
surement. We imagine here that the observer can take
a snapshot of the N particle’s x-positions, denoted by
x = (x

1

, . . . , x
N

), and then writes the counts k to mem-
ory. By doing this, the observer captures mutual infor-
mation about all particle locations in memory, in the
amount of [28]

I[X,K] = H[K]�H[K|X] , (1)

where H[K] = �P
k P (k) log

2

P (k) is the entropy as-
sociated with distribution of the counts, P (k), which is
simply a multinomial distribution (see Eq. (4) below).

P (k) =
N !

k
1

! · · · k
q

!
pk1
1

· · · pkq
q

, (2)

where p
i

= `
i

/L is the probability of finding a particle
in partition i. H[K|X] is the conditional entropy [28],
which depends on the conditional distribution P (k|x).
Since the counts k are a deterministic function of the en-
semble locations x, the conditional probabilities P (k|x)
are either zero or one. Therefore the conditional entropy
vanishes (i.e. H[K|X] = 0) and the captured informa-
tion simplifies to

I[X,K] = H[K] . (3)

The process of running this memory as part of the infor-
mation engine cycle will thus cost at least k

B

T ln(2)H[K]
[6], where T denotes the temperature of the heat bath,
k
B

the Boltzmann constant, and the factor ln(2) arises
because we measure information in bits. We now inves-
tigate how much of this cost can be turned back into
work.

The gas in the container is initially in thermal equi-
librium, coupled to a thermal reservoir. Inserting the
partitions is assumed not to require any work. After the
insertion, the local pressure in each partition is given by
P
i

= k
i

k
B

T/`
i

, where we used the fact that the volume
of partition i is `

i

(see Fig. 1a). Work can be extracted
by moving the walls quasi-statically, and in a friction-
less manner until the system reverts to the equilibrium
state throughout the whole container (see Fig. 1b and
Appendix A for more details).

(a)

(b)

Figure 1. Schematic representation of a Szilard engine with
q = 5 partitions and N = 20 particles. Panel (a) depicts
the initial state, where the length of each partition is given
by `i and the red arrows indicate in which direction each
wall is going to move as the engine performs work. The final
state, which is assumed to be reached quasi-statically is shown
in panel (b), where the length of each partition is given by

`(eq)i = kiL/N and thus the pressure is the same in all of
them. The values indicated in the lower panel corresponds to
the counts obtained by setting L = 1.

The knowledge of the initial size of the partitions,
` = (`

1

, . . . , `
q

) and of how many particles are in each
partition, k = (k

1

, . . . , k
q

), allows the observer to com-
pute the pressure in each partition and to determine how
much each partition will be moved by the expansion of
the gas, and in which direction. More precisely, in equi-

librium, the pressure attains a value P (eq)

i

= Nk
B

T/L in

all partitions, which implies `(eq)
i

= k
i

L/N .
The work extracted quasi-statically [29] when all par-

titions change from `
i

to k
i

L/N , is

W (k) =
qX

i=1

Z
L

ki
N

`i

dV
i

P
i

= k
B

T

qX

i=1

Z
L

ki
N

`i

dV
i

k
i

/V
i

= k
B

T

qX

i=1

k
i

ln
k
i

L

N`
i

,

(4)

The expected extracted work, hW i, then results from av-
eraging W (k) over the distribution P (k) of measurement
vectors given by the multinomial distribution Eq. (2). In
the rest of our work it will be relevant to consider the
expectation values of other quantities over this distribu-
tion, so henceforth we use the notation h·i to denote such
average, unless stated otherwise. P (k) of measurement

Figure 50. An ideal gas in a box divided by walls. If walls can move horizontally the
gas in different partitions will expand or contract so as to reach equilibrium.

probability to find particle 𝑖 in box 𝑎 is

𝑝𝑎 =
𝓁𝑎

𝐿
, 𝐿 =

𝑞∑

𝑎=1

𝓁𝑎

and since all particles are independent, the probability of a configuration
𝑋 = (𝑋1, … , 𝑋𝑛) is given by

𝑃(𝑋) =

𝑛∏

𝑖=1

𝑝𝑋𝑖 =

𝑞∏

𝑎=1

𝑝
𝑛𝑎
𝑎 (19.15)

where 𝑛𝑎 = |{𝑖 ∶ 𝑋𝑖 = 𝑎}| is the number of particles in partition 𝑎 and
∑𝑞

𝑎=1
𝑛𝑎 = 𝑛. Each of the sub-systems is an ideal gas of 𝑛𝑎 particles in thermal

equilibrium at temperature 1∕𝛽. We can derive the Hamiltonian of the system
in terms of the coordinates 𝑋, by equating Eq. (19.15) with the Boltzmann
equation 𝑃(𝑋) = 1

𝑍
𝑒−𝛽𝐸(𝑋). This gives

𝐸(𝑋) = −
1

𝛽

𝑞∑

𝑎=1

𝑛𝑎 log 𝑝𝑎 =

𝑞∑

𝑎=1

𝜖𝑎𝑛𝑎, 𝜖𝑎 = −
1

𝛽
log

𝓁𝑎

𝐿
, (19.16)

with 𝑍(𝛽) = 1. This is equivalent to a system of 𝑛 particles distributed on
𝑞 energy levels 𝜖𝑎. Let us now imagine that each wall is allowed to move
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freely in the longitudinal direction. The pressure in each partition is given
by 𝑃𝑎 =

𝑛𝑎

𝛽𝓁𝑎
, which is also the force acting on the walls. The wall between

partition 𝑎 and 𝑎 + 1 will experience a force equal to 𝑃𝑎 − 𝑃𝑎+1 and it will
move accordingly, until the new positions 𝓁̂𝑎 are such that the pressure in
each compartment is the same

𝑃̂𝑎 =
𝑛𝑎

𝛽𝓁̂𝑎

= 𝑃

where 𝑃 =
𝑛

𝛽𝐿
. This condition implies that the new positions 𝓁̂𝑎 should be

such that

𝑝̂𝑎 =
𝓁̂𝑎

𝐿
=
𝑛𝑎

𝑛

is exactly equal to the probabilities 𝑝𝑎 that make the configuration 𝑋 as likely
as possible (these will be called the maximum likelihood parameters in the
next chapter).

Exercise 19.3

The temperature of Bernoulli trials: let 𝑋 = (𝑋1, … , 𝑋𝑛) be a sequence
of Bernoulli trails, where 𝑋𝑖 = 0, 1. We wish to interpret this as a
system of 𝑛 independent particles in a two state system. Each particle
has energy 𝜖(𝑋) depending on which state 𝑋 = 0, 1 it is in, so the
energy is given by

𝐸(𝑋) =

𝑛∑

𝑖=1

𝜖(𝑋𝑖).

Take 𝜖(0) = 1 and 𝜖(1) such that 𝔼
[
𝐸(𝑋)

]
= 0. With this choice, all

effects of the randomness should be ascribed to the temperature, which
is the only free parameter. By equating 𝑝(𝑋) to 1

𝑍
𝑒−𝛽𝐸(𝑋) show that the

(inverse) temperature is given by 𝛽 = 𝑝 log
𝑝

1−𝑝
. Comment the result.

The work done in this transformation is

𝑊 =

𝑞∑

𝑎=1

∫

𝓁̂𝑎

𝓁𝑎

𝑑𝓁𝑃𝑎(𝓁) =

𝑞∑

𝑎=1

∫

𝓁̂𝑎

𝓁𝑎

𝑑𝓁
𝑛𝑎

𝛽𝓁
=
𝑛

𝛽
𝐷𝐾𝐿[𝑝̂||𝑝] , (19.17)

which is related to the Kullback-Leibler divergence between the final and the
initial state. So 𝛽𝑊 is related to the change in the information content of
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Figure 51. The Szilard engine.

the system. The key point is that this work can be used if the number 𝑛𝑎 of
particles in each partition is known.13

Exercise 19.4

Show that 𝛽𝑊 = 𝑛𝐼(𝐧, 𝑞) can also bewritten as themutual information
between the 𝑥-position 𝑞 of one of the particles and the vector 𝐧 =

(𝑛1, … , 𝑛𝑞).

Eq. (19.17) equates the work that can be done by a quasi-static transforma-
tion to a Kullback-Leibler divergence. This relation is true in general. Indeed
the work done in a quasi-static transformation at constant temperature equals
the difference in the free energy, because by the first law of thermodynamics,
∆𝑊 = ∆𝔼 [𝐸] − ∆𝑄 = ∆𝔼 [𝐸] − 𝑇∆𝑆 = ∆𝐹. This relation is true if the initial
and final states, as well as all intermediate states, are equilibrium states. It
also holds whatever is the distribution 𝑝(𝑋) of the initial state, provided that
the entropy of the final state is given by Shannon’s formula 𝑆 = 𝑘𝐵𝐻[𝑋], with
∆𝐹 = 𝑘𝑏𝑇𝐷𝐾𝐿[𝑝||𝑝eq], as shown by Esposito and Van den Broeck [40], where
𝑝eq is the equilibrium distribution.

Finally note that, because of Eq. (19.16), the work is precisely given by its

13If the number 𝑛𝑎 of particles in each partition is known, it is possible to anticipate in which
direction the walls will move and to exploit the movements of the walls to perform work (e.g.
by lifting a weight attached to the walls). Szilárd used this to device a cyclic transformation of
an ideal system in which the knowledge of 𝐧makes it possible to extract work from a system
at finite temperature 1∕𝛽. Szilárd proposed this as a simple manifestation of Maxwell’s demon
idea, i.e. that knowledge of the microscopic state of a system makes it possible to (apparently)
violate the second law of thermodynamics. Note that the amount of work𝑊 = 𝑛𝐼(𝐧, 𝑞)∕𝛽 can
be measured in bits. For more details, see [39].
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loss in internal energy, i.e.

𝑊 = 𝐸(𝑋) − 𝐸′(𝑋)

due to the change 𝛿𝜖𝑎 in the energy levels.

19.3 The Ising model
The Ising model is the workhorse of statistical mechanics. It describes a
magnetic system where each atom is characterised by a magnetic moment —
a spin for short — that can either point up or down. Hence 𝑋 = (𝑋1, … , 𝑋𝑛)

is a vector of variables 𝑋𝑖 = ±1 that take only two values. The Hamiltonian is
defined as

𝐸(𝑋) = −ℎ

𝑛∑

𝑖=1

𝑋𝑖 − 𝐽
∑

<𝑖,𝑗>

𝑋𝑖𝑋𝑗

The first term describes the influence of an external magnetic field ℎ that
promotes an alignment of the spins in the direction of the sign of ℎ (remember
that states of minimal energy are more likely). In the second, the sum runs
on all pairs <𝑖, 𝑗> of interacting spins and promotes states where spins are
aligned (for 𝐽 > 0). In real physical systems, a spin 𝑖 interacts only with spins
of atoms that are nearby in space. Here we consider themean field version of
the model, where the sum on <𝑖, 𝑗> is replaced by a sum over all pairs, but
with an intensity reduced by a factor 𝑛, i.e.

𝐸(𝑋) = −ℎ

𝑛∑

𝑖=1

𝑋𝑖 −
𝐽

𝑛

∑

𝑖<𝑗

𝑋𝑖𝑋𝑗. (19.18)

The factor 1∕𝑛 ensures that the energy of the ground state14

min
𝑋

𝐸(𝑋) = −|ℎ|𝑛 −
𝐽

2
(𝑛 − 1) ∝ 𝑛

is extensive.
In order to compute the partition function, we use the fact that

∑

𝑖<𝑗

𝑋𝑖𝑋𝑗 =
1

2
(
∑

𝑖

𝑋𝑖)

2

−
1

2

∑

𝑖

𝑋2
𝑖
=
1

2
(
∑

𝑖

𝑋𝑖)

2

−
𝑛

2
.

14This is obtained by aligning all spins with ℎ, i.e. 𝑋𝑖 = sign ℎ for all 𝑖.
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Therefore, neglecting the last term 𝑛∕2, that only contributes a constant, and
with𝑀 =

∑

𝑖
𝑋𝑖

𝑍(𝛽) =
∑

𝑋

𝑒−𝛽𝐸(𝑋) (19.19)

=

𝑛∑

𝑀=−𝑛

( 𝑛
𝑛+𝑀

2

)
𝑒
𝛽ℎ𝑀+

𝛽𝐽

2𝑛
𝑀2

(19.20)

≃
𝑛

2
∫

1

−1

𝑑𝑚𝑒−𝑛𝛽𝑔(𝑚,𝛽,ℎ) (19.21)

where we changed variables from𝑀 to𝑚 = 𝑀∕𝑛. The function 𝑔 is given by

𝑔(𝑚, 𝛽, ℎ) = −
1

𝛽
ℋ[𝑚] − ℎ𝑚 −

𝐽

2
𝑚2 , (19.22)

where

ℋ[𝑚] =
1

𝑛
log

( 𝑛
1+𝑚

2
𝑛

)

≃ −
1 + 𝑚

2
log

1 + 𝑚

2
−
1 − 𝑚

2
log

1 − 𝑚

2
(19.23)

is the entropy of a random variable 𝑋 = ±1, with 𝑃{𝑋 = +1} =
1+𝑚

2
, and

the last expression is a trite application of Stirling’s formula. Eq. (19.21) can
be evaluated by the saddle point method, so the free energy per particle is
given by15

𝑓(𝛽, ℎ) = −
1

𝛽
lim
𝑛→∞

1

𝑛
log 𝑍(𝛽) = 𝑔(𝑚∗, 𝛽, ℎ) (19.24)

where𝑚∗(𝛽, ℎ) is the solution of the equation 𝜕𝑔

𝜕𝑚
= 0. The equation for𝑚∗

can be put in the form16

𝑚∗ = tanh (𝛽ℎ + 𝛽𝐽𝑚∗) . (19.25)
15Note that𝑚∗ is the conjugate variable to ℎ, because

𝑑𝑓

𝑑ℎ
=
𝜕𝑔

𝜕ℎ
+
𝜕𝑔

𝜕𝑚

𝑑𝑚∗

𝑑ℎ
= −𝑚∗

because 𝜕𝑔

𝜕𝑚
= 0 when𝑚 = 𝑚∗.

16Here we use the relation

arc tanh𝑚 =
1

2
log

1 + 𝑚

1 −𝑚
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m
<latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit>
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g(m)
<latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit>

g(m)
<latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit><latexit sha1_base64="CAUroUJFWtUQ/rRcf6bAcuLk7ng=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKoMeiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXRjV5MahUvbo3B14lfkGqUKA5qHz1hzFNJVOWCmJMz/cSG2REW04Fm5X7qWEJoRMyYj1HFZHMBNn81hk+d8oQR7F2pSyeq78nMiKNmcrQdUpix2bZy8X/vF5qo5sg4ypJLVN0sShKBbYxzh/HQ64ZtWLqCKGau1sxHRNNqHXxlF0I/vLLq6R9Wfe9uv9wVW3cFnGU4BTOoAY+XEMD7qEJLaAwhmd4hTck0Qt6Rx+L1jVUzJzAH6DPH10vjcc=</latexit>

m
<latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit>

m
<latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit><latexit sha1_base64="uIbhaxHObW9k+KtpSlNLCo0J2X4=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jEB84BkCbOT3mTMzOwyMyuEkC/w4kERr36SN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03TZJphg2WiES3I2pQcIUNy63AdqqRykhgKxrdzfzWE2rDE/VgxymGkg4Ujzmj1kl12SuV/Yo/B1klQU7KkKPWK311+wnLJCrLBDWmE/ipDSdUW84ETovdzGBK2YgOsOOoohJNOJkfOiXnTumTONGulCVz9ffEhEpjxjJynZLaoVn2ZuJ/Xiez8U044SrNLCq2WBRngtiEzL4mfa6RWTF2hDLN3a2EDammzLpsii6EYPnlVdK8rAR+Jahflau3eRwFOIUzuIAArqEK91CDBjBAeIZXePMevRfv3ftYtK55+cwJ/IH3+QPVjYzx</latexit>

�J > 1
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Figure 52. Graphical solution of the saddle point equations for the magnetisation of
the mean field Ising model. The top graphs show the solutions of Eq. (19.25) and the
bottom graphs the corresponding values of 𝑔 for high temperatures (𝛽𝐽 < 1, left) and
low temperatures (𝛽𝐽 > 1, right).

The behaviour of 𝑚∗ as a function of ℎ can be analysed by plotting the left
and the right hand side of Eq. (19.25), as in Figure 52.

For 𝛽𝐽 < 1 the solution to Eq. (19.25) is unique for all values of ℎ, and
it continuously increases from −1 to 1. For 𝛽𝐽 > 1, instead, there is an
interval of ℎ around the origin where Eq. (19.25) has three solutions. The plot
(see Figure 53) of all three solutions, as a function of ℎ, exhibits an 𝑠-shaped
behaviour around the origin. Inspection of the function 𝑔 reveals that one
of them is a maximum of 𝑔, that corresponds to an unstable state. The other
two are minima. Of these, the one that has the same sign of ℎ attains a lower
minimum. This corresponds to the equilibrium state. The other minimum is
called a meta-stable state.

Therefore the correct solution “jumps” between the negative solution and
the positive one, as soon as ℎ crosses zero. The resulting value of 𝑚∗ as a
function of ℎ is shown in Figure 53.

As a function of temperature, as shown in Figure 54, we observe that for
ℎ ≠ 0 the magnetisation varies between 𝑚∗ = ±1 (depending on whether
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Figure 53. The solutions of Eq. (19.25) as a function of ℎ for 𝛽𝐽 = 1

2
and 𝛽𝐽 = 2. In

the latter case, also the unstable and metastable solutions are shown. The dashed
vertical line connects the negative and the positive branch of the equilibrium solution,
that corresponds to the global minimum of 𝑔.

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

 0.5

 1

 1.5

 2

 2.5

 3

1/�J

m⇤

Figure 54. The solutions of Eq. (19.25) as a function of 1∕𝛽𝐽 for different values of ℎ.

ℎ > 0 or ℎ < 0) for 𝛽 → ∞, and 𝑚∗ = 0 for 𝛽 = 0. For ℎ = 0 instead, we
observe a singular behavior. For 𝛽𝐽 < 1 the magnetisation vanishes (𝑚∗ = 0),
whereas for 𝛽𝐽 > 1 the magnetisation splits in two branches of opposite sign.
At ℎ = 0 the distribution of 𝑀 is symmetric for changes 𝑀 → −𝑀. This
symmetry (which is explicitly broken when ℎ ≠ 0) is spontaneously broken.
For 𝛽𝐽 > 0, in spite of the fact that 𝔼 [𝑀] = 0, in each realisation of the Ising
model we find that the magnetisation takes value𝑀 = ±𝑛𝑚∗.

In the region 𝛽𝐽 > 0, the distribution 𝑝(𝑋) is “divided” into two pure states
that correspond to the phases with opposite magnetisations. The distribution
of the magnetisation per spin𝑚 = 𝑀∕𝑛 in the two states is approximately a
Gaussian

𝑝±(𝑚) ≃

√
𝑛

2𝜋𝕍 [𝑚]
𝑒
−𝑛

(𝑚∓𝑚∗)2

2𝕍[𝑚]
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where 𝕍 [𝑚] is the inverse of the second partial derivative of 𝑔 with respect to
𝑚, computed at𝑚∗. Any state with a magnetisation 𝑚̄ ∈ [−𝑚∗, 𝑚∗] (on the
vertical dashed line of Figure 53) can be obtained as a mixture

𝑝̄(𝑚) =
1 + 𝑚̄∕𝑚∗

2
𝑝+(𝑚) +

1 − 𝑚̄∕𝑚∗

2
𝑝−(𝑚) .

This corresponds to a situation where the two phases coexist. In physical sys-
tems with short range interactions this is realised by having a fraction 1+𝑚̄∕𝑚∗

2

in the phase with magnetisation𝑚∗ and the rest in the opposite phase.17
The singularity at the phase transition 𝛽𝐽 = 1 becomes evident if one

studies the behaviour of the susceptibility, which quantifies the change in the
observable𝑚∗ if the parameter ℎ is varied

𝜒 =
𝑑𝑚∗

𝑑ℎ
(19.26)

=
(
1 − 𝑚∗2

)
[𝛽 + 𝛽𝐽

𝑑𝑚∗

𝑑ℎ
] (19.27)

= 𝛽
1 − 𝑚∗2

1 − 𝛽𝐽
(
1 − 𝑚∗2

) . (19.28)

For ℎ = 0 and 𝛽𝐽 < 1, the magnetisation vanishes. Hence the susceptibility

𝜒 =
𝛽

1 − 𝛽𝐽
, ℎ = 0, 𝛽𝐽 < 1

diverges as 𝛽𝐽 → 1−.
17The thermodynamic phase a physical system with short range correlations, corresponds

to a system of weakly dependent variables which can be described in terms of a single par-
ticle distribution function, as if each particle’s coordinate were drawn independently from
a distribution 𝑃. The situations where more than one phase coexists, is then analogous to
the case of a sample 𝑋 of i.i.d. draws from either 𝑃 or 𝑄, which we discussed earlier in the
context of large deviations. As we saw, the large deviation function 𝐼(𝑥̄) is non-convex in
that case. In thermodynamics, non-convex thermodynamic potentials are un-physical. For
example, the van der Waals theory of liquids, predicts a non-convex potential. This contrasts
with thermodynamic stability because it results in a non-monotonic relation between pressure
and volume. TheMaxwell construction remedies to this problem, by drawing an horizontal line
that cuts the non-monotonic part of the 𝑃 − 𝑉 curve in such a way that the areas above and
below the line in the 𝑃 − 𝑉 plot are equal. This condition identifies a quasi-static cycle that
can be performed exerting no work, which means that the two states at the extremes of the cut
have the same free energy. Mathematically this is equivalent to the construction leading to
𝐼(𝑥̄). Physically, the states on the horizontal line in the Maxwell construction, are mixture of
the two phases, where a fraction of the system is in one phase and the rest is in the other. In
physics, these are the thermodynamically stable states and they can be realised because it is
possible to grow bubbles of one phase into the other. The energetic cost of the mixed states is
of the order of the interface between the two phases, which is negligible with respect to the
bulk energy, which is proportional to the volume.
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Exercise 19.5

Using Eq. (19.25), prove that the same behaviour 𝜒 ∼ 1∕|𝛽𝐽 − 1| also
attains as 𝛽𝐽 → 1+.

The singular behaviour of thermodynamic quantities at a second order
phase transition point is traditionally characterised in terms of the critical
exponentswhich describe the singular behaviour of thermodynamic quantities
close to a phase transition. For example, the divergence of the susceptibility
as the temperature approaches the critical point is usually described as 𝜒 ∼

|𝛽 − 𝛽𝑐|
−𝛾, where 𝛽𝑐 is the critical value of the (inverse) temperature and 𝛾 is

an exponent. Hence we found that 𝛾 = 1 for the mean field Ising model (with
𝛽𝑐 = 1∕𝐽).

Exercise 19.6

The exponent 𝛽 is defined by the behaviour of 𝑚∗ ∼ (𝛽𝐽 − 1)𝛽 for
𝛽𝐽 → 1+ at ℎ = 0 and the exponent 𝛿 by the behaviour 𝑚∗ ∼ ℎ1∕𝛿

when ℎ → 0 with 𝛽𝐽 = 1. Using the expansion of Eq. (19.25), find
𝛽 = 1∕2 and 𝛿 = 3.

Note that, the large deviation function 𝐼(𝑥̄) of the magnetisation 𝑥̄ =
1

𝑛

∑

𝑖
𝑋𝑖 can be computed directly for the mean field Ising model, and it reads

𝐼(𝑥̄) = 𝛽𝑓(𝛽, ℎ) −ℋ(𝑥̄) − 𝛽ℎ𝑥̄ −
𝛽𝐽

2
𝑥̄2 (19.29)

whereℋ(𝑥̄) is the function in Eq. (19.23). You can check that for 𝛽𝐽 > 1 this
function is not convex and therefore its Legendre transform has a singularity
when the conjugate parameter equals −ℎ.

19.4 The Random Energy Model
The Ising model describes a magnetic system where all atoms interact in the
same way. There are other systems where, because of impurities of different
types (called generically disorder), the interaction can be of either sign and
they can involve more than two spins. As a way to model these situations,
you can consider an Ising model where each of the interactions 𝐽𝑖,𝑗 is drawn
at random from some distribution.18 As a result of this, the energy 𝐸(𝑋)
itself, for a fixed configuration 𝑋, becomes a random variable. The Random

18These models are called spin glasses.
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energy Model (REM) was proposed by Derrida in 1981 [25] as an extreme
realisation of these systems, where each energy𝐸(𝑋) is drawn from aGaussian
distribution

𝑝(𝐸) =
1

√
2𝜋𝑛

𝑒
−
𝐸2

2𝑛 ,

independently, for each configuration19𝑋. With𝑋 = (𝑋1, … , 𝑋𝑛) and𝑋𝑖 = ±1,
the partition function is a sum of 𝑁 = 2𝑛 random variables. One may expect
that, because of the law of large numbers,

𝑍(𝛽) =
∑

𝑋

𝑒−𝛽𝐸(𝑋) ≃ 2𝑛𝔼
[
𝑒−𝛽𝐸

]
= 2𝑛𝑒

𝑛

2
𝛽2

. (19.30)

This immediately yields the free energy

𝐹(𝛽) = −
1

𝛽
log 𝑍(𝛽) ≃ −

𝑛

2
log 2 −

𝑛

2
𝛽 , (19.31)

the internal energy

𝑈(𝛽) = −
𝜕

𝜕𝛽
log 𝑍(𝛽) ≃ −𝑛𝛽 , (19.32)

and the entropy
𝑆(𝛽) = 𝛽(𝑈 − 𝐹) = 𝑛 log 2 −

𝑛

2
𝛽2 . (19.33)

The problem with this solution is that, for 𝛽 > 𝛽𝑐 =
√
2 log 2 the entropy

becomes negative. This is not possible, because the entropy of a discrete
variable 𝑋 must be non-negative. In order to understand what is going wrong,
let us compute the minimal energy (which is called the ground state energy)
𝐸0 = min𝑋 𝐸(𝑋). This is the minimum of 𝑁 = 2𝑛 i.i.d. random variables, and
𝑁 is really very large. Let us write 𝐸(𝑋) = −

√
𝑛𝑌(𝑋), so that 𝑌(𝑋) are𝑁 i.i.d.

Gaussian random variables with mean zero and variance one. Then

𝐸0 = min
𝑋

𝐸(𝑋) = −
√
𝑛max

𝑋
𝑌(𝑋) ≃ −

√
𝑛
√
2 log𝑁

where we have used the expression of the coefficient 𝑎𝑁 ≃
√
2 log𝑁 that we

have computed for the maxima of Gaussian random variables. This shows
that the minimal value that the energy can take is 𝐸0 = −𝑛

√
2 log 2. There

19The reason why the variance of 𝐸 is taken to be proportional to 𝑛 is because this ensures
that the thermodynamic quantities are extensive, i.e. proportional to 𝑛, as we shall see. The
variance of 𝐸 is also the specific heat at infinite temperature, which has to be extensive.
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are no states with energy lower than that. This means that Eq. (19.32) has to
be modified as

𝑈(𝛽) = −𝑛min
(
𝛽,
√
2 log 2

)
.

Notice that the change in 𝑈 occurs precisely at the value 𝛽𝐶 where the en-
tropy vanishes. For 𝛽 ≥ 𝛽𝑐 the Gibbs distribution 𝑝(𝑋) =

1

𝑍(𝛽)
𝑒−𝛽𝐸(𝑋) is

concentrated on very few states with energy close to 𝐸0. Hence 𝑆 ≃ 0 for
𝛽 ≥ 𝛽𝑐, i.e.

𝑆(𝛽) = max
[
𝑛 log 2 −

𝑛

2
𝛽2, 0

]
.

The problem with the calculation leading to Eq. (19.31) is that the law of large
numbers only holds when the number of terms that contribute to the sum
is large. This occurs only for 𝛽 < 𝛽𝑐. For 𝛽 > 𝛽𝑐 the partition function is
not self-averaging. The assumption Eq. (19.30) goes under the name of the
annealing approximation. It makes the calculation easy, as in this case, but
often wrong, specially at low temperatures. In general, the self-averaging
quantities are the extensive ones, like the free energy. This means that rather
than taking the expected value of 𝑍(𝛽) one has to take the so-called quenched
average

𝐹(𝛽) = −
1

𝛽
𝔼 [log 𝑍(𝛽)]

which is much harder computationally.20

19.4.1 A gas of weakly interacting particles and the Grand
Canonical ensemble

The phenomenon of concentration of large deviations is a simple realisation
of a second order phase transition. This is made more apparent by translating
the problem into that of the statistical mechanics of an interacting gas problem.
This problem was first discussed in a paper of Bialas et al. [41]. Later the same

20The trick that is often used to deal with 𝔼 [log 𝑍(𝛽)] is to write

log 𝑍 = lim
𝑟→0

𝑍𝑟 − 1

𝑟

which has the advantage that one needs to take the expected values of powers of𝑍. For integer 𝑟,

𝑍𝑟(𝛽) =
∑

𝑋
1

𝑒
−𝛽𝐸(𝑋

1
)
…
∑

𝑋
𝑟

𝑒
−𝛽𝐸(𝑋

𝑟
)

is the partition function of 𝑟 replicas of the same system. This is why the approach that uses
this trick to compute 𝔼 [log 𝑍] is called the replica method. This method is based on computing
𝔼 [𝑍𝑟] for integer 𝑟, then to interpret the result for real values of 𝑟 (by analytic continuation)
and finally to take the limit as 𝑟 → 0.
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Figure 55. The entropy and the internal energy of the REMmodel.

phenomenon was discussed in a much broader set of particle models, known
as zero-range processes (see e.g. Evans et al. [42]).

Consider𝑁 particles distributed in 𝑛 boxes (or states) and let the Hamilto-
nian be given by

𝐸(𝑋) =

𝑛∑

𝑖=1

log(1 + 𝑋𝑖)

where𝑋𝑖 is the number of particles in box 𝑖 = 1, … , 𝑛, and
∑

𝑖
𝑋𝑖 = 𝑁. This is a

gas of particleswithweak attractive on-site interaction.21 We shall consider the
equilibrium distribution of the particles at temperature 1∕𝛽. You can consider
the boxes arranged on a 𝑑-dimensional lattice, with particles jumping from box
to box, with any dynamics that obeys detailed balance with the Hamiltonian
above.22 The probability of a configuration 𝑋 is given by

𝑃{𝑋} =
1

𝑍(𝛽,𝑁)
𝑒−𝛽𝐸(𝑋)𝛿∑

𝑖
𝑋𝑖 ,𝑁

=
1

𝑍(𝛽,𝑁)

𝑛∏

𝑖=1

(1 + 𝑋𝑖)
−𝛽𝛿∑

𝑖
𝑋𝑖 ,𝑁

,

21In order to see why the interaction is an attractive one, take two sites with 𝑋1 and 𝑋2

particles. The configurations where all particles are moved to the same site has always a lower
energy, because log(1 + 𝑋1) + log(1 + 𝑋2) ≥ log(1 + 𝑋1 + 𝑋2).

22Detailed balance for a system at fixed temperature means that the probability 𝑤(𝑋 → 𝑋
′
)

of a transition from state 𝑋 to state 𝑋′ satisfies

𝑤(𝑋 → 𝑋
′
)

𝑤(𝑋
′
→ 𝑋)

=
𝑃(𝑋

′
)

𝑃(𝑋)
= 𝑒−𝛽[𝐸(𝑋

′
)−𝐸(𝑋)] .

(see the chapter on Markov chains).
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where the delta function imposes the constraint of particle number conser-
vation, and the canonical partition function 𝑍(𝛽,𝑁) is obtained as usual
summing the Boltzmann factor 𝑒−𝛽𝐸(𝑋) over all states with 𝑁 particles.23

A simpler way to study the system is to use the Grand Canonical ensemble
instead of the Canonical one. The Grand Canonical ensemble describes a
system where the number of particles is allowed to fluctuate, as if the system
were in contact with a larger system at the same temperature, with which it
can exchange particles. The variable 𝑁 is replaced by its conjugate variable,
which is the chemical potential 𝜇. This entails introducing a statistical weight
𝑒−𝛽𝜇 for each particle. The Grand Canonical partition function is given by

𝒵(𝛽, 𝜇) =

∞∑

𝑁=0

𝑒−𝛽𝜇𝑁𝑍(𝛽,𝑁) = [

∞∑

𝑥=0

(1 + 𝑥)−𝛽𝑒−𝛽𝜇]

𝑛

.

The thermodynamic potential in this ensemble is called the grand potential

Ω(𝛽, 𝜇) = −
1

𝛽
log𝒵(𝛽, 𝜇) .

The expected number of particles in the system is obtained as

𝔼 [𝑁] =
𝜕

𝜕𝜇
Ω(𝛽, 𝜇)

From which one defines the density 𝜌 = 𝔼 [𝑁] ∕𝑛. In the thermodynamic
limit (𝑛 → ∞) the grand canonical ensemble’s description is equivalent to the
description of the canonical ensemble because the variance of the density24
𝜌 = 𝑁∕𝑛 is proportional to 1∕𝑛. Hence, the density 𝜌 converges to a constant
value 𝜌 = 𝔼 [𝑁] ∕𝑛, which is a function of 𝜇. Hence, adjusting the chemical
potential 𝜇 it is possible to change the density 𝜌 of particles in the sub-system.
This implies that the gas is in a state where the number of particles on each
site has a distribution

𝑃{𝑋𝑖 = 𝑥} = 𝐴(1 + 𝑥)−𝛽𝑒−𝛽𝜇𝑥 , 𝑥 = 0, 1, … (19.34)

where 𝐴(𝛽, 𝜇) is a normalisation constant.
The emphasis is different but the machinery and the concepts are exactly

the same as the ones used for discussing large deviations or states of maximal
23Notice that this corresponds exactly to studying large deviations from a distribution𝑄(𝑥) =

𝑄0(1 + 𝑥)−𝛽 where 𝔼 [𝑋] = 𝜌 = 𝑁∕𝑛. The Cramer function 𝐼(𝜌) = 𝑆(𝜌0) − 𝑆(𝜌) is related to
the decrease in entropy with respect to the typical case where 𝜌0 = 𝔼𝑄 [𝑋], and 𝑆(𝜌0) = ℋ[𝑄]

is the entropy of the distribution 𝑄.
24which is obtained form the second derivative of Ω with respect to 𝜇.
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Figure 56. Aweakly interacting gas. Left: density as a function of chemical potential.
Right: the phase diagram.

entropy. The grand canonical trick is biasing a priori probabilities (with 𝜇 = 0)
on the distribution of particles in each box in such a way as to recover states
with a given density as large deviations, i.e. as typical outcomes under the
biased distribution.

However, the trick only works as long as 𝒵(𝛽, 𝜇) is well defined. In our
case this corresponds to 𝜇 ≥ 0, because 𝒵 is undefined for 𝜇 < 0. In our case,
the density, as a function of 𝜇 and 𝛽, is given by

𝜌(𝛽, 𝜇) = 𝐴

∞∑

𝑥=0

𝑥(1 + 𝑥)−𝛽𝑒−𝛽𝜇𝑥. (19.35)

When 𝛽 ≤ 2 the density diverges in the limit 𝜇 → 0+. Therefore, for every
value of 𝑁∕𝑛 it is possible to find a value of 𝜇 such that 𝜌(𝛽, 𝜇) = 𝑁∕𝑛.

For 𝛽 > 2, instead, the limit

lim
𝜇→0

𝜌(𝜇) = 𝜌𝑐(𝛽) < +∞

is finite. All states with a density of particles smaller than 𝜌𝑐 can be described
by finding the value of 𝜇 > 0 such that 𝜌(𝜇) equals 𝑁∕𝑛. In order to achieve
states with a density 𝜌 > 𝜌(0) the symmetry between the different boxes has to
be broken. Themost likely state for a gas with𝑁∕𝑛 > 𝜌𝑐 is given by a situation
where all sites 𝑖 ≠ 𝑖∗ but one have 𝜌𝑐 particles on average, with 𝑋𝑖 distributed
independently according to Eq. (19.34) with 𝜇 = 0, and the remaining one (𝑖∗)
gathers all the excess 𝑁 − (𝑛 − 1)𝜌𝑐 particles. These are the states of maximal
entropy, hence these are those that are expected to be typically observed. In
summary, as we increase the density of particles, if 𝛽 > 2, the system crosses
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the critical point 𝜌𝑐(𝛽) beyondwhich a finite fraction of the particles “localises”
on a single site.

Exercise 19.7

Plot the phase diagram in the (𝜌, 𝑇) plane, solving numerically the
equation for 𝜌(𝜇). Perform a numerical simulations with a Metropolis
algorithms where moves are just hopping of single particles from one
box to another. Verify numerically the phase transition.

One may wonder what is the relation between this phenomenon and Bose-
Einstein condensation (BEC). Without entering into many details, BEC is a
phase transition where a finite fraction of the particles of a quantum ideal gas
of bosons condensates in the state with zero momentum, where the single
particle wave function is completely delocalised. Also in that case, the analysis
can be carried out in the grand canonical ensemble, with the introduction of
the chemical potential 𝜇 > 0 that should be fixed so that the density equals
𝜌 =

𝑛

𝑉
. In 𝑑 > 2, however, there is a maximal density of particles that can be

accommodated in states with non-zero momentum, which is

𝜌𝑐(𝑑) = 𝐴 ∫

∞

0

𝑑𝑧
𝑧𝑑∕2−1

𝑒𝑧 − 1
(19.36)

where𝐴 is a constant. When the density 𝜌 > 𝜌𝑐 exceeds this threshold, a finite
fraction of the particles have to “condensate” in the state of zero momentum.
We refer to other sources [38] for the derivation of this result. Here we observe
that the critical density in our case can be written as25

𝜌𝑐(𝛽) = 𝐴

∞∑

𝑥=0

(1 + 𝑥)−𝛽𝑥 (19.37)

= 𝐴

∞∑

𝑥=0

(1 + 𝑥)−𝛽+1 − 1 (19.38)

=
𝐴

Γ(𝛽 − 1)
∫

∞

0

𝑑𝑧
𝑧𝛽−2

𝑒𝑧 − 1
− 1 . (19.39)

25Here we used the identity

(1 + 𝑥)−𝑎 =
1

Γ(𝑎)
∫

∞

0

𝑑𝑧𝑧𝑎−1𝑒−(1+𝑥)𝑧

in the last step, in order to sum the series on 𝑥.
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The condition for the existence of the BEC (i.e. 𝜌𝑐(𝑑) < +∞) is then very
similar to the one that guarantees the existence of a localised phase in the
gas we’re studying (i.e. 𝜌𝑐(𝛽) < +∞). In both cases, the power of 𝑧 in the
integral should be larger than zero, to prevent the divergence of the integral
when 𝑧 → 0. Therefore, at least at a formal level, the localisation transition
discussed here is similar to the BEC phase transition.

19.5 A teaser in stochastic thermodynamics*

The coordinates 𝑋 of a physical system define its state. 𝑋 provides also all
the information that enter the laws of motion of the system, which define
how 𝑋 evolves over time. In other words, the dynamics of a physical system
is such that conditional to the present state 𝑋𝑡 the future (𝑋𝑡+1, 𝑋𝑡+2, …) is
independent of the past (… , 𝑋𝑡−2, 𝑋𝑡−1). In technical terms, 𝑋𝑡 is a Markov
process. The dynamics satisfies general laws of thermodynamics, which we
will now derive in the simplest case where 𝑋𝑡 evolves as a Markov chain.

Consider a Markov chain 𝑋 = (𝑋0, 𝑋1, … , 𝑋𝑁) defined on a finite state
space 𝑋𝑡 ∈ 𝒮 with transition matrix 𝑝̂(𝑡) with elements

𝑝
(𝑡)

𝑠,𝑠′
= 𝑃{𝑋𝑡 = 𝑠|𝑋𝑡−1 = 𝑠′} 𝑡 = 1, … ,𝑁.

We explicitly allow for a time dependence in the transition matrix because
we want to describe general situations in which the system under study can
be manipulated. We assume that all states 𝑠 ∈ 𝒮 are ergodic for each of the
transition matrices 𝑝̂(𝑡). Hence each transition matrix 𝑝̂(𝑡) admits an invariant
measure 𝜇(𝑡)𝑠 =

∑

𝑠′
𝑝
(𝑡)

𝑠,𝑠′
𝜇
(𝑡)

𝑠′
. For simplicity, we consider a situation where the

system is unperturbed until 𝑡 = 0, so that the transition probability is 𝑝̂(1) for
all 𝑡 ≤ 0. Hence we can assume that the distribution of 𝑋0 is 𝑃{𝑋0 = 𝑠} = 𝜇

(1)
𝑠 .

Following Hack et al. [43], we define the energy function at time 𝑡 as

𝐸
(𝑡)
𝑠 = − log 𝜇

(𝑡)
𝑠 ,

and 𝐸(0)𝑠 = 𝐸
(1)
𝑠 . The reason for this choice is that it is consistent with equi-

librium statistical mechanics. Indeed, a physical system with this energy
function will converge over time to an equilibrium state 𝜇(𝑡)𝑠 =

1

𝑍
𝑒−𝛽𝐸

(𝑡)
𝑠 (with

𝑍 = 𝛽 = 1) which coincides with the invariant measure associated with the
Markov chain with transition matrix 𝑝̂(𝑡).

Over time, the energy will change either because the state changes or
because the energy function itself changes. Therefore one can define work𝑊
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Figure 57. The energy changes either because work is done on the system (blue full
arrows) or because the state 𝑋𝑡 changes and heat is released (dotted red arrows).

and heat 𝑄 for the transformation 𝑋 as

𝑊(𝑋) =

𝑁−1∑

𝑛=0

[
𝐸
(𝑛+1)

𝑋𝑛
− 𝐸

(𝑛)

𝑋𝑛

]
(19.40)

𝑄(𝑋) =

𝑁∑

𝑛=1

[
𝐸
(𝑛)

𝑋𝑛
− 𝐸

(𝑛)

𝑋𝑛−1

]
. (19.41)

Work𝑊 is defined as the change of energy levels due to some applied force,
when the state 𝑋𝑡 is fixed. Note that𝑊 is work done on the system, because
𝑊 > 0 when the energy increases. Heat 𝑄 is the change in energy due to the
variation of the state 𝑋𝑡, on a fixed energy landscape. Their sum

𝑊(𝑋) + 𝑄(𝑋) = 𝐸
(𝑁)

𝑋𝑁
− 𝐸

(0)

𝑋0
= ∆𝐸(𝑋) (19.42)

is the variation of the energy during the transformation. This is the first law
of thermodynamics. When ∆𝐸 = 0 work done on the system is transformed
into heat.

In order to derive the second law of thermodynamics, let us recall that the
reverse Markov chain is defined as

𝑞
(𝑡)

𝑠,𝑠′
≡ 𝑃{𝑋𝑡−1 = 𝑠|𝑋𝑡 = 𝑠′, 𝑡} =

𝑝
(𝑡)

𝑠′,𝑠
𝜇
(𝑡)
𝑠

𝜇
(𝑡)

𝑠′

.
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Now note that the probability of this trajectory in the reverse process is

𝑄←(𝑋𝑁 , … , 𝑋0) ≡ 𝑞
(1)

𝑋0,𝑋1
𝑞
(2)

𝑋1,𝑋2
⋯𝑞

(𝑁)

𝑋𝑁−1,𝑋𝑁
𝜇
(𝑁)

𝑋𝑁
(19.43)

= 𝑝
(1)

𝑋1,𝑋0

𝜇
(1)

𝑋0

𝜇
(1)

𝑋1

𝑝
(2)

𝑋2,𝑋1

𝜇
(2)

𝑋1

𝜇
(2)

𝑋2

⋯𝑝
(𝑁)

𝑋𝑁 ,𝑋𝑁−1

𝜇
(𝑁)

𝑋𝑁−1

𝜇
(𝑁)

𝑋𝑁

𝜇
(𝑁)

𝑋𝑁

= 𝑝
(𝑁)

𝑋𝑁 ,𝑋𝑁−1
⋯𝑝

(2)

𝑋2,𝑋1
𝑝
(1)

𝑋1,𝑋0
𝜇
(1)

𝑋0

𝑁−1∏

𝑛=1

𝜇
(𝑛)

𝑋𝑛

𝜇
(𝑛+1)

𝑋𝑛

= 𝑃→(𝑋0, … , 𝑋𝑁)𝑒
−𝑊(𝑋) (19.44)

which coincides with Eq. (16.27), i.e. when 𝑝̂(𝑡) = 𝑝̂(1) for all 𝑡 then𝑊 = 0

and 𝑄←(𝑋𝑁 , … , 𝑋0) = 𝑃→(𝑋0, … , 𝑋𝑁).
Summing over all values of 𝑋0, … , 𝑋𝑁 one obtains Jarzinski equality

𝔼
[
𝑒−𝑊

]
= 1. A consequence of Eq. (19.44) is that

𝔼 [𝑊] = 𝔼 [log
𝑃→(𝑋0, … , 𝑋𝑁)

𝑄←(𝑋𝑁 , … , 𝑋0)
] = 𝐷𝐾𝐿[𝑃→||𝑄←] ≥ 0 (19.45)

which is a generalised second law of thermodynamics, that states that no work
can be extracted from a thermodynamic transformation between states with
the same free energy.26

It is worth to contrast Eq. (19.45) with Eq. (16.33), which defined the
entropy production Σ ≡ 𝐷𝐾𝐿[𝑃→||𝑃←]. While Eq. (19.45) compares the direct
and the inverse process in a time varying set-up, Eq. (16.33) compares the
two arrows of time in the same process with time independent transition
probabilities, thereby providing a measure of irreversibility.

26Our choice of 𝑍 = 𝛽 = 1 implies that the free energy 𝐹 = −𝛽−1 log 𝑍 = 0 at all times.



Chapter 20

Statistical inference

Essentially, all models are wrong, some are useful. (G.P.E. Box)1

G.P.E. Box was a statistician not a physicist. A physicist would proba-
bly think that Newton’s law is the right model for phenomena described by
classical mechanics (e.g. bodies falling from a height). Yet, even there, every
experiment is subject to effects that cannot be controlled by the experimenter.
Evidently these effects are not in the simple model

𝑚ℎ̈ = −𝑔

that describes the trajectory of the falling body.2 Nomatter howmuch care we
take, when we take measures many times, we’ll always get slightly different
numbers. That’s why we take experimental averages.

In most cases, all the statistics a physicist needs does not go beyond mean
and variance, because experiments can be repeated many times and the con-
trol of experimental conditions can be improved.3 As one moves away from
physics, one faces phenomena that are not ruled by known fundamental laws,
with experiments that cannot be done or repeated. All one has is a series of

1This sentence is attributed to George P.E. Box, quoting his paper in Journal of the American
Statistical Association [44]. The paper does not contain such a sentence, yet it clearly discusses
it at length, together with an interesting discussion of the scientific method and some notes
on the remarkable life of R.A. Fisher, one of the founding fathers of statistics. The paper is a
recommended reading.

2Here ℎ(𝑡) would be the height of the body,𝑚 its mass and 𝑔 the acceleration due to the
gravitational force.

3In particle physics, there is a convention that, in order for an experimental result to
be considered a discovery, it should be statistically validated to a confidence of 99.99994%,
which corresponds to an interval of five standard deviations around the average of a Gaussian
distribution.

321
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observations and the question is what can we learn from these. Learning is
not only describing, it is also generalising, i.e. predicting data which has not
been seen yet. The trade-off between accuracy, i.e. how well you describe the
data you have already seen, and generalisation, i.e. how well you predict the
outcome of experiments not yet done, is a key issue in statistics.

Here we shall discuss a general class of problems that is usually encoun-
tered in classical statistics and inference. We’re given a sample𝑋 = {𝑋1, … , 𝑋𝑛}.
We suppose 𝑋𝑖 are i.i.d. draws from an (unknown) distribution4 𝑄(𝑥). Our
goal is that of inferring 𝑄 or to say something about it. The first framework is
that of hypothesis testing, where we have to choose between two alternative
possibilities for 𝑄. This is a decision problem. How can we make this decision
in the best possible way? How canwe do it in order that the number of samples
needed to make the correct decision with a given accuracy is minimal? This
does not apply only to statistics. Any alarm system needs to sense the envi-
ronment and test whether the particular conditions under which a specific
response is needed occur. Taking this decision optimally and as quickly as
possible (i.e. with the least number of samples) may determine life or death.5

Next we move to parameter estimation. In this case, we know (or we as-
sume) that the distribution that has generated the data belongs to a parametric
family of distributions, but we do not know the value of the parameter(s).
Maximising the likelihood is the simplest recipe but, strictly speaking, it is
not the right answer. Indeed it produces an estimate of the parameter that
depends on the data, and that varies as the data accumulates. Indeed, the
right way to think about the problem is that we should encode our state of
knowledge on the parameters into a distribution. Before we see the data, this
is the prior distribution and after we see the data we can update our state of
knowledge using Bayes rule. In this way the likelihood can be used to compute
the posterior distribution. But how do we choose a prior distributions that
correspond to a given state of ignorance on the parameters, and which prior
corresponds to a complete state of ignorance on the parameters of a given
model?

At any rate, we expect that as the data accumulates, prior knowledge
becomes less and less relevant. Indeed, as we shall see, maximum likeli-

4In other words, the problem is to find a distribution 𝑄 such that 𝑋 can be considered as
a typical sample drawn from 𝑄. Remember that there are ∽ 𝑒

𝑛𝐻[𝑃𝑋 ] typical samples, where
𝑃𝑋 is the type of the sample, and for each of these, the probability to be drawn from 𝑄 is
𝑒
∑

𝑥
𝑃𝑋 (𝑥) log𝑄(𝑥), so the probability that 𝑋 is a typical sample is ∽ 𝑒

−𝑛𝐷𝐾𝐿[𝑃𝑋 ||𝑄].
5For example, an organism has to decide whether to switch on or not a genetic program,

or to switch metabolism from one state to another. This depends on the estimate that the
organism computes of the concentrations of different nutrients and toxins in the environment.
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Figure 58. Three snapshots of a 2-D Ising model at different temperatures. What is
your uncertainty on the temperature in the three cases?

hood estimates converge to asymptotic values, or equivalently, the posterior
distribution becomes more and more sharply peaked around the maximum
likelihood estimates. The speed of convergence, i.e. the width of the posterior
distribution, is controlled by the Fisher Information. The (inverse of the)
Fisher Information quantifies the uncertainty in parameter estimation or how
much the estimates of parameters change when new data is added. When the
Fisher Information is large, the estimated parameters do not change much
if new data is added. This means that the model estimated on past data also
describes well yet unseen data. This means that it generalises well.

Statistical inference is the inverse problem to statistical mechanics. While
the first deals with understanding which model best describes a dataset, the
latter studies which behaviour — i.e. which type of data — is generated by a
given model. The Fisher Information has its counterpart in the susceptibility
in statistical mechanics, because it quantifies how observables change when
the parameters change. This gives a special significance to those points where
the susceptibility becomes very large (or diverge in the thermodynamic limit).
These are associated to critical behaviour at continuous phase transitions
in statistical mechanics. In statistical inference, we expect that these same
“critical” models to be good at generalising.

Finally we discussmodel selection, which is the situationwhere we have to
choose between several parametric models, with different level of complexity
and detail. Hypothesis testing is not the right approach here, as noted by
Akaike [45], because all hypotheses are wrong to start with. Several recipes
have been suggested (such as AIC, BIC, MDS, etc) and it is important to see
where they come from and how they are related.

This is an outline of the results discussed in chapter 11 of Cover plus
other subjects. We discuss the main ideas and refer to textbooks for the
derivations. In this chapter we consider a sample 𝑋 = {𝑋1, … , 𝑋𝑛}, where
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Figure 59. A sketch of the space of probability distributions and hypothesis testing.

𝑋𝑖 can be considered as the outcomes of 𝑛 independent experiments, run
under the same conditions. Therefore we think of 𝑋𝑖 as i.i.d. draws from an
(unknown) distribution 𝑄(𝑥).

This chapter concentrates on the regime of classical statistics, where the
dimensionality of the data and of the parameters of the models are finite and
the number of samples diverge (𝑛 → ∞). In this regime we can rely on the
asymptotic results that we have discussed thus far. We shall briefly comment
at the end about high dimensional statistical inference, a regime in which
the dimensionality of the data or of model’s parameter is of the same order or
larger than the number of data points.

20.1 Hypothesis testing
A simple example of hypothesis testing is the case where we have two alterna-
tive hypotheses on the unknown distribution 𝑄:

𝐻1 ∶ 𝑄 = 𝑃1 𝐻2 ∶ 𝑄 = 𝑃2,

and we want to decide which one is most appropriate for the data 𝑋. We
restrict attention to the case where 𝑋𝑖 ∈ 𝜒 takes values in a finite set 𝜒 (with
𝑛 ≫ |𝜒|).

The way to design a statistical test is to define an acceptance region 𝐴 for
𝐻1, such that if 𝑋 ∈ 𝐴 then𝐻1 is accepted and𝐻2 is rejected and vice-versa.6
Of course 𝑃1 ∈ 𝐴 and 𝑃2 ∉ 𝐴, because when 𝑛 ≫ 1 we expect that 𝑃𝑋 ≈ 𝑃1 if
𝐻1 is true. There are many possible ways to define 𝐴. What is the best way to
choose 𝐴?

In order to address this issue, let us introduce the error probabilities

𝛼 = 𝑃1(𝐴̄) ≡
∑

𝑋∉𝐴

𝑃1(𝑋) 𝛽 = 𝑃2(𝐴) ≡
∑

𝑋∈𝐴

𝑃2(𝑋) . (20.1)

6𝐴 can either be defined in the space of samples 𝑋 or in the space 𝒫 of types 𝑃𝑋 .
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These are the probabilities to reject the hypotheses𝐻1 or𝐻2, if they are correct,
i.e. if 𝑋 were actually drawn from 𝑃1 or 𝑃2, respectively. The optimal choice
for 𝐴 is the one that makes 𝛼 and 𝛽 as small as possible.

The answer to this problem is given by the Neymar-Pearson lemma, that
states that the optimal acceptance region is defined in terms of thresholds on
likelihood ratios. Indeed, if

𝐴 = {𝑋 ∶
𝑃1(𝑋)

𝑃2(𝑋)
≥ 𝑇} (20.2)

where 𝑇 > 0 is an arbitrary threshold, then there is no other acceptance region
𝐵 such that 𝛼̃ < 𝛼 and 𝛽 ≤ 𝛽, with

𝛼̃ = 𝑃1(𝐵̄) 𝛽 = 𝑃2(𝐵)

and 𝛼, 𝛽 given by Eq. (20.1) and 𝐴 given in Eq. (20.2)7 The significance of this
result is particularly transparent if one takes logarithms. Then the acceptance
region reads

𝐴 = {𝑋 ∶ 𝐷𝐾𝐿[𝑃𝑋||𝑃1] ≤ 𝐷𝐾𝐿[𝑃𝑋||𝑃2] −
1

𝑛
log 𝑇} .

For 𝑇 = 1, the hypothesis which has to be accepted is the one closest to the
data in terms of relative entropy.

Let us now compute the error probabilities. Take 𝛽 for example and let’s
focus on the case 𝑇 = 1 for simplicity. The event that a sample 𝑋 generated
as i.i.d. draws from 𝑃2 lands in 𝐴 is clearly a large deviation. Hence 𝛽 can be
computed using Sanov’s theorem Eq. (17.12). This tells us that

𝛽 ∼ 𝑒−𝑛𝐷𝐾𝐿[𝑃
∗||𝑃2]

where
𝑃∗ = argmin

𝑃∈𝐴
𝐷𝐾𝐿[𝑃||𝑃2].

The constrain that sequences 𝑋 having types 𝑃𝑋 = 𝑃 belong to 𝐴 can be
imposed with a Lagrange multiplier in the optimisation problem

min
𝑃∈𝐴

𝐷𝐾𝐿[𝑃||𝑃2] = min
𝑃∈𝐴, 𝜆

[𝐷𝐾𝐿[𝑃||𝑃2] + 𝜆[𝐷𝐾𝐿[𝑃||𝑃1] − 𝐷𝐾𝐿[𝑃||𝑃2]]] .

7The proof of this statement relies on the inequality
[
𝜙𝐴(𝑋) − 𝜙𝐵(𝑋)

] [
𝑃1(𝑋) − 𝑇𝑃2(𝑋)

]
≥ 0

where, for any set 𝑆, 𝜙𝑆(𝑋) = 1 if 𝑋 ∈ 𝑆 and 𝜙𝑆(𝑋) = 0 otherwise. This inequality is easily
proven considering the different cases, e.g. if 𝑋 ∈ 𝐴 and 𝑋 ∉ 𝐵, the first factor is one and the
second is positive, because 𝑃1(𝑋) ≥ 𝑇𝑃2(𝑋) for 𝑋 ∈ 𝐴. Taking the sum of this inequality on
all 𝑋, one finds 𝛼 + 𝑇𝛽 ≤ 𝛼̃ + 𝑇𝛽.
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Figure 60. As 𝜆 varies, the distribution 𝑃𝜆 connects the distributions 𝑃1 = 𝑃𝜆=1 and
the distribution 𝑃2 = 𝑃𝜆=0. The different values of 𝜆 correspond to different choices
of 𝑇 for the acceptance region.

The solution of this constrained minimisation problem is given by

𝑃𝜆(𝑥) =
𝑃𝜆
1
(𝑥)𝑃1−𝜆

2
(𝑥)

∑

𝑥′
𝑃𝜆
1
(𝑥′)𝑃1−𝜆

2
(𝑥′)

(20.3)

where 𝜆 should be fixed so that 𝐷𝐾𝐿[𝑃𝜆||𝑃1] = 𝐷𝐾𝐿[𝑃𝜆||𝑃2] (for 𝑇 = 1). The
calculation for 𝛼 can be done in the same manner, and the solution turns our
to be the same as Eq. (20.3), i.e.

𝛼 ∼ 𝑒−𝑛𝐷𝐾𝐿[𝑃𝜆||𝑃1] , 𝛽 ∼ 𝑒−𝑛𝐷𝐾𝐿[𝑃𝜆||𝑃2]

where 𝜆 is such that 𝐷𝐾𝐿[𝑃𝜆||𝑃1] = 𝐷𝐾𝐿[𝑃𝜆||𝑃2].

Exercise 20.1

Show that, for a given 𝑇, the value of 𝜆 that optimises 𝐷𝐾𝐿[𝑃𝜆||𝑃1] is
the same as the one that determines 𝛽.

Graphically, the space 𝒫 of all probability measures on 𝜒, is divided in two
parts: the acceptance region𝐴 for𝐻1, with 𝑃1 ∈ 𝐴, and the acceptance region
𝐴̄ for𝐻2, with 𝑃2 ∈ 𝐴̄. In the determination of 𝛽 we look at the distribution
𝑃 ∈ 𝐴 that is closest to 𝑃2 whereas 𝛼 entails looking for the distribution 𝑃 ∈ 𝐴̄

that is closest to 𝑃1. The general solution, of both problems is given by 𝑃𝜆: as
𝜆 varies in [0, 1], the point 𝑃𝜆 traces a path in 𝒫 that goes from 𝑃2 (for 𝜆 = 0)
to 𝑃1 (for 𝜆 = 1). This path intersects the boundary of 𝐴 in a single point, that
corresponds to the solution of both problems. Notice that as 𝑇 varies from 0

to∞, 𝐴 shrinks from the entire space 𝒫 excluding a small neighbourhood of
𝑃2, for 𝑇 = 0+, to a small neighbourhood of 𝑃1, for 𝑇 ≫ 1. Correspondingly
the parameter 𝜆 changes from 0, for 𝑇 = 0+, to 1 for 𝑇 ≫ 1.
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Figure 61. A sketch of the space of probability distributions and parameter estima-
tion.

The next question to be addressed is how to choose 𝑇. One recipe is that
of fixing 𝛼∗ = 𝜖 to a preassigned value independent of 𝑛. Then the smallest
error 𝛽∗ that can be achieved is given by

𝛽∗ ∼ 𝑒−𝑛𝐷𝐾𝐿[𝑃1||𝑃2]

for large 𝑛. This result is known as Stein’s Lemma.
A different way to choose 𝜆 comes from a Bayesian approach. We assume

that hypotheses 𝐻1 and 𝐻2 have prior probabilities 𝜋1 and 𝜋2. Then it is
natural to require that the posterior error

𝑃𝑒 = 𝜋1𝛼 + 𝜋2𝛽

should be as small as possible. By Sanov’s theorem

𝑃𝑒 ≃ 𝜋1𝑒
−𝑛𝐷𝐾𝐿[𝑃𝜆||𝑃1] + 𝜋2𝑒

−𝑛𝐷𝐾𝐿[𝑃𝜆||𝑃2] ∼ 𝑒−𝑛min{𝐷𝐾𝐿[𝑃𝜆||𝑃1],𝐷𝐾𝐿[𝑃𝜆||𝑃2]}

for 𝑛 large.

Exercise 20.2

This analysis is reminiscent of the one we discussed in the context of
the Gartner-Ellis theorem. Reformulate the problem and the results in
terms of large deviations.

Therefore, the optimal value of 𝜆 is the one for which

lim
𝑛→∞

−
1

𝑛
log 𝑃𝑒 = min{𝐷𝐾𝐿[𝑃𝜆||𝑃1], 𝐷𝐾𝐿[𝑃𝜆||𝑃2]}
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is the largest possible, which is indeed the point 𝜆∗ where 𝐷𝐾𝐿[𝑃𝜆∗||𝑃1] =
𝐷𝐾𝐿[𝑃𝜆∗||𝑃2]. You just need to sketch a plot of the two distances as 𝜆 varies in
[0, 1], to convince yourself of this. The value

𝐶(𝑃1, 𝑃2) = max
𝜆∈[0,1]

min{𝐷𝐾𝐿[𝑃𝜆||𝑃1], 𝐷𝐾𝐿[𝑃𝜆||𝑃2]}

is called the Chernoff bound and it provides the minimal a posteriori error
in Bayesian hypothesis testing. Notice that prior distributions, for 𝑛 large,
do not play any role. Put differently, the Chernoff bound yields the minimal
number of samples (− log 𝑃𝑒)∕𝐶(𝑃1, 𝑃2) that are needed to reach a decision
with a given level of confidence 𝑃𝑒.

Exercise 20.3

Let 𝑃1(𝑋 = 1) = 𝑃1(𝑋 = 0) = 1∕2 and 𝑃2(𝑋 = 1) = 𝑝 = 1−𝑃1(𝑋 = 0).
Compute the minimal number of points needed to distinguish between
𝑃1 and 𝑃2 on the basis of a sample 𝑋 of independent observations
of 𝑋𝑖 = 0, 1, with a precision of 1%. Plot the result as a function of
𝑝 ∈ [0, 1].

Exercise 20.4

Show that

𝐶(𝑃1, 𝑃2) = − min
𝜆∈[0,1]

log [
∑

𝑥

𝑃𝜆
1
(𝑥)𝑃1−𝜆

2
(𝑥)] .

20.2 Parameter estimation and the Fisher
Information

Let us now consider the case where the distribution𝑄 has the parametric form
𝑓(𝑥|𝜃). In other words, we either know or assume that 𝑋 can be considered
as i.i.d. draws from 𝑓(𝑥|𝜃0) for an unknown parameter 𝜃0. The question
then becomes that of estimating the value 𝜃0 on the basis of a sample 𝑋 =

(𝑋1, … , 𝑋𝑛) of 𝑛 data points. Here 𝜃 can be a vector of parameters, though
most of the arguments can be discussed for a single parameter.

The simplest idea is that of finding the parameter 𝜃̂ that maximises the
likelihood 𝑃{𝑋|𝜃} =

∏𝑁

𝑖=1
𝑓(𝑋𝑖|𝜃). This is the maximum likelihood estima-

tor (MLE). Of course the parameter that maximises 𝑃{𝑋|𝜃} also maximises
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Figure 62. The volume of indistinguishable distributions in parameter space is an
ellipsoid.

log 𝑃{𝑋|𝜃}, therefore

𝜃̂(𝑋) = argmax
𝜃

𝑁∑

𝑖=1

log 𝑓(𝑋𝑖|𝜃) (20.4)

= argmin
𝜃
𝐷𝐾𝐿[𝑃𝑋|𝑓(⋅|𝜃)] (20.5)

where we used again types and got rid of constants that do not depend on 𝜃.
Note that this is consistent with Large Deviation Theory and Sanov’s theorem.
You can visualise the result in the space of distributions in the following
manner: the parametric family 𝑓(𝑥|𝜃) identifies a manifold in this space and
the MLE identifies that point on the manifold that is closest, in terms of KL
divergence, to the type.

Imagine that 𝑋 is drawn i.i.d. from 𝑓(𝑥|𝜃0), so there is one point on the
manifold, 𝜃0 which is the true value of 𝜃. For every draw of 𝑋 the MLE 𝜃̂ will
take a different value, so 𝜃̂ is a random variable. What is it’s distribution?

Amore complete description of 𝜃 can be obtained using Bayes rule. If𝑝0(𝜃)
is the distribution encoding all prior8 knowledge on 𝜃, then the distribution
of 𝜃, after we see the data (the posterior), is given by

𝑝(𝜃|𝑋) =
1

𝑃{𝑋}

𝑛∏

𝑖=1

𝑓(𝑋𝑖|𝜃)𝑝0(𝜃), 𝑃{𝑋} = ∫ 𝑑𝜃

𝑛∏

𝑖=1

𝑓(𝑋𝑖|𝜃)𝑝0(𝜃).

(20.6)
When 𝑛 is very large, we expect this distribution to be well approximated by a
Gaussian. The argument is the following: define

ℒ(𝜃, 𝑋) =
1

𝑛

𝑛∑

𝑖=1

log 𝑓(𝑋𝑖|𝜃) = ∫ 𝑑𝑥𝑃𝑋(𝑥) log 𝑓(𝑥|𝜃).

8I.e. before seeing the sample.
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This is expected to be finite as 𝑛 → ∞ by the law of large numbers.9 Then by
definition,

𝑝(𝜃|𝑋) =
1

𝑃{𝑋}
𝑒𝑛ℒ(𝜃,𝑋)𝑝0(𝜃)

so the distribution is sharply peaked around the MLE 𝜃̂ = argmax𝜃 ℒ(𝜃, 𝑋):

ℒ(𝜃|𝑋) = ℒ(𝜃̂|𝑋) −
Γ

2
(𝜃 − 𝜃̂)2 + …

with Γ(𝜃̂) = −𝜕2
𝜃
ℒ|𝜃=𝜃̂. This also implies that the integral that yields 𝑃{𝑋} can

be computed by the saddle point method

𝑃{𝑋} ≃ 𝑒𝑛ℒ(𝜃̂|𝑋)

√
2𝜋

𝑛Γ(𝜃̂)
𝑝0(𝜃̂)

so that

𝑝(𝜃|𝑋) ≃

√

𝑛Γ(𝜃̂)

2𝜋
𝑒
−
𝑛Γ(𝜃̂)

2
(𝜃−𝜃̂)2 𝑝0(𝜃)

𝑝0(𝜃̂)

Notice that, for 𝑛 ≫ 1, 𝑝(𝜃|𝑋) is well approximated by a Gaussian because it
is very small outside the interval |𝜃 − 𝜃̂| ∼ 1∕

√
𝑛, and 𝑝0(𝜃) ≈ 𝑝0(𝜃̂) for 𝜃 in

this interval.
Therefore the prior plays no role in the limit 𝑛 → ∞. The variance of 𝜃 is

1∕(Γ(𝜃̂)𝑛), i.e. the typical error that we expect on the MLE is

|𝜃̂ − 𝜃| ∼ 1∕

√

𝑛Γ(𝜃̂).

When 𝜃 is a vector, Γ is replaced by (minus) the Hessian10 of ℒ at 𝜃̂, and

𝑝(𝜃|𝑋) ≃
( 𝑛

2𝜋

)𝑑∕2
√

det Γ(𝜃̂)𝑒
−
𝑛

2

∑

𝛼,𝛽
(𝜃𝛼−𝜃̂𝛼)Γ𝛼,𝛽(𝜃̂)(𝜃𝛽−𝜃̂𝛽)

𝑝0(𝜃)

𝑝0(𝜃̂)
.

9The law of large numbers implies that ℒ(𝜃, 𝑋) converges to

𝔼 [log 𝑓(𝑋|𝜃)] = −𝐻[𝜃0] − 𝐷𝐾𝐿(𝜃0||𝜃)

as 𝑛 → ∞, where we used shorthands for the entropy of 𝑓(𝑥|𝜃0) and for the 𝐷𝐾𝐿 between
𝑓(𝑥|𝜃0) and 𝑓(𝑥|𝜃). This is maximal for 𝜃 = 𝜃̂ = 𝜃0, which shows that when 𝑛 → ∞maximum
likelihood estimates are consistent, i.e. they converge to the true value.

10The Hessian is the matrix of second derivatives. In this case,

Γ𝛼,𝛽(𝜃) = −
𝜕2

𝜕𝜃𝛼𝜕𝜃𝛽
ℒ(𝜃) .
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The inverse of the Hessian yields the covariance matrix of the parameters:

𝔼
[
(𝜃𝛼 − 𝜃̂𝛼)(𝜃𝛽 − 𝜃̂𝛽)

]
≃

Γ−1
𝛼,𝛽

𝑛
.

The log-posterior log 𝑝(𝜃|𝑋) around 𝜃̂ is well approximated by a quadratic
function. So the region where 𝑝(𝜃|𝑋) > 𝜖 are well approximated by ellipsoids
whose principal axes are aligned to the eigenvectors of Γ̂(𝜃̂). The length of the
axes is proportional to 1∕

√
𝜆, where 𝜆 is the corresponding eigenvalue of Γ.

Large eigenvalues 𝜆 correspond to directions where the posterior probability
decreases steeply, and hence the uncertainty of the parameters 𝜃 along these
directions are small. Small eigenvalues instead correspond to directions along
which 𝑝(𝜃|𝑋) is flatter, and the errors on 𝜃 may be large. These flat directions
have been called sloppy modes by J. Sethna and collaborators [46], who have
found that they appear inmany caseswheremodelswithmany parameters had
beenused to fit experimental data. In some cases, the error along sloppymodes,
which is 1∕

√
𝜆𝑛 can be quite large. This situation occurs, when the model is

very complex, i.e. it depends on too many parameters. This general situation
is called over-fitting and is an indication that the model is not appropriate or
that the dataset is not large enough.

The matrix Γ depends generally not only on the maximum likelihood
point 𝜃̂ where the expansion is done, but also on the data 𝑋 itself. There is a
case where this is not true, which is worth recalling. These are models in the
exponential family:

𝑓(𝑥|𝜃) = 𝑞(𝑥)𝑒𝜃𝜏(𝑥)+𝜙(𝜃) (20.7)
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You can check that the Hessian of ℒ w.r.t. 𝜃 does not depend on 𝑋, and the
negative of the Hessian becomes11

Γ𝛼,𝛽 = 𝐽𝛼,𝛽(𝜃) = −∫ 𝑑𝑥𝑓(𝑥|𝜃)
𝜕2

𝜕𝜃𝛼𝜃𝛽
log 𝑓(𝑥|𝜃).

This is the Fisher information.
As we have seen, exponential families describe the typical way in which

large deviation are realised and they arise from a constrained maximum en-
tropy (or minimal𝐷𝐾𝐿) principle. For these models there is a sharp separation
between relevant variables and irrelevant ones. Indeed, you can directly check
that all that matters for computing the maximum likelihood parameter 𝜃̂ is
the average12

𝜏̄(𝑋) =
1

𝑛

𝑛∑

𝑖=1

𝜏(𝑋𝑖)

of the random variable 𝜏(𝑋). This is called a sufficient statistics. All other
information contained in the sample, besides the value of 𝜏̄, is irrelevant. This
is shown by the fact that the distribution of the sample conditional on the
event 𝜏̄(𝑋) = 𝑡 is independent of 𝜃. Indeed,

𝑃(𝑋|𝜃, 𝜏̄(𝑋) = 𝑡) =
𝑃(𝑋, 𝜏̄(𝑋) = 𝑡|𝜃)

𝑃(𝜏̄(𝑋) = 𝑡|𝜃)

=
1

𝑄(𝑡)

𝑛∏

𝑖=1

𝑞(𝑋𝑖), 𝑄(𝑡) =
∑

𝑋

𝑛∏

𝑖=1

𝑞(𝑋𝑖)𝛿𝜏̄(𝑋),𝑡 .

This result is a special case of the Fisher-Neyman factorisation theorem, that
states that𝑇(𝑋) is a sufficient statistics if and only if𝑃(𝑋|𝜃) = 𝑄(𝑋)𝑔

(
𝜃, 𝑇(𝑋)

)
,

for some functions 𝑄 and 𝑔.

11When 𝑓(𝑥|𝜃) is given by Eq. (20.7) the Fisher information matrix is

𝐽𝛼,𝛽(𝜃) = −
𝜕2𝜙(𝜃)

𝜕𝜃𝛼𝜃𝛽
.

12Indeed the first order conditions of the maximisation of the likelihood yield

𝜏̄(𝑋)) = −
𝜕𝜙

𝜕𝜃
= 𝔼 [𝜏(𝑋)]

where the expected value is taken on 𝑓(𝑥|𝜃) of Eq. (20.7).
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20.2.1 The Data Processing Inequality and Sufficient statistics

Consider the typical inference problem:13 imagine we have a theory that
depends on an unknown parameter 𝜃. In order to gain information about 𝜃,
we run a series of independent experiments each of which returns a measure
𝑋 of a given observable. We think of 𝑋 as being drawn from a distribution14
𝑓(𝑥|𝜃) that depends on 𝜃. Let 𝑋 be the sample obtained from the series of
independent experiments. In order to “extract” the information on 𝜃 from the
sample, we form a particular combination 𝑇(𝑋) of the variables in the sample.
For example 𝑇(𝑋) can be an estimator 𝜃̂(𝑋) of 𝜃. Yet 𝑋 is generated from 𝜃

and 𝑇(𝑋) from 𝑋, i.e. in terms of Markov chains 𝜃 → 𝑋 → 𝑇(𝑋). This means
that, conditional on 𝑋, 𝑇 and 𝜃 are independent.

It is intuitive that 𝑇(𝑋) cannot provide more information on 𝜃 than the
information that 𝑋 contains about 𝜃. I.e.

𝐼
(
𝑇(𝑋), 𝜃

)
≤ 𝐼(𝑋, 𝜃). (20.8)

This is a particular instance of the data processing inequality which we dis-
cussed in Eq. (16.19) (see also Cover 2.8).15

𝑇(𝑋) is called sufficient statistics for 𝜃 if Eq. (20.8) holds as an equality, i.e.
if 𝐼

(
𝑇(𝑋), 𝜃

)
= 𝐼(𝑋, 𝜃). Equivalently, 𝑇(𝑋) is called sufficient statistics for 𝜃 if

𝜃 → 𝑇(𝑋) → 𝑋, i.e. if conditional on 𝑇, 𝜃 and 𝑋 are independent. This states
precisely that, when 𝑇(𝑋) is known,𝑋 does not contain any information about
𝜃. Not all distributions 𝑓(𝑥|𝜃) admit a sufficient statistics for 𝜃. In general it
is not true that the information on the generative model can be condensed
into few empirical averages.

As a simple example, in the case of Bernoulli trials, the number of success
in 𝑛 trials is a sufficient statistics for 𝑝. Indeed, the probability 𝑃{𝑋|𝑘} of
any string 𝑋 of 𝑛 trials with 𝑘 successes has the same probability, which

13This part is discussed in Cover Section 2.8 and 2.9.
14Note that 𝑓(𝑥|𝜃) is derived from the theory itself we want to test. Yet the only part of the

theory that is assumed to be unknown is the value of 𝜃. The rest is assumed to be true. This is
not dissimilar from how the mass of the Higg’s boson was measured at CERN.

15As a reminder, the data processing inequality states that if there are three variables 𝑋,𝑌
and 𝑍 and 𝑋 and 𝑍 are conditionally independent, given 𝑌, then

𝐼[𝑋; 𝑍] ≤ 𝐼[𝑋; 𝑌]. (20.9)

Conditional independence on 𝑌, which can be denoted as 𝑋 → 𝑌 → 𝑍, means that the joint
distribution of 𝑋,𝑌, 𝑍 has the form

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦)𝑝(𝑦)

so that 𝑝(𝑥, 𝑧|𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑧|𝑦).
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is independent of 𝑝. For any prior distribution 𝜌(𝑝) of 𝑝, it is easy to find
that 𝐼(𝑋, 𝑝) = 𝐼(𝑘, 𝑝) by a direct calculation. Notice that the entropy of the
distribution of 𝑋 is

𝐻[𝑋] = 𝑛𝐻(𝑝), 𝐻(𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝)

proportional to 𝑛, whereas the entropy of 𝑘 is bounded above by log(𝑛 + 1).16
Therefore most of the information in the sample 𝑋 is irrelevant, and only a
tiny fraction contains relevant information on the generative model (in this
case). This fact is general, indeed, from Eq. (20.32) it is possible to compute
the number of bits gained on 𝜃, because the mutual information 𝐼(𝑋, 𝜃) is
obtained by

𝐼(𝑋, 𝜃) = 𝔼
[
𝐷𝐾𝐿(𝑝(𝜃|𝑋)||𝑝0(𝜃))

]
(20.10)

where the expected value is taken over the distribution𝑝(𝑋)=∫ 𝑑𝜃𝑝(𝑋|𝜃)𝑝0(𝜃).
For large 𝑛, within the saddle point approximation, we have that

𝐷𝐾𝐿(𝑝(𝑋|𝜃)||𝑝0(𝜃)) ≃
𝑑

2
log

𝑛

2𝜋𝑒
+ log

√

det Γ̂(𝜃̂) − log 𝑝0(𝜃̂). (20.11)

The first two terms count the number of bits needed to know aGaussian vector
to precision∼ 1∕

√
𝑛whereas the last term counts how surprising the outcome

𝜃̂ is on the basis of prior information. Only (log 𝑛)∕2 bits per parameter are
learned because, given the data, each 𝜃 can be estimated to a precision 𝑛−1∕2.

Exercise 20.5

What is a sufficient statistics for the Poisson distribution?

Notice that i) as alreadymentioned, the number of “useful” bits (those that
are informative on 𝜃) is very small compared to the total number of bits, ii) the
leading contribution 𝑑

2
log 𝑛 only dependes on the number of parameters and

it does not depend on the model used, as long as it has 𝑑 parameters, finally iii)
we learn these many bits irrespective of whether the model is right or wrong,
i.e. whether the data 𝑋 are generated from 𝑓(𝑥|𝜃), for some 𝜃0, or not.

The second and last terms depend on 𝑋. The second accounts for the
uncertainty 𝛿𝜃 on the parameters and it is largewhen the posterior distribution
on 𝜃 is sharply peaked around its maximum 𝜃̂. The second term is small when

16This is because 𝑘 can only take 𝑛 + 1 values. Indeed, for 𝑛 large,

𝐻(𝑘) ≃ log[2𝜋𝑒𝑛𝑝(1 − 𝑝)]∕2.
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the posterior distribution of 𝜃 is broad. This is a signature of overfitting and it
suggests that the modeller didn’t do a good job in choosing the model. The
last term informs us that we learn more if the parameters a posteriori turn out
to attain values 𝜃̂ that are very unlikely a priori. Yet, a reasonable modeller
would not choose a prior such that values 𝜃̂ for which the statistical errors are
small are very unlikely. This suggests that the sum of the last two terms should
compensate each other, in a principled approaches to statistical inference.
This is the case, as we shall see.

20.2.2 The Fisher Information

Howmuch information does a datapoint𝑋 carries on the unknown parameter
𝜃? If 𝑓(𝑋|𝜃) varies sharply with 𝜃, then 𝑋 provides a lot of information on the
likely values of 𝜃, because a small deviation in 𝜃 will result in a large deviation
of 𝑓(𝑋|𝜃). Conversely, if 𝑓(𝑋|𝜃) as a function of 𝜃 is flat, an observation 𝑋
will not make it possible to identify 𝜃 with high precision. In order to turn
this observation into a quantitative measure,17 we need to consider how the
information content, which is related to − log 𝑓(𝑋|𝜃), changes with 𝜃. This
leads us to consider the score, which is a random variable defined as

𝑆(𝜔) =
𝜕

𝜕𝜃
log 𝑓(𝑋(𝜔), 𝜃),

where 𝑋 is a random variable with distribution 𝑓(𝑥|𝜃). Notice that

𝔼 [𝑆] = ∫ 𝑑𝑥𝑓(𝑥|𝜃)
𝜕

𝜕𝜃
log 𝑓(𝑋(𝜔), 𝜃) =

𝜕

𝜕𝜃
∫ 𝑑𝑥𝑓(𝑥|𝜃) = 0.

So the expected value of the score is not a good candidate to measure how
sharply 𝑓(𝑋|𝜃) varies with 𝜃, i.e. how much information an observation 𝑋
provides on 𝜃. The next natural candidate is the variance of the score, which
is the Fisher Information. This is defined as

𝐽(𝜃) ≡ 𝕍 [𝑆] = 𝔼
[
𝑆2
]

(20.12)

= ∫ 𝑑𝑥𝑓(𝑥|𝜃) [
𝜕

𝜕𝜃
log 𝑓(𝑋(𝜔), 𝜃)]

2

(20.13)

= −∫ 𝑑𝑥𝑓(𝑥|𝜃)
𝜕2

𝜕𝜃2
log 𝑓(𝑋(𝜔), 𝜃) (20.14)

where the last equality is derived using integration by parts (we assume that
boundary terms can be neglected). The idea underlying the Fisher information

17Let us first discuss the scalar case and then the case where 𝜃 ∈ ℝ𝑑 is a 𝑑-dimensional
parameter.
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is that variations of the coding cost provide information on the distribution
that generate a random variable, so the broader the distribution of coding costs
the more informative is a variable 𝑋 on the (parameters of the) distribution
from which it is drawn.

Exercise 20.6

Compute the score and the Fisher information for the binary distribu-
tion

𝑓(𝑥|𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥, 𝑥 = 0, 1

and for the Poisson distribution

𝑓(𝑥|𝜃) =
𝜃𝑥

𝑥!
𝑒−𝜃, 𝜃 ∈ ℕ.

The same definition applies to a sample 𝑋 of 𝑛 i.i.d. variables. Then
the score 𝑆(𝑋) =

∑

𝑖
𝑆(𝑋𝑖) is just the sum of the scores, because 𝑓(𝑋|𝜃) =

∏

𝑖
𝑓(𝑋𝑖|𝜃). Since 𝑆(𝑋𝑖) are i.i.d. random variables, the Fisher information

for a sample 𝑋 is 𝑛𝐽(𝜃).
For a model 𝑓(𝑥|𝜃) that depends on 𝑑 parameters 𝜃 = (𝜃1, … , 𝜃𝑑), the

score becomes a random vector with components

𝑆𝛼(𝜔) =
𝜕

𝜕𝜃𝛼
log 𝑓(𝑋(𝜔), 𝜃),

and the Fisher Information is the covariance of the scores, with elements:

𝐽𝛼,𝛽(𝜃) = 𝔼
[
𝑆𝛼𝑆𝛽

]
(20.15)

= ∫ 𝑑𝑥𝑓(𝑥|𝜃) [
𝜕

𝜕𝜃𝛼
log 𝑓(𝑥, 𝜃)] [

𝜕

𝜕𝜃𝛽
log 𝑓(𝑥, 𝜃)] (20.16)

= −∫ 𝑑𝑥𝑓(𝑥|𝜃)
𝜕2

𝜕𝜃𝛼𝜕𝜃𝛽
log 𝑓(𝑥, 𝜃) (20.17)

Exercise 20.7

Compute the scores and the Fisher informationmatrix for the Gaussian
distribution

𝑓(𝑥|𝜃) =
1

√
2𝜋𝜃2

𝑒
−
(𝑥−𝜃1)

2

2𝜃2 .



20.2. PARAMETER ESTIMATION AND THE FISHER INFORMATION 337

20.2.3 The Cramer-Rao bound

The significance of the Fisher information for parameter estimation is made
precise by the Cramer-Rao bound. Let 𝑇(𝑋) be an estimator of the parameter
𝜃. An estimator is unbiased if 𝔼 [𝑇] = 𝜃. It is consistent if 𝑇(𝑋) → 𝜃 as
𝑛 → ∞, in probability. So for example, if 𝑓(𝑥|𝜃) is a Gaussian18 with mean
𝜃 and unit variance, the sample mean 𝑥̄ = 1

𝑛

∑

𝑖
𝑋𝑖 is un unbiased estimator,

but also 𝑋1 is an unbiased estimator. However while 𝑥̄ is consistent, by the
Law of Large Numbers, 𝑋1 is not. A measure of the quality of an unbiased
estimator is given by its variance 𝕍 [𝑇], that characterises the statistical error
of the estimate 𝑇(𝑋). The Cramer-Rao bound states that, given an unbiased
estimator 𝑇(𝑋) of 𝜃, the variance of 𝑇 satisfies19

𝕍 [𝑇] ≥
1

𝑛𝐽(𝜃)
. (20.18)

This is remarkable, because even without knowing the estimator, one can
give a lower bound to its variance. Loosely speaking, 𝐽(𝜃) quantifies the
maximal amount of information each observation carries on the parameter 𝜃.
Estimators that saturate the Cramer-Rao bound are called efficient.

The generalisation of Cramer-Rao bound to the case where 𝜃 is a 𝑑-dimen-
sional vector of parameters, states that the covariance matrix 𝐶̂, whose ele-
ments are 𝔼 [(𝜃𝑎 − 𝔼 [𝜃𝑎])(𝜃𝑏 − 𝔼 [𝜃𝑏])], satisfies

𝐶̂ −
1

𝑛
𝐽−1 ≥ 0

in the sense that 𝐶̂ −
1

𝑛
𝐽−1 is a non-negative definite matrix.

18An estimator for the parameter 𝜃 can be built observing that the expected value of a
function 𝑔(𝑥) is in general a function of 𝜃, i.e. 𝔼 [𝑔(𝑋)] = 𝐺(𝜃). On the other hand, by the law
of large numbers, we expect that 𝑔̄(𝑋) = 1

𝑛

∑

𝑖
𝑔(𝑋𝑖) → 𝐺(𝜃), as 𝑛 → ∞. Inverting this relation

it is possible to obtain a consistent estimator 𝜃̂ = 𝐺−1
(
𝑔̄(𝑋)

)
of 𝜃. A consistent estimator is

one that converges to the true value, when 𝑛 → ∞. Hence its variance vanishes as 𝑛 → ∞.
19The proof of Eq. (20.18) is straightforward. It relies on the Cauchy-Schwartz inequality

Cov(𝑆, 𝑇) ≤
√
𝕍 [𝑇]𝕍 [𝑆] and the observation that Cov(𝑆, 𝑇) = 𝔼 [𝑆𝑇], and

𝔼 [𝑆𝑇] = ∫ 𝑑𝑥𝑓 [
𝜕

𝜕𝜃
log 𝑓] 𝑇

=
𝜕

𝜕𝜃
∫ 𝑑𝑥𝑓𝑇 =

𝜕

𝜕𝜃
𝔼 [𝑇]

=
𝜕

𝜕𝜃
𝜃 = 1
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Exercise 20.8

Show that if 𝑓(𝑥|𝜃) is an exponential family as in Eq. (20.7), then
it admits estimators for which the Cramer-Rao bound holds as an
equality.

20.2.4 Distinguishability of distributions and Fisher
information

Further insight on the meaning of the Fisher Information is given by looking
at the problem of parameter inference in the following way: let 𝜃̂ be the
maximum likelihood estimate of 𝜃 for a given sample 𝑋. This means that 𝜃̂
maximises the log likelihood per point

ℒ(𝜃) =
1

𝑛

𝑛∑

𝑖=1

log 𝑓(𝑋𝑖|𝜃) (20.19)

Now imagine to consider a different sample 𝑋′ that is very similar to 𝑋
and let 𝜃̂(𝑋′

) be the maximum likelihood estimate of 𝜃 for 𝑋′. If the samples
are similar, we expect the maximum likelihood estimates to be close to each
other, i.e. |𝛿𝜃| ≪ 1 where 𝛿𝜃 = 𝜃̂(𝑋

′
) − 𝜃̂(𝑋). Can these two samples be

distinguished? Can one say that they come from different distributions?
Stein’s lemma provides a quantitative answer to this question, for a given error
threshold 𝜖. Indeed, you can think of a test between two hypotheses

𝐻1 ∶ 𝑄(𝑥) = 𝑃1(𝑥) = 𝑓(𝑥|𝜃), 𝐻2 ∶ 𝑄(𝑥) = 𝑃2(𝑥) = 𝑓(𝑥, |𝜃∗ + 𝛿𝜃).

If we set 𝛼 = 𝜖, then 𝛽 = 𝑒−𝑛𝐷𝐾𝐿(𝑓(𝑥|𝜃̂)|𝑓(𝑥|𝜃̂+𝛿𝜃)). The two distributions cannot
be distinguished if 𝛽 ≫ 𝜖, on the basis of a sample of 𝑛 points, at a confidence
level 𝜖.

This means that there is a region of distributions around the point 𝜃̂ that
cannot be distinguished from 𝑓(𝑥|𝜃̂). A measure of the size of this region is
given by that 𝛿𝜃 for which 𝛽 = 𝜖. This condition implies

−
1

𝑛
log 𝛽 = 𝐷𝐾𝐿

(
𝑓(𝑥|𝜃̂)||𝑓(𝑥|𝜃̂ + 𝛿𝜃)

)

≃ −
1

2

∑

𝑎,𝑏

𝛿𝜃𝑎𝔼 [(
𝜕

𝜕𝜃𝑎
log 𝑓(𝑋|𝜃)) (

𝜕

𝜕𝜃𝑏
log 𝑓(𝑋|𝜃))] 𝛿𝜃𝑏 + …

=
1

2
𝛿𝜃𝐽(𝜃̂)𝛿𝜃 + …
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Figure 64. The Fisher information introduces a metric in the space of parameters.
This insight is developed using differential geometry, in what is called Information
Geometry.

where the second equality comes from the expansion of log 𝑓(𝑥|𝜃̂+𝛿𝜃) in small
𝛿𝜃 to second order. There are two non-trivial aspects worth remarking here.
First, the linear terms in the expansion of𝐷𝐾𝐿 vanishes. Second, although𝐷𝐾𝐿
is not symmetric in its arguments, it is symmetric for small “distances”. So
the size of the region where distributions cannot be distinguished is given by

𝛿𝜃𝐽(𝜃̂)𝛿𝜃 ≤
2

𝑛
| log 𝜖|. (20.20)

The intuition behind this equation is the same as that of theCramer-Rao bound.
This result also offers an insight on the nature of the mapping between the
space of samples 𝑋 and the space of the parameters 𝜃 of the models. Where
the Fisher Information is large, the discriminative power of themodel is larger,
because the size of the region around 𝜃 where models cannot be distinguished
is smaller. Pictorially, the result above allows us to discretize the region of
parameters in cells of indistinguishable models, a discretisation that becomes
finer and finer as 𝑛 increases. For a model with 𝐾 parameters, the argument
above generalises in a straightforward manner. The condition above identifies
cells of elliptic shape, whose main axis are proportional to the inverse of the
square root of the eigenvalues of the matrix 𝐽(𝜃) and their directions are given
by the eigenvectors. The volume of such cells is proportional to 1∕

√
det 𝐽(𝜃).

Therefore, in a region of unit volume, there are a number of distinguishable
distribution which is proportional to

√
det 𝐽(𝜃). Within a maximum entropy

approach, each of these models should be a priori equiprobable. This means
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that the non-informative prior for 𝜃 should be

𝑝𝐽(𝜃) =
1

𝑐𝑓

√
det 𝐽(𝜃).

This prior is called Jeffrey’s prior. The normalisation constant

𝑐𝑓 = ∫ 𝑑𝜃

√

det𝐽(𝜃) (20.21)

gives an estimate of the number of distinguishable models, when it is finite.
The number 𝑐𝑓 is an intrinsic degeneracy (or uncertainty) on the possible
model that has generated the data, that is lifted when we observe the data.
So the logarithm of 𝑐𝑓 quantifies the information in bits that we learn about
the model, and it can be taken as a measure of the intrinsic complexity of
the model. A very complex model induces a fine resolution on the sample
space, and it makes it possible to distinguish many samples. A sample 𝑋
can be explained well by the model with 𝜃 ≈ 𝜃̂(𝑋), but it’s very unlikely (or
atypical) for 𝜃 that is significantly different from 𝜃̂(𝑋). On the contrary, a
simple model induces a coarser resolution on the space of samples. Even
very different samples can be described by the same model. In the extreme
case of a model that assigns the same probability 𝑓(𝑥) = 𝑝 to all outcomes
𝑥, no samples can be distinguished, because this model assigns the same
probability to all samples. This suggests a relation between maximal entropy
and minimal complexity, which is reminiscent of the basic idea in coding
theory: compressed representations (i.e. reduction of entropy) are achieved
by exploiting the structure or patters in the data (i.e. their complexity).

Exercise 20.9

Verify that 𝐷𝐾𝐿(𝑝|𝑞) is symmetric under exchange of the arguments if
𝑞 and 𝑝 are close, i.e. if 𝑞 = 𝑝 + 𝛿𝑝 with 𝛿𝑝 ≪ 1.

Exercise 20.10

Compute the Fisher Information for i) a binary variable 𝑃{𝑋 = 1} =

𝑝 = 1 − 𝑃{𝑋 = 0}, ii) an exponential variable with mean 𝜇, and
iii) a Gaussian with mean 𝜇 and variance 𝜎2. Can you compute the
distribution𝑝𝐽 for these examples? What is their intrinsic complexity 𝑐𝑓?

20.2.5 Exponential families

Consider the case
𝑓(𝑥, 𝜃) = 𝑒𝜃0+

∑𝑠

𝑘=1
𝜃𝑘𝑔𝑘(𝑥)
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where the distribution depends on a vector 𝜃 = (𝜃1, … , 𝜃𝑑) of parameters and

𝜃0 = − log
∑

𝑥

𝑒
∑

𝑘
𝜃𝑘𝑔𝑘(𝑥)

is a normalization constant. This distribution is called an exponential family,
and as we have seen it has several nice properties: it is the maximum entropy
distribution consistent with the constraints 𝔼 [𝑔𝑘(𝑥)] = 𝑔̄𝑘 for 𝑘 = 1,… , 𝑑. As
already mentioned, 𝑔𝑘(𝑥) are sufficient statistics.20 This is the distribution
that is typically considered in statistical mechanics, where the operators 𝑔𝑘
are the terms that define the energy. The parameters 𝜃𝑘 correspond to the
conjugate variables (the temperature, the chemical potential, the magnetic
field, etc . . . ) of the observables. Then 𝜃0 is proportional to the corresponding
thermodynamic potential.

Notice that 𝜕

𝜕𝜃𝑘
𝜃0 = −𝐸

𝜃
[𝑔𝑘(𝑋)]. Taking a further derivative, it is easy to

compute the Fisher information and to show that

𝐽𝑘,𝓁(𝜃) = 𝔼 [𝑔𝑘(𝑋)𝑔𝓁(𝑋)] − 𝔼 [𝑔𝑘(𝑋)] 𝔼 [𝑔𝓁(𝑋)] (20.22)

= −
𝜕2𝜃0

𝜕𝜃𝑘𝜕𝜃𝓁
(20.23)

=
𝜕𝔼 [𝑔𝑘(𝑋)]

𝜕𝜃𝓁
=
𝜕𝔼 [𝑔𝓁(𝑋)]

𝜕𝜃𝑘
. (20.24)

The first relation tells us that the Fisher Information is the covariance matrix
of the observables. The last equation tells us that it is also the matrix of
susceptibilities. This is natural. In physical systems, a susceptibility tells us
howmuch the behaviour of a system changeswhenwe change someparameter
(e.g. the temperature). Inference corresponds to the inverse problem where
the behaviour of the system is known and is given by the data, whereas the
parameters are the quantities one aims at computing. A model that describes
well the data is one that generalises well, i.e. a model whose parameters 𝜃 do
not change much if the data changes a little (e.g. if a new data point is added).
The best models are those with a large Fisher Information, i.e. with a large
susceptibility. In physics, models with a large susceptibility are those that
describe systems close to a phase transition, that exhibit anomalously large
fluctuations (see Eq. (20.22)). Therefore the theory of critical phenomena
in physics plays a particular role in inference problems: when a model is
appropriately chosen to describe a data set, it is likely that inference will
return models that are close to critical points [47].

20The sample averages of 𝑔𝑘(𝑥) are sufficient statistics for 𝜃𝑘 .
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Figure 65. Left: the same data can be fitted by different models of different complex-
ity, such as polynomial of higher degrees. Right: while the error on the training set
(the sample used to fit the model) decreases, that on yet unseen (out of sample) data
first decreases and then increases.

20.3 Model selection
Speech is silver, silence is golden.

Imagine that you’re not sure about the model 𝑓(𝑥|𝜃) that describes your
data. In this situation, you may be uncertain among a number𝑀 of models
𝑓𝑚(𝑥|𝜃𝑚) each depending on a different number 𝑑𝑚 of parameters 𝜃𝑚 =

(𝜃1,𝑚, … , 𝜃𝑑𝑚 ,𝑚) (𝑚 = 1,… ,𝑀). Some models may be very complex and give a
detailed description of the data, othersmay bemore parsimonious and provide
a rougher description of the data. Loosely speaking, different models provide
a description of the data with different degree of detail. Which model should
we listen to?

The typical example is that of points (𝑋𝑖, 𝑌𝑖) on the plane, that may be
described by different models of the form

𝑌𝑖 = 𝑎0 + 𝑎1𝑋𝑖 + 𝑎2𝑋
2
𝑖
+ … + 𝑎𝑑−2𝑋

𝑑−2
𝑖

+ 𝜉𝑖

where 𝜉𝑖 are i.i.d. random variables from a Gaussian distribution with zero
mean and variance 𝜎2, so 𝜃 = (𝑎0, … , 𝑎𝑑−2, 𝜎). The number 𝑑 of parameters
can be taken as a measure of the complexity of the model, with more complex
models containing simpler ones as special cases.

For a sample of 𝑛 points, the model with 𝑑 = 𝑛 + 1 parameters provides
a perfect fit, because it can exactly interpolate between the points. Yet, it
does not describes appropriately other data that may become available (out
of sample data). This means that a very complex model does not “generalise”
well. At the same time, if a new point is added and we estimate again the
model, we expect that the parameters will change considerably, and the Fisher
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Figure 66. Model selection and the AIC. Two models are shown in the space of
distributions.

Information is expected to be small. Conversely, a linear fit (𝑑 = 3) provides
a less accurate description, but this will be more robust with respect to the
addition of further points. So there is a trade-off between accuracy and gen-
eralisability in statistical inference, which is what we want to address here.
In particular, if the data were really generated by a high order polynomial, as
long as the size 𝑛 of the sample is not large enough, it might well be that a
linear fit might be the best option, because a fit with a high order polynomial
may return coefficients that are very far from the true ones. Yet, as the number
of points becomes large, we expect more and more features of the true model
to surface, and then we expect the “appropriate” models to have higher and
higher complexity.

So it is clear that the best model depends on a trade-off between accuracy,
quantified by the log-likelihood, and complexity. But how can we quantify
complexity?

20.3.1 Akaike Information Criterium (AIC)

Let us consider a sample 𝑋 that is generated from an unknown distribution
𝑄. The above discussion implies that, in order to find the best model that
describes 𝑋, we cannot rely only on the likelihood. The most complex model
(i.e. the one with more parameters) will also be the most likely one. However
this model will not be efficient in generalisation, i.e. in describing data which
have not been used to estimate the model’s parameters. Akaike proposed a
method to correct the maximum likelihood, by adding a complexity penalty,
in order to score different models.

The starting point of the AIC is that the appropriate quantity to score the
validity of a model 𝑓(𝑥|𝜃) is the distance

𝐷𝐾𝐿(𝑄||𝜃̂) = 𝑆(𝑄|𝑄) − 𝑆(𝑄|𝜃̂) (20.25)
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between the true distribution and themaximum likelihood distribution,𝑓(𝑥|𝜃̂).
Here we used the shorthand21 𝑆(𝑄|𝑃) = ∫ 𝑑𝑥𝑄(𝑥) log 𝑃(𝑥) for the likelihood
of𝑃with respect to𝑄. Themaximum likelihood estimator 𝜃̂=argmax𝜃𝑆(𝑃𝑋|𝜃)
does not coincide with the point

𝜃̄ = argmax
𝜃

𝑆(𝑄|𝜃)

where 𝐷𝐾𝐿(𝑄||𝜃) is minimal. Yet these two points are close, when 𝑛 ≫ 1, be-
cause 𝑃𝑋 → 𝑄 when 𝑛 → ∞, and hence 𝜃̂ → 𝜃̄, because the two optimisation
problems that define 𝜃̂ and 𝜃̄ coincide asymptotically.

Then, we can estimate 𝑆(𝑄|𝜃̂) by expanding 𝑆(𝑄|𝜃̄) around its maximum 𝜃̄

𝑆(𝑄|𝜃̂) = 𝑆(𝑄|𝜃̄) −
1

2

∑

𝑎,𝑏

(𝜃̂𝑎 − 𝜃̄𝑎)𝔼𝑄 [
𝜕𝑆𝑏

𝜕𝜃𝑎
] (𝜃̂𝑏 − 𝜃̄𝑏) + … (20.26)

where we used the definition of the score, 𝑆𝑎 =
𝜕

𝜕𝜃𝑎
log 𝑓(𝑋|𝜃). To leading

order, we can replace the expected value over 𝑄 in the quadratic form, with
the expected value over 𝑓(𝑥|𝜃̄), therefore

𝔼𝑄 [
𝜕𝑆𝑏

𝜕𝜃𝑎
] ≈ ∫ 𝑑𝑥𝑓(𝑥|𝜃)

𝜕2

𝜕𝜃𝑎𝜕𝜃𝑏
log 𝑓(𝑥|𝜃) = −𝔼 [𝑆𝑎𝑆𝑏] = −𝐽𝑎,𝑏

where we used the fact that 𝔼 [𝑆𝑎] = 0. Therefore

𝑆(𝑄|𝜃̂) ≃ 𝑆(𝑄|𝜃̄) +
1

2

∑

𝑎,𝑏

(𝜃̂𝑎 − 𝜃̄𝑎)𝐽𝑎,𝑏(𝜃̄)(𝜃̂𝑏 − 𝜃̄𝑏) + … (20.27)

𝑆(𝑄|𝜃̂) ≃ 𝑆(𝑄|𝜃̄) +
1

2

∑

𝑎,𝑏

𝐽𝑎,𝑏(𝜃̄)𝔼
[
(𝜃̂𝑎 − 𝜃̄𝑎)(𝜃̂𝑏 − 𝜃̄𝑏)

]
+ … (20.28)

≃ 𝑆(𝑄|𝜃̄) −
1

2𝑛

∑

𝑎,𝑏

𝐽𝑎,𝑏𝐽
−1

𝑎,𝑏
+ … = 𝑆(𝑄|𝜃̄) −

𝑑

2𝑛
+ …

In Eq. (20.28) we approximate the quadratic form with its expected value over
the distribution 𝜃̄, and use the fact that 𝜃̂ is a Gaussian random variable with
expected value 𝜃̄ and covariance 𝐽−1∕𝑛.

21−𝑆(𝑄|𝑃) = 𝐻[𝑄]+𝐷𝐾𝐿(𝑄||𝑃) is called the cross entropy. We also use the simplified notation
𝐷𝐾𝐿(𝑄||𝜃) for the Kullback-Leibler divergence between 𝑄 and 𝑓(𝑥|𝜃).
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We use this expression in Eq. (20.25) and we replace 𝑄 with 𝑃𝑋 in the first
argument of 𝑆(⋅|⋅) of the resulting expression, i.e.22

𝐷𝐾𝐿(𝑄||𝜃̂) ≃ 𝑆(𝑄|𝑄) − 𝑆(𝑄|𝜃̄) +
𝑑

2𝑛
+ … (20.29)

≃ 𝑆(𝑃𝑋|𝑄) − 𝑆(𝑃𝑋|𝜃̄) +
𝑑

2𝑛
+ … (20.30)

As a function of 𝜃, 𝑆(𝑃𝑋|𝜃) is maximal at 𝜃̂. We then expand around 𝜃̂ and
estimate the leading term as in Eqs. (20.26)–(20.28), which leads to

𝑆(𝑃𝑋|𝜃̄) ≃ 𝑆(𝑃𝑋|𝜃̂) −
𝑑

2𝑛
+ …

Taken together, this leads to

𝐷𝐾𝐿(𝑄||𝜃̂) ≃ 𝑆(𝑃𝑋|𝑄) − 𝑆(𝑃𝑋|𝜃̂) +
𝑑

𝑛
+ … (20.31)

When the last expression is used to compare different models, the first
term 𝑆(𝑃𝑋|𝑄) is the same for all models, whereas the other two can be com-
puted from the data and the knowledge of each model. This means that the
likelihood per data point of each model has to be penalised by a term −𝑑∕𝑛

which only depends on the number of parameters of each model.
For some unknown reason, Akaike defined his complexity with a factor

−2𝑛, i.e. he defines

𝐴𝐼𝐶 = 2𝑑 − 2

𝑛∑

𝑖=1

log 𝑓(𝑋𝑖|𝜃̂)

as the score that should be used to compare different models, suggesting that
the model with the lowest AIC should be preferred.

The way in which AIC should be thought is as an estimate of the expected
value of the Kullback-Leibler divergence between the true model and the
model with maximum likelihood parameters.

20.3.2 Bayesian Information Criterium (BIC)

A different way to address the question of how to penalise models for their
complexity comes from a direct Bayesian approach. Before seeing the data,

22The distance between 𝑄 and 𝑃𝑋 vanishes as 𝑛 → ∞. Likewise 𝜃̂ is expected to converge
to 𝜃̄ as 𝑛 → ∞. Yet the distance between 𝑄 or 𝑃𝑋 and the distribution 𝑓(⋅|𝜃) does not vanish.
The reason why the substitution 𝑄 → 𝑃𝑋 cannot be done directly in Eq. (20.25) is that 𝜃̂ also
depends on 𝑋, whereas 𝜃̄ does not.
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you may have some prior information on which model is most likely. This is
encoded in the prior probability 𝑃0(𝑚),𝑚 = 1,… ,𝑀, where𝑀 is the number
of models. If you have no prior information at all, maximum entropy suggests
that you should take 𝑃0(𝑚) = 1∕𝑀, which is what I will assume.

When you see the data 𝑋, this allows you to revise your prior estimate of
the models, and to compute the posterior probability 𝑃(𝑚|𝑋) using Bayes rule

𝑃(𝑚|𝑋) =
𝑃(𝑋|𝑚)𝑃0(𝑚)

∑𝑀

𝑚′=1
𝑃(𝑋|𝑚′)𝑃0(𝑚

′)
(20.32)

where the likelihood of model𝑚

𝑃(𝑋|𝑚) = ∫ 𝑑𝜃𝑚𝑓𝑚(𝑋|𝜃𝑚)𝑝0,𝑚(𝜃𝑚)

is computed by averaging the likelihood of each model over the prior distribu-
tion 𝑝0,𝑚(𝜃) of the parameters. In order to estimate 𝑃(𝑋|𝑚), for 𝑛 large, we
observe that the integrand is of the form 𝑓(𝑋|𝜃𝑚) = 𝑒𝑛ℒ(𝜃𝑚) (see Eq. (20.19))
and hence we can resort to the saddle point method. Hence we find the
maximum 𝜃̂𝑚 of ℒ(𝜃𝑚) and expand around it. To second order

ℒ(𝜃𝑚) = ℒ(𝜃̂𝑚) −
1

2

∑

𝑗,𝑘

(𝜃𝑗,𝑚 − 𝜃̂𝑗,𝑚)𝐽𝑗,𝑘(𝜃̂𝑚)(𝜃𝑘,𝑚 − 𝜃̂𝑘,𝑚) + …

Upon changing variables to 𝑧𝑗 =
√
𝑛(𝜃𝑗,𝑚 − 𝜃̂𝑗,𝑚), the integral can be done by

Gaussian integration, with the result

𝑃(𝑋|𝑚) ≃ 𝑒
𝑛ℒ(𝜃̂𝑚)−

𝑑𝑚

2
log 𝑛−𝐶𝑚 (20.33)

where
𝐶𝑚 =

1

2
log det 𝐽(𝜃̂𝑚) −

𝑑𝑚

2
log(2𝜋) − log 𝑝0,𝑚(𝜃𝑚)

is a constant (see [48] for a detailed discussion).
In the simplest casewhere themodels areapriori equally probable (𝑃0(𝑚) =

1∕𝑀), the most probable model is the most likely one, i.e. the one that has
the largest likelihood 𝑃(𝑋|𝑚). Yet this is not only given by the value of the
likelihood at the maximum 𝜃̂𝑚, but it is also penalised by terms (the second
and third in the exponent of Eq. (20.33)) that account for the complexity of
the model𝑚.

Notice that while the likelihood term in the exponent is proportional to 𝑛,
the second is proportional to log 𝑛 and the third is a constant. Therefore, for 𝑛
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very large, the term that dominates is the likelihood, but for smaller values of
𝑛 the second term becomes important, and for even smaller values of 𝑛 even
the third term becomes important. Notice in particular, that when 𝑛 is not
very large, even the choice of the prior becomes relevant. In these situations,
choosing a prior such as 𝑝𝐽 that introduces no bias in the space of samples,
becomes important.

Selecting the best model based on the first two terms is called Bayesian
Information Criterium (BIC) whereas the last term is usually associated to the
Minimal Description Length (MDL) [48]. Both these two criteria are more
severe in penalising models than AIC.

A final remark. At a formal level, for 𝑛 very large, the denominator in
Eq. (20.32), which is nothing but the probability of 𝑋 (called evidence in
inference), looks like a partition function

𝑃{𝑋} ≃

𝑀∑

𝑚=1

𝑒−𝑛𝐹𝑚 , 𝐹𝑚 = −ℒ(𝜃̂𝑚) +
𝐾𝑚

2𝑛
log 𝑛 +

𝐶𝑚

𝑛
(20.34)

where 𝑛 plays the role of the inverse temperature and, as we have seen, 𝐹𝑚 can
be regarded as the free energy of themodel𝑚. Imagine a situation such as that
described at the beginning of this section, where model𝑚 includes as special
cases simpler models. Passing from model𝑚 to model𝑚+1 entails switching
on a coefficient 𝑎𝑚−1 that was set to zero in model 𝑚. This is equivalent
to breaking a symmetry between models with 𝑎𝑚−1 > 0 and models with
𝑎𝑚−1 < 0. As we have seen, as 𝑛 increases (i.e. as the temperature decreases),
the complexity of the model that dominates the sum in Eq. (20.34) typically
increases. This is a common phenomenon in physics: as the temperature
decreases, the state of matter passes through phases of decreasing degrees of
symmetry.

An illustrative case: two states Dirichelet’s model. Consider a repeated
experiment where there are two possible outcomes 𝑋 = 0, 1 and assume
there are 𝑛 independent observations, 𝑘 with 𝑋 = 1 and 𝑛 − 𝑘 with 𝑋 = 0.
There are two possible models: in the first the two states are equiprobable,
i.e. 𝑝0(𝑋 = 1) = 𝑝0(𝑋 = 0) = 1∕2. In the second, the states have different
probabilities 𝑝1(𝑋 = 1) = 𝑝 = 1 − 𝑝1(𝑋 = 0). These correspond to different
models that we can identify with different partitions of “states”𝑋, according to
their probabilities. So the first case corresponds to amodelℳ0 = [({0, 1}, 1∕2)]

where the two states are symmetric because they have the same probability,
whereas the second to amodelℳ1 = [({0}, 1−𝑝), ({1}, 𝑝)]. Clearly 𝑃{𝑋|ℳ0} =

2−𝑛 whereas forℳ1 the likelihood 𝑃{𝑋|ℳ1} can be obtained by integrating
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the likelihood over the prior distribution of the parameter 𝑝, for which we
take a Dirichelet form23

𝑃0(𝑝) =
Γ(𝑎)2

Γ(2𝑎)
𝑝𝑎−1(1 − 𝑝)𝑎−1.

The probability of the data 𝑋 given model ℳ1, is obtained averaging the
likelihood 𝑝(𝑋|𝑝,ℳ1) = 𝑝𝑘(1 − 𝑝)𝑛−𝑘 over the prior 𝑃0(𝑝) and one obtains:

𝑃{𝑋|ℳ1} =
Γ(2𝑎)Γ(𝑘 + 𝑎)Γ(𝑛 − 𝑘 + 𝑎)

Γ(𝑎)2Γ(𝑛 + 2𝑎)
. (20.35)

In order to compare the two models, we invoke Bayes rule and compute the
posterior probability

𝑃(ℳ𝑖|𝑋) =
𝑃(𝑋|ℳ𝑖)𝑃0(ℳ𝑖)

∑

𝑗
𝑃(𝑋|ℳ𝑗)𝑃0(ℳ𝑗)

=
𝑃(𝑋|ℳ𝑖)𝑃0(ℳ𝑖)

𝑃(𝑋)

where 𝑃0(ℳ𝑖) is the prior probability of model 𝑖. For the sake of simplicity,
we’re going to assume that all models are a priori equally likely.24 So the most
probable model is the one with the highest likelihood 𝑃{𝑋|ℳ}. In the present
case, it is easy to check that, for 𝑛 ≫ 1, in the representative case of a uniform
prior (𝑎 = 1) we have that as long as

|||||||

𝑘

𝑛
−
1

2

|||||||
<

√

log(2𝑛∕𝜋)

8𝑛

the symmetric modelℳ0 should be preferred.
This argument extends in a straightforward way to the general case where

the outcome 𝑋 can take more than two values or states. The argument above
suggests that, in the general case, for each pair of states𝑋 = 𝑠 and𝑋 = 𝑠′ their
probability should be the same, unless they occur in the data a sufficiently
different number of times. If 𝑘𝑠 ≈ 𝑘𝑠′ instead, they should be assigned the

23This choice is convenient because the posterior distribution over modelℳ1, which is
obtained by Bayes rule,

𝑃(𝑝|𝑠,ℳ1) =
Γ(𝑘 + 𝑎)Γ(𝑛 − 𝑘 + 𝑎)

Γ(𝑛 + 2𝑎)
𝑝𝑘+𝑎−1(1 − 𝑝)𝑛−𝑘+𝑎−1.

keeps the form of a Dirichelet’s distribution. Priors with these property are called conjugate
priors.

24By Occam’s razor, one would be tempted to prefer simpler models, i.e. those with fewer
parameters. Yet Occam’s razor already arises from the integration over the parameters implied
by Bayes rule, without the need to introduce it ad hoc.
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same probability, i.e. the symmetry between states 𝑠 and 𝑠′ should not be
broken.

Given the set 𝒮 of states 𝑠 that are seen (with multiplicity 𝑘𝑠 > 0), then
a generic modelℳ = [𝒬, 𝜇⃗] is one where different states are divided into a
partition

𝒬 = (𝑄1, 𝑄2, … , 𝑄𝑁),

𝑁⋃

𝑞=1

𝑄𝑞 = 𝒮

of a number𝑁 of disjoint sets, and each state in the 𝑞th subset of the partition
(𝑠 ∈ 𝑄𝑞) has the same probability 𝜇𝑞. If𝑚𝑞 = |𝑄𝑞| is the number of states in
subset 𝑄𝑞, then 𝜇𝑞 satisfies the normalisation

∑

𝑞

𝑚𝑞𝜇𝑞 = 1. (20.36)

Any possible partition corresponds to a different model, including the one
where each state is in the same subset (𝑠 ∈ 𝑄1, ∀𝑠), and the one where each
state is in a different subset (𝑠 ∈ 𝑄𝑠, ∀𝑠). Hence, each partition 𝒬 identifies a
different modelℳ, and it is possible to carry out Bayesian model selection
on the set of all these models. We refer to Haimovici and Marsili [57] for a
detailed discussion. In brief, what one finds is that the most likely models are
those that group states that are observed a similar number of times in the same
subset of the partition. It is clear that, as 𝑛 increases, unless some symmetry
implies that some states should have the same probability, the degeneracies
between states will be lifted because all states will be observed a sufficiently
different number of times. This series of successive symmetry breaking events
as 𝑛 increases, is equivalent to phase transitions in physics, as the temperature
decreases, according to the analogy discussed above.

20.3.3 MinimumDescription Length

Conclusions very similar to those of Bayesian Model Selection, can be drawn
from a seemingly very different perspective, that of Minimum Description
Length. The problem is the following: Alice chooses a value of 𝜃, draws 𝑛 i.i.d.
samples from 𝑓(𝑥|𝜃) and send them over to Bob. Before receiving 𝑋, he has
to make enough space available on his hard drive. Bob does not know 𝜃 but
he knows that the sample 𝑋 is drawn from 𝑓(𝑥|𝜃). How much space should
he reserve?

If Bob knew the distribution 𝑃(𝑋) he could store efficiently the data in
− log 𝑃(𝑋) bits. If he could see the data before deciding how much space
to reserve, then he could compute the MLE 𝜃̂ and use 𝑃(𝑋) = 𝑓(𝑋|𝜃̂(𝑋))
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for coding the data, so he would need −𝑛ℒ(𝜃̂) bits. However he has to take
this decision before seeing the data. There are several equivalent ways to
see the problem: one is to ask Alice to send the parameters 𝜃 before making
the decision. Then Bob should set aside enough space to store 𝜃 besides the
space −𝑛ℒ(𝜃) needed to store 𝑋. But then Bob would need to know what is
the distribution 𝑝0(𝜃) from which Alice has drawn 𝜃, which looks like the
problem of choosing a prior.

A different solution is given by assuming that Bob wants to avoid at all
cost to end up in a situation where he would not have enough space. To play it
safe, he will assume that, whatever 𝑃(𝑋) he chooses to encode the data, Alice,
knowing it, will choose the worst possible sample 𝑋. Knowing this, Bob will
choose the 𝑃(𝑋) that minimises the amount of disk space he has to reserve.
This problem can be formalised by introducing the regret of 𝑃 for 𝑋

ℛ(𝑋, 𝑃) = − log 𝑃(𝑋) + log 𝑓(𝑋|𝜃̂)

which is the difference between the number of bits used by Bob, if he adopts
the code 𝑃(𝑋) and the minimal possible coding cost − log 𝑓(𝑋|𝜃̂). Then the
MDL code is

𝑃̄ = argmin
𝑃

max
𝑋

ℛ(𝑋, 𝑃).

The solution to this minimax problem turns out to be surprisingly simple:

𝑃̄(𝑋) =
𝑓(𝑋|𝜃̂(𝑋))

∑

𝑋
′ 𝑓(𝑋

′
|𝜃̂(𝑋

′
))

which is called the normalised maximum likelihood. The number of bits
needed by Bob are

− log 𝑃̄(𝑋) = − log 𝑓(𝑋|𝜃̂(𝑋)) + log
∑

𝑋
′

𝑓(𝑋
′
|𝜃̂(𝑋

′
)) (20.37)

The second term must be equal to the additional disk space Bob would need
to store the parameters 𝜃̂. The best model should be the one that allows for
the most concise description, i.e. with the minimal value of − log 𝑃̄(𝑋).

In order to estimate the second term of Eq. (20.37), let us assume that
𝑓(𝑥|𝜃) belongs to an exponential family (so the Hessian of the likelihood is
given by the Fisher Information) and consider the integral

∫ 𝑑𝜃
√
det 𝐽(𝜃)𝑓(𝑋|𝜃) ≃ (

2𝜋

𝑛
)

𝑑∕2

𝑓(𝑋|𝜃̂(𝑋))
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where we used saddle point integration. Now summing over 𝑋 and taking the
logarithm one finds

log
∑

𝑋
′

𝑓(𝑋
′
|𝜃̂(𝑋

′
)) ≃

𝑑

2
log

𝑛

2𝜋
+ log ∫ 𝑑𝜃

√
det 𝐽(𝜃).

The first term comes because each of the 𝑑 parameters in 𝜃̂ is know to a
precision 1∕

√
𝑛, which requires (log 𝑛)∕2 bits. In addition the parameters are

not independent, which is what the second term accounts for. So the last term
in the expression above encodes the intrinsic complexity of the model 𝑓(𝑥|𝜃).

Codes in MDL are efficient in a very precise manner: 𝑃(𝑋) provides a
generative model for samples generated as i.i.d. draws from 𝑓(𝑥|𝜃) from some
unknown 𝜃. This means that the code-length

𝓁 = −
1

𝑛

∑

𝑋

𝑃̄(𝑋) log 𝑃̄(𝑋)

achieved by MDL is the smallest possible. In order to check this idea, one can
study the large deviations of the code-length. This is discussed in Cubero et
al. [58] that finds that MDL codes sit precisely at a phase transition in terms
of the code-length. There are only distributions that encode samples with a
higher code-length, attempts to achieve a lower coding cost triggers a localisa-
tion phase transition like the ones we discussed for fat tailed distributions.

20.4 The high dimensional limit and beyond
Yet in truth there is no form that is with or without features; he
is cut off from all eyes that look for features. With features that
are featureless he bears a featured body, and the features of living
beings with their featured bodies are likewise.
(the Immeasurable Meanings Sutra, foreword to the Lotus Sutra)

All the discussion up to now has focused on the limit 𝑛 → ∞ when the
range of variability |𝜒| of the data points 𝑋 were kept fixed.

There are cases, which are of considerable current research interest, where
the data is very high dimensional. Examples range from recording of neural
activity and gene expression data to time series in economics and finance. It is
not rare that each point 𝑋𝑖 consists of a point in a 𝑑-dimensional space, where
the dimension can range in the thousands, and that the sample size 𝑛 consists
of few hundreds of data points.



352 CHAPTER 20. STATISTICAL INFERENCE

Describing these data necessarily requires models that depend on many
parameters, at least as many as the number 𝑑 of variables. Things are made
worse by the fact that, in the end, what one would like to estimate are the in-
teractions among the variables that are responsible for the observed behaviour.
Yet, if the number of variables is 𝑑, the number of possible pairwise interaction
grows with 𝑑2. The situation is even worse as in many of these systems we
have no reason to believe that pairwise interactions are the relevant ones. The
number of three body interactions grows in number as 𝑑3 etc . . . and the total
number of possible interactions among 𝑑 variables is 2𝑑 − 1. Even Big Data is
not big enough.

This is clearly a situation where the saddle point approximation used in
the previous section becomes questionable and all the results we discussed so
far cannot be applied. There are two different ways of approaching statistical
inference in these situations. The first invokes regularisation schemes that
inhibit large fluctuations of inferred parameters by constraining them. In
practice this entail introducing priors on parameters. For example, 𝐿2 reg-
ularisation correspond in maximising an objective function that is a linear
combination of the log-likelihood and the sum of squares of the parameters.
This implicitly corresponds to assuming a Gaussian prior distribution on
parameters.

A different approach is that of resorting to dimensional reduction schemes,
such as principal component analysis (PCA) or data clustering. PCA aims at
identifying directions in the 𝑑 dimensional space along which the data exhibit
a significant variation. In its simplest form, these directions correspond to the
eigenvectors of the largest eigenvalues of the covariance matrix.

Data clustering aims at mapping each point 𝑋 of the sample to a discrete
variable 𝑠 = 1, … , 𝑆, which is the label of the cluster to which point 𝑋 belongs.
Themapping𝑋 → 𝑠 aims at grouping similar points in the same cluster, where
similarity is defined in terms of a distance between points 𝑋𝑖 in the sample.
For the same data, there is a large choice of data clustering methods, based
on different distances and algorithms. Which of these methods should one
choose?

Any regularisation, dimensional reduction or data clustering approach
implicitly entail some assumptions on the data. For example, 𝐿2 regularisation
implies a Gaussian prior, as mentioned above, and PCA implicitly assumes a
Gaussian generative model because the method is based on pairwise statistics.
These may be strong hypotheses in the high dimensional regime, which may
be uncontrollable or arbitrary specially in case where the generative model of
the data is completely unknown. Furthermore, statistical inference in the high
dimensional limit is strongly affected by computational limits, that in many
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cases limit the choices to algorithms. Algorithms that require computational
times that scale as the square of the dimensionality or of the number of data
points are often already unaffordable.25

The theory discussed in these lecture notes may provide a critical analysis
of what assumptions we are projecting on the data when using one or the
other method of data analysis.

20.5 Beyond statistical inference: learning and
intelligence

All the approaches discussed thus far do not address the fundamental issue of
what learning actually is. All the problems we discussed define learning at the
outset, providing a solution in terms of an optimisation problem. Learning is a
fundamental feature of living beings. A fundamental aspect of it is that it must
be possible to identify “interesting” patters in the data before understanding
why they are interesting. Furthermore it must be possible to do so on the
basis of very little data. This is possible because uninteresting data (noise)
is described by maximum entropy distribution and, as such, it is detectable.
This leads to a notion of learning intended as “making sense of data that
make sense” that has been developed on the basis of a notion of relevance
(see e.g. [36]). This goes well beyond the material discussed in this lecture
notes, but it makes sense to discuss how far the landscape of concepts we have
discussed thus far may bring us in addressing fundamental issues in cognition.
Indeed David Marr [55] has argued that the conceptual underpinnings of
cognitive functions are independent of whether they are implemented in-
silico or in a biological brain. If these is true, these functions should be based
on principles of information theory and statistics.

It must be said at the outset that one of the main hurdles in this venture
is that a precise definition of concepts such as awareness, intelligence or
consciousness is still lacking.26 While these concepts may be hard to define
in general, it may be easier to define them within the limited scope of some
simple models. Therefore, following Marr, one can address these questions
studying simple artificial neural network models trained on complex data, by
dissecting their internal states.

25Further computational issues arise when the inference problem involves non-convex
optimisation problems. In these cases, inference may turn out to be a computationally hard
problem. Issues of this type arise in the high noise regime of signal detection problems, see
e.g. [30].

26Until recently, we relied on Turing’s test as an operational definition of intelligence. The
advent of large language models has shown all the limits of this definition.
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For example, an absolute, quantitative notion of relevance can distinguish
systems that “know” from those that “do not know”. Those that do not know,
like systems in statistical mechanics, have an internal state consistent with
the maximum entropy principle. The internal state of systems that know
should instead be described by states of maximal relevance. If the relevance
of the internal state of a system can be measured, then it can also be measured
by the system itself, leading to a very rudimentary notion of awareness as
“knowing to know”. Most importantly, an information theoretic notion of
relevance would allow a system to know that it knows irrespective of what
it knows, just like the entropy measures information content irrespective of
what that information is about. What type of architectures would support
this function in a neural network? And what architecture would support an
infinite recursion of “knowing of knowing of … knowing to know”, which
may approach a primitive notion of consciousness?

As for intelligence, it has been argued that intelligent behaviour relies
on “extreme generalisation [intended as] the ability to handle entirely new
tasks that only share abstract commonalities with previously encountered
situations, applicable to any task and domain within a wide scope” [52]. This
suggests that the ability of abstraction is a prerequisite for intelligence. Find-
ing “abstract commonalities” requires a representation that may encompass
a wide variety of tasks and which, therefore, should be independent of any
task. In other words, an intelligence spanning an unbounded scope of tasks
should navigate a universal map with a metric defined in terms of “abstract
commonalities”. But how does this abstract, universal representation comes
about? This is a question which has been much debated in the context of
language. Chomsky has convincingly shown that languages share a common
structure — the so-called universal grammars— that entails the capacity of
infinite recursion [53] thus making it possible to generate an infinite variety
of sentences with a finite vocabulary.27 The fact that this capacity emerges
in children without exposure to much data (spoken language) has led to the
hypothesis that universal grammars need to be biologically hardwired, an
hypothesis that is not widely accepted [54] . Yet, such universal represen-
tations could emerge spontaneously in deep cortical areas which integrate
input inputs from a broad set of sources, across all sensory modalities, not just
from spoken language. While this hypothesis is hard to test in the context of
language, it is much easier to test it within simple machine learning models.
When these are trained on complex data of increasing variety one should

27The actual form of language as it is spoken or written derives from this universal gram-
mar through a series of transformations that encodes abstract semantic structures as well as
grammatical rules.
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expect the internal representations of these models to converge to universal
distributions.

I hope that the material presented in these lecture notes can help address-
ing deep questions about cognition, learning, and intelligence, in the simplest
possible models, anchoring approaches on principled theoretical frameworks
rooted in the fundamental laws of information and probability.





Chapter 21

Exercises for the second part

These exercises are of different degree of complexity, some are open ended,
but given the material discussed in the lectures, you should be able to tackle
them.

1. Imagine that O is friend with A, and A has 𝑛 friends 𝐵1, 𝐵2, … , 𝐵𝑛, each
of which is friend with 𝐶 (who is not a friend of A and O). You can draw
a graph where persons are the nodes and links are friendship. Imagine
that O is positive for a virus that can be transmitted to friends with
probability 𝑝. Compute the probability that 𝐶 gets infected. Compute it
in the case 𝑝 = 1∕2 and 𝑛 = 4.

2. Let 𝑍𝑛 = max{𝑋1, … , 𝑋𝑛} be the maximum of 𝑛 independent and iden-
tically distributed random variables 𝑋𝑖 ≥ 0 with pdf 𝑝(𝑥) = 𝛾𝑥𝛾−1𝑒−𝑥

𝛾 .
Find sequences 𝑎𝑛 and 𝑏𝑛 such that the variable 𝑌𝑛 defined by 𝑍𝑛 =
𝑎𝑛 + 𝑏𝑛𝑌𝑛 of has a non-degenerate distribution as 𝑛 → ∞. Find
𝑃{𝑌 < 𝑥}.

3. Let 𝑋 be a non-negative integer random variable with expected value
𝜆. What is your best estimate of its second moment? Imagine that you
get a sample of 𝑁 ≫ 1 i.i.d. observations 𝑋𝑖 of 𝑋 and that the sample
mean is close to 𝜆. Yet the sample second moment is twice as small as
this best prediction. What do you conclude? What if instead you find
that the sample second moment is twice as large as what you expect?

4. Consider the variable
𝑌 = 𝛼𝑋 + 𝑍

where 𝑋 and 𝑍 are independent Gaussian variables with mean zero and
unit variance. Compute the mutual information 𝐼(𝑋, 𝑌).

357
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5. Compute the large deviation function for random variables with distri-
bution 𝑝(𝑥) = 𝑒−𝑥−𝑒

−𝑥 , 𝑥 ∈ ℝ.

6. Consider the accelerated random walk 𝑆𝑛+1 = 𝑆𝑛 + 𝑛𝑋𝑛 where 𝑋𝑛 are
i.i.d. random variables that take values ±1 with the same probability
and 𝑆0 = 0. Find the value of 𝑎 for which the variable 𝑍𝑛 = 𝑛−𝑎𝑆𝑛
admits a limiting distribution. Using this show that the probability that
the accelerated random walk returns to a neighbourhood 𝑆𝑛 ∈ [−𝐾,𝐾]

of the origin infinitely often is zero (𝐾 is a finite positive integer).

7. Winning in desperate situations. Imagine you are a coach and, in the
game you are playing there are 𝑛 rounds left and your team is under by
𝑛𝛾 > 0 points. The final score of the match will be

𝑛∑

𝑖=1

𝑋𝑖 − 𝑛𝛾

in your favour, where 𝑋𝑖 is the score difference in round 𝑖 (𝑋𝑖 > 0 is in
your favor, 𝑋𝑖 < 0 if your opponent scores).

Assume that 𝑋𝑖 is i.i.d. (very unrealistic, but. . . ) drawn in each round
from the probability

𝑄𝑞(𝑥) =

⎧

⎨

⎩

0 w.p. 1 − 2𝑞

+1 w.p. 𝑞(1 − 𝜂𝑞)

−1 w.p. 𝑞(1 + 𝜂𝑞)

with 𝜂 > 0. You can choose the parameter 𝑞 ∈ [0, 1∕2]. Informally, you
can decide how much to attack or defend, but if you decide to attack
(large 𝑞) then your opponent can score more easily (𝜂 > 0).

In the end, you are interested in events 𝐸 = {
∑

𝑖
𝑋𝑖 ≥ 𝑛𝛾} in which you

win or draw the match. How would you find the best “tactics” 𝑞∗?

8. Consider a machinery that can undergo mis-functions at random times.
Thewaiting time distribution (pdf) formis-function events is 𝑝(𝜏) = 𝑒−𝜏

(i.e. mis-functions is a Poisson process). The machinery breaks down
completely when 𝑛 consecutive mis-function events occur. Estimate the
probability that the time to breakdown is larger than 𝑛𝜏̄, with 𝜏̄ ∈ ℝ+,
and 𝑛 is very large.

9. Compute the large deviation function 𝐼𝑚(𝑥̄) for random variables 𝑋𝑖 ≥
0 with distribution 𝑝(𝑥) = 𝑥𝑚−1𝑒−𝑥∕Γ(𝑚) and for binomial random
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variables 𝑃(𝑋𝑖 = 𝑘) =
(
𝑚

𝑘

)
𝑝𝑘(1 − 𝑝)𝑚−𝑘. Check that, in both cases, the

solution has the scaling form 𝐼𝑚(𝑥̄) = 𝑚𝐼1(𝑥̄∕𝑚). Why is this so?

10. Consider a randomwalk𝑆𝑛 = 𝑋1+𝑋2+…+𝑋𝑛where the steps𝑋𝑖 are i.i.d.
random variables with pdf 𝑝(𝑥) = 1

4
𝑒−

√
|𝑥| for 𝑥 ∈ (−∞,∞). Consider

the limit of 𝑍(𝑡) =
√
𝑑𝑡𝑆𝑛=𝑡∕𝑑𝑡 when 𝑑𝑡 → 0. Is the random curve

so obtained continuous? Consider now random walks which attain
the value 𝑆𝑁 = 𝑣𝑁 and show that a continuous time limit can now be
achieved when𝑁 = 𝑇∕𝑑𝑡 → ∞, for the function 𝑍̃(𝑡) = 𝑑𝑡𝑆𝑛=𝑡∕𝑑𝑡 when
𝑑𝑡 → 0 (𝑡 ≤ 𝑇). Draw a typical realisation of 𝑍̃(𝑡) for 𝑡 ∈ [0, 𝑇]. What
would this graph look like if instead 𝑋𝑖 where i.i.d. Gaussian variables
with mean zero and unit variance?

11. Consider the large deviations of sums of uniform random variables (i.e.
𝑝(𝑥) = 1 for 0 ≤ 𝑥 ≤ 1 and 𝑝(𝑥) = 0 otherwise). Estimate the behavior
of the Cramer function 𝐼(𝑥̄) for i) 𝑥̄ ≈ 1∕2, ii) 𝑥̄ ≈ 0 and iii) 𝑥̄ ≈ 1.

12. Let there be 𝑛 + 1 boxes labeled 𝜔 = 0, 1, … , 𝑛, with 𝑛 even. One of
the boxes contains a prize, the others are empty. The probability that
the prize is in 𝜔 = 0 is 𝑝 whereas the probability that it is in any other
box is (1 − 𝑝)∕𝑛.You have the options to open the box 𝜔 = 0 or to open
simultaneously all boxes 𝜔 > 𝑛∕2. Show that the option that gives you
more information on where the price is not always the most convenient
one. Show that if 𝑛 > 𝑛∗(𝑝) the second option is more informative than
the first, and find 𝑛∗(𝑝). Show that for 𝑝 = 1∕(𝑛 + 1) the second option
is always more informative. Show that, under one of two options, the
uncertainty on where the prize is can increase, if 𝑛 > 𝑛̄(𝑝), and find
𝑛̄(𝑝).

13. How many bits do you need to specify a Gaussian random variable with
mean 𝜇 and variance 𝜎2 to a precision of 𝑛 bits? Notice that the result
depends on 𝜎 but not on 𝜇. Yet the binary representation of a Gaussian
variable with 𝜇 = 104 up to precision ∆, is very likely to contain more
bits than aGaussian variablewith𝜇 = 10. Can you explain this apparent
paradox?

14. Compute the differential entropy for amulti-dimensional Gaussianwith
mean 𝜇⃗ and covariance Cov[𝑋𝑖, 𝑋𝑗] = 𝐴𝑖,𝑗.

15. Show that, in the case of Bernoulli trials, the number of successes is a
sufficient statistics for the probability 𝑝 of success. What is a sufficient
statistics for the Poisson distribution?
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16. Blackwell-Rao estimator: let 𝑋̂ = (𝑋1, … , 𝑋𝑛) be a sample of i.i.d. draws
from a Poisson distribution with parameter 𝜆. We want to estimate the
probability 𝑒−𝜆 that 𝑋𝑛+1 = 0. A very rough unbiased estimator is 𝛿 = 1

if 𝑋1 = 0 and 𝛿 = 0 otherwise. This is not a consistent estimator but it
is unbiased. In order to get a better estimator, Blackwell-Rao theorem
suggests to look for a sufficient statistics 𝑇 for the unknown parameter
and to consider the estimator 𝛿𝐵𝑅(𝑇) = 𝔼 [𝛿|𝑇]. In the present case,
a sufficient statistics for 𝜆 is

∑𝑛

𝑖=1
𝑋𝑖. Compute the Blackwell-Rao im-

proved estimator 𝛿𝐵𝑅 and show that it is consistent (in fact, since 𝑇 is
complete and 𝛿 is unbiased, Lehmann-Scheffé theorem implies that 𝛿𝐵𝑅
is the unique minimum variance unbiased estimator).

17. Among 𝑛 objects at most one of themmay be lighter or heavier. Given a
balance find an upper bound to the number of weighings necessary for
finding the lighter or heavier object, it it exists. For 𝑛 = 12 what would
be the optimal first weighing?

18. Let 𝑝(𝑠) = 𝑃{𝑆 = 𝑠} be the probability distribution of a discrete random
variable 𝑆 ∈ 𝒮 with |𝒮| < +∞. Mixing this distribution with that of a
deterministic variable taking value 𝑠0 ∈ 𝒮 yields the distribution

𝑝𝛼(𝑠) = (1 − 𝛼)𝑝(𝑠) + 𝛼𝛿𝑠,𝑠0 , 𝛼 ∈ [0, 1]

Show that the entropy of the new variable 𝑆′ described by this distribu-
tion is given by

𝐻[𝑆′] = (1 − 𝛼) [𝐻[𝑆] − ℎ(𝑝(𝑠0))] + ℎ(𝑞) ,

ℎ(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥)

where 𝑞 = 𝛼 + (1 − 𝛼)𝑝(𝑠0) and 𝐻[𝑆] is the entropy of the original
variable 𝑆 (measured in nats). Show that, for sufficiently small 𝛼,𝐻[𝑆′]
increases if 𝑝(𝑠0) < 𝑒−𝐻[𝑆].

19. Drawing with and without replacement. An urn contains 𝑟 red,𝑤 white,
and 𝑏 black balls. Which has higher entropy, drawing 𝑘 ≥ 2 balls from
the urn with replacement or without replacement? Set it up and show
why.

20. Let 𝑋,𝑌 ≥ 0 be two random variables with joint distribution density
𝑝(𝑥, 𝑦) = 𝐴𝑥𝜃𝑒−𝑥−𝑥𝑦. Compute the normalization constant and find the
interval of 𝜃 where this is a well defined probability density. Compute
the mutual information between 𝑋 and 𝑌.
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21. Mutual information and copulas: given two random variables𝑋,𝑌 with
joint pdf 𝑝(𝑥, 𝑦) and distribution

𝑃(𝑥, 𝑦) = ∫

𝑥

𝑑𝑥′ ∫

𝑦

𝑑𝑦′𝑝(𝑥′𝑦′)

The marginal distributions are

𝑃𝑥(𝑥) = ∫

𝑥

𝑑𝑥′ ∫ 𝑑𝑦′𝑝(𝑥′𝑦′), 𝑃𝑦(𝑦) = ∫ 𝑑𝑥′ ∫

𝑦

𝑑𝑦′𝑝(𝑥′𝑦′).

the copula function is defined by the identity1

𝑃(𝑥, 𝑦) = 𝐶(𝑃𝑥(𝑥), 𝑃𝑦(𝑦))

The idea is that the transformation (𝑋, 𝑌) → (𝑈 = 𝑃𝑥(𝑋), 𝑉 = 𝑃𝑦(𝑌))

maps themarginal densities to uniform ones so the distribution𝐶(𝑈,𝑉)
contains information on the statistical dependence of 𝑋 and 𝑌 that is
independent of the marginal distributions. Show that

𝐼(𝑋, 𝑌) = 𝐷𝐾𝐿(𝐶, 𝑄)

where 𝑄(𝑢, 𝑣) = 𝑢𝑣 is the uniform distribution in [0, 1]2. Discuss the
result. Generalize the result to 𝑛 > 1 random variables 𝑋1, … , 𝑋𝑛.

22. Let 𝐗 = (𝑋1, … , 𝑋𝑁) be a vector of random variables whose marginal
distributions 𝑝(𝑥𝑖) are all Gaussian with zero mean and unit variances.
Prove that

𝐼(𝑋1, … , 𝑋𝑁) ≥ −
1

2
log det 𝐶̂

where 𝐶̂ is the covariance matrix with elements 𝑐𝑖,𝑗 = 𝔼
[
𝑋𝑖, 𝑋𝑗

]
. Notice

that any random variable 𝑋̃𝑖 can be transformed into a Gaussan variable
𝑋𝑖 = 𝜙(𝑋̃𝑖) by a suitable transformation. Then these bounds can be
used to determine instances where variables have non-trivial statistical
dependencies. For more information, see [51].

23. Let 𝑝Σ(𝐱) be the 𝑁 dimensional multivariate Gaussian distribution
with zero average, unit variance and correlation matrix Σ. Show that

𝐷𝐾𝐿(𝑝Σ′||𝑝Σ) =
1

2
[log

detΣ

detΣ′
+ Tr(Σ−1Σ′) − 𝑁]

1See R. B. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics (New York:
Springer, 1999) or some other standard text for an introduction to copulas.
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24. Consider a random rectangular box in 𝑑 dimensions. Each side 𝑋𝑖 is an
i.i.d. random variable with uniform distribution in [0, 1] (𝑖 = 1, … , 𝑑).
What is the expected value of the volume of the random box? What is
the side 𝓁 of the hypercube in 𝑑 dimensions that has the same volume
of the random box, in the limit 𝑑 → ∞? How big can the radius 𝑟𝑑 of an
hyper-sphere that can be contained in the random box be, for 𝑑 ≫ 1?

25. Optimal binning: imagine you have a sample 𝑋 = (𝑋1, … , 𝑋𝑁) of 𝑁
observations of a random variable 𝑋 with unknown pdf 𝑝(𝑥) with sup-
port on [0, 1]. In order to estimate 𝑝(𝑥), you divide the interval in 𝑚
bins of size 1∕𝑚. What is the optimal number of bins𝑚 if you want to
minimise the relative uncertainty on the point (𝑥, 𝑝(𝑥)) of the graph of
the pdf? (hint: having𝑚 small gives a lot of precision on the estimate
of 𝑝 but a poor resolution on 𝑥, large𝑚 gives high resolution of 𝑥 but
large errors in 𝑝.)

26. Let𝑋𝑖 be the 𝑥 coordinate of the 𝑖th particle of an ideal gas at temperature
𝑇 in a cubic box of size one. Now imagine to set a wall at position
𝓁 ∈ [0, 1] perpendicular to the 𝑥 direction and let 𝑌 be the number
of particles to the left of it. Depending on 𝑌 the wall will experience
unequal pressures from the left and from the right. If 𝑌 is known the
force that results from this difference in pressure can be used in order
to perform work.2

Show that the expected value of the work done by the system in the
isothermal expansion of the gas3 is equal to

𝔼 [𝑊]

𝐾𝐵𝑇
= 𝑁𝐼(𝑋1, 𝑌).

Show that, in this case

𝑁∑

𝑖=1

𝐼(𝑋𝑖, 𝑌) ≤ 𝐼(𝑋, 𝑌) = 𝐸 [log
𝑝(𝑋|𝑌)

𝑝(𝑋)
]

so that 𝔼 [𝑊] ≤ 𝐾𝐵𝑇𝐼(𝑋, 𝑌), which generalises the second law of ther-
modynamics to cases where information on the microscopic state of a
system is available.

2This relation between information and work in thermodynamics has been first epitomised
in Maxwell’s demon, a creature that observing the velocities of particles in a gas can open and
close a small gate and create free energy differences that can be used to perform work.

3The work differential is given by 𝑑𝑊 = 𝑃𝑑𝑉 where 𝑃 = 𝑛𝐾𝐵𝑇∕𝑉 is the pressure of an
ideal gas and 𝑉 is its volume.
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When 𝑁 = 1 the work extracted is precisely equal to 𝐾𝐵𝑇 times the
information that the measurement 𝑌 gives on the microscopic state 𝑋
of the gas. When 𝑁 > 1 not all the information 𝐼(𝑋, 𝑌) extracted from
the measurement can be used to perform work.

27. Consider two random variables 𝑋,𝑌 = 0,±1, with 𝜇(𝑋 = ±1) = 𝜇(𝑌 =

±1) = 𝜇, 𝜇(𝑋 = 0) = 𝜇(𝑌 = 0) = 1 − 2𝜇 and 𝐸[𝑋𝑌] = 0. Find
the distribution 𝑝(𝑋, 𝑌) with a given mutual information 𝐼(𝑋, 𝑌) = 𝐼0.
How does the distribution with maximal 𝐼(𝑋, 𝑌) looks like?

28. Chernoffbound: in hypothesis testing, let𝑋 ∈ {0, 1} be a randomvariable
that has distribution
𝑃{𝑋 = 1|𝐻1} = 𝑝 and 𝑃{𝑋 = 0|𝐻1} = 1 − 𝑝 under hypothesis𝐻1 and
𝑃{𝑋 = 1|𝐻2} = 𝑞 and 𝑃{𝑋 = 0|𝐻2} = 1 − 𝑞 under hypothesis𝐻2.
Compute 𝜆∗(𝑝, 𝑞) and check that this satisfies the symmetry 𝜆∗(𝑝, 𝑞) =
1 − 𝜆∗(𝑞, 𝑝). Why is this so?

29. Imagine that vaccines are being developed to contrast an ongoing pan-
demics. Let’s assume that a vaccine is efficient if a subsequent blood
test reveals the presence of antibodies with high probability 𝑝. If in-
stead the vaccine is not efficient, antibodies are detected with a baseline
probability 𝑞. Can you help the health authorities to decide how many
people should be tested in the trial phase, in order to conclude that the
vaccine is efficient with high confidence?

30. Bias in the MLE estimate of the entropy. Let 𝑋1… ,𝑋𝑛 be 𝑛 i.i.d. draws
from a distribution 𝑝𝑥 for 𝑥, 𝑋𝑖 ∈ 𝜒 in a finite set. The Maximum
Likelihood Estimate (MLE) of 𝑝𝑥 is 𝑝̂𝑥 = 𝑘𝑥∕𝑛 where 𝑘𝑥 is the number
of 𝑋𝑖 = 𝑥. Show that the MLE estimate of the entropy

𝐻̂ = −
∑

𝑥∈𝜒

𝑝̂𝑥 log 𝑝̂𝑥

is a biased estimator of the entropy

𝐻[𝑝] = −
∑

𝑥∈𝜒

𝑝𝑥 log 𝑝𝑥

in the sense that

𝔼
[
𝐻̂
]
− 𝐻[𝑝] ≃ −

|𝜒| − 1

2𝑛
+

1

12𝑛2

⎡
⎢

⎣

1 +
∑

𝑥∈𝜒

5

𝑝𝑥

⎤
⎥

⎦

+
1

12𝑛3

⎡
⎢

⎣

∑

𝑥∈𝜒

9

𝑝2𝑥

−
∑

𝑥∈𝜒

5

𝑝𝑥

⎤
⎥

⎦

+ 𝑂(𝑛−4)
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Hint: use repeatedly the formula

log 𝑘 = ∫

∞

0

𝑑𝑢

𝑢

[
𝑒−𝑢 − 𝑒−𝑘𝑢

]
.

31. Differential entropy estimates: let 𝑥1, … , 𝑥𝑁 be a sample of𝑁 i.i.d. draws
from a pdf 𝑝(𝑥). Show that an estimate of the differential entropy can
be given by

ℎ[𝑝] = −∫ 𝑑𝑥𝑝(𝑥) log 𝑝(𝑥) ≈
1

𝑁 − 1

𝑁−1∑

𝑖=1

log(𝑥𝑖+1 − 𝑥𝑖) + log𝑁.

32. Compute the differential entropy of the random variable 𝑋 ≥ 𝑒 with pdf
𝑝(𝑥) = 1∕[𝑥(ln 𝑥)2] for 𝑥 ≥ 𝑒 and 𝑝(𝑥) = 0 for 𝑥 < 𝑒.

33. Coarse graining. Let 𝑝(𝑥) and 𝑞(𝑥) be two distributions for the discrete
randomvariable𝑋 ∈ 𝜒, where |𝜒| < +∞ takes a finite number of values.
Let 𝑍 = 𝑓(𝑋) be a random variable that takes values on a set 𝒵, with
|𝒵| ≤ |𝜒|. The transformation 𝑓 ∶ 𝜒 → 𝒵 generates a representation
of 𝑋 that eliminates some details, because different values of 𝑋 can be
mapped into the same value of 𝑍. In this sense it is a coarse graining.

Let 𝑝̃(𝑧) =
∑

𝑥∶𝑓(𝑥)=𝑧
𝑝(𝑥) and 𝑞(𝑧) =

∑

𝑥∶𝑓(𝑥)=𝑧
𝑞(𝑥) be the distribu-

tions of 𝑍. Show that 𝐷𝐾𝐿(𝑝̃||𝑞) ≤ 𝐷𝐾𝐿(𝑝||𝑞). In loose words, the two
distributions 𝑝 and 𝑞 approach each other under coarse graining.

34. Compute the Cramer function for a sequence 𝑋 of i.i.d. Gaussian ran-
dom variables with unit variance and mean which, for all of them, is
either 𝔼 [𝑋] = 𝜇 with some probability 𝜈, or −𝜇 with probability 1 − 𝜈.
Compute the function

𝜙̄(ℎ) = lim
𝑛→∞

1

𝑛
log 𝔼

[
𝑒ℎ(𝑋1+…+𝑋𝑛)

]

and its Legendre transform 𝐼(𝑥̄). What is the distribution density 𝑝(𝑥|𝑥̄)
of the variables, conditional to the value of 𝑥̄?

35. Use the identity

𝑒
𝛽𝐽

2𝑛
𝑀2

=

√
𝛽𝐽𝑛

2𝜋
∫

∞

−∞

𝑑𝑚𝑒
−
𝛽𝐽𝑛

2
𝑚2+𝛽𝐽𝑚𝑀
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with𝑀 =
∑

𝑖
𝑋𝑖 and compute the partition function

𝑍(𝛽) =
∑

𝑋

𝑒−𝛽𝐸(𝑋)

for the mean field Ising model. Recover the equation of state Eq. (19.25).

36. Compute Jeffrey’s prior for the Poisson and the Gaussian distribution.

37. Compute Jeffrey’s prior for the binary distribution 𝑃(𝑋 = 1) = 𝑝 =

1−𝑃(𝑋 = 0). Show that the unconditional distribution of the sufficient
statistics 𝑇(𝑋) = 𝑋1 + … + 𝑋𝑛 for a sample 𝑋 of 𝑛 i.i.d. draws, under
Jeffrey’s prior, obeys an arc-sine law for 𝑛 ≫ 1. What is the distribution
of 𝑇 instead under Laplace’s prior 𝑝0(𝑝) = 1 for 𝑝 ∈ [0, 1]?

38. Let ∈ ℝ be a random variable with distribution

𝑓(𝑥|𝜃) =
1

𝜎
𝑒
𝑔
(
𝑥−𝜇

𝜎

)

(21.1)

where 𝜃 = (𝜇, 𝜎) and 𝑒𝑔(𝑧) is a pdf such that

∫

∞

−∞

𝑑𝑧𝑒𝑔(𝑧)𝑧 = 0, ∫

∞

−∞

𝑑𝑧𝑒𝑔(𝑧)𝑧2 = 1 .

Check that the expected values of the scores vanish. Show that the
Fisher Information is given by

𝐽𝜇,𝜇 =
1

𝜎2
𝔼 [

(
𝑔′(𝑍)

)2
] , 𝐽𝜇,𝜎 =

1

𝜎2
𝔼 [𝑍

(
𝑔′(𝑍)

)2
] ,

𝐽𝜎,𝜎 =
1

𝜎2
{𝔼 [

(
𝑍𝑔′(𝑍)

)2
] − 1}

and therefore Jeffrey’s prior is proportional to 𝑝𝐽(𝜇, 𝜎) ∝ 1∕𝜎2. Show
also that, if 𝑔(𝑧|𝜗) depends on other parameters 𝜗 ∈ ℝ𝑑, then 𝐽𝜇,𝜗𝑎 ∝
𝜎−1 and 𝐽𝜗𝑎 ,𝜗𝑏 is independent of 𝜇 and 𝜎. Conclude from this that
Jeffrey’s prior is independent of 𝜇 and proportional to 𝜎−2 for all distri-
butions of the form (21.1). Discuss the result in terms of dimensional
analysis.

39. Let 𝑝(𝜇, 𝜎|𝑋) be the posterior distributions of the parameters of a Gaus-
sian

𝑝(𝑥|𝜇, 𝜎) =
1

√
2𝜋𝜎

𝑒
−
(𝑥−𝜇)2

2𝜎2
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given a sample 𝑋 = (𝑋1, … , 𝑋𝑛) of 𝑛 i.i.d. observations.
Show that assuming the uninformative prior 𝑝0(𝜇, 𝜎) = 𝑐∕𝜎, the poste-
rior 𝑝(𝜇, 𝜎|𝑋) is also improper for 𝑛 = 1.
Show that for 𝑛 ≥ 2 provided 𝑋1 ≠ 𝑋2, the posterior is instead a proper
probability density.
Show that the same is true under Jeffrey’s prior.4

40. Model selection in the limit of uninformative priors.
Let 𝑋 = (𝑋1, … , 𝑋𝑛) be a sample of 𝑛 points that we know have a
Gaussian distribution. In order to decide whether the correct
distribution has mean 𝔼 [𝑋] = 0 and variance 𝜎2 or a mean 𝔼 [𝑋] = 𝜇

and variance 𝜎2, we can assume that 𝜇 has a prior distribution

𝑝0(𝜇) =

√
𝜖

2𝜋
𝑒
−
𝜖

2
𝜇2

and that 𝜎 has a prior 𝑝0(𝜎) in both models.
Show that in the limit 𝜖 → 0 of total a priori ignorance about 𝜇, the
model with 𝔼 [𝑋] = 0 will always be selected, in a Bayesian model
selection scheme. Interpret the result.

Hint: it is possible to show that, when 𝑝0(𝜎) = 𝑐∕𝜎, to leading order in
𝜖 the model with 𝜇 ≠ 0 is more likely than that with 𝜇 = 0 when

𝜖 >
𝑛

𝑥2
(1 −

𝑥̄2

𝑥2
)

𝑛

2

where 𝑥̄ = 1

𝑛

∑

𝑖
𝑋𝑖 and 𝑥2 =

1

𝑛

∑

𝑖
𝑋2
𝑖
. In loose words, only if the initial

uncertainty on 𝜇 is finite it is possible to conclude that 𝜇 ≠ 0.

41. What is the probability that democracy works in a random population?
Consider a population of 𝑁 individuals with preferences over three
choices, 𝐴, 𝐵 and 𝐶. Let the preference ranking over the alternatives

4The intuition about this result is the following. A state of complete ignorance about 𝜇 is
one where an infinite number of bits would be needed to specify 𝜇 to any precision ∆, because
|𝜇| can be arbitrarily large. Similarly, an infinite number of bits would be needed to specify 𝜎 to
any precision∆. Whenwe see two data point, we can estimate the scale of both 𝜇 ≈ (𝑋1+𝑋2)∕2

and 𝜎 ≈ 𝑋1 −𝑋2. This removes the divergencies and yields a state of knowledge that is a finite
number of bits away from the knowledge of 𝜇 and 𝜎 to a finite precision. One may conjecture
that those associated to scale and location are the only primitive divergencies in the state of
knowledge about a real random variable 𝑥. Then two points should be sufficient to make the
posterior derived from Jeffrey’s prior finite, whatever is the distribution 𝑓(𝑥|𝜃), no matter how
many parameters it depends on.
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be random and independent for each individual. Consider pairwise
majority voting among the alternatives, e.g. if the number of individuals
which prefer 𝐴 to 𝐵 is larger than 𝑁∕2 that the majority prefers 𝐴 to 𝐵.
In the limit 𝑁 → ∞, find the probability that pairwise majority voting
is transitive, i.e. that if the majority prefers 𝐴 to 𝐵 and 𝐵 to 𝐶, then the
majority also prefers 𝐴 to 𝐶.

42. Let 𝐬 = (𝑠1, … , 𝑠𝑛) be a string of 𝑛 bits (𝑠𝑖 = 0, 1). Consider the distribu-
tion

𝑝(𝐬) =
1

𝑍
𝑒−𝑔𝐸(𝐬), 𝐸(𝐬) = max{𝑖 ∶ 𝑠𝑖 = 1}

In words, the function 𝐸 returns the largest index 𝑘 such that 𝑠𝑘 = 1

(and 𝐸(𝐬) = 0 if 𝑠𝑖 = 0 for all 𝑖). Notice that any 𝐬with 𝑠𝑘 = 1 and 𝑠𝓁 = 0

for all 𝓁 > 𝑘 has probability 𝑝(𝐬) = 𝑒−𝑔𝑘∕𝑍, where 𝑍 is a normalisation
constant. Compute the partition function 𝑍, the expected value of 𝐸
and its variance. Show that in the limit 𝑛 → ∞ this model features a
phase transition.

43. Let 𝑥̂ = (𝑥1, … , 𝑥𝑛) be a sample of variables drawn from an exponential
distribution 𝑝(𝑥) = 𝜃𝑒−𝜃𝑥. How big do you expect 𝑛 should be in
order to know the parameter 𝜃 > 0 to a precision ∆? i) give a heuristic
argument for an estimate of the asymptotic behavior of 𝑛 with ∆ for
∆ ≪ 1, ii) describe the calculation that you would do to prove this result
iii) do the calculation. [There are different ways to find the solution. If
yours needs a prior on 𝜃, use 𝑝0(𝜃) = 𝛼𝑒−𝛼𝜃]

44. The 𝑍-channel: let 𝑋,𝑌 ∈ {0, 1} be two binary random variables. Let
𝑃{𝑌 = 0|𝑋 = 0} = 1 and 𝑃{𝑌 = 1|𝑋 = 1} = 1 − 𝜖. This is called the
𝑍-channel in channel coding. You can think of 𝑋 as being the input of
a noisy communication channel that gives 𝑌 as output. Hence when
the input is 𝑋 = 0 it is transmitted without error, whereas when 𝑋 = 1

the input may be corrupted by noise. Show that when the distribution
of 𝑋 is such that 𝐼(𝑋, 𝑌) is maximal, 𝑋 = 1 should be more probable
than 𝑋 = 0.
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