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Overview

The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve. We should be grate-
ful for it and hope that it will remain valid in future research
and that it will extend, for better or for worse, to our pleasure,
even though perhaps also to our bafflement, to wide branches of
learning. (E. Wigner [1])

These lecture notes are divided in two parts. The first part will focus on
modelling, i.e. how to translate a real world problem, into a mathematical
statement, and on the tools to derive from this a quantitative answer. In
particular, we shall see that modelling is often a reduction of the problem to
a paradigmatic problem of probability theory (e.g. drawing balls from urns,
distributing balls in boxes, random walks, etc) for which one can develop a
theory and an intuition. The second step, often deals with counting, so a major
part of the first part of the course will be about learning to count. We shall
mostly rely on the definition of probability as given by Kolmogorov axioms.
This definition, however, is axiomatic and it does not tell us anything about
what probability really is. A more modern derivation of probability — as the
language that should be used to extend logic to discuss about the plausibility
of statements — will be given following the book of E. T. Jaynes [2], to which
we shall refer as JAYNES.

For the rest, this first part of the course is heavily based on the book by
Feller [3], to which we shall refer as FELLER.

The second part of the course will focus on more advanced subjects. First
we will delve into the relation between probability and information theory.
Second we’ll focus on asymptotic properties. These are key to understanding
the collective behaviour of real systems. We will realise that a typical behaviour
emerges with its rules and laws. The Central Limit Theorem is probably the
clearest example that formalises the idea that the collective (or large scale)

xiii



behaviour of a system, under specific assumptions, may be independent of
microscopic details. This is precisely the same logic of the more advanced
applications of the renormalisation group in statistical physics.

We shall then focus on atypical behaviour, i.e. the most likely way in which
very unlikely events, such as large deviations, occur.

We shall find that these concepts provide an unifying language' for a broad
range of different disciplines, from statistical physics in physics, to statistical
inference and computer science (coding and complexity theory). Phenomena
such as phase transitions manifest in a different way in different disciplines,
but they build on the same theoretical foundations, though they are discussed
with a different language. The main goal of the second part of the course is to
discuss the concepts which underlie all these fields.

The main text we shall follow in the second part is the one by Cover
and Thomas [4], to which we shall frequently refer as COVER. A further
textbook to which we shall refer is the one by Gnedenko [5], using the acronym
GNEDENKO. Some of the chapters and sections are excursions to applications
of ideas discussed in other chapters and they are marked with an asterisk *.
They may serve to gain deeper understanding and intuition.

As for the reason for this particular structure, I realised after my studies
that my understanding of many problems had suffered from the fact that I
had been taught subjects in the wrong order.? Take the concept of entropy: I
first learned about it from thermodynamic transformations in heat engines.
Then I was taught that this is a measure of volume in phase space in statistical
mechanics. But I understood what entropy really is when I studied typical
sequences, Shannon’s theorem and information theory. This also made it
clear why it is related to volume in phase space and heat, that remained
somewhat mysterious until that point. The same applies to limit theorems
or large deviation theory, a subject which is often clouded in sophisticated
mathematical language and is approached with unnecessary awe by beginners.

Probability is often regarded as a branch of mathematics. If we agree with
E. T. Jaynes, that probability is the language of science, then it should be spoken
properly by all scientists, not only by measure theorists. Much of classical
probability (and most of the books that I refer to in this course) can indeed be
understood with a rather limited knowledge of mathematics, which should

nterestingly, many non-trivial statistical phenomena can be understood in simple settings.
Having a good grasp of what happens in simple settings, such as those addressed in the
sequel, provides a guide for attacking more complex problems, besides conforming to Occam’s
prescription Frustra fit per plura quod potest fieri per pauciora.

2T was lucky enough to follow the course in probability theory given by G. Jona-Lasinio in
my undergraduate studies at the University of Rome, La Sapienza.

Xiv



be familiar to all undergraduate students who passed the basic courses in
mathematics.?

How do we learn? We feel stranger in a city where we cannot go from
A to B. We learn by turning corners and realising “ahah, I could have come
here also from this other path!” I believe the same is true for a subject. At the
beginning we start populating an empty map and with time, we start seeing the
connections. At the end we can navigate autonomously and we enjoy walking
on our own.* Surprise is a driving force in the discovery process, in which
we instinctively take beauty as a truth certificate.> Aesthetic amusement, I
believe, is what makes us dig deeper, and a relevant part of what makes us
humans.
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$Mathematics deals with proving true statements. That is almost never possible in science.
Science is about falsifiability of theories. It reduces to a disciplined method to show that
something (the prediction of a theory) is wrong, which is a much easier task. Our current
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“Walking on your own, in this course, means challenging yourself with the exercises.

5A point that is maybe best expressed by John Keats verses:

Beauty is truth, truth beauty, — that is all
Ye know on earth, and all ye need to know.



A self-critical attitude is necessary to distill true wisdom, but the wellspring
of even the most rigorous theorem lies in beliefs. We wouldn’t set out to prove
something if we didn’t believe it can be true. The beliefs that drove me in this
process have been heavily shaped by the teachings of Nichiren and by their
practice, as explained by Daisaku Ikeda, to whom goes my deepest gratitude.



Part1

Learning to count






Probability is at the basis of scientific and quantitative analysis. It for-
malises the approach with which we go from a question on a real world
problem to a quantitative estimate, a number.® The stages in this process are
the following:

Real world. The problem we are interested typically refers to a situation that
occurs in the real world. This is full of details, from the atomic compo-
sition of the entities involved up to the properties of the environment
they are immersed in. Experiments can be carried out and quantitative
measures can be taken of the relevant quantities.

A description. The problem we’re interested in is described in common
language, with a text of finite length. This description is silent about
many details of the real world and (hopefully) only concentrates on the
relevant details that are necessary to arrive at a quantitative answer.

A mathematical model. The description has to be translated in mathemat-
ical language, introducing the appropriate variables and the appropriate
assumptions.

A calculation. The solution to the problem entails a mathematical calcula-
tion. If it reproduces experimental results then we’re allowed to believe
that we reached some understanding, i.e. that the description captures
relevant ingredients and that experiments measure relevant quantities.

From the real world to mathematics

Much of physics is the science of approximation: to zeroth order, a cow is a
sphere and the only two number that suffice to describe it are its radius and
mass. To first order we can add the head and the legs, making the mathemati-
cal description more complex, and so on. The appropriate level of description
varies with the type of questions we’re interested in. Theoretical physicists
inhabit the land of spherical cows, whereas if you want to build bridges and
airplanes that fly, you need to take into account many more details. The
description of a real world situation entails innumerable details, but these
hopefully can be arranged in a hierarchy of relevance and we can cut it to
achieve the desired level of approximation. This is true in physics, but it is
by no means trivial. Take the free fall of bodies: since Galileo Galilei we
know that

SFrom this point of view, probability theory could be thought of as the theory of the theories
of everything.



a body falling from an height h takes a time t = 4/2h/g to reach
the ground, where g = 9.81m/s>.

It is definitely remarkable that there is such a specific relation between t and
h. What is more remarkable is that ¢ does not depend on any other detail. So
blue bodies fall exactly in the same manner as red bodies. There is a sharp
separation between relevant details (the height) and irrelevant ones (the color,
the smell, etc) which is non-trivial. As Wigner says [1] (read this essay!), the
fact that such precise relations exist and that they have a mathematical form is
a gift. There are two other aspects which are worth to point out in this respect.

First, not all possible questions have such sharp answers, i.e. depend on few
variables. Much of science is precisely about identifying those questions which
allow for such sharp answers. These are typically very unnatural questions,
you would rarely ask in your daily life. Imagine what Galileo’s contemporaries
were thinking of him spending his days letting objects fall from a tower.

The second aspect is that the statement above refers to a quite idealised
situation. Have you ever tried to use the relation t = 4/2h/g to measure g?
If you do, you will see that every time you get a different number. The more
you control the conditions under which you do the experiment, the more the
dispersion of the numbers you get decreases. We use the term experimental
errors to describe this fact, but there is no error in how bodies fall. The error
refers to our lack of experimental ability and to account the influence of aspects
that we deem irrelevant, as they don’t enter the relation t = y/2h/g. The
conditions under which t = 4/2h /g holds with good precision are somewhat
far from the typical ones that hold in the real world, they are quite un-natural
conditions. The second aspect, is that in the end every statement about the
real world is a probabilistic statement: the time it takes for the body to fall
will be close to 1/2h /g most of the time, i.e. with high probability.

It is important to reflect on the appropriateness of this approach as we
move our attention away from physics, to life sciences.” We'd dream to find
a cure for cancer or Parkinson’s disease. These are not questions that we
have chosen. There is no reason to believe that the occurrence of cancer
depends on few causes or variables, or that a single pill can cure it. There is
no guarantee that the same sharp separation between relevant and irrelevant
variables holds there and there may be no idealised conditions under which
this is true. Often therapies are developed and tested on model organisms
of increasing complexity, from yeast and worms, to rats and monkeys. Yet
what cures a disease in worms may not work in rats. Even quantifying the

"Indeed, even in physics there are strong coupling problems where a perturbative approach
of successively refined approximations does not work.



relevance of variables in a specific problem is an issue. In these domains, even
more, all statements are of probabilistic nature, and discipline in going from a
real world problem to a quantitative result is a key issue.

Translating a description into mathematics

Summarising, the best we can do is to develop a discipline to translate real
world problems into mathematical problems.

Kolmogorov’s axioms define a general scheme for describing a problem
in probability in a mathematically precise manner. This entails defining the
sample space — i.e. the set of all possible outcomes — and how the probability
is assigned to each of them. This is an important point which will be treated
in detail in the next lecture. For the time being, let us appeal to an intuitive
notion of what probability is.

The first step is to “read carefully” the statement of the problem, both
what is written and what is not written. Let’s illustrate this with few examples.

What is the probability of a single pair at poker?

Let’s analyse this question. In this statement there’s a lot of missing infor-
mation of three different types:

Irrelevant details. Implicitly the statement refers to a real world situation
where the game of poker is played by some players, each with different
expertise and dressed differently... the cards are of a certain brand and. ..
All these details are not contained in the description of the problem.
The answer is assumed to be the same irrespective of these details. It
means that they are irrelevant.

Common knowledge. Itis implicitly assumed that we know that poker is
played with a set of 52 cards, of 4 different groups, each numbered from
1 to 13; and that a hand at poker consists of 5 cards drawn from the 52.
We assume that a "single pair at poker” is a concept which is common
knowledge.

Implicit information. The statement does not say anything about how the
5 cards are chosen. Yet this is a relevant information. There is no
reason to believe that a particular group of 5 cards will be more or less
likely that some other group (otherwise it would have been stated in the
problem). So there is a symmetry in the problem which implies that
the probability of each group of 5 cards must be the same. This is a very
useful information, because it reduces the problem to that of counting
the number of ways in which a single pair at poker can arise.



So the probability of a single pair at poker is the fraction of all possible
hands at poker that result in a single pair. Among the (552) = 2598960 possible

8
13\ /4y (12 4
(DRIE)G) = 088240
ways to choose the 5 cards. So the probability is 0.422569.
The key lessons to learn from this exercise is i) what is written in the
statement of a problem is important, but what is not written may be even

more important and ii) in many cases computing probabilities amounts to
counting outcomes.

hands, there are

Prototype models of probability theory

What is the probability that at least two people have a birthday on
the same day of the year in a room with n people?

Again there is a lot of implicit information. In particular, there is no
information that suggests that individuals are more likely to be born in certain
days, so we shall assume that every day is equally likely as a birthday.’

There is no information about the relation among the individuals, so we
should assume that there is no relation. Knowing the birthday of Mr X does
not tell us anything on when Mrs Y was born. So the correct way to translate
our ignorance on the relation between the people is to treat their birthdays as
independent variables.!? If there were twins among the n people this would
not be true. But if this were true, it would have been specified in the statement,
so we disregard this possibility.

Finally, we should consider that one every 4 years is a leap year. We shall
neglect this fact for simplicity, and work under the approximation that every
year has 365 days. This is an approximation. Whether this is appropriate or

8There are (113) ways of choosing the number which appear twice and (*) ways of choosing

the two equal cards among the four possible ones. The other three cards must be different,
which account for the factor (132) and each of them can be of (*) possible types.

°If one looks closely at statistics this is not actually true. There are certain times of the year
when there are more newborn than in other days, depending on the geographical location.
We assume we don’t have this information, and again ignorance entails symmetry that means
equiprobability. Here what we treat as common knowledge is somewhat arbitrary. If the
question would be asked at a conference on demography probably this assumption might not
be tenable.
1Tn loose terms, there are many ways in which the birthdays of different people could be
related, but there is only one way in which they can be unrelated. If there is nothing that
suggests in which direction this relation should go in the statement of the problem, then it’s
reasonable to assume that there is no relation.



not depends on the context. It is definitely appropriate for the point we want
to make here.

With these premises, the problem becomes formally equivalent to one of
drawing at random 7 balls in 365 boxes and asking what is the probability
that at least two balls fall in the same box. There are many other problems
that can be formally mapped into problems of distributions of balls in boxes,
so it makes sense to study random distribution of balls in boxes in its own
right. Balls and boxes is the first prototype model of probability theory that we
have encountered but there are many others. In many instances, the answer
to a problem in probability entails finding ways to map it into one of these
prototype problems. We’ll see more examples below.

The answer entails counting all configurations where one or more boxes
contains two or more balls. It’s definitely easier to count the number of
configurations where no box has more than one ball and to subtract this from
the total number of ways to draw the balls. If one thinks of computing this
number as the number of ways we can accommodate the first ball, times
the number of ways we can accommodate the second, etc we realise that this
problem is equivalent to one of drawing n times balls from an urn with r = 365
distinguishable balls, without replacement.!! The number of ways in which
we can draw n balls from an urn of r balls without replacement is

r!

r(r—1)~(r—n+1)=(r_n)!.

The problem of counting how many possible configurations of birthdays there
can be in total, instead, is equivalent to drawing n times from an urn of r = 365
distinguishable balls with replacement, because each birthday can be chosen
to be any of the r days. So this number is " and the probability is

r!

(r—n)!

A different problem we shall discuss is how to estimate these numbers, when
n and r is large. We anticipate that this probability is of order one when
n =~ 1/r =~ 19. Drawing balls from urns with or without replacement, or with
more complicated procedures is a further prototype model of probability of
intrinsic interest.

r =, r =365

The show at a theatre in Moskow costs 5 rubles. 2n people show
up. n of them have only notes of 10 rubles, whereas the rest has

1Notice: in this further description of the problem, boxes become balls!
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Figure 1. The variable S as a function of k in different possible realisations of the
arrival of customers at the theatre.

notes of 5 rubles. The cashier initially has no notes. What is
the probability that the cashier has no change to give to some
customer?

Here the fact that the theatre is in Moscow is irrelevant, it suggests that this
exercise probably first appeared in a Russian book on probability theory. The
n people can show up in any possible order, so each of them is equiprobable.
What matters to answer the question is whether, at any time, the number of
customers with 5 rubles that have arrived up to that time is at least as large as
the number of customers with 10 rubles that have arrived so far, or not.

So the key variable is the difference S, between the customers with 5
rubles and those with 10 rubles that have arrived up to time k, i.e. when the
k™ customer has arrived. Then the problem can be conveniently represented
graphically by drawing a plot of S;, as a function of k = 1, ..., 2n. All possible
paths in this plot correspond to a different order in which customers can
arrive and there is no reason to assume that a particular path is more likely
than some other. So all paths are equally likely. A random paths with this
property is called a random walk, which is yet another cornerstone models of
probability theory.



If the cashier has no change to give at some point in time, it means that
Sk < 0forsomek = 1,...,2n. So the problem above is equivalent to computing
the probability that a random walk of 2n steps, that returns to the origin at
time 2n (because S,, = 0), never visits the negative half plane. This is a
classical problem in random walk theory that we will discuss.

Using invariance, random variables and generating functions

As an overview of the concepts that we shall discuss in the first part of the
course, consider the following problem:

Mr X checks emails every minute with probability p. He receives
on average A emails per minute. What is the probability that Mr
X finds no email the next time he checks?

The answer to this question involves a few conceptual steps that are useful
building blocks in dealing with a large number of problems.

Probability distributions. The probability that in a given minute Mr X
receives k emails is given by the Poisson distribution
/1k
P{Z =k} = Fe—’l, k=0,1,2,..

As we will see, this is the only distribution that is consistent with the (implicit)
assumption of time translation invariance (i.e. that any time is as likely as
any other time for the arrival of an email) and of independence (the arrival of
an email now does not imply that emails are more or less likely to arrive in
the near future). It is important to learn which distribution is appropriate for
which situation.

Random variables. The number of emails that Mr X finds is a random
variable N
N = Zl + ..+ ZT

where T is the number of minutes that have passed since last time he checked
emails, and Z, are the emails that arrived in the ¢t minute. Z, are also random
variables. The probability that Z, = k is the Poisson distribution discussed
above, and all Z; are independent. Indeed also T is a random variable. With
probability p it is equal to 1, with probability p(1 — p) it is equal to 2,... with
probability p(1 — p)'~! it is equal to ¢ (this is a geometric distribution).

We’re interested in the event that N = 0, that only occurs if all Z, = 0.
Decomposing the problem as in the equation above, paves the way to finding
a solution in a simple manner.
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Computing with functions. A convenient way to compute the answer is
to consider the functions

5 _ _ bS < _ ek — ,=DA
¢(s)_;P{T_t}st_ TTa= 1p(s)—kZ=:0P{Z—k}s =e

that are conveniently written as expected values: ¢(s)=E [sT | and (s)=E [sZ].
These functions are called generating functions. Then we can write

E[sN] = PT = gE[*] = E[E[s*]' | = ¢0(s)
t=1

and, after a moment of reflection, it is clear that the sought answer is given by
setting s = 0 in this expression, i.e.

p

P{N = 0} = ¢(¥(0)) = m-

)
Indeed many counting problems can be solved very efficiently by introducing
appropriately defined (generating) functions (i.e. ¢ and ¢ here). How to count
with functions will be another important subject of the first part of the course.

The aim of the first part of the course is to acquire familiarity with all the
concepts and techniques involved in the derivations above (as well as with
others), in order to be able to tackle and solve complex problems.

Exercise

Consider the following problems. Find what is the missing information
in their statements and of which type? What does "surprising” means
in the first problem?

1. "In a parking lot there are 12 places arranged in a row. A person
observes that 8 places are taken and the 4 free places are adjacent
to each other. Is this surprising?”

2. "Mr Brown has n keys. Only one of them opens the door. What is
the probability that he needs to try k of them to open the door?”

3. "What is the probability that in a family with five children, none
is a girl?"
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A safe definition of probability

Probability begins and ends with probability.

(John Maynard Keynes,
The Application of Probability to Conduct)

1.1 Chance and randomness

In the classical textbook of GNEDENKO we find a definition of probability
as “that branch of mathematics that deals with the regularities in chance
phenomena”. But what are “chance phenomena”? Are there real chance
phenomena? Is a financial crisis a chance phenomenon? And what about an
earthquake? Conversely, are there phenomena that are really deterministic?
Any experiment is to some extent affected by uncontrollable effects that we
may call “chance”. Indeed, laws of physics describe ideal situations in which
the predicted outcome only occur when a number of factors are carefully
controlled.

We believe events generally happen because of causal mechanisms, yet
we might not be able to specify or know all the conditions that are necessary
for an event A to occur.! Only if a specified set of conditions Q contains all
those ingredients that are necessary for the event A to occur, we may say that
A is certain. Since this is rarely the case, we are left with statements about the
likelihood of events under specified conditions, that take the form:

1For the moment, you can think of an event A as a statement, e.g. a description of what
happens, e.g. an earthquake of magnitude between 6.3 and 6.5 in a give period of time (e.g. next
month) and region. Likewise, we think of the conditions Q as a set of statements specifying all
the information we have on the factors potentially relevant for the event: e.g. the time series of
previous earthquakes, whether nuclear tests are going to be performed or not in that region,
levels of humidity and temperature etc.

11
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The probability of the event A given the conditions Q is p

By convention we assume 0 < p < 1.

On the other hand, “chance events” which are typical of classical probabil-
ity, such as the toss of a coin (e.g. A = {head}), are not intrinsically stochastic.
We could include in Q all those informations that allows us to solve the equa-
tion of motion of the coin from its start, and that would allow us to say exactly
whether A occurs or not. Therefore chance events exist because of our negli-
gence in the description of the problem or of our lack of information. Indeed
probability has a lot to do with information as we’ll see. But for the moment
being, let it suffice to say that in the description of any phenomena, there are
a set of conditions that we specify and control. All the rest, at finer level of
description, is what we call “random” or “chance”. Chance is a useful label to
attach to all those details that we ignore or consider irrelevant with respect to
the questions we’re interested in.

It’s important to understand what are the rules of chance, because it is
important to make sure that the predictions we derive are robust and mean-
ingful.

1.2 The concept of probability

Probability is a primitive concept. In order to see this, Marinari and Parisi [6]
offer the following reasoning: let us focus on a simple event like the occurrence
of a particular outcome in an experiment (e.g. head in coin tossing). One
might try to define the probability p of an event as the limit of the frequency
fn of its occurrence, when the experiment is repeated many times and the
number n of trials goes to infinity:

p=lim f, (1.1)
n—oo
This means that Ve > 0 there is an 7 such that Vn > 7,

|fn—pl<e. (1.2)

However this cannot be true, because the fact that f, is close to p by less than
a distance ¢ is itself a random event. However large n may be, realisations in
which the inequality (1.2) is violated are possible. So at most one can say that
such deviations become very unlikely as n gets large, i.e.

lim Prob{|f, — p| > €} = 0.
n—-oo
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Therefore Eq. (1.1) is a definition of probability which relies on the concept of
probability. Indeed probability cannot be defined in terms of other concepts.
Probability is a primitive concept. One way to deal with primitive concepts is
to give them an axiomatic definition.

We note in passing that Eq. (1.1) is a non-trivial fact, a result called the
Law of Large Numbers, that we shall derive later in the course, once we have
a proper definition of probability.

1.3 Kolmogorov’s axioms

The theory of probability is based on three objects
(Q,A,P)

« Qisthe sample space. If we are dealing with an experiment, its elements
w are all its possible outcomes. If we are dealing with a forecast for a
future time w is a possible state of the world at that time. Q can be a finite
set, or a set of countably infinite elements, or a continuum measurable
set.

« A is a o-field. In words, it is a collection of subsets E C Q of the
sample space - that are called events* — satisfying the following three
properties:

) QeA
ii) :ifA€ AthenA=Q/A €A

iii) A is closed under countable unions: this means thatif A,, A,, ... €
Athenalso A;UA,U... € A

Since A; N Ay N...= A; UA, U .., these three properties imply that A
is closed also under countable intersections.3

“Notation: If A, B C Q are two events, A U B is the union, that corresponds to points w
that either belong to A or to B. U is equivalent to the OR logical operation or to addition (+)
in mathematics. Likewise A N B is the intersection, that contains points w that belong both
to A and to B. N is equivalent to the AND logical operation or to product (X) in mathematics.
I denote by A/B the set of points w € Q that belong to A but that do not belong to B. This
operation is analogous to the difference between sets. The set A = Q/A is the complement of
set A, that includes all points w € Q that do not belong to A. The complement operation = is
analogous to the logical negation (NOT). The empty set is denoted as @ = Q.

3In all cases we will discuss A will be the family of all possible subsets of Q.
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« P is the probability measure, which is a real function defined on A

P:A-[0,1] (1.3)
AeA— PA)e|o,1] (1.4)

which satisfies the following properties

positivity : P(A) >0, VA€ A (1.5)
normalization : P(Q) =1 (1.6)
additivity : P((_J A;) = ) P(Ay), (1.7)
i i
VA, €A : Vi;éinﬂAj=ﬂ
continuity : VA; 2 A, 2 ..., A, > 0, (1.8)
then P(A4,,) > 0 asn — oo. (1.9)

As consequences of these axioms we have

- forall A C Q, P(A) < 1and P(A) = P(Q) — P(A) = 1 — P(A),
because A and its complement A = Q/A are disjoint, and we can
apply the additivity rule.

- Subadditivity: for all A,B € A
P(AUB) = P(A) + P(B) — P(AN B)

because B/A and A are disjoint, as well as B/A and A N B. Using
B =(B/A)U(ANB)and AU B = (B/A) U A and the additivity
rule gives the result.

- if A C B then whenever A occurs B also occurs. In other words,
this means that “A implies B”, or A = B. For all A,B € A such
that A = B, P(A) < P(B).

It is important to remark that the probability of an event A depends on the
state of knowledge. This is encoded in Q because Q specifies all the outcomes
that are possible. If the state of knowledge changes, because an event Q' C Q
is known to be true, then the state of knowledge changes to Q'. The more we
know, the more the sample space Q shrinks. So, strictly speaking, we should
use the notation P(A|Q) for the probability of event A under the conditions
specified by Q. Therefore, all probabilities are conditional to a given state of
knowledge Q, i.e. all probabilities are conditional probabilities. Yet, when Q is
fixed, we shall disregard the dependence on it and write simply P(A) for the
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probability of event A. We shall come back to this point when we will discuss
conditional probability.

Kolmogorov’s axioms provide the dictionary and the basic grammar rules
to discuss probability.

One annoying aspect of Kolmogorov axioms is illustrated by the following
example (taken from FELLER, p. 8): imagine we want to know the probability
that a person lives more that 1000 years. A statistician’s approach would
extrapolate from formulas extracted from mortality tables and come with a
probability of one in 101", a number which clearly makes no sense. Still if
one is going to take seriously the problem, one has to decide whether this
event (a person living 1000 years) is possible or not. In the first case, it has to
be assigned a positive probability. If we assume it to be impossible, then the
event does not belong to Q. But then we should find out what is the maximal
age a person can live, based on first principles, in order to define Q. This
problem needs to be solved before we even start talking about probabilities.

We shall discuss other definitions of probability theory that overcome these
difficulties. Our focus here is on computing, i.e. quantifying the plausibility
of statements. For this, Kolmogorov’s axioms are enough.

1.4 The fallacy of intuition

Probabilistic thinking is hard wired in us, as there are regions of our brain
that are activated when, for example, we have to take decision in uncertain
circumstances or that have uncertain consequences. So we have a lot of
intuition about probability. Yet there are also well documented biases in our
probabilistic thinking [7], so it is important not to rely blindly on our intuition.

In order to be sure about what your intuition suggests, you can use Kol-
mogorov’s axioms: ask yourself: what is Q? What is ?? Then do the calcula-
tion. Let’s consider a couple of examples:

Take two points A and B at random on a circle. This divides the
circle in two arcs. What is the probability that the arc that contains
the origin is larger than the other?

Intuitively there is no reason to think that one of the arcs should be larger
than the other, so you would conclude that p = 1/2. But let’s check. A point
on a circle is identified by the angle, i.e. by a number X € (0, 27]. So two
points correspond to a pair (X4,Xg) € (0,27]%. The sample space is then
Q = (0,27]% and every subset E C Q is a possible event. Each outcome is a
priori equally likely, so  is the uniform measure on (0, 27]?. Event E C Q
has a probability p = |E|/|Q| where |E| is the area of the set E.
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\

Figure 2. Taking two points, A and B, at random on a circle, what is the probability
that the arc that contains the origin is larger than the other?

P2l NA—— °

2w

Figure 3. The sample space of the problem discussed in the text.

Now you can translate the statement above in a precise mathematical form.
Actually it is easier to draw the sample space and identify the set corresponding
to the event

E = {the arc that contains the origin is larger than the other}.

If you do that, you discover that the right answer is p = 3/4, contrary to
intuition.

How can this be possible? On second thought you realise this is expected.
Indeed there is a symmetry and the choice of the origin breaks it. So there
are three points drawn at random in reality, A, B and O. So there are three
intervals and the interval containing the origin in the problem formulation
corresponds to the union of two of them. It is natural to expect that it should
be longer than the other.

1.4.1 The Bertrand paradox

A further aspect where our intuition may need to be checked is the notion of
drawing at random. Let us consider the following problem:

Choose a chord AB at random on the circle of radius one. What is
the probability p that AB is longer than the side of the inscribed

triangle (which is \/5)?
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Bertrand gave three different answers:

« by symmetry chose the chord to be horizontal and draw the vertical
diameter. If the chord intersects the diameter in its middle half, then
AB > \/E This means p = 1/2.

« by symmetry, chose one of the end points (A) to coincide with a vertex
of the triangle. The second point is identified by choosing the angle
@ € [0, ] of the chord with the tangent in A. Then AB > \/E ifé e
[/3,27/3]. This means p = 1/3.

« the chord is uniquely identified by its middle point. So one can chose
this middle point at random in the circle. If the point falls inside the
circle inscribed in the triangle, then AB > \/3. Since the area of the
inscribed circle is 4 times smaller than that of the outer circle, p = 1/4.

The problem is that the sentence “the chord is chosen at random” has not a
clear meaning, and it is indeed interpreted differently, with a different Q and
2, in the three cases above.* There is no paradox.

1. A s the event of a single pair at poker. What is Q? What is ?

2. A is the event that at least two people have a birthday on the
same day of the year in a room with n people. What is Q? What
is P?

3. The show at a theatre in Moskow costs 5 rubles. 2n people show
up in a random order. n of them have only notes of 10 ruble,
whereas the rest has notes of 5 ruble. A is the event that the
cashier has no change to give to some customer. What is Q?
What is P?

4. N gentlemen go to theatre each leaving his hat at the wardrobe.
On exit they are assigned their hats in a random order. A is the
event that none of the gentlemen get his own hat back. What is
Q? What is P?

“Notice that we assume that, in each of the three cases, drawing at random implies an uni-
form probability distribution over Q, as if ignorance is naturally translated into equiprobability.
This is not an innocent assumption. For example, why should an interval [6, 6 + d6) have the
same probability when 6 is close to the endpoints (6 = 0,7) and in the middle (6 = 7/2)?
Jaynes discusses this issue in some detail in this paper: Prior probabilities [8].
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10.

. Afair coin is tossed until for the first time the same result appears

twice consecutively. A is the event that the experiment ends
before the 6th toss. B is the event that an even number of tosses
is required. Compute the probabilities of A and of B.

. Consider two dice. Let A = {sum of the faces is odd} and B =

{at least one ace}. Describe the events AUB, ANB and ANB. As-
suming that each outcome is equiprobable, find the probabilities
of all these events.

. Aninsurance is interested in the age distribution of couples (x, y),

where x is the age of the husband and y is the age of the wife
(both are integers, in years). What is the sample space? What is
the event A that the husband is older than 40, B that the husband
is older than the wife and C that the wife is older than 40? Draw
them. Show that AnC C B.

. Verify the relations and try to express them in words:

() AUB=ANB

(b)) AUA=ANA=A

() (AUB)/(ANB)=(ANB)U(ANB)
(d AUB=ANB

. Find simpler expressions for

(@) (AUB)N(AUB),
(b) (AUB)N(AUB)N(AUB)
(c) AuB)N(AUC)

Let A, B and C be three events. Find expressions for the events:

(a) Only A occurs

(b) All three events occur
(c) atleast two occur

(d) two and no more occur
(e) not more than two occur
(f) none occurs

(g) atleast one occurs
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But what is probability?*

“[...] le regole della logica probabilistica [...] — come quelle
della logica formale nel campo delle proposizioni — ci insegnano a
ragionare nel campo delle valutazione di probabilitd mantenendo
intatta la coerenza del pensiero con se stesso.” (B. De Finetti [9])

Kolmogorov’s axioms are enough for computing probabilities in an un-
ambiguous manner. Yet, they don’t provide any insight on what probability
really is.

2.1 de Finetti and subjective probabilities

Bruno de Finetti, argued that probability is nothing else than the degree of
confidence that an individual has that some event will actually occur or that
a fact is true. Probability is subjective by definition.

One way to quantify the probability of an event A is to devise a lottery.
A ticket of the lottery grants a payoff of one pound to its holder if A occurs
and nothing otherwise. The price P(A) of a ticket of this lottery measures the
degree of confidence that a buyer has on the likelihood of event A. Clearly
P(A) > 0. For an event that is almost certain, P(A) should be close to one
(pound), and if A is very unlikely then P(A) should be small.

When there is more than one event, the price of the tickets of the corre-
sponding lotteries should be fixed in a consistent way, in order to ensure that
the system of lotteries is fair, and that no-one can extract a positive gain with-
out taking any risk.! Prices should be such that an agent would be indifferent
between being on the sell or the buy side. This implies that:

'This is known as the no-arbitrage hypothesis in finance.

19
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« Iftwo events A and A’ are equally likely, the tickets of the corresponding
lotteries should be the same, P(A) = P(A').

« If Aand A’ are exclusive events (i.e. A N A" = §¥), then the price of the
combined lottery for A U A’, that grants a win of one pound if either A
or A’ occur, should be equal to the sum of the prices of the lotteries for
Aand A’,i.e. P(AUA’) = P(A) + P(A’) pounds.?

« If A is the event that A does not occur, a gambler that buys one ticket of
the lottery A and one of the lottery A is sure to win one pound. Hence
P(A) + P(A) = 1 pound.

These rules are consistent with the Kolmogorov axioms that define the prob-
ability P(A), and indeed de Finetti has shown that they are identical. In
addition, they give a meaning to the probability P(A) of an event A as the
amount that an individual is willing to bet on its occurrence. Different indi-
viduals may assign different probabilities to the same event, so probability is
subjective. Yet, each of them should assign probabilities to different events in
a way which is consistent with the rules of probability.

Buying a share of a stock in the financial market is like buying a ticket of
a lottery. Indeed, Bruno de Finetti’s idea of relating probability to monetary
outcomes of uncertain events is the basis of the theory of finance.? He laid
the foundations of asset pricing theory (i.e. the theory that says how the price
of a stock or a financial instrument should be fixed) and of portfolio theory.

2.2 Probability as a theory of plausible reasoning

Several authors have argued that probability is a way to formalise in a quanti-
tative manner our way of reasoning about the plausibility of statements. We
follow the discussion in the first two chapters of JAYNES, to which we refer
for a more detailed discussion. Here we only sketch the main ideas.

The first observation is that deductive logic (see Figure 4) is hardly applica-
ble to the real world, as there are few cases where we can say that a statement
A implies another statement B in the strong sense (if A is true, then B is true).
In real life and in science, we’re almost always arguing about how the fact

2Because if P(AU A’) > P(A) + P(A’), buying a ticket for A U A’ and selling one ticket
for both A and A’, would ensure a gain P(A U A”) — P(A) — P(A") > 0 irrespective of what
happens.

3de Finetti worked at the Generali insurance company in Trieste for some time, where he
faced the problem of computing prices for insurance contracts.
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humans

Figure 4. The typical syllogism on which deductive logic is based: "all humans are
mortal”, "Socrates is a human" then "Soctrates is mortal”.

that something (A) is true affects the plausibility of something else (B).* As
J. Clerk Maxwell put it:

[...] the actual science of logic is conversant at present only with
things either certain, impossible, or entirely doubtful, none of
which (fortunately) we have to reason on. Therefore the true
logic for this world is the calculus of Probabilities, which takes
account of the magnitude of probability which is, or ought be, in
a reasonable man’s mind.

Does the quote "What I cannot create, I do not understand”, attributed
to R.P. Feynman, implies that he though he could create what he un-
derstood?

2.2.1 A digression into logics

The basic entities that are the object of probability theory are statements,
such as

A = it will start to rain by 10 am at the latest

“This applies also to mathematics. While theorems express logical relations between
statements they are almost always derived or discovered starting from reasonable conjectures.
The worth of any theory A is to make predictions on other statements, e.g. if A is true then B is
true. We can falsify A if we find that B is false. But if B is true we can only say that A is more
plausible (see later). We cannot prove that A is true.
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which are either true or false. Logic provides a language to combine different
statements into more complex ones:>

Logical product or conjuction AB = both A and B are true
Logical sum or disjunction A + B = either A or B are true
Negation or denial A = A is false
that satisfy a set of properties
Idempotence AA=A,A+A=A
Commutativity AB=BA,A+B=B+ A
Associativity A(BC) = (AB)C = ABC
andA+B+C)=(A+B)+C=A+B+C
Distributivity A(B+C)=AB+ AC,A+(BC)=(A+B)(A+C)
Duality IfC = AB,thenC = A+ Bandif D = A + B, then D = AB®

It can be shown that with these operations we can generate all possible
statements.

A T|F
f1(4) | T|T
f4) | T|F
f34) | F| T
fa(A) | F | F

Table 2.1. All possible statements derived from A.

Think of all possible statements involving two events A, B (see table 2.2).
How many are them? Express them in terms of sum, negation and
product.

SAlthough the notation is different, the product AB for statements is the same as the
intersection A N B for sets, and the sum A + B is the same as the union A U B.
%Note that AB # AB.
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A,B |TT|ET|TF | FF
ffAB | T |T|T|T
fA4B | T|F|T|T
f4AB| F| T | T|T

Table 2.2. All possible statements involving two events A, B.

Yet, the language of logics is redundant as indeed the same statement can
be expressed in many ways. For example’

C=(A+B)(A+AB)+ AB(A+B)=A+B.

n elementary statements A, ..., A, can only have 2" possible truth assign-
ments, which means that there are 22" different statements that can be ob-
tained by combining them.

The redundancy of the language based on the three logical operators above
suggests that any statement can be expressed in terms of a fewer number of
operators. It can be proved that all operators can be expressed in terms of the
NAND operator A T B = AB = A + B. For example, you can check that

A=ATA
AB=(A1B)t(A1B)
A+B=(A1A)1(B1B).

2.2.2 Quantifying plausibility

JAYNES approach to probability is normative: how should a robot assign plau-
sibility to different statements in a “correct” way? First, the plausibility of any
statement A depends on the state of knowledge of the robot, i.e. those state-
ments that the robot knows to be true. If B is the statement that encodes the
state of knowledge, plausibility should be a function of A|B, i.e. of statement
A given B. JAYNES shows that there is a unique way of defining probability
that satisfies the following desiderata:

"Note that C is false whenever A is true and B is false. In this sense C can be read as the
statement C = {A = B} that A implies B, because C being true means that if A is true then
B must be true. The statement C does not say anything about B if A is false. Alternatively,
C can also be expressed as the statement C = {A = AB}, which is true if whenever A is true
B is also true. Logical implication seen in this way has the interesting property that all false
statements imply any other statement, as well as their opposite, because if A is false then AB is
also false (and hence A = AB, i.e. C is true) and AB is also true. It’s suggestive to think about
the implications of this fact for the “surprising” propagation of fake news. See [10].
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I Degrees of plausibility are represented by real numbers.

IT Qualitative correspondence with common sense.
For example, if A|C is less plausible than A|C’ and if B|AC and B|AC’
are equally plausible, then AB|C’ should be more plausible than AB|C
and A|C’ should be less plausible than A|C.

III Consistency

1. If a conclusion can be reached in more than one way, then every
possible way must lead to the same quantitative estimate of the
plausibility.

2. The robot always takes into account all of the evidence which
is relevant to a question that it is aware of. It does not base its
conclusion on a subset of the information available, neglecting the
rest.

3. The robot always represents equivalent states of knowledge by
equivalent plausibility assignments. That is, if the robot’s infor-
mation about two statements is the same (except perhaps for the
labelling of the propositions), then it must assign the same plausi-
bilities in both.

We shall not repeat the derivation here and refer to JAYNES for it. We only state
the key steps, which consists in deriving rules for computing the plausibility
of composed statements such as the product AB|C and the sum A + B|C
from the plausibility of elementary statements, e.g. A|C and B|C. The product
and the sum rule are enough to compute the plausibility of any composite
statement. We shall avoid using the word probability until the very end, and
discuss instead about a generic measure of plausibility. As we shall see, for
any measure of plausibility which is consistent with the desiderata above, it is
possible to derive a function, that we call probability, that satisfies the product
and sum rules of probability that we’re used to.

The first requirement implies that there should be a function g(-) that
assigns to any statement A|B a real value g(A|B) that we call the plausibility
of A given the state of knowledge B.®

The product rule. Let us start by considering the statement AB|C. JAYNES
argues that its plausibility g(AB|C) should be a function

8(AB|C) = F[g(A|BC),g(B|C)] = FIg(B|AC), g(A|C)] 2.1

8Note that plausibility does not depend on what the statement is about.
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of either g(A|C) and g(B|AC), or of g(B|C) and g(A|BC). Indeed, the rea-
soning about AB given C can be decomposed in two steps: first estimate the
plausibility of B given C and then that of A given BC. Equivalently we can
reason first about A given C and then about B given AC. The result must
be the same for consistency, with the same function F(-,-). Note also that
Eqg. (2.1) implies that g(A|BC) does not depend on the plausibility of other
statements involving A, B and C. For example, whether A|BC is more or less
plausible should not affect the result, because if B is not true, then AB is also
not true. Next, the function F should be a nondecreasing function of both
arguments, for common sense.

Now, consider the plausibility of ABC given D. This can be expressed in
two ways

g(ABC|D) = F[g(BC|D), g(A|BCD)] = F[F[g(C|D),g(B|CD)], g(A|BCD)]
= F[g(C|D),g(AB|CD)] = F[g(C|D), F[g(B|CD)], g(A|BCD)]]

which implies that the function F satisfies
F[F[x,y],z] = F[x,Fly, z]] (2.2)

where x = g(C|D), y = g(B|CD) and z = g(A|BCD). It is easy to check that
the function®

F(x,y) = w™ (w)w(y))

where w(x) is a monotone increasing function of x, satisfies Eq. (2.2). For a
proof that this solution is also unique, under general assumptions of continuity
that derive from common sense (II), we refer to JAYNES.'?

The key point of the derivation is that the function

y(A|B) = w([g(A|B)]

satisfies the product rule

Y(AB|C) = w (g(AB|C)) (2.3)
= w (F(g(A|BC),g(B|C)) (2.4)
= w (g(A|BC)) w (g(BIC)) (2.5)
= y(A|BC)y(B|C). (2.6)

To prove this, use the fact that w(F(x,y)) = w(x)w(y) and check that applying w(-) to
Eq. (2.2) yields w(x)w(y)w(z) on both sides.

1oNote that F(x, y) = F(y, x) is invariant under exchange of its arguments. Should this be
expected?
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Consider the case where B|C = T is true.!! Then AB|C = A|C and B does
not change the state of knowledge, i.e. BC = C. Eq. (2.6) then becomes
y(A|C) = y(A|C)y(B|C) that can only be satisfied for all A and C if y(B|C) = 1.
Hence we conclude that

B|Cistrue = y(B|C)=1. (2.7)

Next, if A|C = F is false,'? then AB|C = A|C is also false and y(AB|C) =
y(A|C). Also y(A|BC) = y(A|C) because A|C is false irrespective of whether
B is true or not. Therefore y(A|C) = y(A|C)y(B|C) that can only be satisfied
for all B and C if y(A|C) = 0. Therefore

Al|Cisfalse = y(A|C)=0. (2.8)

Common sense implies that, the plausibility of any statement must be higher
than that of a false statement and lower than that of a true statement. Hence
y(A|C) € [0, 1] for all statements.

The sum rule. Let us now consider the two statements A|B and its nega-
tion A|B. It is clear that if one of the two becomes more plausible the other
decreases in plausibility, by common sense. So there should be a decreasing
function S(x) such that y(A|B) = S (y(A|B)). If A|B = T is true, we know
that A|B = F is false and eqs. (2.7) and (2.8) imply that S(1) = 0 and S(0) = 1.
For x € [0, 1] the function S(x) takes also values in [0, 1].

An equation for S(-) can be derived by the following steps

Y(AB|C) = y(A|C)y(B|AC)
=y(A|O)S (y(BJAC))

J/(ABIC)>

- ”A'C)S(m

where we used y(AB|C) = y(A|C)y(B|AC) in the last line. An equivalent
equation can be derived by inverting A and B in the derivation, which leads to

_ y(AB|C)
rAles ( (AIC) )‘ rEIs ( 7BIC) )

This equations holds whatever A, B or C are. If we specialise to a situation
where B = AD with D an arbitrary statement, then!> AB = B. Also B =

Y(AB|C) (2.9)

UHere T is the true statement. It is analogous of the sure event Q.

12F is the false statement. It is analogous to the impossible event @.

3B = AD means that B implies A4, i.e B = A, therefore AB = B. On the other hand, if A is
false, then B cannot be false, i.e. A = B and hence AB = A.
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AD = A + D, so that AB = A(A + D) = A. This reduces Eq. (2.9) to
SN _ o (S&x)

with x = y(A|C) and y = y(B|C). With y = 1 the equation above yields x =
S(S(x)) which is consistent with the self-reciprocal property of the negation,
i.e. the negation of A is A, and with the conditions S(0) = 1 and S(1) = 0.
A lengthy algebraic derivation (see JAYNES) shows that S(x) must be of
the form
S(x) = (1 — xm)l/m (2.11)

with m > 0 a positive real number. This means that, for all measures of
plausibility g(A|B) there exist a function

P(AIB) = w (g(A|B)" (212)
that satisfies the following product and sum rules

P(AB|C) = P(A|C)P(B|AC) (2.13)
P(A|C) =1—P(A|C) (2.14)

We can forget about the plausibility function g(A|B) and just work with this
function, that we call probability. 1t has the property

P(A|C) =1 if Aistrue given C

and P(A|C) = 0 if A is false given C.

Show that Eq. (2.11) is a solution of Eq. (2.10). Why should m be
positive?

Knowing how the probability transforms under the operations of conjunc-
tion and negation allows one to compute the probability of combinations of
statements. For example, one can derive the rule

P(A + B|C) = P(A|C) + P(B|C) — P(AB|C)

from the two properties above.'* In particular, if the events A and B are
mutually exclusive, i.e. P(AB|C) = 0 then we obtain the additivity rule.

14Start with A+B = AB, so P(A + B|C) = 1 — P(AB|C). Then use P(AB|C) =
P(A|C)P(B|AC) and P(A|C) = 1 — P(A|C). The rest is left as an Exercise.
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In brief, what Jaynes shows is that all the rules that are encoded in Kol-
mogorov axioms can be derived as an extension of logic, that defines how a
robot should assign probabilities to statements, in a way to satisfy the desider-
ata above. This is remarkable.

As a final consequence of consistency, consider the situation where the
robot has to assign probabilities to n exclusive statements A;, ..., A,. If the
state of knowledge B does not distinguish between the statements'? (i.e. B does
not say anything on A; that it does not say on A;) then P(A;|B) = P(A;|B).
In this situation, the way in which the statements are labeled from 1 to n is
completely arbitrary because any robot that looks at a problem where the labels
are a permutation of the original ones, should give the same numerical values.
Finally if the events are also exhaustive, i.e. if P(4; + ... + A4, |B) = 1, then
the permutation symmetry invoked above implies P(A4;|B) = 1/n. Indeed
symmetries are a key element to compute probabilities [8].

As we observed, if A implies B given a state of knowledge C, then we
cannot conclude anything about A if B is true. Yet, the probability of A should
increase in the case where B is true. Indeed

P(BJAC)P(AIC) 1

PABO) = =250 = pBIO)

P(A|C) > P(A|C) (2.15)

where we used the product rule in the first equation, P(B|AC) = 1 in the
second (because A implies B given C) and P(B|C) < 1. Finding out that a
quasi-obvious statement B that implies A is true, does not increase by much
the likelihood of A, whereas a non-trivial statement B, with a small probability
P(B|C), increases the plausibility of A considerably. Likewise the fact that A
is false, does not imply that a statement B that is implied by A is also false,
but it decreases its plausibility by an amount that can be computed with a
derivation similar to Eq. (2.15):
P(A|BC)P(B|C) _

P(B|AC) = PAIC) = P(B|C) —

P(A|C)
P(A|C)

P(B|C) < P(B|C). (2.16)

If B|C is likely true a priori, i.e. if P(B|C) ~ 1, showing that a new fact A
that could explain it is wrong does not affect its likelihood significantly. On
the other hand, if A is very likely true, showing that it is false decreases
considerably the probability that all its consequences B are true. This is
why the changes in our state of knowledge that occur when well established
theories are falsified are often called paradigm shifts.

5For example B = {the dice is fair} and A; = {a throw of the dice results in i} with
i=1,..,6.
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Derive the expression (2.16).

Jaynes formalisation of probability is conceptually more transparent than
that based on Kolmogorov’s axioms. Yet, from a computational point of view,
Kolmogorov axioms are more practical (although they introduce unnecessary
axioms and assumptions) and lead to the same conclusions.!®

18If you’re interested to know more, see the discussion in JAYNES, appendix A.






Chapter 3

Classical probability

Probability theory is nothing but common sense reduced to calcu-
lation. (Laplace, 1819)

Let us consider again the two problems we discussed earlier:!

1. A s the event of a single pair at poker.

2. Ais the event that at least two people have a birthday on the same day
of the year in a room with n people.

One way to estimate the probability of A is to identify those elementary
events w € Q that are “evidently” equiprobable. By this we mean that there
is no indication in the statement of the problem or in our state of knowledge
that would hint at the fact that some w are more or less likely than others.?

This means that P(w) = P(«') for all w,w’ € Q and that P(w) = ﬁ for all
w € Q, because of normalisation

> P(w) = [Q|P(w) = 1.

weQ)

Here |Q] is the number of elements of Q. Therefore, for any event A C Q, the
probability can be written as

P(A) = ) P(w) = 141

wEA |Q|

This part is discussed in FELLER II, which you’re strongly suggested to study. In particular,
if you want to make sure you master this material, challenge yourself with the problems at the
end of the chapter.

2Another way to state the same fact, is that when the state of knowledge is such that
the answer to a question is invariant with respect to any relabelling (or permutation) of the
elementary events w € Q, then P(w) = P(«') for all w, 0’ € Q.

31
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where | A| is the number of “favourable” cases and |Q]| is the total number of
cases. We stress the fact that what allows us to compute probability exactly is
the (permutation) symmetry present in the problem (as in the first example
above) or assumed (as in the second).

In these cases computing probabilities becomes a counting problem. This
is the realm of classical probability.

3.1 Combinatorics

Counting problems are often combinatorial problems. The mathematical
objects that occurs frequently are:

Permutations. The number of different permutations® of n objects (e.g. the
numbers 1, 2, ..., n) is given by the product of all integers up to n

nl=nn-1)Mn-2)-2-1,

which is called the factorial of n. Indeed, let us label the n objects by
integers x; from 1 to n. Then we can write a permutation as a sequence

(x1, X3, .- »» X,), Where Xx; is the label of the object in position i (x; #
x;j Vi # j). Then x, can be chosen in n ways, x, in n — 1 ways, and
SO on.

Ordered samples. The number of ways to draw r out of n objects is given by

n!

n),=nn-1--(n—-r+1) = G

Indeed, using the same notation as above, a draw of r of the n objects
corresponds to an r-tuples x;, X, ..., X, with x; € N, 1 < x; < nand
x; # xj forall i # j. The number of distinct r-tuples is given by the
expression above because x; can be chosen in n ways, x, in n — 1 ways,
...and x, in n —r + 1 ways.

Combinations. The number of subsets of r objects of a set of n elements is

(n) _ (n),

r r!

Indeed, from each subset of {x, ..., x,} of size r, it is possible to form !
ordered samples of size r, by permuting the r elements in all possible
ways.

3L.e. ways in which the n objects can be ranked.
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The combinatorial coefficient has several properties that are discussed in
FELLER, Chapter II. Here we remind only two main important facts:

« The binomial coefficient can be generalised when n is replaced by any
real number. Indeed

(n)=n~(n—1)~--(n—k+1)

K i (3.1)

is a valid expression even if n € R. If n < k is an integer, one of the
terms in the numerator is zero, so (’;) = 0 for n < k and n integer. Yet

this is not true if n is not an integer. So for example*

1 3 1
172y (3)(55) (5 -k )
( . )= o (3.2)
_(=DF1-3--(2k=3)2k —1)  (=D)*(2k — D!
- 2kk! B 2kk!
(=D 2k
= ( . ) (3.3)
is non-zero for k > —1/2.
The binomial theorem: for any a,b € C and anyn € R
(@+by =Y (Z)akb”‘k. (3.4)
k=0

For integer values of n, the sum in Eq. (3.4) is limited to n, because
(Z) = 0forall n,k € N, kK > n. This allows us to derive non-trivial
identities, such as, for example

= (—=DF 2k < =1/2y 1
Z ()_é(k)z_m'

4Here we define the double factorial

k-1 =1-3-5--(2k—1)

as the product of odd integers up to 2k — 1. Analogously

(2]()!! =2:4. 6...(2k) = 2kk1

is the product of all even integers up to 2k. Notice that (2k)! = (2k — D! - 2k)!!.
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3.1.1 The Stirling’s approximation to n!

Stirling’s formula provides an approximation of n! for large n that reads:

n! ~ n"e™27n (14 0(n™Y)). (3.5)

In Feller II you find a derivation of the this result. Here we give a different
derivation based on the saddle point method.
Let us start from an important identity

n! = f dxx"e™*=T(n+1) (3.6)
0

where the function I'(z) defined by the second equality (with n + 1 replaced
by a complex number z) is called gamma function. Eq. (3.6) indeed provides
a generalisation of the factorial for integers (i.e. an analytic continuation) to
all complex values of n. For n = 0 the integral is easily evaluated and we
discover that 0! = 1. Eq. (3.6) can be proved to reproduce the factorial n! =
n-(n—1)---2-1because for n > 0 integration by parts yields I'(n+1) = nI'(n).

In order to derive Eq. (3.5), observe that the integrand above is maximal
for x = n. Hence set x = n(z + 1) so that

o0
nl = n"e‘”nf dzenllog(l+2)-z]
-1

The function in the integral is shown in Figure 5. For n large, this function is
sharply peaked around z = 0. So the integral is dominated by the region z ~ 0
where log(1 + z) — z is maximal. This allows us to approximate this function
by its power expansion around z = 0, i.e. log(1 + z) — z ~ —z%/2 + 0(z3).
Then, by making the further change of variables ﬁz = u, we find that

0 )
/ dzenlog(1+2)—z] ~ L'[ du e—u2/2+u3/(3\/ﬁ)+“.
-1 n _ﬁ

~ L foodu e~t/2 (1 P ) (3.7)
VnJ-w 3y/n
=/ Za+oa/n) (3.8)

which gives Stirling’s approximation, Eq. (3.5).
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0.8

0.6

f(z)

04

0.2

Figure 5. The function f(z) = e"[1°60+2)~zl for n = 10, 50, 100 and 500.

Exercise

Show that replacing —\/r_z by —co in the lower limit of integration of
Eq. (3.8) involves an error which is of order e™*/2/ \/Z, and hence is
negligible with respect to the leading term of order 1/n. Explain the
result.

Exercise

The first order correction in the Stirling’s formula (3.5) should be of
order 1/ ﬁ according to Eq. (3.8). Yet it turns out to be only of order
1/n. Can you explain why? Can you compute the coefficient of the
1/n correction?

3.2 Different ways of counting

What is the probability that no student in a class has his/her birthday on the
same day as another one? As already mentioned, this question can be trans-
lated into that of random distributions of r balls (the students) into n boxes
(birthdays, n = 365). The probability of this event is then computed counting
the number of ways in which the event A = {at most one birthday per day}
can occur. Counting the way in which we can choose the birthdays of Amelie,
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2345678910 JQKA
L | J
L
| J | J

o &0

Figure 6. The number of ways in which a pair at poker can occur can be counted
either labelling cards from one to five or counting the ways in which the different
boxes in the scheme above can be occupied so as to result in a pair.

George, ..., Carlain such a way to satisfy A, leadsto |A| = n(n—1)...(n—r+1).
It does not matter in which order we take the students, we get always the same
number.’

What is the probability that we get a pair at poker? We can count in the
same way, as you pick up the cards one by one. There are 52 ways in which we
can get the fist card, to get a pair the second must be one of the three with the
same number. The third can be chosen among the 48 with a different number,
the fourth in 44 ways and the last in 40 ways. Then we have to consider that
the two equal cards can be any, not necessarily the first two. This suggests

5
|A], = (2) X 52 X 3 X 48 X 44 X 40 = 131788800

where the index 1 refers to the way of counting. We can also count in a different
way. There are 13 ways of choosing the number of the pair and (;) ways of

choosing their type. Then there are (132) ways to chose the numbers of the

three remaining cards and 43 ways in which we can choose their type. Hence

|A], = 13 X (3) X (132) x 43 = 1098240.

We get two different numbers! What is going on? The problem is that we’re
counting in different ways. In the first, we’re considering an ordered sample
whereas in the second we’re not. So we should apply the same counting when
we compute |Q|. In the first case we should take |Q; | = (52); whereas in the
second |Q,| = (552) = |Q,]/5!. Does this fix the problem?

SThe element of the sample space that we consider is an ordered sample of birthdays
w = (by,b,,...,b,). Yet the order does not matter, i.e. every ordered sample has the same
probability. This is why it is enough to compute the number of ordered samples to calculate
the probability.
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3.2.1 Balls in boxes and draws with and without replacement

Take a random number in [0,1). What is the probability that the first five
digits are all different? This problem can be stated as that of birthdays, in
terms of distributions of 7 balls (the digits) into n boxes (the integers 0,1 ...,9),
and A is the event where all boxes contain at most one ball. This is also
equivalent to drawing r = 5 distinguishable balls (the digits) from an urn
with n = 10 balls (the integers 0, 1 ..., 9) with replacement, and asking what
is the probability that all balls are different.® There are |Q| = n" possible
draws with replacement and in |A| = (n), = n!/(n — r)! of them all balls
are different. Now |A| is the number of possible draws without replacement.
Hence P(A) = (n),/n" = 189/625 = 0.3024 (for r = 5and n = 10). If r = n,
this probability is P(A) = n!/n" ~ \/27rne™" that for n = 10 is already very
small (0.00036). So the same problem can be addressed mapping it to different
prototype problems of probability.

Consider the limiting behaviour of the probability P(A) for n — oo
when r = cn® and a < 1 so that n > r > 1. Show that

1 a<1/2
lim PA) =1 e /2 a=1/2
o= 0 a>1/2

3.2.2 Sub-sampling

A lake contains an unknown number 7 of fishes. In order to estimate it a
sub-population of m fishes is caught and marked.” Then they are released
in the lake. In a second catch, r fishes are caught and k of them turn out to
be marked. If we can compute the probability to find that k out of r fishes
are marked, as a function of n, then we can estimate n by requiring that this
probability be as large as possible.

There are two ways to compute this probability. In the first, among all
possible ways to draw r balls without replacement from an urn with n balls —
that are (n), — we are interested in those where k are of a sub-type (marked)
and the rest is not. There are (;) sequences of draws which result in sub-sets

of k marked and r — k unmarked balls. Furthermore, there are (m), ways to

%Note: balls now are what boxes were in the other case.
"This problem is discussed in FELLER, IL6.
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draw the k marked balls and (n — m),_, ways to draw the others. Hence:

my\ /m—m
Plk|n, m. ) = (r)(m)k(n — Mk _ (k)(r—k
k (n), ()
This is called the Hypergeometric distribution. In the second method, we invert
the order of the argument, starting with the observation that there are (n),,
ways to chose the m marked fishes, and proceeding in an analogous manner.

Complete the argument.

This results in
r n—r
()
")

m
You can easily check that, in this case, two different ways of counting give the
same result (because both are correct).

Imagine that this experiment is done because the number n of fishes in

the lake is unknown and we want to estimate it. Then we can ask which value
of n maximises the log-likelihood?® log P{k|n, m, r}. Since

Pik|n,m,r} =

Pik|n,m,r} — P{k|ln — 1, m,r}
Pik|n,m,r}

% log P{k|n,m,r} ~

we need to find the value of n for which

Pkln,m,r}  (n—-m)(n—r)
Plkln—1,m,r} n(n—m—r+k) ~

which yields n =~ rm/k. This is a reasonable estimate of the unknown value
of n.

3.2.3 Distinguishable and indistinguishable balls in n boxes

Consider again distributions of r balls in n boxes. If the r balls are distinguish-
able and distributed independently in the boxes, each element of the sample
space is defined by the “coordinate” x; of balli =1, ...,r, where x; = 1, ...,n

8P{k|n, m, r} as a function of k is a probability distribution. n, m and r are parameters. As a
function of the parameters (e.g. of n) P{k|n, m, r} is a likelihood. Quoting David McKay: Never
say “the likelihood of the data”. Aways say “the likelihood of the parameters”.
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indicates the box containing ball i. The number of possible outcomes is then
Q| =n".

In discussing the physics of gases, where balls are particles and boxes are
states, this is called the Maxwell-Boltzmann distribution in statistical physics.

This way of counting treats balls as distinguishable because we can attach
a label to each of them. For example, a sample point w where ball 5 is in box 1
(i.e. xs = 1) and ball 2 is in box 7 (i.e. x, = 7) is different from the one o’ that
only differs by the interchange of the two balls (i.e. where x; = 7 and x, = 1
and all othe x; are the same).

If balls are indistinguishable these two sample points cannot be distin-
guished, i.e. w = w’. We cannot attach labels to indistinguishable balls.” We
can only know how many balls are in each box. So an outcome w € Q is
defined in terms of occupation numbers w = (my, ..., m,,), where m_ specifies
how many balls fall in box k = 1,...,n.19 This is the correct way to count
in quantum physics, because quantum particles are indistinguishable. For
bosons each state (box) can be occupied by more than one particle (ball) and
this leads to Bose-Einstein statistics (m;, > 0). For fermions, instead, at most
one particle can occupy a state (m; = 0, 1). This leads to Fermi-Dirac statistics.

In how many ways can you put r indistinguishable particlesin n > r
indistinguishable boxes?

The number of elements in the sample space in these two cases is, respec-
tively

2l = ("IN lawl= (D). (3.9)

The second is just the number of ways in which the r occupied boxes can be
chosen out of the n boxes. The first is slightly more complex to derive. Each
element w € Qgg can be represented as a string of r balls « and n — 1 sticks |,
which delimitate one box and the next one. For example,

a):...l.”..'_"oloo

Notice the difference between identical and indistinguishable. Even identical balls can be
distinguished by attaching labels to them. Indistinguishability means that this is not possible,
i.e. that balls do not have an identity.

And clearly

n
Z m =r.
k=1
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is a configuration with m; = 3,m, = 1,m3; = 0,...,m,, = 2. The number
of possible w’s of this type is the number of ways we can combine r among
n — 1 + r objects, as in Eq. (3.9). This different way of counting gives rise to
peculiar phenomena such as an effective repulsion of fermions or an effective
attraction of bosons, as compared to classical particles (Maxwell-Boltzmann
statistics). Indeed there is no interaction between particles. It’s only that in
quantum physics we need to count differently.

In order to see this, compute the probabilities of the events A = {m; =
1,k <r, my =0k > r}and B = {Ik;m;, > 1} both in the case of dis-
tinguishable (Maxwell-Boltzmann) and of indistinguishable balls, and
for the latter for both the Bose-Einstein and the Fermi-Dirac statistics.
Show that forr =2

Ppp(B) < Pyp(B) < Pgp(B).

as if Bose-Einstein (Fermi-Dirac) particles were subject to an effective
attraction (repulsion).

Which statistics would you use to handle the problem of a single pair
at poker?

3.3 An extension of the sub-additivity rule

Consider a sequence Ay, ..., A, of n events. The event A, that at least one of
the events occurs is

For any subset'! of k < n of events, let P{A; N...N A, } be the probability that
all events with indices i, ..., iy occur, and let

Sk= D, P{A, Nn..nAL

i1<i<...<ig

For this part, see FELLER IV.
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Figure 7. The number of times that elementary events w € A, are counted in S;
forn =2and 3.

Note that the events in the sum are not disjoint, so we cannot interpret Sy as
a probability. It is just a sum of the probabilities of the joint occurrence of k
events, in all possible ways.

The generalisation of the additivity rule for events that are not necessarily
disjoint, is given by:

P{Aso} = 2 (=1)*1S,. (3.10)
v=1

Notice that for disjoint events S, = 0 for all v > 1. So Eq. (3.10) reduces back
to the additivity rule of Kolmogorov’s axioms.
As a corollary, the probability that none of the events A; occur. is

P{Ag} =1 - P{A,o} = D (-1)S,, (3.11)
=0

with the understanding that S; = 1. This is a generalization of the rule
P(AUB) =P(A) + P(B) — P(A N B). For three events we have

P(AUBUC)=P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC),

where each term “corrects” the counting of the previous one.

Consider the case where Vk,

k
P{A; N..NA,}= HP(Al-j), AT
j=1

which, as we shall discuss later, means that the events A; are indepen-
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dent. Then show that

P(Ag) = [ [ @ —Py).

i=1

Indeed, the proof of Eq. (3.10) is based on the generalization of the intuition
used for n = 2 and 3, and is done by counting how many times a sample point
w € A “is counted” in the expression on the right hand side of Eq. (3.10).
Let m be the number of events A; that contain w. Then w contributes only
to terms S, with v < m, and for each of these there are (™) terms in the sum

4
which defines S, where w contributes. Therefore the total number of times
that w € A, is counted in the r.h.s. is

5 (M) =1- 3 (M =1 g

Hence each sample point w € A, is counted exactly once both on the left
and on the right hand side of Eq. (3.10).

N gentlemen go to theatre each leaving his hat at the wardrobe. On exit
they are assigned their hats in a random order. What is the probability
that none of the gentlemen get his own hat back? How likely is this
event for N —» oo? (Hint: take A; as the event that Mr i gets his hat
back).

Exercise 3.8

Compute the probability of the different hands in 5-cards poker (see ta-
ble).

Hand Probability Number of Hands
Single Pair 0.422569 1098240
Two Pair 0.047539 123552
Triple 0.0211285 54912
Full House 0.00144058 3744
Four of a Kind 0.000240096 624
Straight (excl. Straight Flush and Royal Flush) 0.00392465 10200
Flush (but not a Straight) 0.0019654 5108
Straight Flush (but not Royal) 0.0000138517 36

Royal Flush 0.00000153908 4
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Using saddle point integration, show that, for m € (—1,1)

0 enhm 2T {og - H(m) 1
Z(m) = dh o~ nllog2-Hm)| [1 4+ O (n~
m /_m (coshryr =\ n(1—m2)° [1+0(n1)]
with - . ) 1
m m —-_m —
H(m) = ———log —— — ——log —

See FELLER IV and II for more exercises and examples.







Chapter 4

Conditional probability and
stochastic dependence

Two events A, B € A are independent! if the probability of their simultaneous
occurrence is the product of the probabilities that each of them occurs:

P(ANB) = P(A)P(B). (4.1)

One situation where A and B are independent is when it is possible to
decompose Q = Q; ® Q, in such a way that Vo € Q, Jw; € Q, w, € Q,
such that w = (w;,w,) and p(w) = p;(w;)pa(w,). Thenif A = {w; € A;} only
involves conditions on w; and B = {w, € B,} only involves conditions on w,,
then

P(ANB) = Z Z P1(C01)P2(502)=[ Z P1(C01)‘[ Z Pz(wz)]

W EA] W,EA, w1 €A W, €A,

= P(A)P(B)

Consider the example of the throw of two dice, i.e. Q = {(d;,d,), d; =1...,6}
and assume that all outcomes are equiprobable: P(d;,d,) = P(d,)P(d,) =
1/36. Then the events A = {d; = 6} and B = {d, = 1} are trivially inde-
pendent. Yet generally independence might be less evident, and it might not
imply a structure on the sample space Q. Indeed independence is a property
of  and, in general, one needs to compute the probability of the events and
of their intersection in order to verify it.

This material can be found in FELLER, Chapters V, VIII, IX and X. Here I give a more
concise discussion. You can refer to FELLER for a more extended discussion.
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a) b) c)
A
A

Can the events in Figures a), b) or c) be independent? What is P(B|A)
in the three cases?

Exercise 4.1

This is illustrated by the example of the two dice above: consider events
C={d,+d,=7}and D = {d, + d, = 8}. Are events A and C independent?
And what about events A and D? And what if one of the dice is biased?

In order to have more intuition on what independence means, let us
define conditional probability. The probability of event A conditional on the
occurrence of event B, is defined as

P(ANB)

P(A|B) = 5

4.2)
Equivalently, we can write P(A N B) = P(A|B)P(B), i.e. that the probability
that both A and B occur is the probability that B occurs, times the probability
that A occurs given that B occurs.? In words, if A, B are independent then

P(A|B) = P(A), i.e. the occurrence of B does not tell us anything on whether
A will also occur or not.? Notice also that

P(A N B) = P(A|B)P(B) = P(B|A)P(A).

This means that you can compute P(A N B) in either way, starting from the
probability of A and then asking what is the probability of B given A, or
vice-versa. This is also the way in which we think logically.

Conditioning on an hypothesis H, is equivalent to substituting Q with* H.
Indeed, probabilities should in general be written as P(A) = P(A|Q). Condi-
tional on H all the rules of probability apply, e.g.

P(AUB|H) = P(A|H) + P(B|H) — P(A n B|H).

2For short, P(A|B) is called the probability of A given B.

3For the example of two dice above, compute P(C|A N B). Is this equal to P(C)?

“Indeed, in classical probability, you can easily check that P(A|H) = |A n H|/|H|. So the
number of elements |Q| in the sample space disappears.
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For more than two events, we can decompose the joint probability of
Ay, Ay, ..., A, by iteratively applying the rule of conditional probability
P (N A;)
= P(Au|Apn 1 NAp 2N NADP(Ap1|Ap 20 N Ap) - P(A3]AP(A)
This can be useful as sometimes conditional probabilities are easier to compute
than joint probabilities. Note that P (0 A;) can be expanded in the same
way in terms of the conditional probabilities of events A; taken in any order.

Independence can be defined for any sequence of events: the events A;,
i =1,...,n are independent if for any subset I C {1, ..., n} of indices

P(Nier4i) = HP(Ai) (4.3)

iel
or equivalently, if for any subset I and index j & I

P (Aj] Nier A;) = P(A)).

This states that no combination of events A; can give information on the
likelihood of a different event A ;.

Show that if A and B are independent then also A and B are indepen-
dent. This means that if B carries no information on A, then neither its
negation does. Show by induction that the same is true for any set A;
of n events, i.e. if A; are independent, then also their complements are.

It is important to remark that independence is different from pairwise
independence, which amounts to

P(A;NA) = PADP(A),  Vi#],

in the sense that pairwise independence does not imply independence.® Like-
wise P(ﬂ:;l A) = H?=1 P(A;) does not imply independence of the n events.

Find a simple example showing that P(A n BN C) = P(A)P(B)P(C)
does not imply independence of the three events A, B and C.

>To see this, consider the events A, B and C in the example above of the two dice. Check
that A, B, C are pairwise independent but P(C|A N B) # P(C).
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Furthermore, notice also that pairwise independence is not a transitive
property. If A and B are independent and if B and C are independent, this
does not imply that A and C are independent.

Exercise 4.4

Find an example showing this.

Independence of n events is a very demanding condition. In order to
see this, let us consider a finite sample space Q. For any event A C Q the
probability

P(A) = 2} p(@)
wEA
is a linear combination of the probabilities p(w) of the elements w € Q. Let
us take n events A, ..., A, and let us ask whether we can find a probability
measure P = {p(w)} such that A, ..., A, are independent. The independence
of n events imposes

_(n n N on
Neq_(2)+(3)+...+(n)_2 1-n (4.4)
linear equations on the probabilities p(w). Barring non-generic choices® of
the events A;, this number needs to be smaller than the number of variables
p(w), which is |Q| — 1 (considering normalisation). So the size of the sample
space needs to be larger than

Q] >2"—n

in order for n events to be independent. In order to have n = 3 indepen-
dent events, the sample space needs to contain at least 5 elements, for n =
4,5,10,20 and 100 events we need |Q| > 12,27,1014,1048556 and |Q| >
1.27 - 10%, respectively.

Are Egs. (4.3) really independent? Let A;, A, and A; be such that
P(A; N Ay N Az) = P(A1)P(A,)P(A3). Show that A; and A; are inde-

SNotice that the sure event Q is independent of any other event A. Indeed P(A N Q) =
P(A) = P(A)P(Q), because A N Q = A and P(Q) = 1. This is also true of the impossible event
@, because A N @ = ¥ and P(#) = 0. All sure or impossible events are independent of all events,
because they are true or false no matter what. So they cannot provide information on other
events. Notice that two exclusive events A N B = @ cannot be independent as long as they have
positive probability.
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[ pendent if P(Ay) = P(A|A;nAj) fori# j #k =1,2,3. ]

Exercise 4.6

Check explicitly if there can be two independent events A, B # Q, @ for
Q] = 3?

Notice that the number of different events A C Q equals 2/l including Q
and (.7 Therefore, as the size of the sample space |Q| increases, the number
of possible events increases exponentially (as N, = 2/°!) but only at most
n =~ log, |Q| of these can be simultaneously independent. This suggests that
statistical dependence is the norm, whereas independence is the exception.

A useful decomposition of the probability of an event is the following:

Total probability rule. LetC;,i = 1,...,n be a complete set of events. By
this we mean that they are exclusive (C; N C; = @ Vi # j) and that

n
Uc=0

i=1

Then, for any event A C Q, we can decompose its probability as

P(A) = D P(A|C)P(C)). (4.5)
i=1

The proof is nothing but the application of the additivity axiom. We can
consider C; as causes, and hence decompose the probability of A into that of
A conditional on the occurrence of each cause C;. This rule is useful, because
it makes it possible to compute P(A) once one finds a suitable set of “causes”
C; for which P(A|C;) and P(C;) are easy to compute.

Bayes theorem of causes. In other circumstances, we are interested in the
inference of the probability of a particular cause C; given that we know that
an event A has occurred. This is given by Bayes theorem

P(A|C)P(C)

HE= 5 baic)rc)

(4.6)

"Each event can be represented by a sequence (ay, ..., a;q)) Where, each a,, can be chosen
in two ways: a, = 1 if w € A and a,, = 0 otherwise. So the number of sequences is 2!,
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This is the basis of statistical inference: C; may represent alternative theories
and A an experimental observation. P(A|C;) can be computed from the theory.
Yet the interesting quantity is P(C;|A) that quantifies the probability that
theory C; is correct given the observation of A. Bayes theorem tells us how
to compute it. In statistics P(A|C;) is called the likelihood (of C;), P(C;) is the
prior, i.e. the probability of C; before observing event A, and P(C;|A) is called
the posterior, i.e. the updated probability of C; after event A has been observed.
The denominator P(A) = ZJ. P(A|C;)P(C)) is called the evidence.

4.1 Statistical dependence is not causation

It is important to notice that if A depends on B then we cannot conclude that
A causes B, nor viceversa. Writing PLAN BN C) = P(A|B n C)P(B|C)P(C)
does not implies that C causes B and B, C cause A. Indeed P(A N BN C) can
be written also as P(B|ANC)P(C|A)P(A) or in four other ways, each of which
refers to a different permutation of the three events. One of these ways may
reflect a causal structure, but this is not necessarily the case. Indeed, there may
be another event D that is causing all of them.® There is a whole field of causal
inference which deals with this issue. For the moment, it is important to
stress that statistical dependence P(A N B) # P(A)P(B) is about observational
probabilities, that concerns the probability of simultaneous occurrence of A
and B. No causal conclusion can be drawn from statistical dependence.

Let there be three coins, one with head on both sides, one with tail on
both sides and the other with head on one side and tail on the other.
If you see one of these coins on a table with the upward face which is
head, what is the probability that the other face is also head?

The next upgrade of the machine at Cern is going to explore an higher
energy range. Skeptics say that as soon as the new machine is turned on,
a black hole will form at Cern and the planet will collapse (so the new

8Imagine that we observe an increase in the price of butter and later on an increase in the
price of cheese. Can we infer that the former causes the latter? Not in general. Indeed both
may be caused by the increase in the price of milk, because it takes less time to make butter
from milk than cheese. Statistics shows that countries with a higher consumption of chocolate
also receive more Nobel prizes, and that fertility is higher in regions of Germany where storks
are more abundant. Does this mean that eating chocolate is a good strategy for winning the
Nobel prize or that babies are brought by storks?
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machine should not be turned on!). Scientists reply that, according to
our present theories, this event has zero probability. Is this a satisfactory
answer?

Consider families with two children Q = {bb, bg, gb, gg} where the
first (second) character stands for the sex (boy or girl) for the elder
(younger) child. Imagine that all four possibilities occur with the same
probability P(w) = 1/4.

« Given that a family has a boy, what is the probability that the
other child is also a boy?

« Given that the older child of a family is a boy, what is the proba-
bility that the younger is also a boy?

« Given a boy taken at random what is the probability that the
other child in his family is also a boy?

« Given that a family has a boy who was born on Tuesday, what is
the probability that the other child is also a boy?

Exercise 4.10

The Monty Hall problem: suppose you’re on a game show, and you’re
given the choice of three doors: behind one door is a prize; behind
the others there is nothing. You pick a door and the host, who knows
what’s behind the doors, opens another door, which is empty. He then
asks: “Do you want to pick the other door?” Is it to your advantage to
switch your choice?

Exercise 4.11

Let A and B be two event. Show that the probability that both of
them occur, given that at least one of them occurs, is smaller than the
probability that both of them occur given that you know which of the
two events occurs.
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Random variables

A random variable is not a variable. It is a function.

A random variable (RV) is a function®

X:Q-F (5.1)
tw - X)) eF (5.2)

where [ is a field, for example the real numbers R (real RV), the integers N
(integer RV), the complex plane C, etc.

We assume that statements like X € [a, b] that concern the random
variable X are all events that belong to A. Then the definition of 2 on A
induces a probability distribution on the values that the random variable takes.
For variables defined on a set [ of finite or countably many elements x the
probability distribution is defined as

Py = P{X(w) = x} = P{w € Q : X(w) = x} (5.3)

where p, > 0 and Zx P = 1 by normalisation. For real RV, the probability
distribution is defined as follows. For any interval [a, b] C R, we define

b
PIX(@) € [a,b]} = f dxp(x)

!As a general rule, we shall use uppercase letters for random variables and the corresponding
lowercase letter for the values they take. When not needed, we shall suppress the dependence
on w. Yet it is important that you always remember that random variables are functions, not
variables.
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o px(m)

py(y) = — [f/(@:)]

@)=y

y+dy ..
y -

Figure 8. A graphical representation of the relation between the pdf of X and that
of Y = f(X).

where p(x) is called probability density function (pdf). More precisely, the pdf
of a continuous random variable X is defined as

p(x) = lim %P{X(w) € [x,x + dx)}. (5.4)

The term “density” in pdf appears because p(x) is not the probability of the
event {X(w) = x}. The probability of this event is zero for any x € R.? Eq. (5.4)
states that the probability to find a random variable in an interval [x, x + dx),
for an infinitesimally small dx, is p(x)dx.

The cumulative distribution is defined as®

PX(w) < x} = f dx'p(x") = P(x).

—0

The normalisation implies

f p(x)dx = lim P(x) = 1. (5.5)

This does not mean that it is impossible for a real random variable to take any value x, of
course.

3Notation: when X is a discrete random variable, we use the values x that it takes as indices
for the probability, as in Eq. (5.3). When X is continuous we use x as the argument of either
the pdf Eq. (5.4) or of the cumulative distribution. For the pdf we use lowercase letters — as p
in Eq. (5.4). We shall use uppercase letters for cumulative distributions.
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Change of variables: let f(x) be a monotonic function. Then the pdf of
the variable Y(w) = f[X(w)] is

px(x)

TEE3)| - 66

py(y) =

this merely reflect the fact that the probability of corresponding intervals*
[x,x + dx) and [y,y + dy), with y = f(x) and dy = f’(x)dx, must be the
same, i.e. px(x)dx = py(y)dy. This can be extended to non-monotonic func-
tions f(x), splitting the domain of x in subdomains where f(x) is monotonic
and adding all the contributions to py(y) that come from each domain (see
Figure 8).

The factor |f/(x)| in the denominator Eq. (5.6) appears because the pdf
is not a probability, but a probability density. If for example X(w) is a length,
then the pdf has dimensions of inverse length. Probability are numbers, so
they are adimensional. The pdf of X is not adimensional, it has dimensions
of 1/X.

5.1 Many random variables

The same definition extends to the case of n random variables X(w) =
(Xy,...,X,), where each component X;(w) is a random variable. The joint
pdfis defined by

p(x)dx = P{X;(w) € [x;,x; +dx;), i =1,...,n}, (5.7)

where dx = dx; dx; ...dx,. If we’re interested only in the distribution of one
of the random variables, say X;(w), we can derive its pdf integrating over all
other random variables:

le(x)zf dx2.../ dx,p(x, Xy, ..., X,). (5.8)

This is called the marginal distribution of X;. Likewise we can compute the
marginal distribution of any subset of random variables by integrating the
joint distribution on all the others.

We can also define the distribution of a variable, say X;, conditional to
other variables, say X,. In order to do this, we need to consider the events

“This refers to an increasing function. For a decreasing function dy < 0, so the interval on
Y is between y + dy and y. This is the reason of the absolute value in Eq. (5.6).
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{X1(w) € [x1,x; + dxp)} and {X,(w) € [x,, x5 + dx,)} and apply the rules of
conditional probability. Then

p(x1, x3)dx;dx,
p(x3)dx,
= p(x1|xy)dxy ,

PiX1(w) € [x1, X1 +dx1)|X5(@) € [x3, X, +dX;)} =

hence the pdf of X; conditional to X, is:

p(x1,x;)

—p(xz) . (5.9)

p(x1|x;) =

This generalises in obvious ways to the joint pdf of any subset of variables
conditional to another subset of variables.

Two random variables X; and X, are independent if their joint pdf fac-
torises, i.e. it p(x;, x;) = p(x;)p(x,). n random variables are mutually inde-
pendent if

¢
P(Xi5 Xy e s Xj,) = H p(x;) (5.10)
k=1

for any ¢ = 2,3,...,n and for any indices i; < i, < ... < ip. Again pairwise
independence (i.e. p(x;,x;) = p(x;)p(x;) for all i < j) is not enough to
ensure mutual independence among »n random variables. When the sample
space is finite, the same argument that we invoked before to estimate the
maximal number of independent events suggests that the maximal number
of independent variables is, generically, upper bounded by log, |Q|.

What is your estimate of the maximal number of pairwise independent
random variables defined on a sample space with a finite number |Q|
of elements?

Show that it is possible to obtain a constant as a linear combination of
n random variables X;(w) when n = |Q| < +o00. In other words, in this
case there are combinations of random variables that are not random
at all. [Hint: you can think of a random variable as a vector in an |Q|
dimensional space. |
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5.2 Examples of random variables

A binary random variable. The simplest random variable takes just two
values: X(w) € {0, 1}. The distribution is given by

p=Plw: X(w)=1} and P{w : X(w)=0}=1-— p.

Bernoulli trials. Consider the repetition of n independent experiments (tri-
als), each of which results in either a success or a failure. This setup
corresponds to the case of n independent binary random variables X,
k =1,...,n, where X; = 1 stands for success in the k™ trial and X k=0
for failure.> As before P{w : X;(w) = 1} = p for all k. Then one
can define the random variable S, = ZZZI Xy which is the number of
successes in n trials. The probability

B(kin,p) = PS, =k} = ([ )p"Q—py*  (511)

is called binomial distribution easily computed observing that all out-
comes (X1, X, ..., X,,) With k successes have probability p¥(1 — p)*~*
and there are (Z) of them.

Multinomial distribution. The binomial distribution naturally generalises
to cases where the outcomes X; of each of the n trials can be more than
two. If each trial corresponds to a random variable X; = 1,2, ..., d that
can take d different values, and P{X; = ¢} = p, (with 3, p, = 1), then
the number of times the outcome X; = ¢ is observed across trials®

n
Kp =), 0x.¢
i=1
is a random variable with distribution’
d
P{Ky=ke, € =1,..,d} = Hp > ke =n. (512)
Hf lkf' =1 =1

Again the probability that in a sequence X7, ..., X, there are k, variables
with the value X; = ¢ is plgf. This accounts for the second factor. The

>In this case the sample space Q = ®:=1 Q. is the direct product of the sample spaces for
each trial and X, : Q; — {0,1} depends only on the outcome of trail k.

®Here &, ; is the Kroneker delta, which is one if i = j and zero otherwise. In this equation it
is used to count the number variables X; which are equal to ¢.

. . d
"Note that the random variables K, are not independent, because Y, oo Ke = n.
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combinatorial factor accounts for the number of sequences that satisfy
this condition for each ¢.

Let p; be the probability that a child of a family was born on day
i of the year (i = 1,2, ...,n = 365). Compute the probability that
the two children of a family have their birthday on different days.
Show that this is maximal when p; = 1/n. Show that, in a family
of three children the probability that all have different birthdays
is also maximal when p; = 1/n. Argue that this should be true
for a family with any number r of children and try to prove it.

Show that, if {Kj, ..., K;} follows a multinomial distribution with
parameters py,..., pg, then for any ¢ = 1,...,d the marginal
distribution of K, is given by the binomial distribution with
parameter p,, over n trials. Is this what you would expect?

Poisson distribution. Often one is interested in the same problem as above,
but in the limit where n — oo, p — 0 with np = A fixed. The typical
example is the decay of nuclei in a sample of radioactive material. Each
of these events can occur with the same probability in an infinitesimal
time interval dt, and the probability p = rdt of this to occur is propor-
tional to dt. In a fixed time interval of duration T there are n = T /dt
such intervals. In this case, 1 = rT where r is the rate of decay per
unit time. The probability of observing k events is given by the Poisson

distribution .

P(k|A) = I}eroloB (k|n,A/n) = %e"l (5.13)

which is derived from the binomial distribution Eq. (5.11) in a straight-
forward manner.

1. Derive Eq. (5.13) and check that Eq. (5.13) is correctly nor-
malised.

2. What is the same limit of the multinomial distribution
Eq. (5.12) when n — oo with p, = 1,/n.
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The Geometric and the Negative Binomial distributions (waiting
times). In a sequence of Bernoulli trials, one can ask the question
of how many trials one should “wait” before observing the first suc-
cess. This is an integer random variable — a waiting time — T whose
distribution is

P{T =k +1} = p(1 — p)~. (5.14)

This is because there need to be k failures (which have probability
(1 — p)¥) in order for the first success (which accounts for the factor p)
to occur at trial T = k + 1. Eq. (5.14) is called the geometric distribution
and it is a special case of the negative binomial distribution

Pr=k+ri=()pro-ve ="t ra-pr G1s)

for r = 1. This is evident from the second expression, that is obtained
from the first by a simple manipulation of binomial coefficients. The
negative binomial gives the probability that the r success in a sequence
of Bernoulli trials occurs at “time” T' = r+k. In this case, k is the number
of failures and there can be (" +i_1) ways in which they can occur before

the r'" success.® Waiting times are a useful concept that we shall use
frequently in what follows.

What is the probability that T > k + ky +r given that T > kg +r
if T’s distribution is given by Eq. (5.15)? Show that for r = 1 this
equals the probability that T > k + r. This means that knowing
that T > ky + r does not make the event that we should wait
k more steps for the first success any more or less likely. This
is a sign of lack of memory in the Bernoulli trial process — i.e.
knowing what has happened up to a certain point does not affect
what will happen in the future. Show that for r > 1 this is not
so. Isthe event T > k + k( + r given that T > k, + r more or less
likely than T > k +r forr > 1?

The Gaussian distribution. The pdf of a Gaussian variable X(w) € R is

given by
1 _ (x—m)?
e 22 (5.16)

p(x) =
2o

8See FELLER VI.8 for more details.
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where® m (the mean) and o (the standard deviation) are real parameters.
Clearly o > 0.

An important property of Gaussian variables is that the sum of two
independent Gaussian variables Z = X + Y is also a Gaussian variable
with mean u; = ux + uy and variance O'% = G)Z( + af,, where uy, uy and
ox and oy are the mean and standard deviations of X, Y, respectively.
This has important consequences.

Prove this.

The de Moire-Laplace theorem shows that the Binomial distribution, in
the limit n — oo, is asymptotically equal to
1 _ (k=npy?
B(k|n,p) ¥ ————¢ 2p0-p) (5.17)
\27mnp(1 — p)
this means that, for large n, a binomial random variable S,, is well
approximated'® by a Gaussian random variable with parameters m = np

and o =y np(1 — p).

Exercise 5.8

Derive Eq. (5.17) using Stirling’s formula.

The Multivariate Gaussian distribution. The Gaussian distribution gen-
eralizes to a vector X(w) = (X3, ...,X,) of n random variables in the
following manner

1 , A
IOEN ?ze;)/rll et (5.18)

where m € R" is a vector and A is an n x n positive definite symmet-
ric matrix (prime denotes transpose). This is called the multivariate
Gaussian distribution.

°To check that Eq. (5.16) is correctly normalised, you can use the fact that, by a change
variables to polar coordinates,

0 2 2 2 0 2
[f dze_Z] =/ dG/ re 2 dr =27
—o0 0 0

19We could equivalently say that a binomial random variable converges to a Gaussian when
n — oo. Yet we shall discuss later what “converges” means for random variables.



5.2. EXAMPLES OF RANDOM VARIABLES 61

Using the spectral decomposition of the matrix A in eigenvalues
and eigenvectors, prove that Eq. (5.18) is correctly normalised.

Notice that if A is diagonal, i.e. if its matrix elements A; j vanish for all
i # j, then the n random variables X; are independent. However, there
is a linear combination Y = V(X — m) of the n variables that transforms
them into a vector of independent variables Y;. Indeed, if one takes V'
as the matrix!! of eigenvectors of A, one can write A = V'AV, where A
is the diagonal matrix of eigenvalues. Then one can rewrite Eq. (5.18) as

2

P
py) =T/ 5o ™
i=1

which is the joint distribution of n independent random variables Y;.
In words, any multivariate Gaussian distribution can be transformed
into the distribution of n independent Gaussian variables by a “simple
rotation”.

The uniform distribution. The RV X(w) € [0,1] with p(x) = 1 for x €
[0,1] and p(x) = 0 otherwise is called a uniform random variable. The
random number generator in your computer simulates realisations of
uniform random variables.!? Therefore, this is your starting point for
generating pseudo-random variables with any continuous pdf p(x). One
of the methods relies on the fact that for any random variable X with
pdf p(x), the random variables

X(w)
U(w) = f p(x)dx (5.19)
—0o0
is a uniform random variable (please check). If this relation can be
inverted to find X as a function of U, then it can be used to generate
random variables with pdf p(x) starting from a pseudo-random number

generator of uniform random variables U.

The exponential distribution applies to RV X(w) € [0, o0) with p(x) =
ae”® for x > 0 and p(x) = 0 for x < 0.

UWhere the prime indicates matrix transpose.
12The book Numerical Recipes ([11], also available online) provides a practical and concise
discussion of how this is done. Please read it.
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Exercise 5.10

How would you generate an exponential random variable using
Eq. (5.19)?

This arises in problems related to waiting times. Consider a process
like the decay of a certain radioactive sample. The probability of the
event A, 4, that an a particle is emitted in any interval [¢,t + dt) is
independent of ¢ by time translation invariance. If we also assume that
the occurrence of a decay at time ¢ does not provide any information
about decays at later times then, P(4, 4;) must also be proportional to
dt,ie, P(A;4;) = adt. The probability that k events occur in [t,t + 7) is
then a Poisson distribution with parameter at.

Can you demonstrate explicitly the last two sentences?

Then the probability that no event occur in [¢,t + 7) is e~ 7. This is also
the probability that the time T one has to wait for the next event is larger
than t,i.e. P{T > t} = e~%". Therefore the pdf of T is

p(t) = —%P{T >t} =ae ¥, (5.20)

A characteristic of exponential random variables is that it describes
memory-less processes. This is well explained by the fact that, if buses
arrive at your bus stop at random times, and the time you have to wait
has an exponential distribution, it makes no sense to ask to by-standers
how long they have been waiting. That information will not tell you
anything on whether the next bus will arrive sooner or later.

Exercise 5.12

To show this, compute the conditional probability that you will
have to wait at least t more minutes, given that someone at the
bus stop has seen no bus arriving in the past 7 minutes. Compare
this with the unconditional probability that you will have to wait
at least t more minutes.
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5.3 Expectation

The expected value of a random variable X is defined as
E[X] = fdxp(x)x or E[X] = prx
X

for real or discrete random variables, respectively. In general the expectation
operator [E[-] is defined on any functions and combinations of RV. E.g.

E[/(X)] = f dxp(e)f(x)

It is a linear operator E[aX + bY]| = aE[X] + bE[Y] for any constants a, b
and RV X(w) and Y(w). The n™ moment of X(w) is defined as

M, = E[X"] = /dxp(x)x"

In particular the first moment E[X ]| — the mean — gives a measure of the
value around which X(w) is distributed and the variance

V[X] = E[(X - E[X])]

gives a measure of the variability of X, because the standard deviation o[X] =
1/ V[X] quantifies the dispersion of X (w) around its expected value.

Exercise 5.13

Compute the expected value of the waiting time of an exponential
random variable with pdf given by Eq. (5.20). Now go back to the bus
stop problem. If a bus comes on average every 10 minutes, how much
time do I expect that I will have to wait?

Exercise 5.14

Compute the mean and the variance for the binomial (Eq. (5.11)), the
Poisson (Eq. (5.13)) and the Gaussian distribution (Eq. (5.16)). How is
the Poisson distribution special?

The expected value can also be defined for more than one random variable,
for example:

E[X,X,] = f dx, f dx,p(x1, X,)X0 %, (5.21)
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In general, the expected value of a function of n random variables X, ..., X},
is given by

[E[f(Xl,...,Xn)]=/ dxl...f dx,p(x1, .., Xp) (X1, s Xp)

In other words, every random variable on which the expectation is taken
needs to be integrated over with the corresponding probability. The expected
value can be decomposed in conditional expected values, just like the joint
distribution p(xy, ..., X, ) can be decomposed in conditional distributions. For
example, for two variables

E[f(X1,X5)] = f dx; p(x)E [f (X1, X2)|X7 = x1]

where E [ f(X1,X,)|X, = x1] = f_ozo dx, p(x,|x;)f(x1, x,) is the expected value
conditional to X; = x;. So we can write!3

E [f(XlsXZ)] =E [[E [f(XlaXZ)le]]

where the inner conditional expected value is taken with respect to X, with
X, fixed, and the outer one with respect to X;.

Exercise 5.15

The tower property of conditional expectation is
E[E[f(X.Y,Z2)IX,Y]|X]=E[f(X,Y,2)[X] .

Show it and interpret it.

Going back to Eq. (5.21), if X; and X, are independent, then the joint pdf
factorises p(x;, x,) = p1(x;)p,(x,) and the integrals also factorise. Therefore
if X, and X, are independent!#

E[X1X,] =E[Xi]E[X;] .

Notice that the converse is not true, i.e. E[XX,] = E[X;] E[X;] does not
imply that X; and X, are independent.

13The expected value E [ f(X;,X,)] is a number, but E [ f (X, X,)|X;] is a RV, because it is a
function of the random variable X;.

14Note that E [X;X,] = E[X;] E[X,] if X; (or X,) is a constant. A random variable which is
constant is independent of any other random variable.
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Exercise 5.16

Find a simple counter-example with X; and X, that take values in
{—1,0, 1}, where

E[X1X,] = E[Xi]E[X5]

but X; and X, are not independent.

The same consideration applies to expected values of functions of more
than one random variable: the expected value of the product of n independent
random variables X1, ..., X,, equals the product of the expected values, or more
generally

E[f1(XD)f2(X0) - fr(Xp)] = E[f1(XD]E [f2(X)] -+ E[f2(X0)]

for any set of functions f;(x). But the converse is not true in general.
The covariance between two variables is defined as

Cov(X1,X5) = E[(X; — E[X; (X5 — E[X,])]
whereas the correlation is defined as
E[(X; — E[X; DX — ELXG))]
VX, VX, ] '

Corr(X;,X,) =

One important point to keep in mind is that if X; and X, are independent,
then they are also uncorrelated, i.e. Cov(X;, X,) = 0, but the converse is not
true, unless the variables have a multivariate Gaussian distribution.

Exercise 5.17

Prove that if X; and X, have a multivariate Gaussian distribution and
Cov[X;,X,] = 0 then they are also independent. Find a counter-
example that shows that this is not true in general.

Exercise 5.18

Show that the covariance matrix C; ; = Cov(X;, X ;) of a ensemble of n
random variables X = (X1, ..., X},), is a non-negative definite matrix,
whatever is their distribution p(X). (Hint: the variance of any linear
combination
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[ cannot be negative). ]

Other examples of the use of the expected value that we shall use frequently
in the sequel are the generating function g(s) = [E[s*] for integer valued
random variables, and the characteristic function ¢(k) = E [e*X] for real
random variables.

5.4 Correlation and factor graphs*

Imagine that a variable Z is caused by X and Y, where X and Y are two inde-
pendent causes. One way to think about this is that there is a “mechanism”,
such that Z is a function of X and Y. One way to write thisis Z = f(X,Y,U)
where U is an unobserved independent random variable. Then, among the
six ways in which we can write the joint pdf p(x, y, z) in terms of conditional
pdf, there is one

p(x,y,2) = p(z|x,y)p(x|y)p(y) = p(z|x,y)p(x)p(y)

that reflects this causal structure. Notice that this is the only way in which the
conditional dependence is simplified, because p(x|y) = p(x). For example,
in p(x,y,z) = p(y|x, z)p(z|x)p(x) the term p(y|x, z) is different from

p(ylz) = f dxp(y|x, 2)p(x) (5.22)

because even if X and Y are independent, conditioning on Z introduces a
statistical dependence between them. This allows us to identify the causal
relation, i.e. to say that X and Y cause Z and not that Y is caused by X and Z.

Exercise 5.19

In order to convince you about Eq. (5.22), write p(y|x, z) in terms of
p(z|x,y), p(x) and p(y).

A causal dependence between n variables X ..., X, can be represented
as a structural causal model X; = f(Xg;, U;), where Xy = {X;, j € 9;}isa
shorthand for the set of variables that “cause” X; (and J; is the set of indices
of these variables). A structural causal model can be represented as a directed
a-cyclical graph (DAG), where “directed” means that each link has a direction
and “a-cyclic” means that there are no loops. For example, the DAG in Figure 9
corresponds to

p(x1, ..., X6) = p(x1)p(xa|x1, X3)p(x3) (4| X2, X3)P(X5]|X2, X6) P(X6] X1)
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Figure 9. A directed aciclic graph representing the statistical dependence between
six variables.

In each factor, the conditional probability of X; only contains the variables
that “cause” X;, which are called the parent variables. The best way to identify
causal relations is to act on the variables. So suppose one can act on the
variables and fix one of the variables to a specific value, let’s say X, = x,. It
is clear that this intervention will affect only the variables which are down-
stream of X, (e.g. X, and X;) and not those that are upstream (e.g. X;, X3 and
Xs)- This means that the marginal pdf of X; changes only for those variables
that are causally dependent on X, but not for those which are not causally
related. Note, in particular, that fixing X, = x, to a constant makes X, and
X independent. Graphically, fixing a variable corresponds to removing the
corresponding node from the DAG. This may break the DAG into disconnected
components. Two variables that belong to different disconnected components
are independent.

These arguments are developed further in the field of causal inference.'

For our purposes, let us suffice to say once again that statistical dependence
should not be interpreted as causation.

Exercise 5.20

Compute the m™ moment of the Gaussian distribution with mean u
and variance o2, for a generic m.

15See very interesting lectures by Bernhard Scholkopf at the 2020 Machine Learning Summer
School.
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Show that for a multivariate Gaussian distribution (Eq. (5.18))

Exercise 5.22

Show that if X = (X3, ..., X,,) follows a multivariate Gaussian distribu-
tion (Eq. (5.18)), then the marginal distribution of X; is also a Gaussian
with mean m; and variance equal to {A_l}i,i (i.e. the i,i element of the
inverse of A.¢

?The world of Gaussian variables is like Eden. It’s beautiful and perfect. The only
way to get out of it is to commit a sin.

Exercise 5.23

Let X be a random variable distributed in the range [a, oo) with pdf
p(x). Show that

EX]=a+ f [1-P(x)]dx, P(x) = / p(x)dx.

Exercise 5.24

r
\

Show that if X and Y are two independent random variables with
cumulative distribution P(x), then the cumulative distribution of the
minimum is

Pimin(X,Y) < x}=1—[1-P()]" .

If X, and X, are two independent RV with the same cumulative distri-
bution P(x), show that

E[|X, — X,|] = 4Cov [X, P(X)].
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Exercise 5.26

Let 6 be a uniformly distributed random variable in [0, 277]. Show that
the two random variables X = cos® and Y = sin 6 are uncorrelated
but are not independent. Find their marginal distributions.

Exercise 5.27

Show that, if X is a Gaussian variable, then

E [erf(aX + b)] = erf( aEIX]+D ) :

V1 +2a2V[X]

where

X
erf(x) = i/ e ?’dz
V7 Jo

is the error function.







Chapter 6

On urn models and sampling”®

The fundamental idea of probability theory is expressed in terms
of urn models. FELLER

Even though we cannot define the probability P(A) of an event A as the
limit of the frequency of its occurrence in a sequence of many independent
trials, this remains a possible way to estimate P(A).

The process of repeating the experiment becomes conceptually equivalent
to repeated draws with replacement from an urn with many balls, a (unknown)
fraction p = P(A) of which is black and the rest is white. So a “success” in
the experiment, i.e. the occurrence of the event A, is equivalent to a draw of a
black ball. In this schematisation, p is an objective, physical property of the
system (the fraction of black balls). Let’s first argue that indeed the frequency
of draws of black balls will converge to p.

Let K,, be the number of black balls drawn after n draws with replacement,
i.e. when the ball which is drawn is put back into the urn. It is clear that the
probability of K, (w) = k is given by the binomial distribution:

Pikin, p} = (},)p*(L - py'-.

We expect and we can explicitly check by De Moivre-Laplace limit of the
binomial that, as n gets large, the frequency K,,(w)/n — p, in the sense that
the probability that |K,,/n — p| > € gets soon very small. Please note that
this is a non-trivial statement because K,,(w)/n depends on w (it is a random
variable!), whereas p is independent of w, it is a constant.

Itis also instructive to check this numerically. It is easy to write a computer
code! — let’s call it A. for — that will generate the sequence k,, (for n < 1000

Do it and run it!

71
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and p = 0.4, for example),?

seed=81701

p=0.4

do n=1,1000
if (ran(seed).lt.p) k=k+1
print *,n,k

end do

end

If we plot K we expect to see a trajectory drawing closer to p = 0.4.
n

This seems a good simulation of what we expect from our experimental
process, with one big difference:

when we do the experiment we do not know p. Actually, we do the
experiment precisely because we want to measure p!

In order to imagine the situation where p is unknown, think of the situa-
tion where the line p=0.4 is replaced by p=ran(seed) in the program above.
Imagine someone compiles the program, with an unknown value of seed,
and gives you the executable, but not the source file. Then, you can run the
code and plot k/n vs n. You will observe k /n converge to some value, which
will be close to the unknown p. This means that over time we will learn the
value of p to a better and better approximation.

Indeed, by Bayes rule you can find out what is the probability of p being
in any interval [x, x + dx), and find that this is sharply peaked at x = k/n,
for large n. In order to do this, you need a prior distribution on the value of
p- How to choose a prior is a quite interesting and non-trivial issue that is
discussed in detail in ref. [8]. We’ll get back to it, for the moment I will assume
that Py(p) = Ap®~1(1 — p)*! (i.e. a = 1 corresponds to the uniform prior).
Then

Pik|n, p = x}Ax%1(1 — x)*ldx
Jo P(k|n,y)Aya-1(1 - y)a-idy

_ I'(n + 2a)

" Ik +a)(n—k+a)

P{p € [x,x +dx)|n, k} =

xk+a—1(1 _ x)n—k+a—1 dx

’The variable seed initialises the random number generator ran(). This is morally the
analog of the element w of the sample space, in the sense that different choices of seed
generate different random sequences. The if statement uses the fact that ran(seed) produces
a uniform random variable, which is less than p with probability p.
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Then, our estimate of the fraction p of black balls, is the expected value on
this distribution:?

I'(n + 2a) !
E k] = kta=1(1 — y)yn—k+a-1y4x =
P K= et kv )y © Y rex

k+a
n+2a’

Summarising, in our sampling process the distribution of possible values
of p becomes more and more sharply peaked around a value that is close to
the frequency p ~ k/nasn — oo.

Note that the best estimate of the probability that the next draw will be a
success, using the results above, is given by

k+a

PRy =k +11K, = ko= ——.

(6.1)

So we can compute the probability that the next drawn ball will be black
without knowing p, incorporating all the information we have so far about it.
Indeed, we can “simulate” the whole process without knowing p. In other
words, if you generate a sequence k,,, starting from k, = 0, using the above
rule — i.e setting k,,; = k, + 1 with probability (k,, + a)/(n + 2a) and
k,.1 = k, otherwise — then this should be statistically indistinguishable
from n repeated draws from an urn with unknown composition. To make the
statement concrete, consider the program B. for

a=1.0

seed=81701

do n=1,1000
if ((n+2*a)*ran(seed).lt.k+a) k=k+1
print *,n,k

end do

end

The output of this program is statistically undistinguishable from the output
of A. for, which means that if both are compiled and given the same name
there is no way we can tell whether the output comes from one or the other.

3The expected value of the estimate of p does not coincide with p unless a = 0 (in statistics
jargon, the estimator is biased). a = 0 corresponds to a prior Py(p) = A/[p(1 — p)] that is non
normalizable (which is called an improper prior). This seems odd, but there are good reasons
to believe that indeed a = 0 correctly encodes our state of ignorance on p. Indeed, if you had
observed no success (k = 0) after n trials, you would infer that p = 0. The article by Jaynes
cited above provides arguments for a = 0.



74 CHAPTER 6. ON URN MODELS AND SAMPLING*

Show that the random variable P, = % in this process satisfies the
n+za

equation E [P,,41|P,] = P,. Sequences of random variables that satisfy
this property are called martingales. Iterating this equation, show that

E[P,] = -

Interestingly, you can interpret even B. for as reproducing a sequence of
draws from an urn. Take an urn which initially has a black and a white balls.*
At each draw, the drawn ball is put back into the urn and an additional ball of
the same colour is added (by some device internal to the urn). Equivalently,
you can think that the ball “magically” duplicates just after being put back
in the urn. So, if a black (white) ball is drawn, it is put back in the urn and
a further black (white) ball is added. The number of balls increases with #.
If out of n draws k black balls have been observed, then the urn will contain
k + a black balls out of a total of n + 2a balls. Hence the probability that
the next draw results in a black ball is exactly given by Eq. (6.1). And this is
precisely the process that B. for simulates. This model is called a Polya urn.>

Arbitrary® as it might seem, this construction is just a different conceptual
model for our sequence of experiments. Remember that the observer is run-
ning the experiments precisely because he/she wants to learn about a system
that is not known. So there is no a priori reason to prefer one to the other.

The fact that A. for and B. for produce statistically indistinguishable out-
puts is striking, for the two programs code for processes which are completely
different. One is a sequence of independent draws, whereas in the second the
outcome in a draw depends on the whole sequence of previous draws. In the
first the urn is always the same, whereas the second is a process where draws
modify the composition of the urn and hence the probability of future events.

There is no way to know whether you're learning about the unknown
composition of the urn or if you're filling up an urn in a history

4Isn’t it curious that the parameter a that specifies the number of balls in the urn before
the first draw is also the one that defines the prior distribution P,? This does not seems like a
coincidence, because that is precisely what is known about the urn before the draws.

5See FELLER, Chapter V.

50One may question about the arbitrariness of such constructions. JAYNES argues that even
the simple scheme of draw from an urn with replacement is not at all unambiguous, as the
state of the urn is affected by the drawing. One implicitly assumes that the urn is shuffled after
each draw enough to ensure that at the next draw the urn is in its original state. Yet how much
shaking and what “ensure” really means is never really spelled out. Definitely the observer,
after all these operations, is not in the same state of knowledge as at the time of the first draw.
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dependent manner.”

Now you should be in a position to answer the following questions:

1. what is the fraction of black balls in the limit of infinite draws in the
second process?

2. What is the limiting fraction if one starts from an urn with two black
and one white balls? or with b black and w white balls?

6.1 Sampling and undersampling

This setup can be generalized to experiments that can give any number of
outcomes. In many cases, when we do experiments, we do not even know how
many different outcomes we can get. Consider for example a botanist that is
classifying samples into species of plants in a yet unexplored island. He/she
has a criterium to decide whether the next sample is a further exemplar of
one of the species he/she has already seen or if it is a new species. In this case,
as well in cases where the system we’re studying is complex, the number of
outcomes can be very large, and much larger than the number M of available
samples.’

So consider the general situation of an experiment repeated M times and
let k, be the number of times the state (or outcome) x is observed, with
x=1,..,Qand ZX k, = M. We may think of the experiment as sampling
an underlying distribution. But when M <« Q we’re very far from sampling
correctly this distribution (we call this under-sampling regime).

What can one learn from this data? What is the typical behavior of a
sampling process? What type of frequency distribution can we expect?

Generalizing the discussion above, it is possible to estimate in a Bayesian
manner, the probability p, of outcomes x, given the outcome of earlier ex-
periments (the number k, of times the outcome x has been found). The

"This means that, on the basis of the data alone, it is not possible to exclude “magical”
explanations that maintain that the outcome of an experiment is influenced in mysterious
ways by the outcome of previous experiments. Common sense suggests that this is not the
right explanation.

8As another example, consider the case where each observation can be a gene expression
array that tells you whether each gene is on or off. There may be hundreds of genes, so the
number of possible outcomes can be as large as Q ~ 2™ °f &0 Since the number of genes is
of the order of tens of thousands, this is an astronomical number, in principle. In practice,
the observed gene expression profiles are only those compatible with a biologically functional
organism, so they may be much less. The number of samples in typical experiments can be of
order M ~ 10?V - 103, which is much less than Q.
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probability of k is
k

P{k|p} = M! H

k !
Let the prior (pdf) on p be’

po(P) = 11:((a§2 H a-ls (Z Dx — 1)

Then the posterior pdf is given by Bayes rule

k +a—1
p(plk) = F(M+a9)HF(k o (pr— )

Imagine now that I can do a further experiment. The probability to observe
outcome x is

M+ a0 (62
If the outcome of the experiment M + 1 and that of subsequent experiments
is consistent with what we have learned so far, then we can view KM ag being
the result of a draw from a Polya urn that initially contains « balls of each
color x. A sequence of draws of a ball from the urn is executed where, after
each draw, the chosen ball is put back into the urn together with a further ball
of the same color. After M draws, the probability of drawing a ball of color x
is precisely given by Eq. (6.2).

Therefore Polya urn schemes describe experiments whose outcomes, at
each time, are consistent with the statistics accumulated_)that far: these self-
consistent experiments produce a peculiar distribution of k which is obtained
generalizing the arguments in Feller Vol. 1 for the simple case Q = 2: each
sequence X, X, ..., X3y With a certain number k, of outcomes x, = x has the
same probability, which is given by

Hx:kx>00‘(“+1)"'(“+kx—1) M

Px’x’.__,x — 5 k = 6
{ 1> A2 M} QOC(l + QOC)(M_ 1+ QOC) * =1 e

_ TI(aQ) T(k, + o)
" T(@Q + M) 1:[ I'(a)

> L Lo k,+a
Elp,|k] = / dpp(plk)p, = —

9Here 8(x) is Dirac’s delta function, defined by the relation

Flxg) = f FOSCx - xo)dx

for any function f(x) and any x, € R.
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The number of sequences of this type is given by the multinomial factor
M!/(I], k!, so that

L MIT@Q) Ik, +a) B
PRI} = o oorea Ll —er > 2ke=M 69

X
which is also what one gets from integrating the likelihood over the prior
on p.
The number N, of different colours discovered up to M, i.e. the number
of x with k, > 0, can be estimated for large M, Q as follows: write M = mQ
and N, = n(m)Q then

_a(Q—Ny) _ a(l —n)

P{Ny1 =Ny + 1} = YT P (6.4)
dN _ dn
& — =, 6.5
dM dm 65)
By integration of the resulting differential equation, we find
m —a
nm)=1— (1 + E) . (6.6)

So, Ny; ~ M for M <« aQ and N, saturates at Q when M > aQ.

The probability that, for a particular x, we find k, = k decays as k¥ 1e=7,
where v is adjusted so that E[k] = M /Q. The number of x with k, = k, on
average, is'”

Pik, = k|M} = Ak% ek,

when 1 < M <« Q we expect v < 1 so the distribution of frequency types is
very broad.

Indeed, broad frequency distributions are observed rather ubiquitously
when one samples complex systems. For example, the abundance of species
in a given environment, the number of species with a given gene, the number
of firms with a given number of employees all follow broad frequency distribu-
tions. Our discussion suggests that this is the hallmark of an under-sampled
system.

We’ll come back to this, from a different angle, when we’ll talk about
statistics and inference.

19Tn order to obtain this result, you should sum Eq. (6.3) on all values of k,, for x" # x with
the constraint Zx k, = M. This constraint can be introduced with the integral representation

of the delta function &, ; = ffnﬂe"q“‘”. The sums on k,, factorise inside the integral, which
” 7T
can then be evaluated by saddle point.






Chapter 7

Generating functions

A very useful tool to handle infinite sequences a,, (n = 0, 1, ...) is to construct
the function

A(s) = Z a,s", seC (7.1)
n=0

which is called a generating function (GF). This is useful because all the prop-
erties of the sequence are encoded in the analytic behaviour of A(s), as a
function of 5. Eq. (7.1) is a formal power series that need not necessarily
converge for any value of 5. The variable s has no meaning. It is used as a
device.

In this chapter we shall first see how the structure of singularities of A(s)
can inform us on the asymptotic behaviour of the sequence a,,. Then we shall
see how generating functions can be used to solve counting problems. Finally
we shall apply generating function to probability. We shall restrict attention
to cases where a,, > 0, which are those we shall be interested in. As a teaser,
we start by an example that shows the power of generating functions.

7.1 Warm-up: Fibonacci numbers

Fibonacci numbers are defined by the recurrence relation

fn+1:fn+fn—1

forn > 0and f, = f; = 1. Let F(s) be the corresponding generating function.
If you multiply the recurrence relation by s"*! and sum on all n > 0 you find

F(s) = fo = f15 = s[F(s) — fol + s°F(s), i.e.,
1

F(s) = ——.
) 1—5—352

79
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v

Figure 10. The function F(s) has two singularities, at s = 1/¢ and at s = —¢.

This has two poles (the zeros in the denominator) ats = —¢ andats = 1/¢,

—1+;/§ ~ 1.61803... is the golden ratio. Expanding F(s) in simple
fractions, and then in geometric series, we find

where ¢ =

_ 1 ¢ ¢!
F(S)‘ﬁl1—¢s+1+¢—1sl 72
_ 0 L [¢n+1 _ (_¢—1)n+1] s". (7.3)
n=0V5

This gives the remarkable result

fn — L [¢n+1 _ (_¢—1)n+1] , n>o.
5

\/—

This formula allows to compute foy = 573147844013817084101 with few
operations, without the need to iterate the recursion relation 100 times. In
spite of the fact that ¢ is an irrational number, this expression yields an integer
number for all n. For n — oo, the asymptotic behaviour of Fibonacci numbers
is given by the first term in the expression above, since the second term is
exponentially smaller with respect to the first. Hence f, ~ ¢"*1/ \/5 for n
large.
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Can you compute the generating function when f, = 0 and f; = 1?
What is the difference? What if f, = 1 and f; = 2?

The same techniques can be applied for any sequence a,, that is defined by
arecursion relation, transforming the latter into an equation for the generating
function A(s) in Eq. (7.1). This equation can be solved to obtain A(s) in explicit
form. Finally the expansion on powers of s yield a,, as the coefficient of s".
The n'® coefficient in the Maclaurin power expansion of A(s) can be computed
in different ways:

1 d"A(s)
n! dsn

a, =

2
dqg
- f qA(elq)e—lq"=i§6%A(s)s—", (7.4)
0

27 27i

s=0

where the last integral is on a contour around the origin in the complex plane
s € C. In particular, a, = A(0) and if A(s) = s™B(s) where B(s) is analytic at
s =0,thena, =0foralln < m.

Even if it is not possible to find an exact formula for a,, it is still possible to
extract its asymptotic behaviour as n — oo, by studying the analytic properties
of A(s) close to its singularities, as we’re going to see next.

7.2 Asymptotics of a, from the structure of
singularities

Let us start by the simplest case where A(s) has only isolated single poles!

_N()

A(s) = m,

(7.5)
where D(s) is a polynomial of degree d and N(s) is a polynomial of degree?
n < d. Let sy, ..., S4 be the zeroes of D(s), which we assume to be all different
s; # sj fori # j. This means that D(s) can be written as the product of (s — ;)
over the different roots. Close to s;, A(s) diverges as ¢; /(s — s;), where the
constant ¢; can be computed as the limit of (s — 5;)A(s), as s — s;. Using
L’Hopital rule, we find

i (s =s)N(s) _ N(sp)
AT D Dy’

IThis argument is presented in much more detail in FELLER XI.4.
“How does the case n > d reduces to this?
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where D'(s;) is the first derivative of D(s) computed in s;. Then we can write

d

_ N(Si) 1
A(s) = ; D)5 =5 (7.6)

You can check that this expression for A(s) has the same poles of Eq. (7.5),
with the same asymptotic behaviour as s — s; for all i. Now each term in
Eq. (7.6) can be expanded as a geometric series, so

) d
N(s;) _,_
A(s) = - s sn (7.7)
which shows that
d
a, = — s (7.8)
" ; D'(s;) !

For n — oo the term that dominates the sum is the one corresponding to the
root s; which is closest to the origin. Without loss of generality, we can assume
that |s;| < |sy| < --- < |84]. Then a,, ~ e*" has an exponential behaviour for
large n, with a rate given by a = —log [s{|.

The first lesson that we learn can be summarised in the following.?

First Principle of Coefficient Asymptotics. The location of the singu-
larities of a function dictates the exponential growth of the coefficients of its
power expansion. More precisely, if the closest singularity of A(s) to the origin
is at s, then a, ~ |s;|™" in the sense that

lim llogan = —log|s;|.
n—oo N

If instead of a single pole, the singularity closest to the origin is a double
pole A(s) ~ (s — 5;)72, then it is easy to see* that the corresponding leading
asymptotic behaviour is given by a,, ~ ne®". This suggests that the type of
singularity determines the sub-exponential asymptotic behaviour of a,.. In

3If a, ~ Anfz", a simple recipe to compute z is to observe that

. Qpyk
lim = = zk,

n—oo Ay -
For example, if a, satisfies a recursion relation, such as a,,,, = ba,,; + ca,, then dividing this
equation by a, and taking the limit n — oo, one finds that z is given by the solution of the
equation z? = bz + ¢, with the largest value of |z|.
“Hint: compare the singularities of A(s) in Eq. (7.7) and of its derivative.
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order to get more intuition, let us consider the generating function A(s) =
(s; —s)~%"L. The binomial theorem gives directly the power expansion in s, as

As) = i (—an— 1)(_S)nsl—a—1—n_
n=0

In order to simplify the expression of a,, we shall use the properties of the I'
function

@ = (1 (75T s (7.9)
EC VG R G T IR
_ Hga—l—n (7.11)
~ Fz;_;:l)n“sl‘", n>1 (7.12)

where we used Stirling’s approximation for both n! and the I' function in the
last relation.
This has been generalised by Flajolet and Odlyzko [12] to the

Second Principle of Coefficient Asymptotics. The nature of the sin-
gularity closest to the origin of the generating function A(s) determines the
sub-exponential behaviour of the sequence a,,. More precisely, setting s; = 1, if

A(s)=F (ﬁ) with F(u) ~ u*(logu)’(loglogu)® as u — oo

then?
1 F(n)

a, ~ —
" T(a) n

asn — 0.

7.3 Counting with functions*

Much of classical probability is about counting. There are smart ways to count
objects using algebra, and it’s worthwhile doing a digression.

>The symbol ~ means that the limit of the ratio of the right hand side and the left hand
side of the relation equals one when n — oo.
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Imagine you are interested in a class A of objects of a certain kind. Each
object A has an integer size |A| = n that counts its components. For example,
A may be a graph of n nodes, and A the set of all graphs satisfying some rules.

The typical questions that we address is: how many objects are there in A
of size n? For example, how many words of 7 letters from a given alphabet
can you form? How many trees of n nodes are there?

One way to do this, given the set A of all possible objects A € A, is to
construct the function

A(z) = Z zIAl = Zanz". (7.13)

AeA

As before, z is a real or complex variable that does not have any meaning, per
se. It serves just as a counting device. It is not necessary that Eq. (7.13) be a
well defined function in general. Yet, in all cases we shall discuss A(z) is a
convergent series in a neighbourhood of the origin z = 0, i.e. the radius of
convergence is finite.°

As the second equality in Eq. (7.13) shows, the number a,, of objects of size
n is given by the coefficient of the n'™ term in the power expansion of A(z).
This is very useful in case A(z) can be computed analytically. This subject is
dealt with in great detail in Flajolet’s book [13], to which we refer as FLAJOLET
in what follows. The purpose of this discussion is to introduce you to the
subject and to show the power of generating functions as counting devices.

7.3.1 Operations on sets

The objects we want to count may satisfy some properties that can be ex-
pressed in terms of basic operations. These operations correspond to algebraic
operations on generating functions. Let us see some of them (see FLAJOLET
for more):

Union. The objects we’re interested in are of two possible types, i.e. they
belong to a class € = A U B of objects that can be split in two disjoint
(AN B = P) classes. Then

C(z) = Z zI€l = chz”

cee

= > zZM+ > 2Bl = A(z) + B(2),
AeA Be3B
ie. c,=a,+b,

5Given what we have discussed in the previous section, this restricts our attention to series
for which |a, | diverges at most exponentially.
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Product. EachobjectC = (A, B) can be decomposed in sub-objects of smaller
sizes, |A| + |B| = |C|. Correspondingly the class of objects € = A ® B
can be written as the direct product of the classes of the sub-objects.
This implies, for generating functions

C@= D, z*Bl=A@)B).
A€EA,BEB

Therefore c,, is given by
¢, = agb, + a1b,,_1 + ... + a,,by.
which is called the convolution of the sequences a,, and b,,.

Sequence. The class of objects € we’re interested in are the repetition of
more elementary objects in a class A. We write € = Seq(A) to denote
the fact that the generic element C = (A;, A,, ..., A;) is a sequence of
elements A; € A. Clearly’ C =+ A+ AQA+ AR A® A+ ... that,
using the two relations above, imply

C(z) =1+ A(z) + AX(2) + ... = 1_;14(2) (7.14)

Note that we admit as a possible object in € the sequence with zero
elements of A.

Powerset. Imagine we want to consider all possible subsets of objects A of a
given set A. The set of all these objects — called the power-set — can
formally be written as

e = PSet(A) = (X) [# U {A}]

AeA

Indeed expanding the product, each term corresponds to a “monomial”
with some of the objects A € A occuring only once. The corresponding

"The first element of the sequence is the empty set, i.e. a set containing no element. We
interpret the empty set as the set with one element of size zero. Hence the generating function
of the empty set is 1. With this definition A = # ® A because all objects in the L.h.s. correspond
to one object on the r.h.s. where we add one element of size zero.

FLAJOLET avoids reference to the empty set, defining a neutral set which is composed of one
neutral element of size zero.
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generating function is given by

C(Z) = H(l + ZlAl) = H(l + Zl’l)an

AeA n

= exp [Z a,log(l +z")
n

® _1\k ® _1\k
=exp| Y. % > anz""l =exp| Y. %A(zk)l
k=1 n k=1

Multiset. The multi set € = MSet(A) is the set of all collections of objects
taken from A with repetition. One can write

MSet(A) = (X) Seq({A})

AeA

from which?®

C(z) = H(l —zlAh=1 = H(l —Z")

AeA n

= exp [— Z a, log(1l — z")l

o0 0 k
=exp| Y. %Zanzk"l =exp| Y, A(: )l
k=1 n k=1

Let us illustrate with some examples how these concepts can be useful to
count:

+ The set of all binary words is € = Seq({0, 1}). The generating function
of A ={0,1}is A(z) = 2z, because there are two objects of size 1 in A.
Then C(z) =1/(1 —-22) = Zn 2"z". Indeed there are exactly 2" binary
words of size n.

« Consider the set J of all rooted plane trees. A rooted plane tree of size
n is a connected graph of n points « and n — 1 links joining them. One
of the vertices is the root, from which the tree starts. Plane means that

8The difference between sequence, power-set and multi-set is the same as the difference
between Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Indeed each element of a
sequence Seq({A}) is a collection of elements in A in any order, whereas in the power-set
PSet(A) each element of A can occur only once, and in the multi-set MSet(A) only the number
of times different elements of A occur matter, as for indistinguishable particles.
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[ ]
+
A,
T T T, Ty

Figure 11. Rooted plane trees.

ordering is specified for the sub-trees of each vertex. You can describe
a tree as being a node linked to a number of (sub)trees, in the sense
that if you remove a node, you're left with a collection of smaller trees.
Therefore

T ={}®Seq(7)

This means that T(z) = z/[1 — T(z)]. This can be cast in a quadratic
equation for T(z) whose solution is

1_
T(z) = =
2) 2 n+1l\n

1-vi-4z ““‘Z:ancn_lzn, €= = (")

where C,, are the Catalan’s numbers. Therefore the number of trees of
size n is given by the n — 1% Catalan number.

How does T,, grows with n for n — o0? In particular, if T, ~
nPe what are o and B?

« Consider a convex polygon with n+2 edges. By drawing non intersecting
diagonals this can be reduced to the union of triangles, which is called
a triangulation of the polygon. How many triangulations does a n + 2
sides polygon admit?

Let us consider the set J of all triangulations of all polygons. For any
given polygon with n + 2 edges, removing one of the sides and joining
the endpoints with another point reduces the polygon into the union of
two smaller polygons, say of size m + 2 and n —m + 1 edges (note indeed
that overall one edge has been added). Each of the sub-polygons admits
a certain number of triangulations. So the number of triangulations of
the original polygon can be related to the number of triangulations of
the sub-polygons, with the addition of a further triangle. This implies
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Figure 12. Triangulation of polygons.

that 77 = JU T ® {/\} ® 7, which considers the possibility that the
polygon with n = 0 has no triangles. Therefore

T(z)=1+zT*(z) = Z C,z"

where the second equality result from solving the second order equation
and expanding the result in series. Again the result involves Catalan
numbers!

Exercise 7.3

Consider the set B;; of binary sequences that terminate whenever
a pair of ones occurs for the first time. Show that for this set

By ={11}U{0} ® B;; U{10} ® By, .

Find the equation for the generating function and show that the
number of sequences of length n is given by b,(qu) = fn_, for
n > 2 where f, are the Fibonacci numbers (b(()ll) = bgu) =0).

Next consider the set B, of sequences that terminate when-
ever a pair of zeroes occurs for the first time. What is the number
b;‘"’) of such sequences of length n? Now consider the set B_ of
sequences that terminate whenever a pair of equal digits occurs
for the first time. Is B_ = By, U B;;? What is the number of
such sequences of length n?

Next consider the set B;, of binary sequences that terminate
whenever the subsequence 10 occurs for the first time. Derive an
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equation for the set B;, and, from this, the associated generating

function. Is the number of sequence of length n in B, equal to

that in B,;? Does an equation like the one above for B;; holds

for B,,? Finally, what is the number b,f of sequences of length n

that terminate whenever two consecutive digits are different? Is
£ _ pOD) | 1 (10),

b, =b,"+b, 1

« Integer partitions and compositions. A positive integer can be decom-
posed in the sum of other positive integers

n=x +x,+..,x, Xp 21

in a number of ways. Integer partitions correspond to the case when the
summands are non-decreasing (x; < x, < ... < x; ) whereas composi-
tions to the general case where x, can appear in any order. How many
partitions p,, (compositions c, ) does an integer n admits? First, the set
of integer can be constructed from a single element {} as 7 = Seq({})\#.
Since the generating function of the set {s} is just z, we have

1(z) = lf—z

This is consistent with the fact that there is one integer of size n, i, = 1.

Compositions are given by

C =Seq(D\D = {(+), (+), (2, 0), (s ¢ 0), (o, 00), (02, 0), (s, 0, 0), .}

Correspondingly their generating function is

Iz S,
C(Z)_l—I(z)_l—Zz_nZ::lz 1,

Therefore the number of compositions of the integer n is equal to 271,
A simple way to recover this result is by noting that, representing the
integer as a string of n symbols « « « « ... ¢, the number of partitions
correspond to the number of ways this string can be split inserting
commas in the n — 1 spaces between the symbols. Since in each of the
n — 1 spaces a comma can be present or not, this makes 2"~ possible
ways to split n as a sum of integers.
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Partitions are more complicated objects and they are given by the multi-
set P = MSet(J). Correspondingly

I(z)+§1(z2)+§1(z3)+...

P(z)=e (7.15)

(o8]

1

=1 — =Q+z+22+.)A+22+2z*+.)- (7.16)
m=1

There if no explicit expression for the number of partitions of n, but
Hardy and Ramanujan [14] derived the celebrated asymptotic result

1 exp (7-[ 2n>
4n\/§ 3
Note that if we are interested in partitions in distinct parts, i.e. when

X < X3 < ... < X, then the powerset has to be used instead of the multi
set P = PSet(I). Correspondingly

Pn ~

Ly iz ha
P;g(Z) _ eI(z) 2I(z )+3I(z )+... — H(l + Zm) (7'17)
m=1

3/4
3 n
Pri ~ 57 &P (ﬂ\/; ) (7.18)

where the last asymptotic expression was also derived by Hardy and
Ramanujan.

7.4 Labeled objects

Generating functions are also useful if we want to count objects that are
labeled. Take for instance a connected graph of n nodes where each node
has a different label, say the integers from 1 to n. How many such graphs
are there? The key point that we have to take into account is that, besides
counting different graphs as before, we also need to count the number of
different ways in which each graph can be labeled.

We'll not enter into much details here, but just mention the main fact and
give a flavor of the method. Consider for example combining two objects, one
from a set A the other from set B and let a,, and b,, be the number of labeled
objects of size n in the two sets.

In order to count labeled objects C € € = A @ B one needs to account
for the fact that each object C of size n will be composed of an object A € A
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of size k € [0,n] and an object B € B of size n — k. There are (Z) ways to
label C, so

Ch = i (Z)akbn—k

k=0

Then if we construct exponential generating functions

~ a _ b
Az) =), mz B =), mz (7.19)
n n
the generating function of labeled objects C € € will be given by the simple

multiplicative formula
C(z) = A(2)B(2).

This indicates that for labeled objects one needs to use exponential generating
functions such as the ones defined in Eq. (7.19). These satisfy further relations
if one considers more complicated constructions.

The simplest example is that of permutations. In order to compute the
number of permutations of integers, think of a permutation as a sequence of
labeled symbols ¢, for k = 1, ..., n. The generating function of permutations
is again®

5. 2 _N\'Pn_y,
P(z) = 1—2z _Z n!Z
n
so that the number of permutations of n is given by p,, = nl.

7.5 Generating functions for integer random
variables

Let'® p, = P{X(w) = n} be the probability distribution of an integer random
variable X(w) € N. Consider the associated generating function

P(s) = i pns” = E[sX]. (7.20)
n=0

The properties of this function close to s = 1 give us a lot of information about
X. First when we set s = 1 in Eq. (7.20) we find P(1) = 1, by normalisation.

“We can construct 2 from the relation = {+,}( J{+,} ® P, where «, is an object with a new
label. This corresponds to P(z) = z + zP(z). Note that the same generating function counts
integers when objects are unlabeled an permutations when they are labeled, i.e. P(z) = I(z).

19This material is discussed in FELLER, Chapter XI.
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Second, if we take a derivative and compute it at s = 1 we get

P'(1) = ) pans™!

n=0

=E [XSX_1]|S:1 = E[X]

s=1

Likewise, if we take k derivatives we find!!

d*Pp(s —
ZO =Y pu™| =GO
§ s=1 n=0 s=1
So, for example, the variance of X is given by
V[X]=P'(1)+P'(1)[1-P'(1)]. (7.21)

The cumulative distribution g, = P{X > n} of an integer random variable
is also a sequence for which we can define a generating function Q(s). This
is related to P(s) because the probability that X > n equals the probability
that X = n plus the probability that X > n,i.e., g, = p, + g, forn > 0.
Multiplying this by s” and summing over n > 0 we obtain sQ(s) = P(s) — pg +
Q(s) — qo. Finally, observing that p, + g, = 1 and rearranging terms, we find

W=

Using de I'Hopital rule, we find Q(1) = limy_,; Q(s) = P'(1) = E[X].

(7.22)

7.5.1 Sums of variables and convolutions

Let X and Y be two independent integer random variables with distributions
Dn = P{X = n}and r,, = P{Y = n}. Then the probability s, = P{X + Y = n}
is given by

Sp = Pot'n + P1¥n_1 + - + Pnlo.
This operation is called a convolution, i.e. s, is a convolution of the sequences
D, and r,,. Then the generating function of the sum X + Y is given by the
product of the generating functions of X and Y2

S(s) = Z s,s"=FE [SX+Y] =[F [SX] E [SY] = P(s)R(s). (7.23)
n=1

HURemember that
() =n(n-1)(n—-2)---(n—k+1).

12Here the symbol s is slightly abused. s, is the sequence, S(s) is the generating function
and s is the variable it depends on. R(s) is the generating function of Y.
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because, for independent variables the expected value factorizes. This is so
important that it makes sense to make all passages explicitly.

IfP{X = n,Y = m} = P{X = n}P{Y = m} = p,r,, then
E[s¥*Y] = Z SMp ¥ = [Z S”pnl [Z smrml =E[sX]E[sY].

The same applies to the sum of many independent random variables. A
particular case is that of independent and identically distributed (i.i.d.)*
random variables X, ..., X,. Then the sum

n
=X
i=1
has the generating function
Py, (5) = E[s51+-+%:] = E[sX]" = Py (s)" (7.24)

by exactly the same argument. Taking derivatives, you can easily find that the
mean and the variance of the sum are related to that of the variable X by

E[z,] = nE[X],  V[Z,] = nV[X]. (7.25)

For example, let us consider binary random variables X; = 0,1 with
P{X; = 1} = p and P{X; = 0} = 1 — p. The generating function of X; is
P(s) = 1 — p + ps. The variable X,, obtained by summing n i.i.d. binary
random variables, by Eq. (7.24), has generating function given by

Bup(9)=(—p+ps) = Y ()p(1 - py kst
k=0

which is indeed the generating function of the binomial distribution. From
this it is very easy to compute the mean and the variance by taking derivatives,
as well as to obtain the generating function of the Poisson distribution

® .k
Py(s) = e 791 = 3" T_eAsk (7.26)
k=0

by taking the limit n — oo with p = 1/n.

13The abbreviation i.i.d. will be used frequently, so please memorise it.
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Derive Egs. (7.25) and (7.26). Compute the mean and variance of
the Binomial and Poisson distribution by taking derivatives of the
generating function.

Consider a coin tossing experiment that terminates when two consecu-
tive heads occur for the first time. Compute the expected length E [Xyy]|
of sequences so generated and its variance. Next, let Xyr be the length
of the sequence of coin tosses that terminate when a head is followed
by a tail for the first time. Is the distribution of Xyr the same as the
distribution of Xyu? If not, compute the expected length E [Xyr| and the
variance V [Xyr]. What is the probability that Xy < Xpp? Comment
the result.

The argument also runs in the reverse direction. If the generating function
of a random variable X can be written as the n™ power of a generating function
Q,"*1i.e. P(s) = Q(s)", then X = Z; + ... + Z, can be written as the sum of n
i.i.d. random variables Z; with distribution P{Z; = k} = q.. For example, if X
has a Poisson distribution with mean 4, Eq. (7.26) implies that, for any n > 0,
X = Z,,...,Z, can be considered as the sum of 7 i.i.d. random variables Z;
with generating function

Q(s) = P(s)!/" = ==/,

which implies that the variables Z; are themselves Poisson random variables
with mean A/n. The variables Z; can, in their turn, be “divided” as Z; =
Y1 +..+Y;, into a sum of m other i.i.d. random variables Y; ;, each of
which has a Poisson distribution with mean 4/(nm), and so on. .. Because of
this property, the Poisson distribution is called infinitely divisible.'

Another interesting example is the negative binomial distribution Eq. (5.15)

14This requires that Q(s) has a power expansion in s with all non-negative coefficients g.

I5There are other examples of infinitely divisible distributions (see later and FELLER XII.2).
One can gain intuition on infinite divisibility of the Poisson distribution recalling that it
describes the number X, of events that occur in a time interval [0, T') of a Poisson process. The
interval [0, T) can be divided in an arbitrary number n of non-overlapping intervals [¢;, t;,,) of
size T; = t;4; — t;, with t; = 0, and ¢,,, = T. Clearly X; = Xy, + Xy, + ... + X7, and each of
the variables X, has a Poisson distribution with parameter T;E [X1] /T.
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which has the generating function

_ o =\ 1)l — p '
N5 =2 () )pre s (—1_(1_p)s). (7.27)

This is evidently the generating function of a random variable that is the sum
of r random variables with a geometric distribution (Eq. (5.15) with r = 1).
Indeed, Eq. (5.15) describes the number of failures one has to wait before
the r™® success in Bernoulli trials. This is clearly the failures that one has to
wait before the first success plus the failures between the first and the second
success, and so on. The number of failures between each pair of consecutive
successes is a random variable with a geometric distribution, so N,(s) is the
generating function of the sum of r such random variables.

Notice also that, if we generalise tor € R, then also the negative binomial
distribution is infinitely divisible, i.e. a negative binomial random variable
can be written as the sum of n i.i.d. random variables with parameter r /n, for
any n.

Another interesting limit of the negative binomial is obtained for r — oo
with p = 1 — A/r, i.e. when successes become more and more likely as r
increases. Then we recover the Poisson distribution

lim  N,(s) = e~(1-92,

r—>oo:p=1—;

Can you figure out why this result should be expected?*¢

7.5.2 Sums of a random number of random variables

A further very practical use of generating functions is in problems that involve
a sum of a random number of integer random variables, as the one discussed
at the end of the introductory Section:

Mr X checks emails every minute with probability p. He receives
on average A emails per minute. What is the probability that Mr
X finds no email the next time he checks?

If X; is the number of emails received in the i minute, we’re interested in
the sum

16Hint: invert successes with failures.
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where T is the number of minutes elapsed before Mr X looks at his emails. T
is a random variable with a geometric distribution

g =P{T=t}=pQ1-p)t (7.29)

Here the factor (1 — p)'~! is the probability that Mr X does not check emails
for the first t — 1 minutes, whereas p is the probability that he checks email
at time ¢. Let

G(s) =) gs' =E[sT]
t=1

be the generating function of T, and F(s) = E [sX ] be the generating function
of the variables X. Then the generating function of the variable Xy is given by

H(s) = E[s*] = ) g E [s51+-+%] (7.30)
t=1
=Y gE[*] = Y alFG) (7.31)
t=1 t=1
=G (F(s))- (7.32)

In the particular case of Mr X, F(s) = e~*(1=% is the generating function of

a Poisson random variable and G(s) = - (f u = Therefore the generating
—(-p)s

function of X7 is given by

—A(1-s)

pe
H(s) = .
O = T pera

The probability that Mr X will find no emails is H(0) = ﬁ, as stated in
Eq. (1).

Why is the probability that X = 0 related to H(s) for s = 0?

The mean and the variance of Z; are obtained by taking derivatives of
H(s). Using Eq. (7.32) this can be related to the mean and the variance of X
and T as

E[Z;] = E[T]E[X], V[Zr] = E[TIV[X] + V[T]E[X]?. (7.33)

The equation for the mean is the natural generalisation of the case where the
number of random variables in the sum is fixed (Eq. (7.25)). Yet the variance
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acquires an additional term (the second), due to the fluctuations of T. Indeed
this expression reduces to Eq. (7.25) when T = n is fixed.

Derive Eq. (7.33)

In a repeated Bernoulli trial scheme, where success occurs with proba-
bility p and failure with probability 1 — p, let T be the waiting time for
the first occurrence of two consecutive successes. Using the same idea
of the exercise on binary sequences By, i) derive a recursion relation
for p,, = P{T = n}, ii) compute the generating function and iii) confirm
the asymptotic behaviour p,, ~ n"fe~%" and compute a and 3.

When T is a Poisson random variable given by Eq. (7.28) where X; are i.i.d.
RV with generating function F(s), the variable X has a compound Poisson
distribution. This case is of particular interest, because then the random
variable Zr has an infinitely divisible distribution. Indeed its generating
function is given by

H;(s) = e Al1=F&)I, (7.34)

and H, ,(s) clearly is also a generating function of a probability distribution
for any n. The converse is also true, as shown in FELLER XII.2: every infinitely
divisible distribution of integer random numbers is a compound Poisson
process, i.e. its generating function has the form of Eq. (7.34). FELLER XII.2
provides a practical criterium for a generating function H(s) to be infinitely
divisible. This requires that i) H(1) = 1 and

H(s)
8 H(0) kzl K2

with ii) ap > 0 for all k > 0 and iii)) A = Zzozl a; < +oo. In this case,
a; /A = P{X = k}is the probability distribution of an integer random variables
X, such that H(s) is the generating function of the variable X, where T is a
Poisson random variable with mean A.

Show that the negative binomial distribution is a compound Poisson
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process, because it satisfies Eq. (7.34) with 4 = —rlog p and

1 A-pr

fn:P{Xi:n}zlogp_l 1

for n > 0 and f, = 0. This is known as the logarithmic distribution.

The dependence on A of infinitely divisible generating functions can be
derived by observing that the equation H; ;/(s) = H;(s)H,(s) implies that
Hy(s) = Hy(s)*> = 1. Furthermore, with A’ = dA one finds, to leading order in
da,

0H;(s)
Hypar(s) = Hy(9) [1+ —5=|  da.
91 |10
Upon integration in 4, this leads to Eq. (7.34) with F(s) = 1 — _5121@ :
=0

Some further intuition on the nature of infinitely divisible distributions
can be gained by the following construction: consider a random variable
X that depends on a continuous parameter 1 such that X, = 0 and, for an
infinitesimal dA,

X; with probability 1 — d4

X442 =1 X, 4 7 with probability di (7.35)

where Z € N is an integer random variable with E [SZ ] = F(s) which is
independent of X;. Then

Hjya2(s) = E[s¥ma2] = (1 — dDE [s¥2] + dAE [s5++7] (7.36)
= H,(s) — Hy(s)[1 — F(s)]dA (7.37)

where we used the fact that Z and X, are independent random variables.
Eq. (7.34) is obtained by integrating this equation in dA from 0 to A with
initial condition Hy(s) = 1 (i.e. X; = 0). In words, every infinitely divisible
random variable X is an increasing random function of 4, which increases in
random steps, each of which is drawn independently from a distribution with
generating function F(s).
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7.5.3 Cumulant generating function

There is a simpler way than Eq. (7.21) to compute V [X] from a generating
function P(s). Set s = e? and take the logarithm of the generating function!’

¥(z) = log¥(2), W(z) = P(s = %) = E [¢?]. (7.38)

Notice that the function'® W admits the power expansion

v = 3 EX

|
0 m!

which means that the n'" derivative of ¥ equals E [X™]. By normalisation
¥(0) = 1s0¥(0) = 0. The mean and the variance of X can be obtained from
the first two derivatives of ¢:

dy(z)] 1 _
i III(())[E [X] = E [X] (7.39)
d%(z) 1 d*¥(z) 1 d¥(z)
dz2 | _, 1Il(z) dz2 (‘P(z) dz ) o (7.40)
= E[x?]-E[x])’ = V[X]. (7.41)

The function ¢(z) is called the cumulant generating function, because the
coefficients C,, of the expansion of )(z) in powers of z are called the cumulants

= C
P(z) = logE [¢?X] = Z ﬁzm. (7.42)
m=0

Clearly C; = E [X] and C, = V[X]. Higher order cumulants can be related
to moments by comparing the coefficient of z" in the expansion of ¥(z) with
the coefficient of z" in the expansion of

D) — Z ¢(Z)f

Using Eq. (7.42) in each of the ¢ factors 1(z) that appear in this equation, one

obtains
¢

=2, 2 Z% = S Cuds, e 049
£=0k;=0 k;=0

' m=

7Note that convergence of the series that defines P(s) for s € [0, 1] implies that ¢(z) is well
defined for z < 0.
BWhich is why W is called the moment generating function.
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k
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Figure 13. The relation between moments and cumulants.

Curiously, there is a diagrammatic method to derive the moment of order n
in terms of the cumulants of order k < n, in terms of distribution of balls
in unordered boxes: represent the cumulant of order k as k balls in a box.
Then the n™® moment is equal to the sum of all ways to group n balls in
unordered (because of the factor 1/¢!) boxes containing k;, ... k, balls (with
k, + ... + k, = n because of the Kroeneker delta). For the first moment there
is only one ball to group, so E [X] = Cj, for the second moment, there are two
balls and two ways to group them, either in a box of two or as two isolated balls.
Correspondingly E [X?] = C, + C}. Forn = 3, E[X3] = C; + 3C,C + C,
where the factor 3 comes from the fact that there are three ways to choose the
isolated point. Hence C; = E [X3] — 3V [X] E [X] — E [X]’. Derive the fourth
order cumulant, as an exercise.

Exercise 7.10

Show that all cumulants of a Poisson distribution with mean A are
equal to 4.

The cumulant generating function (CGF) is also very practical when deal-
ing with sums of random variables. Indeed if X; and X, are two independent
random variables with CGF t,(z) and ¥,(z), respectively, then the CGF of
X, + X, is the sum of the CGFs:

$142(2) = log E [e?X1+X2)] = 1og E [e?X1] + log E [e7X2] = 9,(2) + 3, (2).

This extends to sums of n i.i.d. random variables %, = X; + ..., X, with
CGF ¥(z). The CGF of the sum is ¥, (z) = ni(z). From this, computing
derivatives at z = 0, it is straightforward to see that E [Z,] = nE [X;] and
VIZ,] =nVI[X;].
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This extends also to sums Z of a random number of random variables.
With the notation used earlier, let

F(s) = e?@ G(s) = e?@ H(s) = en@ s =é?

Then
n(z) =log H(s) = log G (F(s)) = y(¢(2)). (7.44)

For example, this makes the derivation of Eq. (7.33) much simpler.'’
For an infinitely divisible distribution with generating function H;_ ;/(s) =
H;(s)H/(s), the CGF 1,(z) = logH /’I(ez ) satisfies the additive relation

N+ (2) = Ma(2) + N (2) . (7.45)

The trick of deriving cumulants from derivatives of the logarithm of a generating function
is of widespread use in statistical mechanics, as we shall see.






Chapter 8

More on balls and boxes*

To understand a complex system, you must first understand its
simplest possible instance (H. Simon, 1969)

In order to consolidate what we have learned so far, consider the following
problem: imagine to distribute r balls in n boxes. What! is the probability
P (7, n) that exactly m cells are empty?

Let us first focus on the case m = 0. If A; is the event that box i is empty,
then the event we'’re interested in is the one where none of these events
occur, i.e.,

n
AO - ﬂ?=1Ai = UAl
i=1

This same problem can be formulated in terms of waiting times. Imagine
balls are drawn in the boxes one at a time. Then we can ask how many balls
need to be added in order for the condition that no box is empty, is met for the
first time. The number of balls we have to “wait” for A, to occur is a random
variable T, which is a waiting time. Clearly p,(r,n) = P{T < r} which means
that the distribution of T is given by

" = PT = r} = py(r,n) — po(r — 1,n) (8.1)

because of the relation between the events {T <r — 1} C {T < r}and{T =
r}={T<r}{/{T <r-1}
The probability that box i is empty is P(4;) = (1—1/n)" and the probability
r

that boxes iy, ..., i, are empty is P{4; N A4; N..NA; } = (1 - Z) . Then, the

n

!These problems are discussed also in FELLER IV.2, that you are suggested to read.

103
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generalised sub-additivity rule (Eq. (3.11)), with

S,= D, P{A,NA N..NA}= (Z) (1 - Z)

A . n
11<1<...<1,

r

leads to
‘ n LAY
= = —_ v _—
po(r, n) = P{Ao} = Zo( (C)(1--) - (8.2)
In the rest of this chapter we’ll see how the answers to the following simple
questions can be extracted from this complicated formula:

1) Is Eq. (8.2) consistent with the expectation that p,(r, n) = 0 for
allr < n?

2) How many balls we expect we have to draw to fill all the boxes
with at least one ball?

3) Can we approximate the distribution of T for large n?

A deep understanding of a problem is not only intellectually satisfying but it
also allows to solve practical problems, such as

4) How can we draw a value of T from the distribution (8.1)?

One way to address the first question is to build the generating function

P,(s) = i po(r,n)s" = i(—l)”(’;) [1 — (1 - %) s]
r=0 =0

A better expression can be derived using the identity g=! = fooodte_qt , So that
one can sum the binomial expansion and find

-1

P,(s) = f dre= (=9t (1 — e‘“/”)n = %B(n(l —s)/s,n+1)
0

where B(a, b) is the Beta function? and we made the change of variables
u = e~%!/" in the last equation. Using the recursion B(a,b + 1) = %B(a, b)

a
iteratively n + 1 times, and the identity B(a,1) = 1/a, we find

P,(s) = nls" H(n —ks)7L. (8.3)

k=1

2The Beta function is defined as

1
B(a,b) = f dxx* (1 — x)b!
o

T(a)L'(b)

for a,b € C and Re(a), Re(b) > 0. It is related to the Gamma function by B(a, b) = e
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From this and Eq. (7.4), it is clear that all coefficients of s” in the expansion of
P,(s) vanish, i.e. py(n,r) = 0, for n < r. This answers question 1) above.

Let A(r, n) be the number of ways to distribute r particles in n boxes
so that no box is empty. Show, by a combinatorial argument, that

A(r,n+1) = Zr: (;;)A(r —k,n).

k=1
Show that the generating function A,,(s) = Z:io A(r,n)s" is given by

A, (s) = P,(sn) and check that Eq. (8.3) is consistent with the recursion
equation above. [Hint: using Eq. (7.4) show that

An+1(S) = ﬁAn (%) - An(S),

and show that A,(s) = P, (sn) satisfies this equation].

How many balls are needed to fill all boxes? In a realisation of drawing
balls in n boxes, let T be the smallest number of balls for which all boxes
contain at least one ball. As stated before, T has the distribution in Eq. (8.1).
Its associated generating function can be computed using Eq. (8.3):

[ n—1
Fo(s)= ) PAT =r}s" = (A = 5)Py(s) = (n = DIs" [ [(n — ks)™.
r=0 k=1

One important property of this function is that its value at s = 1 gives F,,(1) =
Z:io P{T = r} = 1. This implies that P{T = r} is correctly normalised, i.e.
that sooner or later all boxes will be filled with at least one ball. Another
property is that the expected value of the waiting time T is given by

n—1

E[T=F,(1)=1+nY % ~ nlogn +ny + % +0(/n)  (8.4)
k=1

where y = 0.5772156649 ... is Euler constant. This implies that, for large
n, one needs approximately logn + y balls per box, in order to satisfy the
condition A. This answers question 2).

The analysis of F,,(s) can give us more information on the distribution of
T. Yet extracting the asymptotic behaviour of f t(”) from F,(s), when n — oo,
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is not easy> because the interesting range of values of T changes with n.

What makes this problem complicated is that the events A; are not inde-
pendent. In order to see this, let us focus on a single box and let B; be the
number of balls that fall in this box after r draws. For each ball the probability
that it will fall in box i is 1/n. So B; has a binomial distribution that, for n > 1
is well approximated by a Poisson distribution

== (-3 - G

If all the variables B; were independent Poisson variables, then the total num-
ber of particles R = By + ... + B,, would also be a Poisson random variable. A
simple way to see this is to compute the generating function of R

H[E —(1 s)r/n] _ e—(l—s)r’

which is the generating function of a Poisson random variable with mean
r = E[R]. The origin of the difficulty of the original problem is that the number
of balls is fixed, i.e. B; + ... + B,, = r. This is what makes the random variables
B; dependent. This intuition is confirmed by the fact that, if we compute the
expected value of py(R, n), when R is drawn from a Poisson distribution with
mean np, we find

(p )’

E[po(n, R)] = Z po(n, ) =(1—e")". (8.5)

r=0

This formula is much simpler than Eq. (8.2) and it has a simple interpretation,
if we revert our argument. The expected value of balls that fall in each box
i is E[B;] = E[R/n] = p. B; has a Poisson distribution with expected value*
p then 1 — e ® = P{B; > 0} is the probability that box i is not empty. When
the number of balls R is drawn from a Poisson distribution, all boxes become
independent.’ Hence the probability that no box is empty takes the simple
form of Eq. (8.5).

3This function has n — 1 simple poles ats, = n/k fork =1,..,n —1. So ff") ~1-1/n)
for n small, Yet when n — oo the poles become densely concentrated in the neighbourhood of
s = 1, which complicates the analysis.

“This is because the Poisson distribution is an infinitely divisible distribution, as explained
before and in FELLER XXII.2.

>This technique of removing the dependence of integer random variables due to a con-
straint B, + ... + B,, = r, by substituting r with a Poisson random variable R with mean r is
called poissonisation. It is a very useful trick worth being remembered. When r > 1 this
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Let

p(xla oc0 xnlr) = A, H p(xi)azi Xt (8.6)
i=1

be the probability that B; = x; for all i, where A, is a normalisation
constant. By Eq. (8.6), the variables B; would be independent with
P{B; = x;} = p(x;), where it not for the constraint. Prove that if r is
replaced by a random variable R with distribution q(r) = A}, then

D0 (1, e, X)) = [ | pOxo)
r=0 i=1

Check that q(r) is correctly normalised, and that when B; are Poisson
random variables with mean p then g(r) is the Poisson distribution
with mean np.

. J

Let Ky, ...,Ky, K; € N have a multinomial distribution with probabili-

ties py, ..., pq> and Z?:l K; = n. Show that if n is replaced by a Poisson
random variable N with mean vd, then the variables K, ..., K,, become
independent Poisson random variables with mean E[K;]| = vp;.

Now we can go back to the issue of estimating the probability distribution
of T for n large. Since E[T] ~ n(logn + y) it makes sense to make a change of
variables T' = n(log n + X) and study the distribution of the random variable
X instead. Treating again R as a Poisson random variable, we have

P{T < n[logn + x|} = E[py(n,R)] with E[R] = n(logn + x)
e~\"
-(1-5)

~e ¢, (n - ) (8.7)

where we used Eq. (8.5) with p = logn + x. Note that P{T < n(logn + x)} =
P{X < x}yields the cumulative distribution of the variable X. Hence the pdf

approximation is accurate because the fluctuations R of R are of order \/7 and hence they
are small compared to the mean E[R] = r. In the present case, this implies that the statistical
dependence between different boxes becomes weaker and weaker as r increases.

Similar considerations apply in general.
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of X, asymptotically for n — o0, is obtained taking a derivative of Eq. (8.7):

p(x) =e ", (8.8)

This is called the Gumbel distribution® and it will be discussed at length when
we discuss the distribution of the maximum of many independent random
variables. Its occurrence in this problem is not accidental. Indeed, let T; be
the number of balls that you have to draw in order to occupy box i for the first
time. Then clearly

T = max T; (8.9)
i=1,..,n
is precisely given by the maximum of n independent random variables. In
order to see why the problem in Eq. (8.9) leads asymptotically to the Gumbel
distribution, notice that

P{max T; St}:P{Ti <tVi=1,..,n}
i=1

..... n

=P{T; <t}"=[1-P{T;>1}]" . (8.10)

The event that box i gets the first ball at each draw has probability 1/n,
therefore P{T; > t} = (1 — 1/n)" ~ e~'/". Inserting this in Eq. (8.10) with
t = n(logn + x), one finds

—X

P{T < n(logn + x)} ~ [1 - e‘log"_x]n ~e~¢ (8.11)
which is Eq. (8.7), as anticipated.

Let us now compute the probability p,,(r, n) that after the draw of  balls,
exactly m boxes remain empty. If m cells are empty, n — m cells must be occu-
pied and there are (;‘1) ways to chose the m empty cells. Now the probability

SNotice that, if X has a Gumbel distribution, E[X] = y and V[X] = %2, which can be
computed by taking derivatives of

() = log / dxe=>=¢" =log'(1)

atdl=1.

So, for large n, E [T] ~ n(y + logn), which agrees with Eq. (8.4) to leading order, and V[T] =
712 . . . .

- n? (i.e. the fluctuations of T are of order §T o n). Notice also that, assuming T = n(log n+X),
with X distributed according to Eq. (8.8), the probability that T < n is non-zero. Yet T < n
corresponds to X < —logn, and by Eq. (8.7) the probability P{T < n} ~ P{X < —logn} ~e™
is negligible. This is because p(x) falls off very fast as x — —o0.
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that no ball falls in the m empty cells is (1 — m/n)" and the probability that
the remaining n — m cells are all occupied is py(r, n — m). Therefore

Pm(r,n) = (:1) (1 - %)r Po(r,n—m)
_ (:}‘1) VZ:;)(—I)V(H ;m) (1 - m: ”) . (8.12)

Again poissonisation, i.e. replacing r by a Poisson random variable with mean
np and taking the expected value, yields a much more transparent expression

E[pn(R,n)] = (::l)e_’”p 1-e?)"™ ", (8.13)

which has the same, simple, interpretation as Eq. (8.5). In particular, setting
p = log(n/2) and taking n — oo, one finds again the Poisson distribution’

lim  E[p,(R,n)] = %e"l. (8.14)

n—oo p=log 2

Hence 1 = ne™"/" approximates the expected number of empty boxes, for
r>>n>1.

Derive Eq. (8.13).

In a town of 2000 inhabitants, each citizen gives a party on his/her
birthday. Estimate the probability that there are no days without a

party.

The understanding that we have reached is not only theoretical, but it
allows us to sample values of T, for n > 1, much more efficiently than by
drawing balls one by one until no empty box is left. This latter process would
take E [T] ~ nlogn steps. Can we do better?

“FELLER IV.2 finds the same approximation, observing that the terms that dominate the
sum in Eq. (8.12) for n — co with 1 = ne~"/" fixed, are those for finite v. Hence in p,(r, n), for

r>n>1 " oar 1 T
() (A=7) =5 ey =5

The sum on v can be extended to +co and it yields py(r, n) ~ e~*.
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Here is one idea. Imagine there are already r balls and n, boxes are empty.
The probability that the next ball will fall in an empty box is ny/n. Then
the number of additional balls that need to be drawn before a further box is
occupied (i.e. for ny — ny — 1) has the distribution

no(n — ng)™ 1

P{6R=m} = s

which is the geometric distribution. Draw an integer 6R from this distribution,
increase r — r + SR and decrease n, — n, — 1. Repeat this process until there
are no empty boxes (n, = 0). Then T = Z?:l OR; is the sum of the number of
added balls in this process, starting from n, = n to ny = 0. This takes n steps.
It’s better than the naive algorithms above by a factor log n.

We can do better though.

Start from ny = n and T = 0. We know that if we draw R as a Poisson
random variable with mean np, then the number of balls that fall in each box
is an independent Poisson random number with mean p, and the probability
that box i is empty is e7?. Therefore the number of empty boxes (ng) after
the R balls are drawn is reduced, and it is a Bernoulli random variable with
p = e~ over ny trials. Clearly p cannot be too big otherwise you hit the n6 =0
condition. SetT — T + R and ny, — n(’) to the new value and you’re left with
a very similar problem. If you draw another value of R in the same way and
distribute these balls among the boxes, each of the n;, empty boxes will remain
empty with probability e7®. Then you can again draw the new value of n(’)’
from a binomial distribution, as before, and set T — T + R. This step can
be repeated until n, = 0. In each step you need to draw only two random
numbers (R and n;) and this process will end in O(log n) steps, which is much
more efficient than the previous algorithms.

Exercise 8.6

Implement these algorithms on your computer and verify that the
distribution of X is well approximated by Eq. (8.8) for n sufficiently
large.




Chapter 9

Random walks

The random walk is Nature’s way of exploring possibilities — from
particle collisions to evolutionary mutations. (Freeman J. Dyson,
Infinite in all directions, 1988).

Let X;,X,,..., X}, ... be a sequence of i.i.d. random variables that take
values X; = +1 with equal probability P{X; = +1} = % A random walk is
defined as the sum

n
Sp=D.X;,  Sy=0.
i=1

The name comes from considering » as a “time” variable, i.e. the number
of steps in the walk and S,, as the position of a particle at time n. Hence X is
the i™" step of the walk. If X; = —1, the walker moves to the left by one step
and if X; = +1 it moves to the right. The trajectory (n, S,,) for n > 0 can be
displayed on a graph as shown in Figure 14. Each of these trajectories or paths
correspond to a realisation w of the sample space.! The sample space Q of
a random walk of n steps contains |Q| = 2" paths w, each of which has the
same probability P(w) = 27".

Many problems in classical probability can be reduced to studying proper-
ties of random walks, as in the case of the problem of the Moskow theatre in
the introduction. Random walks are the prototype model to study diffusion
processes, which describe the erratic motion of particles under the effects of
random perturbations.

The position S,, of a random walker that starts at S, = 0 changes by one
unit, as n increases by one unit. Hence S,, always keeps the same parity of n.

Indeed, we should write S, (w) because S, is a random variable. We omit to specify w for
the sake of a lighter notation.

111
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Sn Pl V‘M
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A /ﬁ\‘ %‘M .

Y n

Figure 14. The trajectory of a random walk.

In other words
P{S, =k} =0 ifn+ kisodd.

The probability that S,, = k, if n + k is even, is given by the number of paths
that reach k in n steps times the probability of each path, i.e.?

n
P{S, =k} = (n+k)2‘” if n + k is even.
2

Notice that E[S,,] = nE[X;] = 0and V[S, ] = nV[X;] = n. Hence the standard
deviation of S, increases as \/Z with n. This is the first important character-
istic of random walks that you should remember. More specifically, S,, has a
binomial distribution and, because of the de Moivre-Laplace theorem, S,, is
well approximated, for large n, by

SnN\/EZ, n— oo

where Z is a Gaussian variable with zero mean and unit variance (this is called
a Standard variable). The limit n — oo can be realised by dividing a finite
continuous time interval [0, ¢] in infinitesimal elements of size dt. This allows
us to define random walks in continuous time ¢ by the limit

W[ = llm @Sn:t/d[' (9.1)
dt—0

W, is a random? function of ¢t which is called the Wiener process, and is the
analogue of the random walk in discrete time n. Clearly E[W,] = 0 and

“Note that S, = n, — n_ is the difference between the number n, of steps in the positive
direction (X; = +1) and the number n_ of steps in the negative direction (X; = —1), whereas
n = n, + n_. Hence in a walk of n steps with S, = k, the number of steps X; = +1 is "Zlk
There are (.}, ) ways of choosing the n, steps with X; = +1.

2
3To be precise, W, (w) is a function of ¢ for every realisation w € Q. The limit in Eq. (9.1) is
in distribution.
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V[W;] = t. We shall discuss further properties of the Wiener process later on
in the course.

Coming back to discrete time n, let us discuss two further applications of
random walks:

Counting votes: in an election between two candidates, candidate P gets p
votes and candidate Q receives g < p votes (i.e. P wins the election). What
is the probability that, during the counting, P always leads? The answer, as
we’ll see later, is surprisingly simple

pP—q

P{P always leads Q} = .
{ y Q} FEY

9.2)

Kolmogorov-Smirnov (KS) test: leta,,...,a,andby, ..., b, be two samples
resulting from two series of n independent experiments. For example, think
of the case where the a;’s measure the response of a group of n patients treated
with a given drug and the b;’s are collected measuring the same quantity in a
test group of n untreated patients. One way to find out whether the treatment
is effective or not, is to consider the ag;’s and the b;’s as independent draws
from two distributions and to ask whether the two distributions are really
different. Let H be the hypothesis that the two samples are drawn i.i.d. from
the same distributions P{q; < x} = P{b; < x} = P(x). The KS test is based on
computing
A = sup | A(x) — B(x)|
xeR

where A(x) = |{i : a; <x}|and B(x) = |{i : b; < x}| are the number of
points in the two samples that are smaller than x. First observe that, under
hypothesis H, E[A(x)] = E[B(x)] = nP(x). The plot of A(x) — B(x) on all
the points x that coincide either with a;’s or with b;’s sorted in increasing
order, looks like that of a random walk S, on 2n steps, with the condition
S, = 0. This is a special type of random walk which is called a random bridge.
If H is correct, then A is the maximum excursion of a random bridge. The
distribution of A can be computed for n > 1, and it is given by*

P{A <\nE}~1+2 i(—l)ke-%zf.
k=1

Using this, we can find whether the value of A we compute is likely or not, i.e.
whether the hypothesis H can be confirmed or whether it should be rejected.

“The proof of this statement will not be given here. We refer to [15].
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Figure 15. The random bridge Sy, as a function of k in the Kolmogorov-Smirnov test.
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Figure 16. The reflection principle. The reflected path (point) is shown in blue.

The remarkable fact is that the true distributions of the points a;’s and b;’s do
not enter at all in the KS test. This is because we cast the problem of accepting
H into an abstract problem concerning random walks.

9.1 The reflection principle

Take two points A and B in the positive semi-plane. The reflection principle
is a very simple fact that states that the number NZ_)B of paths of a random
walk going from A to B touching or crossing the horizontal axis is equal to
the number N 4 _, of paths that go from the reflected point A’ to B. The proof
is simple. For any walk that crosses the horizontal axis, take the fist point T
where the walk touches the horizontal axis (i.e. S, = 0 at point T'). Reflect
the section of the walk A — T around the horizontal axis. This identifies one
path going from A’ to B through T. In this way each path that contributes
to NZ_)B can be put in correspondence with one path contributing to N 4/_, 3.
Conversely, every path A’ — B can be put in correspondence with a reflected
path A — B that touches or crosses the horizontal axis. So paths A — B that
touch or cross the axis are in one to one correspondence to those going from

A’ to B. Hence their number must be the same, i.e N:_)B =Ny 5.

The reflection principle relates a quantity NZ_} 5 Which is hard to compute,
because it involves a condition (crossing the axis) that may happen in any
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point, to the number N 4,_, 5 of paths from A’ to B, which is easy to compute.
As an application, let us see how we can derive Eq. (9.2) for the ballot theorem.
Each path contributing to the event {P always leads Q} must pass from the
point A = (1,1) and reach the point B = (p + q, p — q), without crossing
the horizontal axis. The number of these paths is the total number of paths
A — B minus those crossing the axis, i.e.

NA*B_NZ—)B =Na-p—Na-p = (p;gzl)_(p—}-g_l)

where A’ = (1, —1) is the reflected point A. A simple manipulation of binomial
coefficients shows that this number is (p — q)/(p + 1) times the total number
of paths Ng_ g = (¥ ;q) from the origin O = (0, 0) to B. This yields Eq. (9.2).

9.2 Returns and first returns

A return to the origin at time 7 is the event {S,, = 0}. Let u,, = P{S,, = 0} be
its probability. Because of the parity of random walks, returns cannot occur
at odd times, i.e. u,,_; = 0. At even times

2:)2—2n ~

1

Jan

where the last asymptotic expression holds for n — oo and is a consequence
of Stirling’s formula. Clearly u, = P{S, = 0} = 1.

Returns to the origin of random walks are an example of recurrent events.’
These are events that can occur many times and conditional to the occurrence
of an event at time n, the occurrence of future events is independent of the
occurrence of past events.

Among returns, the first one is of special importance. We say that a first
return occurs at time 2n if S, # 0 for all k < 2n and S,,, = 0. We can also
define a first return time T y whose distribution is given by

Uy, = ( (9.3)

Jfon =P{Ty =2n} =P{S; #0, 0 <k <2n; S,, =0} 94)
We set f, = 0, because the random walker can only return after it leaves the
origin.
The first return distribution is related to the probability u,, of returns by
the equation

n
u, = Z fyun—v ’ n> 0. (95)
v=0

5See FELLER XII.
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This holds for any recurrent event and it says that in order for a recurrent
event to occurs at time n > 0, it must first occur at some time v (that can be
equal to n) and then it has to occur again after n — v steps. In principle this
equation allows us to compute f,, once u,, is known.

There is a more direct way to compute f, that uses the following surprising
result: the probability that the walker never returns to the origin up to time 2n
equals the probability that the walker is at the origin at 2n, i.e.,

P{T; > 2n} = P{S, #0, 0 <k <2n} = P{S,, = 0} = 1,.  (9.6)

This is a remarkable result which is a consequence of the ballot theorem (i.e.
of the reflection principle). As we have seen, the number of walks not crossing
the horizontal axis that reach a point B = (2n, 2b) equals the difference

Na,y-@n20) — Na,-1)-(2n,2p)-

in order to compute the number of paths that never get back to the origin up to
2n, staying on the positive semi-plane, we need to sum this difference over all
b =1,2,... Yet Nq 1)-an2b+2) = N@,—1)=(2n2b) by translation invariance in
the vertical direction. Hence in the sum over b the term N(; _1)_,(24,2p) cancels
N(1,1)=(2n.2(b+1)) i the next term of the sum. The only remaining term is

Nt tyoan) = (Znn— 1) _ %(2};’1) =22y,

In order to consider also paths that do not go back to the origin staying below
the horizontal axis, this number has to be multiplied by two, which proves
Eq. (9.6).

Now it is clear that, forn > 0

fzn = P{Tf > Zn - 2} - P{Tf > 2”1} = uzn_z - uzn (9.7)
_ (2N =2\ onin (2,0
_(n—l)2 _(n)2 9.8)
1 2n
= — 1( n )2—2" (9.9)
~ L n=3/2, n— o (9.10)

2z

Because of the second equality in (9.7)

an:uozl

n>0
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which means that the random walker will surely return to the origin. We say
that the random walk is persistent.® The asymptotic expression (9.10) shows
that the probability of a first return vanishes as n — oo very slowly. Indeed
the expected value of the first return time diverges

E[Tf] =D, fan = +oco.

n>0

So the random walker will surely return to the origin, but the expected time
for this to happen diverge.’

9.3 Last visit and the arc-sine law

Let us now focus on the last visit to the origin of a random walk of 2n steps.
Let L,,, be the number of steps taken by the random walk when this event
occurs. The probability of this event can be computed as

Uon ok = P{Ly, = 2k} = P{Sy, = O}P{S; # 0, 2k < j < 2n} (9.11)

the second factor can be computed using Eq. (9.6) and it equals P{S,,_,; =
0} = uy,_yk- Therefore

Qonok = UpkUpn—2k = (zlic )(ZZ : ik

)2-2”. (9.12)
Surprisingly this probability is symmetric for k — n—k, i.e. a5, 22k = Aop 2k
This means that the random walker’s last visit to the origin is as likely to occur
close to the origin as close to its end point. What is more surprising is that
these are the regions where the last visit is most likely to occur, whereas it is
less likely to occur in the middle. This is evident in the large n limit where

1

1
TAlk(n —k)

Ao ok = , n — oo. (9.13)

SIn general, a recurrent event that surely occurs in the future is called persistent. If there is
a finite probability that the event will never occur, the recurrent event is called transient.

"In each realisation, the random walk returns to the origin in a finite time. Indeed, there
can be other ways to estimate the time of the first return as e.g. [E[T}‘]l/ “ which would be finite
for o < 1/2 or e®°¢7s] which is also finite. The divergence of E[T,] is due to the fact that n

grows while f,, vanishes too slowly for the series to converge. This means that the expected
value does not always represent what we expect. We’ll come back to this point.
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Figure 17. The arc-sin law for last returns, the position of the maxima and the
number of steps spent by the random walk on the positive semi-plane. Result of
numerical simulations of 10® random walks of 2n = 100 steps.

Derive Eq. (9.13).

Eq. (9.12) is called the arc-sine law for the last visit to the origin. The
reason for this name comes from the fact that, for x € (0,1) and in the limit
n — oo, the probability that L,, < 2nx is given by

P{L,, <2nx}= ). (9.14)

k<nx

~y Ll 1 (9.15)

k<nx T V k(l’l — k)

L1 f dz__ (9.16)
TJo z(1-2)
= %arc siny/x (9.17)

Here we first transformed the sum on k into an integral on z = k/n and then
used the transformation z = sin’ 8. The arc-sin law holds not only for the last
visit, but also for other quantities such as the position of the maximum of a
random walk of 2n steps or the number of steps spent by the random walk on
the positive semi-plane,® as shown in Figure 17.

8See FELLER III for more details.
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9.4 Random walks with drift

Let us now consider random walks

with X; = +1 being i.i.d. random variables with P{X; = +1} = p and P{X; =
—1} = 1 — p = q. In this case different paths w = (X3,...,X,) can have
different probabilities

n+Sp(w) n—-Sy(w)

Plw}=p 2 q >

Therefore computing probabilities of events related to random walks is no
longer a counting problem. In particular, the reflection principle cannot be
used for p # 1/2. When p > 1/2, paths S,, that increase with n are more
likely than those that decrease with n. We say that the random walk has a
drift (in the positive direction, in this case).

Gambling is a typical example of a situation described by random walks
with a drift. Consider a gambler that plays repeatedly a game where he/she can
win one euro with probability p and loose one euro with probability g = 1 — p.
Then S,, corresponds to the total gain (if positive) or loss (if negative) after n
games. We can study the fate of the gambler using generating functions. Let
us start by discussing the distribution of the waiting time T for a gain. This is
the time when S,, = 1 for the first time, i.e.

P{T=n}=P{S, £0,0<k<n; S, =1}=¢,

Let us introduce the generating function for T
oo
o(s) = E[sT] = Z ¢,5".
n=0

In order to compute ®(s) let us analyse the first step. With probability p the
gambler wins the first game and then T = 1. With probability q the gambler
looses. Then he/she has to wait a time T to get back to St ,; = 0 and then
wait another T, steps for the first gain. Hence T =1+ T, + T,. Now T, and
T, are two independent random variables and they have exactly the same
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distribution (and generating function) as T. Therefore

®(s) = pE [st] + gE [s1FT1+T2] (9.18)
= ps + gsE [sT1| E [sT2] (9.19)
= ps + qs®(s)’ (9.20)
_ L= V1 -4pgs® (9.21)
2qs
= —% ) (lé 2)(—4pq)"S2"_1 (9.22)

Note that the solution to the quadratic equation has two roots, of which
we choose the one in Eq. (9.21) because it is the only one consistent with
P{T = 0} = ®(0) = 0. Note also that the expansion only generates odd
powers of s. This is consistent with the fact that P{T = 2n} = 0 for all n. The
expression of ¢,, can be read from the last equation above and it can be further
simplified using trite manipulations of the binomial coefficients

1/1/2 . 1 2n\(pg" _
b= ) =55 (0) 5 gm=0 023
Note that
& _1-ya-2p2 (£ p</12
E)%_q)(l)_ 2-p | 1 pzip2

This means that for p > 1/2 the gambler is sure to gain sooner or later. For
D < 1/2 there is a probability ll_ﬁ that this will never happen. So ¢,, is not a
probability distribution for p < 1/2 because it is not normalised. The term
defective probability distribution is used to describe these cases.

You can also check that, provided the gambler will sooner or later gain,
the expected time he/she has to wait is given by

IO

E[T|T < +o0] = ORIk

This time is finite for p # 1/2 and it divergesas p — 1/2.

9.4.1 Returns to the origin
The probability of a return to the origin at time 2n is now

-1/2

Upy = P{Sy, = 0} = (2:)(1"1)” - ( n

)(=4pq)"
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Hence the associated generating function is

- 1
U(s) = D s = ——— (9.24)
n=0 \/1—4pgs?

We can find the distribution of the first return T to the origin by the same
argument used for the first gain. If the first step is X; = —1, that occurs with
probability g, then Ty = 1 + T where T is the time for the first gain, starting
from the point A = (—1, 1). If the first step is X; = +1, then Tr=1 +T’ where
T’ is the time for the first loss, starting from the point A’ = (1, 1). By symmetry,
the generating function of T’ is obtained from that of T by interchanging p
and q. Therefore

F(s) = E[s"] = gsE [s"] + psE [sT’] (9.25)
1—+/1—4pgs? 1—+/1—4pgs?
=gqs 205 + ps 2ps (9.26)

=1-—1/1-—4pgs? (9.27)

Expanding this in powers of s, one finds

_ _ 1 2n n _
fon =Py =20} = =—("")p@)".  far1 =0, (> 0)
that reverts to the result we found earlier when p = g = 1/2. Note that
F1)=1-|1-2p|

which means that f, is a defective probability distribution for p # 1/2. With
probability |1 — 2p| the random walk will never return back to the origin. The
random walk is called transient in this case (p # 1/2) whereas it is persistent
for p = 1/2. Provided the random walk returns to the origin, the expected
time this takes is

F'() _ 1

i.e. for p # 1/2 either the random walk comes back to the origin in a finite
time or it does not come back at all.

Eq. (9.27) can also be derived from the generating function U(s), using the
relation Eq. (9.5) between u,, and f,. Multiplying both sides of this equation
by s and summing over n > 0 one finds U(s) — 1 = F(s)U(s), which leads to

1
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This equation relates the generating function of the time of the first occurrence
of an event to that of its occurrence at a specific time, for a broad class of
recurrent events.’ In the present case of returns to the origin of random walks,
this equation combined with Eq. (9.24) immediately delivers Eq. (9.27).

The simplest recurrent event is a success in repeated Bernoulli trials.
In this case u, = p forn > 0 and u, = 1. Find f, using Eq. (9.28).
Check explicitly that Eq. (9.5) is satisfied.

9.4.2 Last visit to the origin

The generating function of the probability v,, = P{T; > 2n} that the random
walk does not return to the origin up to time 2n can be derived using Eq. (7.22),
that relates the cumulative distribution of a random variable to the distribution

itself,1? i.e.
_ 1=F(s) _ V1 —4pgs’

(o]
V()= ) 0,82 = =

(9.29)

Here s? appears instead of s in the denominator because we sum only on even
powers of s, assuming v,,_; = 0.!! Notice that V(s) = U(s) for p = 1/2,
in agreement with Eq. (9.6), but this is not true for p # 1/2. This has a
consequence for the probability a,, » that the last visit of a random walk of
2n steps occurs at time 2k. Again we can write o, o = UpUs,—2k- Since this
depends on two indices, we introduce a double generating function A(s, z)
with s “counting” n and z “counting” k:

(o] n

A(s,2) = D) D)y sz (9.30)
n=1k=0
(o] n

= 20 ) Uy (52)%K 05522 (9.31)
n=1 k=0

— 2
— Usz)V(s) = — Y1 —4PaS (9.32)

(1 —s2\/1 — 4pgs?z2

“We refer to FELLER XIII for more details.

19This relation stems from the equation f,, = v,,_, — U,,.

"If instead we take vy,,; = P{T; > 2n + 1} = P{T; > 2n} = v,, then we get an additional
factor (1 + s) in the right hand side of Eq. (9.29), and recover Eq. (7.22). The choice v,,,; =0
is motivated by the fact that we’re using the sequence v,, only for even values of n.
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First, let us check that ay, 5 is correctly normalised. Observe that the coef-
ficients of s** in the expansion in powers of s* of A(s, 1) equal ZZ:O o ok
Setting z = 1, we find

1
A(s, 1) = T =1+s>+s*+..

that confirms that o, » is correctly normalised for all n. Second, notice that
the symmetry a,,,x = @,2n-2k that this probability satisfies for p = 1/2
is no longer satisfied when p # 1/2.12 Finally, let us compute the expected
value of the time L,, of the last visit, in a walk of 2n steps. This is obtained
observing that the partial derivative of A(s, z) with respect to z, evaluated at
z = 1, has a power series in s? with coefficients that are exactly the desired
quantities

o0 n
iA(s,z) = > Y. danok2ks™ (9.33)
0z z=1  p=1k=0
= 3 ElLy, s> (9.34)
n=1
4pq [ 1 1
- 9.35
1-4pqgl1—-5> 1-—4pgs? (9:35)
4pq
= E[L,,] = T—apq [1-(4pq)"]. (9.36)

Notice that,

lim E[L,,| =
pg}}z [Ly,] =n

which is consistent with the symmetry k — n — k. Yet for p # 1/2
4pq
< —_—
E[L,,] T—apq’

The last visit to the origin when n — oo is likely to occur at a finite time, close
to the origin.

12In order to check this, observe that this symmetry implies that A(sz,1/z) = A(s,z). As an
Exercise, show that this symmetry is satisfied only for p = 1/2.






Chapter 10

Branching processes

Branching processes! describe the evolution of a population of individuals
(or units) that reproduce from one generation to the next. For example, in
Italy, individuals inherit their family name from the father. Then, neglecting
migrations, the number of male individuals in Italy with the same family name
is the sum of the offsprings of male individuals at the previous generation. A
further classical example is nuclear reactions: each atom when bombarded by
neutrons may become unstable and release more neutrons that may induce
the decay of other atoms, and so on. The way in which a viral epidemics
such as Covid-19 or influenza spreads in a population is also an example
of a branching process. Each infected individual can transmit the virus to
more individuals. The mechanism of transmission and the contact network
between individuals determines whether the epidemics will stop or whether
it will become endemic in the population. Epidemic phenomena are not
limited to diseases. It also applies to computer viruses, behaviours, fashions,
habits and many other phenomena. In all cases, a relevant question is to
understand whether the process will come to an end or continue indefinitely
in an explosive manner. We shall address this issue in a very simple setting.

In order to describe a branching process, let Z, € N be the number of
individuals at generation n that descend from the same ancestor at generation
zero. The next generation is composed of all the offsprings of individuals of
the n't generation

Zn
Zni1 = 2 X", (10.1)

i=1

1Branching processes are discussed in FELLER X11.3/4/5.
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1 2 3 4 5...
generations

Figure 18. A branching process. The 2" and the 3™ generations are highlighted.

where X l.(") is the number of offsprings of the i individual of the n'? generation.

We consider a very simplified situation where Xl.(n) arei.id.Vvi=1,..,Z, and
n=0,1,..., with

PX™ =k} = p. (10.2)

At generation 0, Z, = 1 because we assume that the whole population starts
with one individual, the ancestor. Note that Z,, is an integer random variable
for n > 0. In addition Eq. (10.1) shows that Z,,,; is a sum of a random number
of random variables. Progress is then possible by introducing generating
functions.

10.1 The main equation

Let
P(s)=F [sxi(n)] = Z pisk
k=0

be the generating function of Xl.("). Then Eq. (10.1) readily yields a recursion
equation for the generating function of Z,:

P,(s) = E[s%] .
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This reads
Poy(s)=E [Sx;">+...+xg;>] = E[P(s)%] = P, (P(s)). (10.3)

Starting from Py(s) = s, because Z, = 1, we get P1(s) = P(s), P,(s) = P(P(s)),
and so on. This allows us to compute the generating function for all values of
n, in principle. In practice, extracting the asymptotic behaviour of a branching
process from this equation is not easy.

We can also compute Z,,; as the sum of the number Zflj ) of individuals
generated after n generations by each of the offsprings j of the ancestor, i.e.

&)
Zn+1 = Z an
j=1

where X, is the number of offsprings of the ancestor. Introducing again
generating functions, we find?

Ppi1(s) = P (Pn(s)). (10.5)

Exercise 10.1

Let’s assume that the number Xl.(”) of unstable atoms generated as
the result of the decay of one atom, in a nuclear reactor, is a Poisson
random variable. Its mean A = E [Xl.(”)] can be adjusted to control the
reaction in order to keep the expected value of unstable atoms at the
next generation E [Z,,,|Z,] at a constant value z. What is the protocol
A(Z,) that should be adopted to achieve this goal?

10.2 The extinction probability

A branching process is extinct at generation n if Z,, = 0. The probability of
this event is x,, = P{Z,, = 0} = P,(0) and, because of Eq. (10.5), it satisfies the

2Note that Z, is also given by the sum of all individuals at generation v of the population
Z,(f_),, generated from them after n — v generations. This leads to the general equation

P,(s) =P, (P,,(s), (10.4)

which holds for any v = 0, 1, ..., n. This equation relies on the fact that, conditional on Z,, the
“future” of the branching process (i.e. what happens for k > v) is independent of the “past” (i.e.
what happened for k < v). Processes that enjoy this property are called Markov processes and
they all satisfy an equation like (10.4), that is called the Chapman-Kolmogorov equation.
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= ¥ <1

To 1 To .. S ) Tl .. S

Figure 19. The recursion equation (10.6) and its limit.

recursion relation
Xp41 = Ppiq(0) = P(P,(0)) = P(x,) , n>0 (10.6)

with the initial condition x, = 0, because the process is not extinct at n = 0
(Zy, = 1). Hence x; = P(0), x, = P(P(0)) etc. It is evident that x,, must be an
increasing sequence, because if Z,, = 0 then for sure Z,,,; = 0. Indeed, this
can be proven by induction: x; > X, because P(s) is an increasing function,
and if x,, > x,,_;, then x,,,; = P(x,,) > P(x,,_1) = Xx,, again because P(s) /' s.
Since x,, < 1 is a bounded sequence, the limit of x,, for n — oo exists and it
satisfies

x* = lim x,, = P(x*). (10.7)
n—oo

It is possible to gain insight on the behaviour of x,, by a graphical analysis,
as shown in Figure 19. This plots P(s) as a function of s. This is an increasing
function and all its derivatives are non-negative. P(s) intersects the 45° line
at s = 1. If this is the only intersection, as in Figure 19 (left), then x* = 1. In
this case the branching process will surely come to an end, i.e. x* = 1. If there
is another solution of the equation P(s) = s, then x* < 1 is the smallest of the
two solutions. In this case, with probability 1 — x* the branching process will
continue indefinitely.

Whether the branching process will get extinct (x* = 1) or not (x* < 1) is
determined by the slope of P(s) at s = 1. If the slope P’(1) is smaller than one
then X* = 1 and if P/(1) > 1 then x* < 1. The slope P’(1) coincides with the
expected number of offsprings per individual

PP(1)=E [Xi(")] = u (10.8)
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Figure 20. Family names can be considered as an example of a branching process. In
different countries (Belgium, Italy, US and India) the fraction of surnames that belong
to more than x individuals in the population behaves as a power law P(N > x) ~ x™7
with an exponent y that, apparently, is smaller the larger is the country. Can you
relate this behaviour with the theory of branching processes being discussed here?
(The data is taken from different sources on internet in Nov. 2024. In each case the
list of the M most frequent names — M = 100 for Belgium, 200 for US and 1000 for
Italy and India — was reported with the number of individuals with that surname.)

that we shall denote by u henceforth. Therefore

u<l=x*=1 (10.9)
u>1=>x*<1 (10.10)

The rationale for this result appears more clearly if we use Eq. (10.5) to find
how the expected value of the population grows with the generations:

E[Zui] = P, (1) = PLOP'(1) = KE[Z,].
Iterating this recursion, starting with E [Z,] = 1, we find that

E[Z,] = u".

Summarising, when u < 1 the population does not grow exponentially and in-
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1 2 3 4 5...
generations

Figure 21. The total progeny of the ancestor can be split into the progenies of its
offsprings (plus itself).

deed it will surely become extinct (x* = 1).> When u > 1 there is a probability
1 — x* that the process will continue forever, and in this case the population’s
size will explode, with an exponential behaviour.

Exercise 10.2

Show that for u < 1 the variance V [Z,] remains of the same order
of the expected value E [Z,,] whereas when ¢ > 1, V[Z,] < E [Zn]z.
(Hint: find a recursion relation for a, = V[Z,] /E[z,]).

10.3 The total progeny and universality

The total number of individuals up to generation n
Yn :ZO+ZI ++Zn

is called the total progeny of the ancestor up to generation n. If Yfljzl is the

3This is true because for a non-negative integer random variable we have the inequality
PiZ,>0}<E[Z,]

which you can easily prove.
Soif E[Z,] - 0asn — oo,sodoes P{Z, > 0} =1—x,,.
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total progeny of the j® offspring of the ancestor after n — 1 generations, then

X,
Y,=1+, Y/ .
j=1

The associated generating function R, (s) = E [s¥»] then satisfies
1470 4 4y %0 X
R,(s) =E|s T 1 -1 | = SE [R,_1(s)0] = sP (R,_,(s)) (10.11)

for all n > 0, with Ry(s) = s, because Y, = 1. By the same argument used
to show that x,, is an increasing sequence in n, one can show that for each
s € (0,1), R,(s) is a monotonic sequence in n. Hence the limit of R,(s) as
n — oo exists and it satisfies

p(s) = lim R,(s) = sP (p(s)) . (10.12)

The coefficient of s” in the power expansion of p(s) is the probability that the
total (asymptotic) progeny of the ancestor Y, equals n, i.e.

o(s) = Z P{Y = n}s".
n=1

Notice that for s = 1, the equation for p(1) reduces to Eq. (10.7). This means
that p(1) = x* equals the extinction probability. When y < 1, we have x* =1,
which implies that P{Y, = n}is correctly normalised. When u > 1 instead
p(1) = x* < 1 which means that the distribution P{Y, = n} is defective.
Indeed p(1) does not account for the probability P{Y,, = oo} =1 — x* of an
infinite population.

The expected size of the total progeny is infinite for 4 > 1. Yet we can com-

pute the expected value of Y, conditionalon Y, < +00,asE[Y|Y s <+o0]=
e’
p()

P(x*) x*

(10.13)

For u < 1, x* = 1 and P’(x*) = u. Then the expected value of Y, diverges as
u—17,1ie.

1
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For i > 1, instead, it is not possible to derived a closed form equation. How-
ever it is possible to understand the limit behavior for u — 1*. In this limit
we expect that x* ~ 1 so we can expand Eq. (10.7) around x* = 1

x* = P(x*) = P(1) + P'(1)(x* — 1) + %P”(l)(x* —1)% +..

which means that

u—1
Pl’(l)

x*~1-2 + O((u — 1)?).

This allows us to estimate the denominator in Eq. (10.13) using

n—1
P”(l)

P/(x*) = P'(1) + P"(1) [—z ] +O((U—1)?) = = 1+0((u — 1Y)

Therefore we find that
1
ElYo|Yo < +o0] = 1 u— 1t (10.15)

diverges in the same way, on both sides of u = 1. This is an example of univer-
sal behaviour, because the singularity in Eq. (10.15) is the same, irrespective
of the details of the branching process.

Let us make a specific example and consider a branching process with

D fork =2
pr=4 1—-p=q fork=0
0 otherwise .

Then P(s) = q + ps?® and the expected number of offsprings per individual
is u = P'(1) = 2p. The extinction probability is given by the solution of the
quadratic equation s = g + ps?, which is

. 1—4/1-4pq 1 forp<1

= 2p =) =2 forp>1/2.
P

As expected, x* = 1 for u < 1, and x* < 1 when u > 1. The generating
function of the total progeny is

—1/1—4pgs?

2ps

1
p(s) = sP(p(s)) = s[q + pp(s)*] =
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Figure 22. The expected value of the total progeny, for a finite branching process.

This is the same as the generating function ®(s) for the first loss in a random
walk (see Eq. (9.21) with p « q). This coincidence is not accidental, as shown
by the following argument.

In order to count the progeny, we can form a queue starting from the
ancestor. Each time we count an individual in the queue we remove it but
we also add its offsprings at the end of the queue. Let Q,,; be the length of
the queue when we have counted ¢ individuals. Then Q,,; = Q; — 1 if the t™
individual leaves no offsprings (which occurs with probability q). Otherwise
(with probability p) the t™ individual leaves two offsprings and Q,,; = Q; + 1.
Therefore Q; — 1 = S;_; behaves exactly as a random walk. The total progeny
Y, = min{t : Q, = 0}is the time t when the queue is empty for the first
time. In terms of the random walk S, (withk =t —1) Y, = T is exactly
the waiting time for the first loss.* The analogy between queuing problems
and random walks goes beyond this specific example. It applies in general
with p; being the probability that k new customers join the queue while the
first in the queue is served. This corresponds to a random walk that takes a
negative step X,,,; = X,, — 1 with probability p;_, and that otherwise takes
k — 1 steps in the positive direction (X,,,; = X,, + k — 1) with probability p;.
The behaviour of Y, described above implies that the expected time for the

4Compute E[Y,|Y, < +co] for a branching process with p, = p(1 — p)*, k =0,1,2, ...



134 CHAPTER 10. BRANCHING PROCESSES

Qt

Figure 23. The total progeny of a branching process and the time for first loss in a
random walk.

first loss of this random walk, which is closely related to the first return to
the origin, has the same generic behaviour (i.e. it is universal) as a function of
E[X,41 — X, — 1] = u — 1 (see Figure 22).

Exercise 10.3

Can one use the theory of branching process to predict the evolution
of a pandemic such as Covid-19, given the past data on the number of
reported cases? What are the main problems in applying these ideas to
a real epidemics?

The distribution of the total progeny Y, for u = 1 also has an universal
asymptotic behaviour P{Y ., = n} ~ n=3/2, irrespective of p;. This asymptotic
behaviour is consistent with a singularity at s = 1 of p(s). Therefore, we shall
study the behavior of p(s) for s ~ 1. In order to do this, we set s = 1 — ¢ with
€ <« 1. We also expect p(s) ~ p(1) = 1. Hence we set p(s) = 1 — 7(e), with
n — 0ase — 0. Now expand the equation p(s) = sP(p(s)) to leading order:

1-n=>0-¢)P(Q—-1n) (10.16)
—a-9lpy=pram+ %P”(l)nz +.. (10.17)
=l—¢c—n+en+ %P”(l)nz + ... (10.18)

Keeping only the leading order terms, this equation becomes 0 ~ —e +
%P”(l)n2 + .... This shows that 7(¢) ~ /¢, i.e. that p(s) ~ 1 — ¢\/1 — s for
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Figure 24. Lewis Fry Richardson, besides landmark contributions to meteorology,
also studied the statistics of “deadly quarrels”. These may be thought of as a branching
process where, each casualty on one side causes a random number of casualties on
the other. In this simplified view, the statistics of deadly quarrels suggests that the
branching process is critical, i.e. that the logic driving deadly quarrels is an eye for an
eye [Data from the Conflict Catalogue by Peter Brecke].

s — 17, with ¢ = 4/2/P”(1). This type of singular behaviour of p(s) implies
P{Y, = n} ~ n=%/2, as anticipated.

Exercise 10.4

This derivation assumes that P(s) has finite first and second derivative
ats = 1. This means that the number X; of offsprings of each individual
has finite expected value and variance. Suppose that p, = P{X; =
k} ~ k77~ with y € (1,2), so that the variance is infinite and P(s) =~
s —c(1 —s) for s ~ 1 (again with u = 1). Using the same argument,
show that in this case P{Y, = n} ~ n=1/7"1,
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Figure 25. A random network.

10.4 An application to random networks*

A network® G = (V, €) is composed of a set V of n nodes or vertices and a set
€ of edges, each of which connects two nodes i, j € V with i # j. Random
networks are networks where the edges are drawn at random between pairs of
nodes and at most one edge connects any two nodes.® The prototype example
are Erdos-Rényi random graphs, which are generated drawing at random
edges between each pair of nodes with a probability p. In the limit n — oo,
with p = 4/n, each node ends up having a number of edges E; — which is
called the degree — which has a Poisson distribution

P{E; =k} ="e"*. (10.19)

This construction can be generalised to random networks with a generic degree
distribution P{E; = k} = m;, k = 0,1, ....7

For a given 7y, an interesting question is whether the network is composed
of a single component or by many, or whether a component of infinite size
exists or not, in the limit n —» 0.

SThis section follows [16].

®Networks have no double edge and no tadpole, which is an edge joining a node to itself.
Graphs with this properties are called simple graphs.

In order to construct such a network, first draw at random the degree E; of each node i € V
from the distribution 7. Each node i comes with E; “half edges” that have to be connected.
In order to do this, build a list of all half edges and recursively pick two of them at random,
connect the corresponding nodes and remove the two half edges from the list. Continue this
procedure until the list is empty. If two nodes are connected by more than one edge or if an
edge connects a node to itself, restart the procedure from scratch until you get a simple graph.
Notice that ). E; should be an even number.
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In order to address this question, consider picking a node i at random, and
consider the number of nodes that can be reached from this node following
one of its links. Let j denote this neighbour. The number of nodes that can
be reached from i through j is obtained following all the other links of j thus
reaching all neighbours of j and then to the neighbours of neighbours of j
and so on. The similarity with branching processes should now be clear: j
is the ancestor, the neighbours of j form the first generation, the neighbours
of neighbours the second generation and so on. Notice that the size of the
first generation Z; = E; — 1 equals the number of neighbours of j minus
one, which is the link that joins j to i. We can relate the distribution of Z,,
i.e. the distribution of the number of offsprings in the branching process, to
the degree distribution ;. The key insight is that the probability to choose a
node j is proportional to its number of links. Hence

kﬂ'k
E[E;]

P{E; = k} =

where the denominator E [E;| = i k7). ensures normalisation. The distribu-
tion of the number of offspring in the associated branching process, therefore
is given by

_(k+ Dy

Pr = C [Ej] (10.20)

which accounts for the fact that node j should have at least one link for it to be
reached. Then it is clear that the size of the network that can be reached from
Jj is the total progeny Yg,) of the branching process with offspring distribution
Dr- The total number of nodes that are connected to i, i.e. the size of the
component of the network to which i belongs, is obtained summing over all
neighbours j

N=1+YP+ . +7% (10.21)

and its generating function is

G() = E [+ < E [p(9)F] =TH(p()  (10.22)

where p(s) = E [syg)] = SP(p(s)) satisfies the equation of the total progeny

of a branching process with probability p, and generating function P(s) =
> k pisk. Therefore we see that if the expected number

E[E;(E; - 1]

(10.23)
E[E)]

p= kp =
k
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of neighbours of a neighbour of i (excluding i) is less then one, node i will
surely belong to a finite component. This means that a random network with
u < 1 will surely have no component of infinite size in the limit n — oo.
When u > 1 instead, there is a finite probability that the branching process
will not get extinct and hence that node i belongs to a component of infinite
size.

For an Erdos-Rényi random graphs p, = 7, coincides with the degree
distribution and hence = A. In general, the condition u > 1 for the existence
of a giant component in a random graph demands that the expected value of
the square of the degree should be larger than twice the expected degree, i.e.
E[E2] > 2E [E)]

Note also that the solution G(s) also provides access to the distribution
of the sizes of the components of the network. For example, at u = 1 this
theory predicts that the fraction of components of size s should be proportional
to s—3/2,

As a final comment, we observe that this theory assumes that following
the links away from a given node i one never gets back to the original site i. In
other words, this theory assumes that the network has no loops. This is wrong,
because a random graph of n nodes can have loops. Consider for example
the case where y > 1. Then the construction discussed above suggests that
the number of nodes at distance d from j grows as u. Yet this number
canncl)otg %xceed the total number n of nodes. Therefore it is clear that when

d~ —— some of the nodes reached in this construction must necessarily
ogu

have been reached already. This argument suggests that loops of size log n
exist in random graphs. This implies that locally a random networks looks
like a tree, for n — oo. Furthermore, when u < 1 components are all of a
finite size, hence loops are rare. So the theory, though not exact, offers a good
approximation of the statistics of component sizes of random networks for
u < 1 and for the emergence of the giant component when u — 1~.

Exercise 10.5

Show that a random graph where all the nodes have degree E; = 2 is
a collection of loops. Compute the probability that a random node i
belongs to a loop of size €.

The transition at 4 = 1 between a sparse network composed of many dis-
connected components and a dense network characterised by a giant compo-
nent, is an example of a percolation transition. Percolation is a mathematical
model defined on a d-dimensional lattice (e.g. a hyper-cubic lattice) of linear
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Figure 26. A percolation network on a d = 2 dimensional lattice.

size L. Each pair of neighbour nodes in this lattice are connected by a link
with probability p and the two nodes are disconnected otherwise. When p is
small, all clusters of connected nodes are of finite size so that there is no path
of links that connects one side of the lattice to the other side, when L — .
Such a path emerges when p reaches a critical percolation threshold p. and
the cluster of links “percolates” from one side of the system to the other for
all p > p..

The difference between random graphs and percolation is that in the latter
links can only occur between neighbours on the lattice. Since the number of
neighbours increases with the dimension d, this restriction plays a weaker
and weaker role as d increases. Indeed random graphs may be thought of as
describing the d — oo limit of percolation. Indeed the statistical behaviour
of the two problems share many similarities. For example the distribution
of cluster sizes at p, also follows a power law distribution p(s) ~ s~* and the
exponent takes its “mean-field” value ¢ = 3/2 for d > 6, which coincides
with the exponent that governs the component size distribution of random
networks.






Chapter 11

Markov chains

Up to now we have discussed sequences of independent random variables
X4, ..., X,, for which!

P{xy, ..., x,} = [ [ P{xi}.
i=1

In general, the joint distribution satisfies
P{xq, ..., Xp} = P{xy|X0_1, Xpens e s X1 IP{X_1 | X025 oo s X1} oos P{X5 | X1 P ).

Markov processes are sequences of random variables where the index n can
be considered as a time variable, and where the conditional probability

P{xX; 110, X5 e s X1} = P{X1]%:3, t=1,2,.. (11.1)

does not depend on the values x, of the process, for 7 < ¢. In other words, for
a Markov process, conditional on the present (x;), the future (x,,1, X;1,, ...) is
independent of the past (x;_y, X;_,, ...). This means that the present state x;
contains all the information needed to determine the future evolution. The
probability of a sequence, for a Markov process reads

n—1
P{xy, .., x5} = | [ [ Pesa x| P{xi}. (11.2)
t=1

A Markov process where x; takes values in a discrete set § is called a
Markov chain.? The elements of S are also called states and we shall denote

'We use x; as a shorthand for the event {X; = x;}.
2A full account of Markov chains is given in FELLER XV, of which what follows is a synthesis.

141
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them by integers,> i.e. § C N. Because of Eq. (11.2), a Markov chain is fully
determined by an initial distribution «; = P{X; = i} and by a matrix

pij=PXn=JjlX; =i}, LjES, (11.3)

The matrix P = {p; j} s called the transition matrix, because its elements give
the probabilities of transitions between any two states.*

We have already encountered examples of Markov chains. A random walk
S, is a Markov chain, because S,,,; depends only on the position S,, of the
walker at the previous step, not on how it got there (i.e. on S; for t < n).
Branching processes Z,, are also Markov chains. In both cases, the state space
§ is infinite. For simplicity, we shall limit our discussion to cases where 8 is
finite, and refer to FELLER for an extended treatment.

11.1 Stochastic matrices

The transition matrix P satisfies positivity and normalisation, i.e.

pij20Vi,jes, Dip;=1 (11.4)
j€s
where the latter implies that from state i the Markov chain will move to another
state j (possibly equal to i, if p;; > 0). The two conditions (11.4) define the set
of stochastic matrices. If P and Q = {q;,j} are two stochastic matrices (on §),
then their product PQ is also a stochastic matrix. Indeed, {PQ}L j = 0 because
it is the sum of non-negative terms and

Z{pé}i,j = Z DikGk,j = Z Dik Z Ak,j = Z Dix=1. (11.5)

JjESs j.kes kes JjES kes

Therefore the set of stochastic matrices defined on a set of states § with the
matrix multiplication is a semi-group.’

This property allows us to generate a Markov chain PQ by combining two
Markov chains. By extension, the combination of any number of Markov
chains is a Markov chain. In particular, combining a Markov chain P with
itself n times yields a Markov chain with transition matrix P". Its matrix
elements

B =20 2 PPk Pl = PR = jIX = (116)
k€8 k,_1€8

3The sample space of a Markov chain of n steps is Q = §".

“In the most general case, the transition probability can also depend on time ¢. We limit
our discussion to homogeneous Markov chains, for which this is not the case.

5Tt is not a group, because of the absence of an inverse.
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Figure 27. Decomposition of states in a Markov chain (taken from FELLER XV.4):
8§ = T U; €, where I = {2,6,7} is the set of transient states, ¢; = {1,4,9} and
@, = {3, 8} are closed sets and C; = {5} is an absorbing state.

have a simple interpretation of transition probabilities between states in n
steps. This probability is the sum over all pathsi — k; — k, = ...k,_; = j
from i to j through the intermediate states k,.

11.2 Classification of states

A state i is connected to j if it possible to go from i to j in one step. We denote
this as

This directional relation can be visualised in a network where the nodes are the
states § and the possible transitions p; ; > 0 are represented as directed links,
as shown in Figure 27. State j can also be reached from state i by a directed
path of more than one step, that starts in i and reaches j. For example, in
Figure 27, state 9 can be reached from 7 (e.g. by thepath7 - 2 - 2 - 1 — 9),
but there is no path from state 9 to 7 (i.e. 7 cannot be reached from 9). This
leads to the definition of a closed set € C 8§ which is a subset of states such that

i) no state j & C can be reached from any state i € €, and®

ii) all states j € C can be reached from any state i € C.

SThis differs from the definition in FELLER that considers only condition i). Without ii) the
union of two closed sets would also be a closed set.
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If a closed set is composed of a single state € = {¢} then ¢ is called an ab-
sorbing state. States that do not belong to closed sets are called transient for
reasons that will become soon clear. So the states of a Markov chain can be

decomposed as
s=7J¢C,
a

where J is the set of transient states. In order to mathematically define
transient states, we resort to ideas similar to those used for random walks. Let
T;_,j be the time that a Markov chain that starts at X, = i at time ¢t = 0, visits
state j for the first time. This is a first passage time. Its distribution’

f =P =n=PiX, =, X, #jV0<t<nXo=i} (119

is the distribution of first passage times from i to j. Likewise one can define

first return distributions as f () (with f7; © — = 0 by convention). The probability
that a Markov chain that starts from state i ever returns to i is

fu=2 1"

n=0

If f;; = 1 the Markov chain will surely return to state i, so we call state i
persistent. If f; ; < 1instead, state i is transient: with probability 1—f;; > 0 the
Markov chain will never return to state i. The first passage time distribution
is related to the probability pgjl.), by the equation

) = Z 0, n>o. (11.10)

']}_

7As an example, consider a Markov chain between states 8 = {0, 1, ..., N} that satisfies the
martingale property
E[X,|X] =X, © Y, pk=1i, (11.8)
kes
foralli € [0,N]and n > 0. Eq. (11.8) for n = 1 and i = 0 cannot be true unless p,, = 1 and
Doy = Oforall k > 0. Likewise, for i = N and n = 1, the only possibility to satisfy Eq. (11.8) is
to have py y = 1 and py, = Oforall k < N. Hence 0 and N are absorbing states. If there is no
further closed set, then the Markov chain X,, will either converge to 0 or to N as n — oo. This
means that p(") — 0asn — oo forall0 < k < N. Then Eq. (11.8) implies that the probabilities
that the Markov chain is “absorbed” at eaither states 0 or state N are given by

k k
hm m _ = hm m_q_ =,
Pev =N Prco N
This shows that the martingale property imposes very strong constraints on the process. Ir-
respective of the details of the dynamics on the transient states, this property allows us to
determine the asymptotic probability that the Markov chain will be absorbed in either one of
the two absorbing states.
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This equation reads as follows: in order for the Markov chain to be at j if it
started n steps before from i, it must visit state j for the first time at some
intermediate time v € [1, n], and then return back to j after n — v steps. Each
v determines a disjoint set of paths i — j, so the probability of the event
{X,, = j|X, = i} can be computed as the sum on the probabilities of paths
going through j at time v for the first time.

Exercise 11.1

Consider an urn containing N particles, X, of which are black and
the remaining N — X, are white. At each step, draw N balls with
replacement and let X; be the number of black balls drawn. Build a
new urn that contains X; black balls and N — X; white balls. Continue
the process in the same way, with X, ,; being the number of black balls
drawn with replacement from an urn with N balls, X,, of which are
black. Show that X, is a martingale and that, as n — oo, all balls in the
urn will be either black or white.

If we take i = j and sum p ) over n > 0, we obtain

Z =1+ Z P =1+, Z p\"” (11.11)
n=
!
= : (11.12)
1=Fj

where we used Eq. (11.10) for the sum on n > 0 and we changed the sum over
n and v into a sum over m = n — v and v. Therefore the series in Eq. (11.11)
converges if f; ; < 1 (i.e.if j is a transient states). Egs. (11.10) and (11.11)
imply that the probability to find a Markov chain on a transient state j vanishes
as n — oo. First because the convergence of the series in Eq. (11.11) implies
that

if j is transient = lim p(") =0. (11.13)

n—oo

Second, taking the limit n — oo in Eq. (11.10), shows also that pf”;) — 0 as
n — oo foralli € 8, i.e. the Markov chain will not visit a transient state j,
irrespective of where it starts from. The Borel-Cantelli lemma, that we shall
discuss later in the course, states that convergence in Eq. (11.11) is a sufficient
condition to ensure that state j will be visited only a finite number of times.
As a consequence, after a transient period, the Markov chain will “enter” one
of the closed sets C,. The dynamics will be confined to C, for all subsequent
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times. It is easy to see that the Markov chain restricted to states i € C, is itself
a Markov chain, because all transitions to states j ¢ C, are impossible (i.e.

pi,j = 0).

11.3 The invariant distribution

In order to discuss the dynamics of a Markov chain on states belonging to
the same closed set, let us focus on Markov chains with an unique closed set
C = S that is identical to the whole set of states (i.e. f; ; = 1 forall i, j € 8).
We restrict attention to the case where 8 is finite (|S| < +00). Markov chains
of this type are called irreducible.?
For an irreducible Markov chain, the probability pi(z.) to visit state j after
n steps, starting from i, converges to a limit
lim p™ =u;, Vije€S. (11.14)
n—oo bJ
For the proof of this statement relies on Perron-Frobenius theorem, which
states that the maximal (in modulus) eigenvalue of a real square matrix with
positive entries is real and is unique. This applies to our case because pEZ.) >0
for all i, j € 8, for sufficiently large n, because for an irreducible Markov
chain every state j can be reached from any other state i, by a sufficiently long
path. In addition, Perron-Frobenius theorem states that the corresponding
eigenvector has strictly positive components and that the largest eigenvalue
A4 is bounded by

min i <A; <max i

ies pr =" = e Zp”’
JES JES

For a stochastic matrix this implies 4; = 1. Eq. (11.15) indeed coincides

with the statement that the matrix P has an eigenvalue equal to one with left

eigenvector equal to u;. Normalisation of p; ; implies that the corresponding

right eigenvector has all components equal to one.”

8Irreducible Markov chains are also called ergodic. The term ergodic also denotes recurrent
states that occur with positive asymptotic probability (see FELLER).

The spectral representation of P gives detailed information on the Markov chain. Indeed,
if ugm) and vl.(m) are the left and right eigenvectors corresponding to the m'" largest (in modulo)
eigenvalues 4,,, then one can write

=y = S ~ 2 =0
m>1

as n — oo. So the convergence of pg? to u; for large n is dominated by the second largest

eigenvalue 4, of P. As a consequence, we expect that X, is distributed according to u ; for times
n>1/|log|,]|.
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Notice that the limit does not depend on i. This means that the Markov
chain looses memory of the initial state, when n — co.

The left eigenvector u; is a probability distribution that is called the invari-
ant distribution. This is the asymptotic probability to find the Markov chain
in state j, for n - oo.

Taking the limit n — oo on both sides of the equation

(n+1) (n)
Z pl k Dk 2
kes

gives
Uj= ) Py, (11.15)
kes

This equation shows that the distribution u; is invariant under the action of
P, i.e. it is time translation invariant.

Let us now show that the probability u; to be asymptotically at a recurrent
state i is inversely proportional to the expected time it takes to return to that
site. Indeed, for any recurrent states, we can use Eq. (11.10) to derive a relation
between the generating function F; ;(s) of first return times T;_,; to i and the

generating function

Uii(s) = Z P(n)

of the probability p(”) of returns to i at time n. This relation is analogous to
Eq. (9.28) and it reads F;;(s) =1—1/U;;(s). This allows us to compute the
expected return time to i as

ETi] = F,(D) = lim = |1— L l

s—1- ds U;(s)
UL
- s1—>1— OR (11.16)

The leading singularity for s — 1 of U, ;(s) is given by
U (s) ~ ——
() = 5
because p — u; > 0 converges to a finite limit for n — oo, if i is a recurrent

state. Then the limit in Eq. (11.16) yields

1
E[Ti-i] = " (11.17)
1
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Figure 28. The Ehrenfest model of diffusion.

which is what we set out to prove. The equation u; = 1/E [T;_,;] has an
intuitive meaning: the probability that a Markov chain is found in a recurrent
state i is inversely proportional to the time it takes to return to i.

As an example, let us consider the Ehrenfest model of diffusion. This
describes the equilibration of a gas of N particles in a box divided into two
equal parts. Let n be the number of particles in the left side of the box. At
each transition, one particle, chosen at random, moves form one side to the
other. Hence the transition probability is

% forn =n-1
D = 1—% forn =n+1
0 otherwise

The invariant distribution satisfies the equation

n+1
N

Uy, = Up41

_1
+un_1<1—”N ) 0<n<N (11.18)

1 .
and®® uy = uy /N, uy = uy_,(1 — E)' A solution for u,, can be found express-
ing u,; in terms of u,, and u,,_;. Then starting, from n = 0, we have

N(N —1) N(N = 1)(N - 2)
Tuo, u3 = 6 uo,

ul =Nu0, uz =

1°Note that, in order to read Eq. (11.18) you need to “invert” time: the probability to be in
state n is the probability to be in state n — 1 at the previous step and then to add one particle
n —1 — n, plus the probability to be at n + 1 and then to remove one particle (n + 1 — n). On
the right hand side of Egs. (11.18) and (11.15) you find the contribution from those states that
can lead to state n.
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Finally u, can be determined by imposing normalisation. This leads to

_ (N\,-~
u, = (n)z .
This result is consistent with intuition. After a very long time you expect each
particle to be on the left with probability 1/2, hence n should have a binomial
distribution.
These discussion extends to Markov chains that have more than one closed
set in obvious ways To each closed set €, we can associate an invariant

distribution u] Wthh vanishes on all states j ¢ G The probability p(")

will now converge to the invariant distributions u ) of closed set C, with a

(@)

probability g, that depends on the initial state i

lim p Z q(a) (a)

n—oo

Ifi € G, then qi(a) =1land ql.(a,) =0foralld’ # a.

11.4 Time reversibility

Imagine to observe a sequence of states ..., X,,, ... , X, 4k, -.. generated form a
Markov chain. If we cannot distinguish it from the time reversed process
s Xnaks - » Xy, -, then the Markov chain is reversible, i.e. it is invariant under
time inversion. A Markov chain that starts from a state i will keep memory
of that state for a finite time, so it makes sense to address this question only
when n — oo and the sequence we’re observing does not bear memory of
its initial conditions. In this case, all transient states will not appear in the
sequence, so it makes sense to restrict our discussion on time reversibility to
irreducible chains.
The transition matrix of the (time) reversed chain can be computed using
Bayes formula

qj; = P{X, = i|X,41 = j} (11.19)
= At = JV% = BPX, 2 1 (11.20)
P{Xn+1 = J}
_ Wibij
= (11.21)

J

where we used the fact that, for n large, P{X,, = i} converges to the invariant
distribution u;.
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If g;; = pj,; then there is no way in which the reversed process can be
distinguished from the forward one. The reversibility condition q;; = p;; can
also be stated in terms of the detailed balance condition

u;jpj; =wpj, Vi,jES (11.22)

This equation states that a Markov chain is reversible if, asymptotically, the
probability to observe transitions from any state i to any other state j equals
the probability to observe the reverse transition j — i. If the detailed balance
condition is violated, the process is not reversible. This clearly happens if
there are two states i and j for which transitions i — j are possible but the
reversed ones j — i are not (i.e. p;; = 0). In summary, in order to find out
whether a Markov chain is reversible or not, the first step is to compute the
invariant distribution u; and the second is to check whether Eq. (11.22) holds
foralli, j € S or not.

Exercise 11.2

Is the Ehrenfest model of diffusion reversible?

Exercise 11.3

Can a Markov chain on |§| = 2 states be irreversible?




Chapter 12

Exercises on the first part of
the course

1. Consider two dice. Let
A = {sum of the faces is odd}

and
B = {at least one ace}.

Describe the events AUB, ANB and ANB. Assuming that each outcome
is equiprobable, find the probabilities of all these events.

2. Find simpler expressions for

(@) (AUB)N(AUB),
() (AUB)N(AUB)N(AUB)
(c) (AUB)N(AUC)

3. In 14000 tosses of a fair coin, one observes 7428 heads. Estimate the
probability to observe a larger number of heads to two decimal digits?

4. Let Ay,...,A, be mutually independent events and let P{A;} = py.
What is the probability that none of the events occur? Show that this
probability is always less than e™ 2P, Show that the same inequality
holds if the events A,, ..., A, are mutually exclusive with P{A;} = py.
Show that the probability that none of the events occur is always less
than e~ 2 Pr,

151
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10.

11.

12.

Three dice are rolled. If no two show the same face, what is the proba-
bility that one is an ace?

Suppose that 5 men out of 100 and 25 women out of 10000 are color-blind.
A colour-blind person is chosen at random. What is the probability of
his being male?

In a trow of 6n dice what is the probability to observe each face exactly
n times?

Three dice are thrown. A is the event that two and only two dice show
the same face. Compute the probability of A. Consider the event B that
the sum of the outcomes is even. Are A and B independent?

Compute the probability that the sum of n dice is even and the proba-
bility that it is divisible by three.

A fair coin is tossed until for the first time the same result appears twice
consecutively. A, is the event that this occurs at the n'! toss. Compute
the probability of A,,. Prove that the probability that the event A,, never
occurs is zero. Consider the same problem in the case of the throw of a
dice with k faces.

Consider an experiment where balls are consecutively put at random in
n boxes. Compute the probability of the event

A, = {box 1 is empty after r draws}

Find a representation of the elements Q of the sample space that allows
you to compute the probability of A, and compute it. Is A, C A, or
A,41 C A, or none of the two?

Let B, = A,_; N A, with A, = Q. Compute P{B,} and compute
lim P (Ur_,Bk) -

Show that if a, b > 0 are integers, then the number of paths of n steps
of a random walk that are always above —b and end at a is

n n
[{w : Sp(w) > —b, Vk, S, = a}| = (%) - (% + b)

Show that if b > a > 0 are integers, then the number of paths of n steps

that are always below b and end at a is

l{w : Sp(w) < b, Yk, S, = a}| = (i) - (gnJr b)
2 2
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13.

14.

15.

16.

17.

18.

Let S, and S, be two independent binomial random variables, denoting
the number of successes in n and m experiments respectively. In both
cases, the probability of success in a single trial is p. How would you
show that S, + S,, = S,,4.,? Show it.

Let X; and X, be two independent Poisson random variables with pa-
rameters A and u respectively. Compute the distribution of the variable
X + X,. Could the result have been guessed?

The term echo chamber is used for situations where the opinion of an
individual is reinforced by the opinion of others, who are themselves
influenced by him/her. Consider a situation where Mr X may have two
opinions oy = +1 about a particular issue. Contrast the situation where
Mr X is in isolation and P{oy} = e"%x /(2 cosh h) to the one where he
interacts with Ms Y. In the second case, Ms Y’s opinion oy € {+1} on the
same issue is influenced by that of Mr X, so that the joint distribution is

1
P{O’X,O’Y} - Eehcrx+]oxo‘y

with Z a normalisation constant. Show that there is no echo chamber
effect, in the sense that the probability that oy = 1 is the same in both
cases. Show that there is an echo chamber effect in the case when Mr
X and Ms Y can also be undecided, i.e. if oy, oy can also take value 0
besides +1. Contrast the case where P{oy} = ¢"°x /(1 + 2 cosh h) when
Mr X is in isolation to the case where he interacts with Y with the same
joint distribution of oy, oy as above (with a different Z) (see [17] for the
general case).

Consider the random variable X(w) : Q — [0, o0) with pdf p(x) =
Ax971e™*, Compute A, the mean and the variance. Compute the ex-
pected value of e™**. Do the same for a random variable X(w) € R with
p(x) = Ae*~¢",

Let X; and X, be two independent uniform random variables. What is
the pdf of X; conditional on the event A = {X; < X,}? (Hint: consider
the event B = {X; € [x,x + dx)}). Imagine now there are n uniform
random variables. What is the pdf of X; conditional on the event A =
X, <X;Vi=2,.,n}?

The show at a theater in Moskow costs 5 rubles. 2n people show up in a
random order. n of them have only notes of 10 rubles, whereas the rest
has notes of 5 rubles. A is the event that the cashier has no change to
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19.

20.

21.

22.

23.

24.

give to some customer. Translate this problems in probability. What is
Q? What is ? Compute the probability of A.

N gentlemen go to theater each leaving his hat at the wardrobe. On
exit they are assigned their hats in a random order. A is the event that
none of the gentlemen get his own hat back. Translate this problems in
probability. What is Q? What is ? Compute the probability of A.

Records: let X;,X,, ..., X,, ... be a sequence of i.i.d. random variables
drawn from a continuous distribution with pdf p(x). Let A,, = {X,, >
X; Vi < n}be the event that X, is a record. Show that the events A,, are
independent.

A group of n couples (husband and wife) arrives in a hotel. All the
2n people get distributed at random in n double rooms. What is the
probability that Mrs Smith and Mr Smith are assigned the same room?
What is the probability that no wife is assigned a room with her husband?

A smoker has two boxes of n matches in the two pockets of his coat.
Each time the smoker picks a match from a pocket chosen at random.
Consider the event A, that when he picks the last match from one of
the boxes, the other still contains r matches. Compute the probability
of A,.

Consider the case where the smoker has only one box with 2xn matches:
n of them are red and the other n are blue. Let A, now be the event
that when he picks the last match of one color, there are still » matches
of the other color in the box. What is the difference with the previous
case?

Consider the case where the two boxes contain N > n matches and a
match is chosen each time with equal probability. When the n matches
of the same colour are chosen, what is the probability that k more
matches are left in the box of matches of the other colour?

Prove that
P{Sk >0,0< k < 2n; Szn = 0} = 2f2n+2
Hint: look at the paths.

How far from the origin do you expect a point drawn at random inside
a d dimensional sphere to be? Consider the case d — 0.
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25.

26.

27.

28.

29.

Law of succession of Laplace: imagine that in n independent trials of an
experiment, the event A has always occurred. What is the probability
that the event A will occur in the n + 1% trial?

Hint: the first n trials can be used to estimate the probability p = P{A}
of A in a single trial. Assume that, a priori P{p € [x,x + dx)} = dx if
x € [0,1) and 0 otherwise.

How you would write a program that simulates the experiment?

In n successive Bernoulli trials, each with probability of success p, what
is the probability that the last success occurs at trial n — k? What is the
expected value of k? What is the expected value of p~*?

A particle moves on a one dimensional lattice at discrete time steps. Let
X, be its position and let

p ify=x+2
Pixppi=ylxt=1 1-p ify=x-1
0 else

and let x;_, = z. Find the probability that the particle will ever reach
the origin (this has an interpretation in terms of gambling: you play a
game where you win two euros with probability p, and you lose one euro
otherwise. If you enter the game with z euros, what is the probability
that you will lose all?).

Let N have a Poisson distribution with mean 1 and let N balls be placed
randomly in n cells. Show that the probability of finding exactly m cells
empty is

J (nnl)e—/lm/n (1 _ e—/l/n)"—m

Bivariate generating function: let p, ; = P{X = n,Y = k} be the joint
distribution of the variables X and Y. Consider the joint generating
function

P(s,z) = E[sXzY] = Z Pnis"z"
nk

Show that the generating function of the marginal distributions P{X =
n} and P{Y = k} are given by Px(s) = P(s,1) and Py(z) = P(1,z)
respectively. Find an expression for the covariance E[(X — E[X])(Y —
E[Y)] in terms of P(s, z).
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30.

31.

32.

33.

34.

35.

36.

37.

A student is assigned every day a new problem with probability p. In
one day, s/he can solve at most one problem with probability g (not
necessarily g = 1 — p). If s/he does not solve the problem s/he will try
to solve it again the next day, so problems may pile up on her/is desk
and need to work on them as long as the pile is not empty. Atday ¢t = 0,
s/he is assigned one problem. What is the probability that s/he will ever
have at least one day free?

In a sequence of coin tossing, let a,, be the probability that the pat-
tern HHH does not occur in the first n draws. Estimate the leading
asymptotic behaviour of a,, for n large.

The event A, that a farmer goes and collects eggs from his chickens at
day t = 0,1, 2,... are independent for each ¢, and P{A,;} = p. Each day ¢,
chickens produce a number X, of eggs that is an i.i.d. Poisson random
variable with mean 1. What is the probability that the next time the
farmer goes and collects the eggs he find none?

Consider a branching process where each individual can have X =0, 1
or 2 offsprings, with probabilities (1 — p)?, 2p(1 — p) or p? respectively.
Find the extinction probability x and verify that x = 1if E[X] = u < 1.
Compute the generating function of the total progeny and discuss the
asymptotic behavior of the probability R,, that the total progeny of one
individual is of size n. Discuss in particular the case where u = 1.

Consider the sequence of numbers
lo=2, ll=1, l}'l+2=ll’l+1+ln’ nZO
Find the generating function and an explicit expression of [,,.

Define a sequence of integers, {P,} by the initial conditions P; = 1,
P, =2, and the recurrence P, = 2P,,_; + P,_, for n > 3. To what real
number does the sequence (P,,_; + P,)/P,, converge?

Consider arandom walk in d dimensions §n = (SS), s S,(,ld)) where each
component S;a) is an independent random walk of n steps. Compute the

probability p,, that the random walk returns to the origin (i.e. S,(f) =0
Va = 1,...,d) after n steps. Estimate the asymptotic behavior of p,,.

The inspection time paradox. Imagine a process that occurs at times ¢;,
withi=..,-2,-1,0,1,2,.... Let the inter-event intervals t = t; — t;_;
be i.i.d. random variables with pdf p(z). Let T € R be a random time
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38.

39.

and T* = min{t; : t; > T} be the time of the next event. Show that,
depending on p(t), the expected time T, = T* — T for the next event
can be smaller, equal or larger than the expected inter-event time E [7].
In particular, show that

i< B2

so that E[T,] > E[7] whenever V7] > E [1]2.

In a random population, the number k of friends that each individual
has is an i.i.d. random variable with distribution P(k). Show that in
such a population, the expected number of friends of an individual is
smaller than that of his/her friends.

Completion time with resetting: consider a process that takes a random
time T to complete, i.e. to reach a final state x; from an initial state x,.
As an example, think of a random walk starting from x, # 0 and let
the process be complete when it hits the origin x; = 0. Let us consider
the generic case where T is a continuous random variable with pdf p(¢).
Consider introducing resetting at random times. This means that, as
long as the process is not completed, in any interval [¢, t +dt) the process
re-starts from x, with probability rdt (and it continues with probability
1 — rdt), for an infinitesimal dt. More precisely, Let T, be the time
of completion with resetting, one naively expects that E [T,] > E[T].
Show that this is not true, using the relation

T ifT <R

=1 R41 #T>R

between the time T to completion without reset, the reset waiting time
R, and the time to completion with reset T, where T, has the same dis-
tribution as T',. Find an equation for 7,(s) = logE [e_STr] and show that

1—E[eT]
= TR

One may naively expect that introducing resetting delays completion.
Using the small r expansion of this expression, show that if V[T] >
E [T]Z, introducing resetting decreases the expected completion time.
Notice, in particular, that the expected time to reach the origin of a ran-
dom walk starting at x; is infinite, but it becomes finite when resetting
is introduced. Explain why this is so.
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40.

4].

42.

43.

44,

45.

46.

47.

What is the number of shortest walks that start at one corner and end
at the opposite corner of a chessboard?

Mr X does a test for a rare disease that hits one individual in a million,
on average. The test is very reliable: the test is positive in 99% of the
cases with the disease and in 1% of the cases that do not. What is the
probability that Mr X has the disease, given that his test is positive?

You are at a metro stop at peak hour, trains arrive every 3 minutes on
average in each direction. What is the probability that before the next
train you will see k trains coming in the other direction? Imagine that
instead trains arrive exactly every 3 minutes at the stop in each direction.
What is the probability that before the next train you will see k trains
coming in the other direction?

Each package of Pokemon cards contains 1 of N possible legendary
Pokemon. How many packs do you expect you have to buy to get all N?
We assume all N are equally likely with each purchase.

A mailman delivers n letters at random to n recipients. The probability
that the first letter goes to the right person is 1/n, so the probability
that it doesn’t is 1 — 1/n. Thus the probability that no one gets the right
letter is (1 — 1/n)" ~ 1/e = 37% for n large. This argument is clearly
wrong for n = 2, why? Find the correct expression for this probability
and show that the prediction is right for n — co.

Suppose there are A defects among N items. We sample n items at
random. What is the probability p, of finding a defects in this sample?
Show that if A = pN and N — oo with n, p and a fixed, then

n _
Pa = (a)p“(l —-p)ye.
Let X;,X,,...,X,,... be a sequence of i.i.d. random variables with
P{X; = +1} = P{X; = —1} = 1/2. Consider the random variable
Quin =X1 + XX + X1 X0Xs + . + X0 X5 - X = X1(1 + Qi) -

Show that P{Q,, = x} = P{S, = x}, for x = 0,+1,+2,..., +n, where
S, =X1 +X, + ... + X, isarandom walk.

A monkey is standing one step from the edge of a cliff (i.e. if he takes one
step in the direction of the cliff he falls) and takes repeated independent
steps; forward (i.e. towards the edge of the cliff), with probability p, or
backward, with probability g = 1 — p.
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48.

« What is the probability x that the monkey, sooner or later, will fall
off the cliff?

» Let p < q. Show that x is the extinction probability not only of
the monkey, but also of a branching process with reproduction
distribution p, = p, p, = q, px = 0Vk #0, 2.

« Conditional on the event that he falls, sooner or later from the cliff,
what is the expected waiting time?

« What is the variance of this waiting time?

Balls in unequal boxes. Let n balls be drawn independently in N
boxes. For each ball, its probability to fall in box i is p; = 1;/N, with

N
Zi=1 bi = 1.

« Let n = 2 and compute the probability that two balls fall in the
same box. Is this smaller or larger than the case where p; = 1/N
for all i?

« Compute the generating function of the number n; of balls in box
i. What is the distribution of »; in the limit N - co withn = N
when p; = 4;/N?

» LetI be a subset of the integers 1, 2, ..., n. Compute the generating
function of

ny = Z n;.

iel
Show that the random variables n; are not independent.

o Consider the limit N - oo with n = N of this random variable
where [ is a subset of a finite number of elements, with p; =

A;/N and 4, finite for all i € I. Show that in this limit n; become
independent random variables.

49. Ateach bus stop, one passenger drops from the bus and, with probability

50.

k
Dk = %e‘a, k =0,1,2,... passengers get on the bus. The bus starts with

one passenger. What is the probability that the bus will never be empty
(assuming the number of stops is very large)? Write down an equation
for the generating function of the probability that the bus will be empty
for the first time at stop ¢.

Let py, k > 0 be the probability that each individual of a population,
at each generation, contribute with k offsprings to the next generation.
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CHAPTER 12. EXERCISES ON THE FIRST PART OF THE COURSE

Let
P(s) = ) pysk
k=0

be the corresponding generating function, and consider the branching
process where, from a single individual at generation n = 0, a population
of individuals is produced at any successive generation n + 1 by each
individual of the current generation n producing offsprings according
to pi, independently. Let’s call this the branching process p.

i) Show that for any z € (0, 1), the distribution of k

szk

P(z)

qr(z) =

is normalised to one.

Define the g branching process using g as the probability of generating
k offsprings from each individual. Compute the corresponding gener-
ating function Q(s). Consider the case where the p branching process
is overcritical, i.e. that the extinction probability x, is less than one. ii)
Show that for z = x, the q branching process defined by gy, is under
critical i.e. x; = Q(xy) = 1and ; = Q'(1) < 1. Let Ygf) be the total
progeny of the branching process p and Ygff) be the total progeny of

the branching process q. iii) Show that, conditional on Y((,f,J> < o0, their
distribution is the same, i.e.

PY®P = |y < 400} = PiY?D = .

51. The tradition of the dynasty of Mr K demands that each family generates

children until they have at least one daughter and one son. Each chil-
dren reaches reproductive age with probability p and only males carry
the surname K. Show that if p < 2/3 the surname K will surely disap-
pear. What is the expected size of the total progeny of Mr K, conditional
on it being finite?



Part I1

Typical and atypical
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A gas is formed of ~ 10?3 interacting molecules. Its detailed description
would require to integrate Newton’s law for all of them. Yet we can describe
the macroscopic behaviour of a gas in terms of few variables (e.g. temperature,
pressure, density) with a remarkable precision. Likewise the specific heat of
a piece of glass is well defined and it turns out to be the same for any other
piece of the same glass, in spite of the fact that in each piece the arrangement
of atoms is different. These are two examples of the typical behaviour that
emerges in systems of many degrees of freedom. This behaviour is remarkably
robust and largely independent of microscopic details. Indeed, gases with
different chemical composition obey the same laws in terms of appropriate
macroscopic variables, to a very good degree of accuracy, especially in particu-
lar conditions (i.e. close to critical points) as sketched in Figure 29 (see [18]
for more details).

T/T.

O gasA

B gasB

p/pe
Figure 29. (Sketch of) the equation of state (that relates temperature and density) of
real gases close to the critical point. The data points represent two different gases A
(e.g. Argon) and B (e.g. methane).

Statistical mechanics — a discipline developed by Ludwig Boltzmann and
others in order to derive the macroscopic behaviour of physical systems from
the (classical or quantum) microscopic description — has shown that the
macroscopic behaviour is an exquisitely statistical phenomenon, whose origin
has to do more with probability than with physics. Newton’s laws of motion do
not rule out that all molecules of the gas in a room concentrate in a small corner,
leaving the rest of the room empty. This is possible but it is highly unlikely.
Typically the molecules occupy uniformly the volume available to them. The
probability of seeing a substantial deviation from this typical behavior is so
small that we don’t expect it has ever happened since the Big Bang. Statistical
mechanics allows us to classify the typical behaviour of many particles into
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different phases of matter, separated by phase transitions. Quantities such as
the entropy and the temperature, whose meaning was elusive until Boltzmann,
found a precise formalisation. Microscopic details are even more irrelevant
at particular points of the phase diagram of a macroscopic physical system,
that separate different phases of matter. The critical phenomena that govern
the behaviour of a number of properties at second order phase transition
points are so universal that the same quantitative laws may describe systems
as different as binary alloys, ferromagnets and liquids.!

How can information be optimally represented? How can a message be
efficiently coded in bits? What is the maximal achievable compression of a
text in a given language, that optimises the use of a given storage capacity?
How can a message be coded in such a way that it can be retrieved even if it is
corrupted by noise when it is transmitted? These are apparently very differ-
ent questions, but they hinge on understanding the typical structure of the
messages we're interested in.? Claude Shannon and others, have shown that
understanding their structure allows us to represent messages most efficiently,
and to give a bound on the number of bits needed to compress a message.
He was undecided on how to call this bound. Apparently [19], John Von
Neumann told him: “You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have the
advantage.”

Others used similar ideas to understand how to “dress” messages with
structures that can make them robust with respect to noise. Such an error
correction algorithm works efficiently as long as the noise level is below a cer-
tain threshold, that marks a phase transition to a regime where the noise is so
strong that the original message is “lost in transmission”. Information theory
has been primarily developed in computer science and electrical engineering,
but it’s applications go well beyond these fields. For example, learning is a
distinguishing feature of life, as opposed to inanimate matter. We more and
more realise that understanding efficient information processing is key for a
quantitative approach to how living systems learn, adapt and respond. For
example, evolution has selected species that learn about their environment,

1Boltzmann himself, in a speech in 1904, remarked that “The wide perspectives opening
up if we think of applying this science [statistical mechanics] to the statistics of living beings,
human society, sociology and so on, instead of only to mechanical bodies, can here only be
hinted at in a few words”, suggesting that this general idea could be applied not only to physics
but also to other domains.

2A sentence in English is a sequence of letters of the alphabet, but not all sequences of letters
are meaningful English sentences. Typical sentences in English have a peculiar structure.



165

in spite of the fact that information processing is costly. Why is this so?

Both statistical mechanics and information theory deal with the direct
problem, where the model that describes the interaction between particles,
or the way in which messages are generated, is (assumed to be) known, and
the statistical behaviour can be derived from it. Statistics deals with learning
a model from observed behaviour (i.e. data). This entails solving an inverse
problem with respect to that of statistical mechanics: given an observed collec-
tive behaviour, what is the model that would typically generate it? Choosing
which model best describes a data-set is conceptually similar to finding which
“phase” a physical systems belongs to, under certain conditions. Phase transi-
tions separate statistical hypotheses and models as they separate behaviours
of matter in physics.

Inference in physics is often so much constrained by what we know that
statistics does not need to go much further than mean and variance.® In life
sciences, high-throughput experiments produce massive amounts of data on
systems we know very little about (e.g. multi-electrode recordings in the brain,
gene expression profiles in cells, contacts in social networks). What can we
learn from these data? How much information is there? How relevant are the
variables we’re measuring? Can we reconstruct mathematical models that
reproduce these data? How much data do we need to do that?

In some way or another, all these questions are related to understanding
what is the typical behaviour that arises in “large” systems composed of many
variables. There is a lot that one can learn from the direct approach, studying
sequences of independent and identically distributed random variables. We
can understand why statistical regularities arise, why macroscopic behaviour
depends only on few relevant variables, what is the role of the entropy, and
when universal features emerge. We will see that when the interaction (i.e.
statistical dependence) among the variables is turned on, phase transitions
will emerge to separate distinct statistical behaviours (i.e phases).

It is also important to study atypical behaviour, i.e. to understand how
unlikely are deviations from the typical behaviour and how atypical deviations
are expected to occur fypically. For example a living cell needs to deviate from
it’s thermodynamic equilibrium with the environment — that would coincide
with its death — by spending energy in very precise ways in order to meet
some constraints. So it’s typical state can be considered as a large deviation
with respect to thermodynamic equilibrium, i.e. as an atypical state where
these constraints are enforced. This also applies to hypothesis testing, which is

3Yet, even in physics Machine Learning is being used more and more in fields like astro-
physics, condensed matter, biophysics and even string theory, in order to cope with the huge
amounts of data coming from experiments.
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a traditional subject of statistics. An hypothesis can be rejected if it is possible
to prove that the observed data would be very atypical if the hypothesis were
correct.

Asymptotic properties of ensembles of many random variables, typical
and atypical behaviour are the central themes of this part of the course. Infor-
mation theory provides key insights as well as a language to properly describe
this behaviour. We will learn how universality and phase transitions arise, and
how these concepts can be applied to Statistical mechanics and coding theory,
as well as to statistical inference and learning.

A detailed treatment of some of these subjects is available in other texts,
specially COVER, to which we shall refer frequently.



Chapter 13

Almost surely et el.

The epistemological value of probability theory is based on the fact
that chance phenomena, considered collectively and on a grand
scale, create non-random regularity. (AN Kolmogorov, 1954)

The general type of question addressed in what follows concerns the laws of
probability for events or random variables which involve N events Ay, ..., Ay
or random variables X, ..., Xy in the limit N — oo.

There is a class of results, known as 0 — 1 laws, that concern events Ey
which depend on N events or random variables, and state that, under some
conditions, P(Ey) — Oor 1 as N — oco. Events Ey for which P(Ey) — 1 as
N — oo are said to occur almost surely, meaning that their probability is equal
to one. It is customary to use the abbreviation

a.s. = almost surely

Almost refer to the fact that the complement of this event need not be the
empty set, i.e. it may be possible to find realisations w € Q for which the event
Ey does not occur. Ey occurs almost surely if the probability of all the sample
points w for which it does not happen tends to zero, as N — .

Exercise 13.1

As an example, we say that an unbiased random walk (in one dimen-
sion) almost surely returns to the origin. Formally, if Ey = <Nk =
0} where S, is a random walk, then Ey occurs almost surely. There are
clearly many realisations of the random walk which will never return
to the origin. Yet their probability tends to zero as N — co. Show that
P{Ex} —> 1as N — oo.

167
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The aim of this chapter is to familiarise with the concepts and the logic
involved in the limit behaviour of probability laws. We start by discussing the
issue of convergence.

13.1 Limits in probability

The convergence of a sequence X, to a limit x

lim x, = x

n—oo
has an unambiguous meaning. It means that Ve > 0 there is an N(¢) € N
such that for all n > N(¢) the sequence x,, is away from x by at most ¢, i.e.
|x, — x| < €. In other words, deviations of x,, from the limit x larger than €
occur only a finite number of times, for any €.

When X, is a random variable, this definition cannot be used.! For a
sequence of random variables X, (w), there are different ways in which the
statement X, (w) — X(w) can be interpreted, because we’re dealing with the
convergence of functions.

13.1.1 Almost certain convergence

For fixed w, the statement X,,(w) — X(w) reduces to convergence of sequences,
so it is well defined. If this happens for all w € Q where P{Q} = 1, we say that

X, (w) - X(w) as.

One way to state a.s. convergence is:
X, — X a.s. if for any ¢, 8 > 0 there is a N(¢, §) such that

P{X,—X|<e, Vn>N(,d)}>1-6.

In other words, the probability that there are no deviations larger than € from
the limit, beyond a certain value of n, can be made arbitrarily close to one.
IfX,, — X as., then for any € > 0, the events

A, ={w : | X,(0) — X(w)| > ¢} (13.1)

should occur at most a finite number of times. This condition can be rephrased
by saying that the probability that A, occurs infinitely often is zero, i.e.

P(A,i.0)=0.

!This material is also discussed in Chapter 2 of [20].
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Here “i.0.” stands for “infinitely often”, which is a term of common use in
probability, that is worth discussing in more detail.

For a given w € Q, A, occurs infinitely often if w € A, for an infinite
sub-sequence of indices n. If such a sub-sequence exists, then for any m there
must be at least one A,, with n > m that occurs. In other words we can write?

{A,i0}= ﬁ O A,. (13.2)
m=1n=m

Here the union U;o:m A, indicates the event that at least one event A,, with
n > m occurs and the intersection indicates that this occurs for all m.

Exercise 13.2

Show that for any finite M
=1 Ut () U=
m=1n=m m=1n=

This shows that it is important to take the limits in Eq. (13.2) in a well
defined order

If the set of w for which this happens has probability one, i.e. if there is a.s.
an infinite sub-sequence of indices n for which the events A,, occur, then we
say that A,, occurs infinitely often. So while i.o. refers to events, a.s. refers to
how the probability measure is defined.

In order to help intuition, let us consider as an example the sequence of
events A, = {S,, = 0} where S,, is the random walk discussed in a previous
chapter. Then {A,, i.0.} is the event that the random walk returns to the origin
infinitely often. As we discussed, an unbiased random walk (p = 1/2) surely
returns to the origin and it does so an infinite number of times, almost surely.
Hence P(A, i.0.) = 1 for p = 1/2. Inspection of the distribution of S, suggests
why this is so. Indeed the probability distribution of the position of the random

’In other texts you will find the notation

limsup A, = {4, i.0.}

n—co

to denote the set of points w for which A, occurs infinitely often.
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o3t p=1/2 1

> -
-5

Figure 30. Probability distribution of the position S,, of a random walk for increasing
values of n. An unbiased random walk (p = 1/2) returns infinitely often to the origin
almost surely, whereas a biased one (p # 1/2) does not.

walk remains centred around the origin for all n and is has its maximum at
S, = 0. For p # 1/2 instead the distribution “moves” away from the origin as
n increases (see Figure 30). The reason why A,, occurs only a finite number
of times, as we shall prove later, is that the probability that S,, = 0 vanishes
very fast as n increases, for p # 1/2.

13.1.2 Convergence in probability

IfVe >0
lim P{|X, — X| >¢e} =0
n—oo

then we say that X,,(w) - X(w) in probability. Almost certain convergence
implies convergence in probability.

3Indeed the event

D, = Au A, =X, —X|> ¢

m=n

that at least one X, deviates more than € from X for some m > n, is telescopic, i.e. D,, 2 D,
for all n, because D,,, implies D,. Therefore, their intersection Eq. (13.2) equals the limit

{A,i.0} = lim D,,.
n—oo

IfX, - X as., then
lim P(A,) < lim P(D,) = 0.
n—oo n—oo

because A, C D,.
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13.1.3 Convergence in mean square

If

lim E [(Xn —X)z] =0

n—oo
then we say that X,,(w) — X(w) in mean square. Convergence in mean
square implies convergence in probability. This can be shown with the help
of Chebyshev inequality applied to the random variable X,, — X.
Chebyshev inequality: For any real random variable Z and for any constant
a > 0, we have
E [2?]

a2

P{Z| > a} < . (13.3)

The proof of the inequality (13.3) is straightforward, i.e.

E[Z2] =f dzp(z)z? Zf dzp(z)z? > azf dzp(z)
—o0 |z|>a

|z|>a

where the second inequality derives from the fact that z2 > a for all z in the
domain of integration.*

Using Chebyshev inequality for the random variable Z = X,, — X, with
a = ¢, we have that if X,, - X in mean square, then

1
P(IX, —X| > ¢) < —E [(Xn —X)Z] -0
€
asn — oo, i.e. X,, = X in probability.

13.1.4 Convergence in distribution

If for all continuous and bounded functions f(x)
lim E[f(X,)] = ELf (]

then X, (w) - X(w) in distribution. Note that this is equivalent to

tim [ dxlp,() - I =0, VA,

“We note in passing that the same proof works if the exponent 2 is replaced by p > 1, and it

leads to
E[|Z]7]
ap p

P{|Z| > a} < >1.
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This implies that the distribution of X,, converges to that of X on all points x
except at most a set of zero measure. Mean square convergence and conver-
gence in probability imply convergence in distribution. When X,, converges
in distribution to a constant ¢, then X,, — c also in probability. We omit the
proofs of these statements.

13.2 Borel-Cantelli lemmas

The Borel-Cantelli lemma is so simple and general that is worth being remem-
bered.

Borel-Cantelli Lemma. Let A;, A,,... be an infinite sequence of events. If
o0
D IP(A)) < +00 (13.4)
j=1

then, almost surely, at most a finite number of events occur.

This result is often stated by saying that, if Eq. (13.4) holds, then the
probability that events A,, n = 1,2,3,... occur infinitely often is zero, i.e.
P{A,io0}=0.

The proof of the Borel-Cantelli lemma is simple: if A, occurs infinitely
often, then for any fixed N > 0, there must be at least one event A, with
n > N that occurs. This means that, VN > 0

o0
A,iotc | A;
j=N

But then, sub-additivity of probability implies

Pa, io}<P| ] A4;|< X P@Ay. (13.5)
J=N J=N

The latter expression can be made as small as one wishes, by taking N large
enough. Indeed if the series in Eq. (13.4) converges, then the partial sum in
the right hand side of Eq. (13.5) vanishes as N — 0.

The Borel-Cantelli lemma is a very general result. Notice that no assump-
tion on the events (e.g. on their independence) is needed.
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As an application, consider again returns to the origin of a biased random
walk. Let S, = Z?:l X; with X; being i.i.d. binary random variables with
P(X;=+41)=p=1-P(X; = —1). Then

P{A} = P(S5 = 0} = (21)[p(1 - p)I" = ——e=eP",
N

with a(p) = —log[4p(1 — p)]. For all p # 1/2, a(p) > 0 and the condition
Eq. (13.4) of the Borel-Cantelli lemma applies. This means that, almost surely,
a biased random walker returns to the origin only a finite number of time. In
order to deal with the case p = 1/2 we need a converse of the Borel-Cantelli
lemma.

For p = 1/2, we can apply the Borel-Cantelli lemma to the d dimensional
random walk. This is defined by d independent random walks

n
SP=>x9 a=1,..d
k=1

with XI(Ca) i.i.d. with distribution P{XI({a) =+1} = % Then (S, ...,S%)isa
point on a d dimensional hyper-cubic lattice. Consider the return to the origin
in 2n steps

AP =58 =0,...,59 = 0}

> 2n

Then
P(AYY ~ n=d/2,

For d > 2 the series in Eq. (13.4) converges and therefore the random walk
returns to the origin at most a finite number of times, i.e. it is transient. For
d < 2 the random walk is recurrent, i.e. A, occurs i.o., but that’s harder to
show.

It is clear that the converse of the Borel-Cantelli lemma does not hold,
unless we add more hypotheses. Take for example

A, ={X €(0,1/n)}

where X is a uniform random variable in (0, 1]. Then P(A,) = 1/n and the
series in Eq. (13.4) diverges. Yet for any value of X € (0,1], the event A,
occurs only for n < 1/X, so P{A,, i.0.} = 0. The problem with this example
is that the events A,, are strongly dependent (indeed A, implies all A,, for
m < n).
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The converse of Borel-Cantelli’s Lemma. Let A;, A,, ... be an infinite
sequence of events. If A, are independent and

o0
Z P(A,) = (13.6)
n=1
then an infinite number of events occurs almost surely, i.e.
P(A,i0)=1

Proof: if A, does not occur i.o., then there is a maximal n such that none of the
events A, occur for k > n. Therefore, the complement of the event {A,, i.0.}
can be written as

(o9

The probability that A, does not occur i.o. can be written as

{A10=

||C8

1—P(A, i.0) = (U ﬂ An) < i T1 P& (13.7)
N=1n=N N=1n=N
= > [I11-Pan] (13.8)
N=1n=N
< D ex { > P(An)z =0 (13.9)
N=1 n=N

where the first inequality arises from the sub-additivity of the probability and
the independence of events A,,. The second from the fact that 1 — x <e™*,
and the last equality from the fact that, for a divergent series, every partial
sum diverges, i.e. Z:’:N P(A,)) = . Hence every term in the sum is zero.
For example, take a sequence X = (xq, ..., X,,,) of m binary digits (x; = 0 or
1) and an infinite sequence of Bernoulli trials Xy, ..., X, ... with p = 1/2. Let

Ap = {X(n—l)m+1 = X155 Xpm = X}

be the event that the Bernoulli sequence reproduces X exactly at positions
(n—1m+1,...,nm (so A, is the event that the first m values of X; coincide
with x;). The events A, are independent and P(A,) = 27" is independent of
n. Hence the series in Eq. (13.6) diverges. This means that the sequence X,
contains almost surely the sequence X an infinite number of times.>

The sequence X, can be generated by flipping a coin repeatedly and the sequence X can
be the binary representation of Hamlet. You don’t need to be Shakespeare to produce Hamlet,
you only need to be patient enough...
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The assumption of independence can be relaxed to pairwise indepen-
dence [21]. The proof of the converse of the Borel-Cantelli lemma for pairwise
independent events is based on using the Chebyshev inequality for the ran-
dom variable S,, — E [S,,] where S,, is the number of events A,, that occur for
n < m. Then, using a = €E [S,,,], we have

Sm VSl
Pﬂ ELS,.] - 1‘ > €} < m (13.10)

where mean and variance of S,,, are given by
m m
E[Sn] =D P(An),  VI[Sul= D] P(A)[1~P(A,)]
n=1 n=1

because of pairwise independence P(A, N A,y)=P(A,)P(A,) ifn#n’. The
last equation also implies that V [S,,,] < E [S,,] that can be used to transform
Eq. (13.10) into

{| Els,] 1' > e} = €2E1[Sm]

Since E [S,,] = o0 as m — oo, this shows that the ratio of the number of
events A, that occur up to m to its expected value converges to one as m — oo

-1 (13.11)

in probability. In order to prove the converse of the Borel-Cantelli lemma
this result should be turned into almost sure convergence. Because then the
number of events A,, that occurs (up to m) diverges a.s. like E [S,,,] as m — oo,
i.e. {A, i.0.}. The trick to do this, is to consider subsequences m,, such that
E [Sm, | > k%, so that the event

> }

=

satisfies the condition Eq. (13.4) of the Borel-Cantelli lemma. Therefore
P{B; i.0.} = 0, which means that the limit (13.11) holds a.s. on subsequences
my.. The last step requires to show that this must also hold on the whole
sequence. This is intuitive since S,, is an increasing function of m: if a subse-
quence S, diverges, S,, has to diverge too.

my

E [Sm,]

-1
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Exercise 13.3

In a sequence X, X5, ..., X,,, ... of i.i.d. random variables drawn from a
continuous distribution with pdf p(x), arecord A, = {X,, > X; Vi < n}
is the event that X, is larger than all the previous values X;, for i < n.
Can Eq. (13.11) be used to estimate the number S,,, of records that occur
before m, asymptotycally for m — co?

\. J

Since the proof requires only to control the second moment of S,,, the
condition of pairwise independence in the inverse of Borel-Cantelli lemma
can be relaxed further by replacing it with the milder condition

N
. Zi#:l P(A; N Aj)
lim =1

e (3 P(AYP




Chapter 14

Laws of large numbers and the
Asymptotic Equipartition
property

It is common practice, when measuring a physical quantity to run several
independent experiments and then compute the average of the outcomes in
each of them. Each experiment may be affected by uncontrolled factors that
impact on the measurement introducing “errors” that are sometimes positive,
sometimes negative. When we take the arithmetic mean these errors average
out.! Although we give it for granted, this is a remarkable fact, because if it
where not for this, quantitative science could not be possible. This fact has its
theoretical roots in the law of large numbers (LLN). The LLN states that, given
a sequence X;, X5, ..., X,, ... of i.i.d. random variables with a finite expected
value u = E [X;], the (arithmetic) mean converges to the expected value

%in(w) - u=E[X], (14.1)
i=1

when n — oo. There are different ways in which the limit could be interpreted,
but before coming to that, let us make a few remarks:

« the quantity on the left of the limitin (14.1) is a random variable, whereas
the limit u is not. This type of results often go under the name of
concentration properties, referring to the fact that the distribution of
the mean concentrates on a single point.

1f they don’t we talk about systematic errors, i.e. of effects that persist in all the experiments.
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CHAPTER 14. LAWS OF LARGE NUMBERS

« in a physical system such as a gas, physical quantities such as the energy,

are the sum over an astronomically large number (n ~ 10%%) of particles.
Intensive quantities (e.g. the energy density) are related to averages
over this many variables. Macroscopic physical systems correspond to
situations in which the limit is realised in practice.? If it were not for the
law of large numbers, the specific heat of a disordered materials (such
as a piece of concrete or a glass) would depend on the specific spatial
arrangement of all atoms. Instead, the energy is the sum of many local
contributions which vary from point to point because of impurities, but
these variations “average out”. The quantities which satisfy laws of large
numbers in physics are called self-averaging.

The same argument should apply to the per capita Gross Domestic
Product of a country, which is the sum of the contributions to economic
activity of all its citizens. For countries such as India or China (n ~
107) we should expect that the per-capita GDP does not fluctuate. Yet
apparently [22] this is not true. Macro-economic fluctuations are much
larger than what the LLN would allow. Why?

The law of large numbers is used when we want to estimate expected
values of random variables

E[fX)] = D) PufX(®)]. (14.2)

weQ

The way we do it is to take T samples w;, t = 1, ..., T, that in the best of
the possible worlds can be thought of as independent draws from the
distribution p,. Then we compute the mean and argue that

N fIX@)] = Y K@ SE[FX],  (143)

t=1 we)

where n,, is the number of times that outcome w occurs in the sample.
When T > |Q]| is much larger than the number of possible outcomes
w, then n?m provides a good approximation of p,, (as we shall see), and

’In a physical system, X; can be one coordinate of particle i, or it’s magnetic moment.
Generally X; cannot be considered as independent random variables because particles interact.
Yet these interactions are short ranged. This means that each X; depends on a number of
other variables X; which is finite. These are generally called systems of weakly dependent
random variables and they obey the LLN if the interaction is weak enough. Although statistical
dependencies introduced by interactions are negligible, they play a key role in allowing the
system to equilibrate, i.e. to converge to an equilibrium state. We’ll come back to this point.
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Eq. (14.3) is not so surprising. Yet Eq. (14.3) works remarkably well also
when T < |Q|. For example, Eq. (14.3) is routinely used in statistical
physics to estimate averages. There w is a point in phase space that
specifies the coordinates of each particle.®> So the size of Q can be
astronomically large (typically exponentially large in the number of
particles). In these conditions, the number n,, of times that a particular
configuration w is visited is zero most of the time and sometimes one.
The ratio n,, /T does not provide a good approximation of p,,. How can
a handful of measures w, ..., wy allow us to compute expected values?
If Eq. (14.2) is true, something quite peculiar must happen.

As we shall see, there are particular features of samples of many independent
random variables that are not very random, in the sense that their probability
distribution concentrates on a small neighbourhood of a single point in the
space of distributions.

14.1 The weak law of large numbers (WLLN)

A sequence X, ..., X,, ... of independent and identically distributed (i.i.d.)
random variables with E [X;] = u satisfies the WLLN if the limit (14.1) holds
in probability. This means that, for all € > 0, we have

Zegzo.

Khinchin has shown that a finite expected value [E [X;] = u is a sufficient
condition for the WLLN to hold (see GNEDENKO). Here we limit ourselves
to a much simpler proof based on Chebyschev inequality,* that assumes that
the variance V [X;]=E [(x — u)?| =c? is finite. To prove the WLLN, we apply
Chebyshev inequality to the variable

n

%in—ﬂ

i=1

n—oo

lim PE

1 n
Z=->X,—-E[X]
nizl

and observe that for i.i.d. random variables, E [ZZ] in Eq. (13.3) reads

n n i
%Z;X’l - % >, B[ —EXiD&X; —E[X;])] = Vixi

\% ,
ij=1 n

3Eq. (14.3) holds if the ergodic hypothesis — that states that ensemble averages are equivalent
to time averages — is true.

“We shall see an argument that shows that |E [X] | < +oo is a sufficient condition for the
WLLN when we discuss limit theorems for sums.
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because E [(X; — E[X;])(X; —E[X;])] = 0fori # j. Therefore Eq. (13.3)
implies that

which converges to zero as n — 0.

The same proof shows that the WLLN holds whenever the variables X; are
uncorrelated, or when the correlation E [(X; — u)(X; — )] is small enough.
Indeed

n

15

i=1

SR Y BICK — X — )
i#j

14

and the law of large numbers holds when the last term vanishes as n — 0.

The WLLN states that the probability of excursions larger than ¢ of the
mean away from the expected value, converges to zero for large n. Itis a
statement about the limit of the probability of excursions away from the mean,
itis not a statement about the probability that the sequence of means converges
to the expected value.

14.2 The strong law of large numbers (SLLN)

The strong law of large numbers (SLLN) states the almost certain convergence
of the mean to the expected value, whereas the WLLN states the convergence
in probability. The SLLN says that for almost all w € Q the mean converges
to the expected value, i.e. that the probability that the limit of the mean is the
expected value is one. For a given w, the mean converges to the expected value
if, Ve > 0 there exist a v(¢, w) such that

%;Xi—,u <E,

for all n > v(e,w). Saying that this holds almost surely, is equivalent to
saying that one can make the probability of points w for which the above
condition holds for all n large enough, as close as desired to one. In other
words, a sequence X1, ..., X, ... of independent random variables with E [X;] =

u satisfies the SLLN if, for all €, 8 > 0 there is an N(¢, §) such that

n

%in—ﬂ

i=1

P

<E, ‘v’n>N(e,6)%21—5.
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The SLLN can be also stated as follows: for any € > 0, define the events

>€}.

Then the SLLN is equivalent to saying that a.s. at most a finite number
of events A, occur,’ i.e. P{A, i.0.} = 0. By contrast, the WLLN states that
P(A,) — 0asn — 0. Kolmogorov has shown that the existence of the expected
value, i.e. E [X] = u is a sufficient condition for the SLLN (see GNEDENKO).

For example, we can prove the SLLN for the convergence of the frequency
to the probability in Bernoulli trials:

A, = {‘%ZXI —M
i

X = 1 wpp .
! 0 w.p. 1—p, Sp =2, X

The SLLN, in this case, is equivalent to saying that for all € > 0, the probability
that the event

An={

Sp

— —p|>E€

+ 7|79

occurs infinitely often, is zero. De Moivre - Laplace approximation of the

binomial distribution, states that S, /n— p is asymptotically well approximated
by a Gaussian variable with mean zero and variance p(1 — p)/n. Therefore®

(o] a n ,
P(A,) = \/gf dxe=1? < \/ge 2200
[,

p(1-p)

and the Borel-Cantelli lemma ensures us that the SLLN holds, i.e. that
P{A, i.0.} = 0, because }; _ P(A,) < +co.

SRemember that for a fixed w, convergence implies the existence of an integer v(¢, w) such
that none of the events A, occur for n > v(¢,w), i.e that w ¢ A, for all n > v(e,w). The
threshold v(e, ) is different for each w for which the mean converges to u. Yet the fact that
the number of excursions larger than € of the mean away from u is finite holds for all these w’s.
This is why the SLLN is equivalent to the statement P{A4, i.0.} = 0.

SThis is because, for all z > 1, the inequality

5
f dx e—x2/2 S le—zz/z < e—z2/2
z
z

holds, as you can show as an Exercise.
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Exercise 14.1

It is possible to prove something stronger in the same manner. Take
Sn —np

=zvnp(1—p)

and show that for a > 1 the SLLN holds.

> \/Zalogng,

14.3 Typical samples and the Asymptotic
Equipartition Property

Asaparticular application of the law of large numbers, consider the probability
of a sequence X = (X1, ...,X,,) of i.i.d. random variables. Let us first consider
the case where X; are drawn from a discrete distribution p(x). In other words,
we assume that the variables X; € y take a finite number of values (| y| < +00)
and that p(x) > 0 or all x € y. Then the probability of a sequence is

pX) =[] pxp.
i=1

Taking the logarithm and dividing by n, we have

1 1w
—log p(X) = - > log p(X,).
i=1

The variables log p(X;) are themselves random variables and their variance is
finite. Therefore they satisfy the law of large numbers, which means that, for
n — oo, the mean converges to the average

E [log p(X)] = Y. p(x)log p(x) = —H[X].

xEx

So we have that (Theorem 3.1.1 in COVER)
Let X = (X3,...,X},) be independent draws from a discrete distribution p(x)
(X; € y with | x| < +o0). Then
lim %log p(X) = —H[X] (14.4)
n—oo

in probability.
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In brief, this theorem states that, for N large, all sequences of random
variables that are independently drawn from p(x) have essentially’ the same
probability,

p()_() “— e—nH[X].

Sequences with this probability are called fypical sequences. Non-typical
sequences occur with a probability which is exponentially small (in n) with
respect to typical ones. This does not only include those sequences with a
probability p(X) which is much smaller than e~"#IX], but also sequences
whose probability is higher than that of typical sequences. For example,
if p(xg) > p(x) for all x # x, € yx, then the sequence X; = x, for all
i = 1,..,n has a probability p(x,)" that is exponentially larger than the
probability e "HIX] of typical sequences. Yet it is very unlikely to see this
sequence because typical sequences are much more in number (see below).
The fact that typical sequences have the same probability is called Asymp-
totic Equipartition Property (AEP).® In brief, the AEP states that:
For any € > 0, one can define the set of e-typical sequences as

Af = g)_( : ’%logp()_()+H[X]‘ < e}

Then an equivalent way to state the AEP is that

1. By definition, all e-typical sequences are equally likely: P(X) « e~™11X]

forall X € Aj,

2. As a consequence of the law of large numbers, a random sequence is
almost surely an e-typical sequence

P{AS}>1—c.

3. Asa consequence, the number of e-typical sequences is

4G o eI

The last statement comes from the fact that

1~ PlAG = D) PX) - e HIX] A7
XeA;

where we used the fact that all X € Aj, have the same probability, by definition.

"Up to the leading exponential behaviour. Here and below we shall use the symbol a,, -~ e*"
to denote asymptotic equality of : loga, and «a.

8A more detailed treatment of this issue is given in COVER, chapter 3, which is a suggested
reading.



184 CHAPTER 14. LAWS OF LARGE NUMBERS

The functional®

H[X] = - )} p(x)log p(x) = H[p] (14.5)

xEx

is called the entropy of the random variable X. The last equality above empha-
sises that the entropy is a function of the probability distribution p(x) of X.
We shall discuss the entropy in more detail in what follows. For the moment,
let it suffice to say that it takes values in the interval 0 < H[X]| < log|x|. The
lower limit is achieved when X = x; is a constant, and p(x) = 1if x = x; and
p(x) = 0for all x # x,. In this limit, there is only one possible sequence X,
and H[X] = 0. The upper limit is achieved when p(x) = 1/| x| is a uniform
distribution.'®

Therefore, the number of typical samples |A¢| « e™!X] is much smaller
than the number of all possible samples, which is | y|* = e"1°¢1¥| whenever
the distribution differs from the uniform one p(x) = 1/| x|, for which one has
H[X] = log | x|. To put it differently, the probability that any sequence X is
typical is exponentially small in n.

In order to shed more light on the nature of typical samples, consider a
sample X of n observations of a random variable X € y, drawn independently
from a distribution p(x) = P{X; = x}. Let m, be the count of the points in the
sample for which X; = x (so Ex m, = n). Let us consider the case n > ||,
so that m, > 1 for all x € y. m, is related to the empirical distribution

. m 1
px(x) = 7* == 8x.x (14.6)

of the sample X, which is also called the type of X. The probability of the
sample X can be written as

PX) = [] p(x) = [ plx)™s = e Zx Px(logp) (14.7)

i=1 XEY

This shows that P(X) depends on X only through m, or through its type px.
Therefore, the probability to observe a given vector of counts

9A functional is a function of a function, which maps the space of functions to the real axis.
H[X] is a functional, because a random variable X(w) is a function. We use square brackets
for functionals and parentheses (...) for functions.

19This is easily seen by solving the maximisation problem

max [ p],
P

subject to the normalisation constraint erx p(x)=1.
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m={my, x € y}is

Py = =TT s,

|
erx My XEY

where the combinatorial factor counts the number of samples X with the same
m. Using Stirling’s approximation n! « n"e™", we obtain P{m} « e~4n
where the constant

m, m,
d(m) = %{ —log —_— (14.8)

is non-negative and it vanishes only for'* m, = np(x). Therefore, when
n — oo, the probability that the empirical distribution py(x) does not matches
the true distribution p(x) becomes exponentially small. Put differently, all
typical samples have the same empirical distribution (or type), that coincides
with p(x) asymptotically for n — oo (i.e. px(x) ~ p(x), for all x € y).

Loosely speaking, this explains why we can estimate expected values with
empirical averages, as in Eq. (14.1). This is possible because all typical samples
share the same empirical distribution of f(X), and this approximates very
well the true distribution for large n.

Exercise 14.2

A sport newspaper gives every Friday the probabilities of the outcomes
(1, X or 2) of the 13 football matches in the italian league that are in the
schedina, a popular betting scheme in Italy. Take the examples where
the probabilities of the three different outcomes are 50%, 30% and 20%

UThe proof follows from the inequality log - > 1 — z applied to d(m) with z = np(x)/m,,
which gives

d(m)zz%[1—%(x)]=o,

xXex x

because of the normalisation of p(x) and because erx m, = n. The constant d in Eq. (14.8)
can also be expressed in terms of the type

px(x)

d=Y px(x)log y = Dy, (Pxllp)

x|
ex p(x

where the functional Dy; is called relative entropy or Kullback-Leibler divergence, and it will
be discussed in later chapters. For the time being, let it suffice to say that Dg;(q|lp) > 0 and

Di(qllp) = 0 only if g = p.
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in any possible order. So the forecast may look like this:

Games 1 X 2

AvsB 50% 30% 20%
CuvsD 30% 50% 20%
EvsF 20% 50% 30%
GusH 50% 30% 20%

UvsV 30% 50% 20%
WusX 30% 50% 20%
YusZ 50% 20% 30%

The simplest schedina consists of a sequence (w1, ..., @;3) of forecasts,
one for each game, with w; € {1, X, 2}.

How would you know whether a particular schedina is a typical
one? Do you expect people will play a typical schedina?

The same result holds also for continuous variables, and it goes under the
name of
Glivenko-Cantelli theorem. Let X be a real random variable with distribu-
tion F(x) = P{X < x}and Xy, ...,X,, be a sample of n i.i.d. draws from F(x)
then the fraction

1.
Fp(x)=—[i€[Ln]: X; <xjf
of X; that is smaller than x converges a.s. to F(x) for n — oo. More precisely

lim sup |F,,(x) —F(x)| =0 a.s.

n—oo xeR

The proof is a consequence of the SLLN. So, here is a simple recipe to
estimate the distribution F(x) from a sample X1, ..., X,,: i) sort the sample
in ascending order, X 1 <Xp, <. Xy, where {f;} is a permutation of the
integers up to n, ii) plot i/n versus X,. Since i/n = F,(Xy,), this produces
a plot that for large n approximates the distribution F(x), by the Glivenko-
Cantelli theorem, as shown in Figure 31.

It is worth to spend few more words on types (see Eq. (14.6)).!> Types
provide an alternative description for problems that involve sequences X =
{X1,...,X,}of nii.d. random variables X; € y where y is a finite set. Aswe
have seen, the probability of a sequence X is a function of its type pz. The set

12See COVER 11.1.
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Fy(x)
F(x)

i i

Xy

Figure 31. The empirical distribution of a sample of n = 200 draws from a Gaussian
distribution (full line).

O, T(@

Figure 32. The space y" of sequences X of n variables X; € yx is divided into
subsets T(P) of sequences with the same type p; = P. By the AEP, sequences of n
independent draws from a distribution Q falls with very high probability in the type
classes T(P) with P =~ Q.

of all sequences with type py = P is called the type class
T(P)={X : p;z =P}

Type classes partition the space of all sequences into disjoint subsets. The
number of sequences with a given type P is computed using Stirling’s ap-
proximation of the multinomial distribution, as we did above, and it is given
by |T(P)| «~ e™IPI. The AEP can be rephrased saying that sequences of n
independent draws from a distribution Q falls with very high probability in
type classes T(Q) (see Figure 32).

The AEP is the result of a trade-off between the probability of sequences
and the number of sequences with that probability. There are sequences
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X which are much more probable than typical ones,'? yet they are too few.
Likewise there are type classes which are way more numerous than the typical
one, yet their sequences are too unlikely.

This trade-off is the same as the one between energy and entropy in physics.
In order to make this point more clear, let us consider the simplest case of
sequences X = (Xj,...,X,) of i.i.d. binary variables X; = 0,1 with P{X; =
1} = p = 1 — P{X; = 0}. Without loss of generality, let us take p > 1/2. The
probability of X is P(X) = p"?®(1 — pyr1-PX)] with p(X) = = .. X being
the fraction of 1’s in the sequence X. Let us introduce the Varfable, that we
shall call'* energy,

e(X) = = log P(X) = p(X)ey + [1 = pOIey (149)

with ¢y = —log p and® ¢; = —log(1 — p). Clearly e(X) € [ey, €] (p > 1/2).
Notice that if p attains a finite limit when n — oo, so does €.
Let us also introduce the function

o(e) = %log (n !11_6 ) .

€1—¢€o

that we shall call'® the entropy. After a moment of reflection, it can be realised
that o(e) is the logarithm of the number of sequences with energy €. Using
Stirling’s approximation, you can easily check that
—€ €—€ €—¢ €E—¢
1 ° 1o 0

€
o(e) = — ! log -
€1— € €1—€ €1 —¢€ €1 —¢€o

attains a finite limit when n — c0. We can now compute the probability that
a random sequence drawn from this distribution has energy €, which is just
the product of the probability e™"¢ of all sequences with that energy, times the
number e"°© of sequences with that energy, i.e.

p(€) — en(a(e)—e) .

13As for example the sequence with

X; = argmax p(x)

for all i.
14 Arbitrarily, for the time being.
15Note that ¢; = —log(1 — e~%0).
18 Again arbitrarily, for the time being.
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Figure 33. The AEP for sequences of binary variables. The entropy is plotted against
the energy for p = 0.8 (blue) and p = 0.52 (green).

This distribution, for large n, is sharply peaked around the maximum of
the function o(e) — €, which occurs at the point where ¢’(¢*) = 1, and a
straightforward calculation (do it) leads to the result

¢* =—plogp—(1-p)log(l - p) = H[X].

Summarising, all random sequences X drawn from P(X) will have the same en-
ergy €(X) ~ ¢*, i.e. the same probability P(X) «~ e "HIX], Because of Eq. (14.9),
all types of random sequences take the same value px(x = 1) ~ p. Fur-
thermore, the point ¢* is also the point where o(¢*) = ¢*. This means that
the number of sequences with energy €* is inversely proportional to their
probability, as the AEP states.!”

Figure 33 displays the interplay between energy (straight black line) and
entropy (concave lines). Sequences with energy ¢ < €* are more probable than
typical ones, but they are too few and so g(€) — € < 0 and their probability is
exponentially small. Sequences with energy larger than €* are more numerous,
but they are not likely enough so that again o(¢) — e < 0.

14.3.1 Should we expect the expected value?

A further example to gain intuition on typical sequences is the following:
imagine a lottery whose ticket costs 1 euro, and yields a reward of 2 euros with
probability 1/2 and of g € (0,1/2) euros otherwise. If the invested capital is

7Note that the condition o(¢*) = €* is necessary in order to ensure normalisation of p(¢),
as shown by carrying out the normalisation integral by saddle point.
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W,, after playing the game the capital is expected to be

2 w.p. 1/2

EW]=E[XiWo=Q1+q/2W. Xy =y 0 1))

This looks like a convenient game because E[W;] > W,, for any g > 0.
Indeed, if the game is repeated n times, with X;,i = 1, ..., n beingi.i.d. random
variables as X, and W, tickets are bought each time, then the LLN ensures a
positive gain per game, which is equal to q/2 times W,.

Exercise 14.3

In a faraway land long ago, girls were valued more than boys. So couples
kept having babies until they had a girl. Assume that each newborn was
a female with probability p. What is the expected fraction of females
in a randomly chosen family? What was the fraction of females in the
population, assuming it is composed of a very large number of families?
(adapted from K. Binmore’s Playing for real, p. 109).

\. .

Now the gain is clearly proportional to W, so the more one invests the
higher the gain. In particular, the best thing to do seems to invest all the
capital accumulated, at each time. In this way, the capital after n bets will be
W, =X, --X;W, and one can “expect” that the capital will increase as

E[W.]=Q0+q/2)"W,

i.e. exponentially. Great!
However, it is easy to show that if 0 < g < 1/2 then this strategy leads to
bankruptcy, i.e.
P{W,>a}—>0 as n— o

for all a > 0. Indeed
1 1< 1
—1og(W,,/W) = — > logX; — E[log X;] =  log(2q)
i=1

almost surely, as n — oo, by the SLLN. This means that, almost surely,

W, o Woe™, ¢ = 2|log(2g)| > 0
i.e. the capital will typically vanish exponentially. Here typical means with
very high probability, which tends to one as n — .
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The origin of the discrepancy of this result with the behavior of E [W,]
becomes evident if one takes some care in evaluating the expected value

n

ny_ _
E[W,] =W (k)z n [2kgnk] (14.10)
k=0
1
“ W, f dxe™ ) o WerS &) (14.11)
0

where we compute the expected value by averaging over the number k of
lucky outcomes (the term in [...] is the corresponding gain), and then we use
Stirling’s formula for the binomial and change the sum on k into an integral
on x = k/n. The function f(x) is

f(x)=—xlogx — (1 —x)log(1 —x) + (1 — x) log(q/2).

The integral can be performed with the saddle point method, i.e. by deter-
mining the value x* for which f’(x*) = 0. We find that the fraction of lucky
outcomes that dominates E [W,,] is

x* = ! .
1+q/2

Sequences with this frequency of successes occur only with exponentially
small probability, but when they occur they yield an exponentially large gain.
The calculation of the expected value E [W ] is determined by the interplay
between these two exponential behaviours. Yet the asymptotic equipartition
property, guarantees that almost surely only typical sequence with a frequency
Xx = 1/2 of successes will occur. This yields a gain W,tqyplcall ~ (2q)"W,, that
vanishes as n — o0, because 2q < 1.

Exercise 14.4

It is a bit frustrating that a game which seems profitable leads to
bankruptcy. Maybe one should not invest all the capital. Consider
the strategy of investing a fraction 4 € [0, 1] of the capital W, each
time. What is the best value of A?

The lesson is that, given a sequence Xj, ..., X, ... of i.i.d. random vari-
ables, there are combination f(Xj,...,X,) whose typical value is close to
the expected value E [ f], in the sense that the distribution (density) p(f) =
P{f(X;,...,X,) = f}is peaked around the expected value E [f]. These are
called self-averaging quantities. There are other combination of variables,
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like the product W, for which this is not true. These are not self-averaging
quantities. The expectation based on the expected value is correct only when
f is a self-averaging quantity.

Exercise 14.5

On a different planet, the hypsbryx civilisation based its science on
using the geometric mean, instead of the arithmetic mean, to measure
physical quantities from experimental data. For a physical quantity
X > 0 how would the measure that the hypsbryx estimate from a
series of experiments (X1, ..., X,,) compare with the one that we would
measure on the earth, based on the same data (and the arithmetic
mean)? Would it be the same, would it be smaller or bigger?




Chapter 15

Limit theorems and
universality

The law of large numbers states that the arithmetic mean of manyi.i.d. random
variables X; converges to the expected value! as the number n of variables on
which the average is taken diverges. When n is finite but very large, how big
are the deviations and how are they distributed? Limit theorems address this
question and show that the deviations have a remarkable feature. Their distri-
bution is universal in the sense that it is the same for all random variables X;
whose distribution p(x) satisfies certain asymptotic conditions for x — +co.

As we shall see, an universal behaviour also characterises the extremes,
i.e. maxima and minima, of many random variables.

15.1 Limit theorems for Sums ofi.i.d. random
variables

Limit theorems for sums of i.i.d. random variables should be treated within a

course of its own. Here we give a non-rigorous derivation of the main results.

We refer to GNEDENKO, Chapters VII, VII and IX for a detailed treatment.
Let us consider sums

n
Sn = ZXI
i=1

of n i.i.d. random variables X; € R with a common pdf p(x). The problem we
want to address is the following:

IWhenever this is finite.
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Find two sequences a,, b,, € R such that
S,=a,+b,Y

and the random variable Y has a non-degenerate distribution
density p*(x) in the limit n —» oo.

Non-degenerate means non-trivial. Y should not be a constant y,, i.e. its
distribution should not be concentrated on a single point. In other words
we are looking for constants a,, and b,, such that the centered and rescaled
random variable
Sn(w) —ay

by,
converges in distribution to a proper random variable, which is not a con-
stant y,.>

Eq. (15.1) explicitly reminds us that the random variableY : Q — Risa
function of the realisation w € Q in the sample space. Hence our objective is
to disentangle the dependence of S,,(w) on n from its stochastic dependence
(on w), in an explicit manner.

Y, (w) = (15.1)

15.1.1 Relation to the Law of Large Numbers

The law of large numbers implies convergence of S,, /n to a constant 4 = E [X;].
If this holds, then

i) a, = un should grow linearly in n and

ii) b,/n — 0should vanish as n — 0.

Limit theorems are a refinement of the Law of Large Numbers, in that they
also specify

« the convergence behaviour, i.e. the size b, /n of stochastic fluctuations
of S, /n around p,

« the detailed shape of the distribution of these fluctuations, given by
p*(x) and

« what happens when the Law of Large Numbers does not hold.

In order to address these questions we introduce the

*To gain some intuition about the meaning of a, and b,,, imagine taking two sequences X =
and X @ ofn independent draws from p(x), and to compute the sums SEII) and Sﬁf). Then the

difference Sf}) - ng) = bn(Yﬁ,l) - Yle)) is proportional to b,,. Therefore a, provides a measure of
the size of S,, whereas b, estimates how much S, may vary from one realisation of the sequence
X to another.
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15.1.2 Characteristic functions

Let X be a random variable with pdf p(x). The characteristic function (CF)
of X is:

$(q) = E[e9X] = fdxp(x)e‘iqx

It is also useful to introduce the logarithm of the CF

P(q) = Ing(q).

These are the analogue of the generating function and the cumulant generating
function for discrete variables. Indeed they satisfy analogous properties:

)

iif)

$(0) = 1 and 1(0) = 0 by normalisation. Also, since |e~'9*| = 1, we
have

30) < [ drpCole | =1
and the real part of ¢(q) should be non-positive, i.e. Re[¢p(q)] < 0.

Power expansion in g. When ¢ (and ) are analytic at the origin (which
means that all derivatives exist):

s@=3 Tk xny (15.2)
n=0 :

The coefficients of the power expansion of ¢ yield the moments E [X"]
of X. For this reason ¢ is also called the moment generating function.
Similarly ¥(q) admits the power expansion

OESY (_:l?) Cy (15.3)
n=0 '

where C,, is the n'™ order cumulant of the distribution p(x). These are
related to the moments by the same relations that we have discussed
for discrete variables

C,=E[x], C,=E[(x-E[x]?=VI[X],..

Translation: the random variable X, = X +a, where a € R is a constant,
has pdf p,(x) = p(x — a), and its CF is

$a(q) = e71%(q), Pu(q) =P(q) —iqa
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iv) Scaling: for any constant b the random variable X, = bX has pdf
pp(x) = p(x/b)/b, and its CF is

&p(q@) = $(bq), Pu(q) = P(bq)

v) Convolution: if X; and X, are independent variables with pdf p,(x)
and p,(x) and characteristic function ¢;(q) and ¢,(q) respectively, then
X; + X, has pdf

Praax) = f dyp,(3)pa(x — ¥)
and characteristic function

b142(q) = $1(DP2(@), P142(q) = 1(a) + ha(q).
For S,, = X; + ... + X,,, where X; are all independent, this generalizes to

Sro.in@ = [T 0@, Y1140 = 2 910
i=1 i=1

If X; are also identically distributed and ¢;(q) = ¢(q) = e¥@ for all i,
then

G14..4n(D) = [¢D]" D14.40(@) = nD(Q).

vi) Lévy’s continuity theorem: a sequence X,, of random variables con-
verges in distribution to a random variable X if and only if the sequence
$,.(q) = E[e7%*x] of the corresponding characteristic functions con-
verges point-wise to a function ¢(gq) which is continuous at the origin.
Then ¢ is the characteristic function of X.

Notice that a degenerate distribution p(x) = 8(x — x;) corresponds to a CF
¢(q) = e~'% and to (q) = —igxo.
15.1.3 Derivation of the fundamental equation

Let us consider the characteristic function ¢,(q) of Y,, defined in Eq. (15.1).
Then:

$(q) =E [e—iq(sn—an)/bn] (15.4)
— eiqan/bn[E [e—i(q/bn)sn] (15.5)
— ¢19an/bn H [E —i(q/by, )Xk (15.6)

= el /bn[ ¢(q/bn) (15.7)
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Here we used properties iii) and v) for i.i.d. variables. In terms of the function
1 this means

iqa,
b

n

d)n(Q) = + nlp(Q/bn) (15.8)

which is the starting point of our analysis. We are interested in finding se-
quences a,, b,, such that the limit

lim $u(@) = lim |ig2 +n9 ()] = 9@ (159)
n—oo n—oo n n
is non-degenerate. This means that ¢*(q) is the logarithm of the CF of a proper
random variable, i.e. we should avoid that the limit results in *(q) = —iqy,
for some y,.

It is clear that b, — oo asn — oo, because b, quantifies the size of
fluctuations of S,,, and summing more and more variables we expect the
fluctuations to increase. Then the relevant information, as far as the limit
in Eq. (15.9) is concerned, is contained in the behaviour of the characteristic
function ¢(k) of X; for small k = q/b,,. This, in turn, is related to the existence
of moments of low order. Note that small |k| means large |x|, in the sense
that the behaviour of ¢ for |k| <« 1 is related to the behaviour of p(x) in the
tails® (i.e. for |x| > 1).

There are three main cases:

1) u = E[X] finiteand 0? = V[X] < +cx.

Then the leading terms in the expansion of ¢ for |k| <« 1 are

2
w(k) = —ipk — %k2 +ekXm g

where ¢ and m > 0 are constants and ... stands for higher order terms
in k. Then Eq. (15.9) becomes:
a,—hu o*n , cn

——q*tm 4 .. (15.10)

=i —_

With the choice
a,=nu and b, = 0'\/;,
we find
24+m
cq _ _l 2

* —_ 1 _l 2 S
¥i(@) = lim [—-5g"+ e

3The regions |x| > 1 of a pdf p(x) are called the tails of p(x), and its behaviour in this
region is called its tail behaviour. More specifically, the region x — oo is called the right tail
while the left tail indicates the limit x - —oo.
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2)

This is the logarithm of the CF of a gaussian variable, i.e.

Prx) = —=e 2,

\2r
This result is called the Central Limit Theorem (CLT). It states that the
limit distribution of the sum of »n i.i.d. random variables with finite
variance V [X] = o2, when properly rescaled as

_Sp—pun

Jno

Yy

converges to a Gaussian.

The speed of convergence is ruled by the first non-zero cumulant C, . ,,, #
0 of order larger than 2. The correction to the limit is of the order n=""/2,
So if m = 1 the deviation from the Gaussian vanishes as 1/4/n. For
distributions which are symmetric around the mean p(u+x) = p(u—x),
C; = 0and C, # 05so the error vanishes as 1/n. We'll discuss this further
later.

u = E[X] finite and V [X] = oo.

This case occurs when
E[x?] = f dxp(x)x? = +oo.

This integral can diverge only if the integrand p(x)x? is not integrable
for |x| — oo. This implies that for either or both the left and the right
tails

p(x) ~ |x|7*! (15.11)

with a € (0, 2). The condition |E [X]| < +oo further restricts the range
of values of «, because it requires that « > 1. The small k expansion of
¢(k) in Eq. (15.2) cannot be used because E [X™] = +oo for all m > «.
Rather, the function ¢(k) develops a singular behaviour for k <« 1,
of the form ¢(k) = 1 — iuk — c|k|* + ..., where ... stands for higher
powers of k. A non-rigorous argument leading to this result is based
on dimensional analysis. If x has dimension of [X] (e.g. length) then k
must have dimensions [X '], because the argument of the exponential
(—ikx) must be dimensionless (i.e. a number). For small k, the leading
singular term is

k) +iku ~ ¢(k) — 1+ iku = f dxp(x) [e‘”‘x — 1+ ikx].
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Since p(x) ~ |x|™*"! for |x| — oo, the integral has dimension [X]¢
and hence it has to be proportional to |k|*. The constant ¢ can be
determined by the integral

¢ = lim PR ik
TN T kE T e ke

/ dxp(x)[e™#** — 1 + ikx] (15.12)

that can be evaluated changing variables to z = |k|x and using the
asymptotic behaviour p(x) ~ |x|~%"!. In general, the latter can be
different in the left and the right tail, i.e.

|OC+1

lim |x|*'p(x)=C
X—>+00

This implies that the result of the limit (15.12) depends on the sign of k,
and a tedious calculation shows that

¢(k)~—lﬂk+c[1—lﬁmtanh( )]|k|a+

where ¢ > 0 is a constant and

C+ _C_

p= C,+C_

A non-degenerate limit in Eq. (15.9) is obtained with
a,=nu and b, = (cn)/«

which means that

T
V*(q) = —|q|°‘[ lﬁﬁtan( oc)] (15.13)
These are called Levy stable distributions, the parameter § € [—1,1] is
called the asymmetry parameter and « the characteristic index. There is
not an explicit form for the corresponding pdf p*(x), except for particu-
lar cases.*

“The special case a = 2 needs special care. For example, if
2 . .
p(x) = 3 min(1,x73), x>0

then the distribution of S, converges to a Gaussian, as in the CLT, but with a, = v/nlogn.
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Exercise 15.1

Show that the Fourier transform of f(x) = (1 4+ x2)~(®+1/2 pe-
haves as

Fk) ~ £(0) - clk|* + ...

as k — 0. Find an expression for the constant c. Hint: use the

identity
o0
AT = 1 / dtt?le=At,
L) Jo

Exercise 15.2

Limit theorems for products: let X1, ..., X,, be a sequence of posi-
tive i.i.d. random variables (X; > 0). Find sequences a, and b,,
such that the variable

1/n

n
G, = (Hxi) =a,+b,Y,
i=1

has a non-trivial limit, such that Y,, converges (in distribution)
to a non-degenerate random variable Y for n — o0. Find the
distribution of Y depending on the distribution p(x) of X; and
the conditions on p(x) for the limit to exist.

Exercise 15.3

| \

What if the two tails have a different behaviour, i.e.
p(x) = Colx|™ 1} x > +o0

with a, # a_? One way to attack the problem is to split the
sum S, = Sy + S, into the sums over the positive and negative

variables
Sk= D Xi, Sm= D, X
i:X;>0 i:X;<0

Both sums have a limit behaviour of the form Sy ~ af + bfY,
where Y, has a Lévy distribution with parameters a* and § = +1.
This suggests that the sum has a different asymptotic behaviour
p*(x) ~ |x|7%71in the two tails x — +o0. Yet the leading
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asymptotic behaviour of the whole sum is dominated by the tail
with the smallest value of « = min{a_, a, } and correspondingly,
B = £1. Can check that this intuition is correct by a numerical
analysis?

As a corollary these results show that the law of large numbers, in its
weak form, holds as long as E [X] = u is finite. First because b,,/n — 0
implies that S,,/n — u in distribution. Second, because it can be shown
that if a random variable converges in distribution to a constant, then it
also converges in probability.

3) |E[x]| = +oc0 and E [(x — E[x])?] = .
This occurs if for |x| > 1,

p(x) ~ |x|7*!  with 0<a<1.

Then, for k <« 1, the cumulant generating function has a leading be-
haviour (k) ~ |k|*. A non-degenerate limit in Eq. (15.9) is obtained
with considerations analogous to the previous case, with

a,=0 and b, = (cn)/<.

and the limit of ¢,,(q) is again given by Eq. (15.13), with 0 < o < 1. The
case a = 1 is special because instead of Eq. (15.13) one has:

24T
¥ =~Iql |1 +if—=In|q]] .
q q g2 114

For § = 0 this is called Cauchy distribution, and it has an explicit form

1 1
14 x2

Exercise 15.4

LetQ, = Ty + ... + T, be the time for the n™ return to the origin
of a random walk (with p = 1/2). Show that Y = Q,/n? has a
limit distribution, as n — oo with cumulant generating function
¥*(q) as predicted by Eq. (15.13). Hint: derive the generating
function ¢(q) of T from the expression of the generating function
we derived in earlier chapters.

pr(x) =
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Exercise 15.5

Consider a two dimensional random walk S, = (SX,S)) where
SX and S2 are two independent (unbiased) random walks. Let
T > 0 be the first return to the x-axis, i.e. the first time for which
S; = 0. Show that the cumulant generating function of S7. is
given by ¥(q) = log[1 — [sing]].

Using this, show that for m > 1, the position on the x-axis
corresponding to the m'™ time when S;, = 0is well approximated
by mY where Y follows the Cauchy distribution. You can run
numerical simulations to confirm this conclusion.

Note that, for a < 1, the law of large numbers does not hold because
S, has fluctuations b,, ~ n'/% which grow faster than® n. Therefore the
sum of n elements grows faster than n, which is strange at first sight.
This occurs because the sum is dominated by few elements which are
themselves of order X; ~ n'/%. Remember that the Glivenko-Cantelli
theorem shows that for large n, if X is the k™ largest value among
X, ...,X,, then

k [e]

- z/ dxp(x) ~X[k‘i‘

Xkl

when p(x) ~ x~*~L. Inverting this relation shows that the k' largest
value in the sequence is of the order

n 1/a
X~ = .
[k] ( k )
Hence for a < 1 the largest element X|;; ~ n
magnitude as the whole sum.

1/a is of the same order of

A measure of how a sum is unevenly dominated by its different terms is
given by the participation ratio, which in our case is defined as

=23 1514

When all terms contribute more or less equally, X; ~ S,,/n and each
of the terms of the sum is of order 1/n?. Therefore the participation
ratio vanishes as n — 0. The same is true in our case when X; are i.i.d.

5This is why we can set a,, = 0. Taking a,, = un would not change the limit in Eq. (15.9).
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random variables with a pdf with tail behaviour as in Eq. (15.11) with
a > 1. When S,, is dominated by a finite number of terms, instead, some
of the terms in Eq. (15.14) are finite and hence Y remains finite even
when n — oo. This applies to our discussion of sums of i.i.d. random
variables with o < 1. In this case Y remains a random variable even in
the limit n — oo with E[Y] - 1 — . Y is not self-averaging as n — oo
fora < 1.

15.1.4 Stable distributions and universality

From the previous discussion it should be clear that the sum of two indepen-
dent Gaussian variables is also a Gaussian variable, whose mean and variance
are the sum of the means and the variances of the original variables. Likewise,
you can check that the mean of two variables with a Cauchy distribution is
also distributed as a Cauchy distribution. In general, given two i.i.d. random
variables X; and X,, with pdf p*(x), if there are constants a and b such that
the random variable (X; + X, — a)/b has the same distribution p*(x), then
p*(x) is called a stable distribution.

The cumulant generating function of a stable distribution has to satisfy
the equation

Y@ = %+ 247(a/b) (15.15)

The Gaussian and the Lévy distributions are all stable distributions. Stable
distributions are also infinitely divisible, in the sense that if X has distribution
p*(x) then, for any n € N, there are constants a,, and b, such that a,, + b, X
is the sum of n i.i.d. random variables X; with distribution p*(x).

Exercise 15.6

Can 9*(q) = —q* be a the cumulant generating function of a stable
distribution?

One way of deriving the distribution of the sum of n random variables with
distribution p(x), in the limit n — oo, is to first sum the variables in pairs,
and then consider the sum of the pairs. This procedure can be iterated for k

6See [23] for more details.
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steps,’ so that the total sum S, is the sum of n/2¥ independent variables S,,
each of which is the sum of 2¥ independent variables X;. The distribution of
Sok+1 can be derived from that of S, because Sy = Sor + S;k. It is clear that
we can obtain the asymptotic distribution of S,, by studying the distribution of
S,c as k — oo. Yet, the location and scale of the distribution of Sy« will change
with k, so in order to obtain a non-degenerate distribution in the limit it is
necessary to rescale the variables Sy« in an appropriate manner, defining

Szk — Ak
y, = 2 "9
k bzk

in such a way that the location and scale of Y} are independent of k. For
example, a,x and by« can be computed imposing that P{Y, > 0} = P{Y, < 0}
and P{|Y| < 1} = 1/2 for all k. If p%)(y) is the pdf of the variables Y, then
the distribution p**V of Y ,; can be obtained using the recursion relation

Yi + Y] — Ay
Yip = B,

where Y and Y, are i.i.d. with pdf p%®), Ay = (ay1 — 2a) /by and By =
by+1/byk. This defines a transformation®

ptD = % (p®) (15.16)
o + —-A
oD (x) = / dx,dx, p®(x;) p®(x,)6 (x B %)

where A, and By, are determined by the conditions

1

[ 0
/ dxp¥+D(x) = / dxp®+D(x), / dxp®D(x) = %
0 —oo _

1

Sy =X, + X, + o + X,
=50 48P 4 45

_ o @) (n/2%)
=S, +S) +.+5)

The sum S, of n random variables can be described in terms of “block” variables S,« at different
“scales” k.
8In terms of the cumulant generating function, this transformation takes the simpler form

P = R (P©) = —igA + 29“q/By)
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R defines a transformation p® —— p®*+1) in the space of distributions with
the same scale and location, that starts from the original distribution p©® = p.
This is the simplest example of a Renormalisation Group transformation, that
relates the statistical description of a system (here S,,) at two different “scales”
¢ and ¢’, i.e. in terms of “block” variables S, and S,, (here ¢ = 2k = ¢'/2).
This transformation is used in statistical physics to study the critical behaviour
of systems at second order phase transition points.’ This transformation is
based on two steps i) coarse graining, i.e. Z, = Y + Yl’{ and ii) rescaling
Y1 = (Z — Ap)/B.

The “flow” induced by R in the space of probability distributions converges
to fixed points

Jim p® = p* = R(p*), Jim Ay = A%, lim By = B*

that define the distribution of properly rescaled sums (with constants A* and
B*) of infinitely many random variables with pdf p(x). In terms of CF, the
equation p* = R(p*) coincides with Eq. (15.15). Note that:

« only for appropriately chosen values A* and B* the transformation (15.16)
has a fixed point p*.

« The transformation R preserves the tail properties of the distributions,
i.e. if p®)(x) has a finite variance, then p**+1(x) has also a finite vari-
ance. If p®(x) ~ |x|7*! with « < 2 then p**+D(x) has the same
behaviour.!”

°In statistical physics the renormalisation group is a way of defining appropriately the ther-
modynamic limit by relating the description of a system at length-scale 2L to that of systems of
size L. In this limit, appropriately rescaled quantities should have the same fluctuation proper-
ties at different (large enough) scales. The renormalisation group is also used in particle physics
in order to deal with the microscopic limit. Theories of interacting particles (e.g. electrons and
photons) suffer from ultra-violet divergences (i.e. arising from processes taking place at very
small scales). These divergences can be “cured” by the same “renormalisation” procedure,
which relates the description of a system at two different scales. The parameters of the theory
(e.g. the mass and the charge of the electron) can be adjusted so that the renormalisation
transformation admits a fixed point which describes a well defined ultra-violet limit.
Renormalisability implies limits to what we can learn by studying systems at one scale, on
systems at a different scale. When the theory of a macroscopic system is renormalisable, which
means that this program can be successfully carried out, the behaviour of the system it describes
is completely independent of microscopic details. This means that there is no measure on the
macroscopic properties that can reveal microscopic properties. Likewise, in particle physics, if
particles like electrons and photons are fully described by a renormalizable theory, then it is
not possible to learn about more fundamental constituents of matter (e.g. quarks) by studying
how electrons and protons interact. For more, see the essay of Tian Yu Cao in [24].

19This is more clearly seen from the fact that the singular behaviour of p®)(g) is the same as
that of p*+D(q) for g — 0.
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« The equation p* = R(p*) admits different fixed points corresponding
to different tail behaviors. The space of distributions is divided into the
basins of attraction of each of them. For example, all distributions with
a finite variance belong to the basin of the Gaussian fixed point. The tail
behaviour of p(x) determines to which fixed point p* the distribution
p® will converge to. In this sense, the distribution p* is universal
because it is attained asymptotically, starting from whatever distribution
p with the same tail behaviour.

« Asymptotically the scale parameter B, converges to B* This means that
for n = 2¢ the combined scale parameter from the original distribution
p to p©) should be equal to

¢
b, = HBk ~ (B*)! = nl/«, é = log, B*.
k=1

The fact that the coefficient b,, takes the scaling form b, = n'/% is a
direct consequence of scale invariance, i.e. of invariance under the scale
transformations R (where “scale” here refers to the “size” of the sums
in each block).

15.1.5 Sums as stochastic processes

Take X; with E [X;] = 0 and plot the sum S,, of n i.i.d. random variables X; as
a function of n. Imagine doing the plot for two values of n which are large
enough that you can’t distinguish individual dots on the plots (say n = 10*
and 10°) and remove the tick labels from both axes, in both plots. A concrete
manifestation of the existence of a limit theorem for sums is that you should
not be able to distinguish which plot was generated with the larger value of
n and which was generated with the smaller one by just looking at the plots.
Put differently, if for both plots you rescale the x axis by n and the y-axis by
n!/« youw’ll get two curves which are statistically indistinguishable!! You're
encouraged to generate these curves numerically and to verify this statement.

Tndeed, if you zoom in Figure 34 in any interval of size b and rescale the x-axis by b and
the y-axis by \/3 then you get a curve that is statistically indistinguishable from the original
one. If n is really very large, the same is true if you zoom into a part of the part and so on.
Since you cannot distinguish the scale of the interval by the shape of the curve, these curves
are called self-similar. Objects that enjoy this self-similarity property are called fractals. A
curve such as sin(x) does not enjoy this property, because there is a special scale x ~ 27 that
corresponds to the period. If you zoom in on a small interval the curve will look like a straight
line, which is different from the original curve.
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Figure 34. Two independent rescaled sums Sy /y/n of k random variables with finite
variance and zero mean are plotted versus k/n, with k = 1,...,n, forn = 10* and
n = 10°. Which is which?

So, the existence of a limit for n — oo of S,,/b,, implies that one can define
these trajectories in a continuous time. More precisely, we can set t = nAt
and look for an appropriate rescaling

Z(t) = (ADPSp—y

such that Z(t) is finite when At — 0. It is clear that b, ~ n!/* implies that a
finite limit is achieved for § = 1/a and

Z(t) = t/2y

where Y has Gaussian distribution for « = 2 and a Levy distribution for
0 < a < 2. In the former case Z(t) is called the Wiener process, in the latter it
is called a Levy process. What are the properties of the trajectory?

First, notice that Z(t) is a process with independent increments. This
means that for t > t,, Z(t) — Z(t,) = |t — to|'/*Y where Y is independent of
Z(t,) and has an universal distribution (either Gaussian or Levy).

Next, we can ask: is Z(t) a continuous function of t?

Usually a function is continuous at t,, if for any € > 0 one can finda d > 0
such that for all t € [ty — ,t, + 8] we have |Z(t) — Z(ty)| < €. Now, this
definition cannot be used in the present case, because Z(t) = Z(t,w) is a
random variable.

We should define what convergence means. For example if we adopt an L?
norm, we would say that the process is continuous if E [|Z(t) -Z (t0)|2] -0
ast — ty. Now clearly the expected value diverges for all « < 2, suggesting
that Levy processes are not continuous. However, if one instead uses an L,
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Figure 35. Rescaled function Z(t) obtained from sums S, of n < 10° random
variables with a symmetric distribution with asymptotic behaviour p(x) ~ |x|~%!

for ¢ = 1/2 (black) a = 3/2 (red) and o = 4 (blue). The random variables X; are
generated taking X; = o; Ul._l/ * where o; = +1 with equal probability and U; is an
uniform random variable. Note that for « < 1 the largest jump accounts for a large

part of the total excursion of S,,.

norm, requiring E [|Z(t) — Z(ty)|P] — O as t — t,, one would conclude that
processes with o > p are continuous whereas those with a < p are not. Now
if you look at the plots of Z(¢) in Figure 35, it seems this can’t be true.

A different way to approach the problem is the following: consider an
interval [¢, ;] and divide it into m smaller intervals of size At = (t; — ty)/m.
Let 8z; be the increment of Z(t) in the i" interval (i = 1, ..., m). Then we say
that the process is continuous if, for any € > 0 we have

lim P{|dz;| <eVi=1,..,m}=1.
m—o0

If this is not true, then there is a finite probability that Z(t) has a discontinuous
jump larger than ¢ in the interval [¢,, t; ]. Since intervals are independent, it
suffices to compute the probability P{|6z| < €} of the deviation in one interval.
In general we have

P{|6z;| <eVi=1,..,m} = P{dz| < e} (15.17)
= [1— P{|5z| > e}]" o emPU%zI>¢}
where we assumed that P{|6z| > €} — 0 as m — oo. In the regime of the
central limit theorem (a > 2) we have
20t — to| -2

P{|52| > €} ~ e e_thl—fo\
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which vanishes exponentially as m — oo. Therefore mP{|8z| > ¢} — 0 for
m — oo and Eq. (15.17) yields P{|6z;| < e Vi = 1,...,m} — 1 in the same
limit. From this we conclude that the Wiener process is continuous.

In the case of the Levy process, instead, we have

[t1 — tol e
sa@) = () vi@)
where Y; are all i.i.d. with Levy distribution. Hence, since Y has a pdf p(x) ~
Cx~%! for large x,

(c]

2C |t; —t
P{[6z;| > €} ~ ch x~ldx = _M_
_eml/®_ a  me®
leg—to 1/
Therefore the limit in Eq. (15.17) is
i . . 2C |t; — to] 1"
lim P{|6z;| <eVi=1,..,m}= lim [1 - _M
m-—oo M— 00 OCG“ m
_2Cly o
=e o« (15.18)

which is finite.Therefore with a finite probability there is at least one infinites-
imally small interval where the process has increments larger than €. The
process is not continuous. Notice that as € — 0 in every interval with prob-
ability very close to one you will find jumps larger than e, so the function is
no-where continuous.

Exercise 15.7

Notice the similarity of Eq. (15.18) with the probability that a Poisson
random variable with mean

_2C|t — ¢

T aeo

A

takes value k = 0. Show that the probability to observe k jumps |6z;| >
k

€ in the time interval [t,, t] is given by the Poisson distribution %e‘)‘.

Is this a coincidence? 4

In the case of the Wiener process, we can further ask whether the function
Z(t) is differentiable or not. The derivative of a function Z(¢) at ¢ is defined as
az Z(t+ h)—Z(t)

- m n
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One way to address this question is to compute the probability that the in-
crement Z(t + h) — Z(t) is smaller than Kh, for an arbitrarily large constant
K, ie.

P{|Z(t + h) — Z(t)| < Kh}

where K is an arbitrarily large positive constant. Please verify that the limit of
this probability when h — 0 is zero. This means that the Wiener process is
no-where differentiable.

15.2 Limit theorems for extremes

Finding the minimum or the maximum of a number of random variables is
a classical subject in probability theory that goes under the name of extreme
value theory. Situations where maxima and minima occur are called extreme
events. There are many situations where we may be interested in extreme
events. For example, engineers need to ensure that the structure they build
(e.g. a bridge) will resist perturbations (e.g. floods) for a long time (at least
longer than their lifetime). Hence they need to estimate what is the maximal
size of the perturbation they can expect over a certain period of time. World
records in athletics is another example of extreme random variables.
Here we focus on the simple case of finding the maxima and minima

Z, = max{Xy,...,X,} W, = min{X, ..., X,;}

of ni.i.d. random variables X1, ..., X,, with common pdf p(x). If we change
the sign of each random variable X l’ = —X;, then the problem of finding the
minimum becomes that of finding the maximum, i.e. Z}, = —W,,. Hence, it is
enough to consider Z, only. The problem can be stated as follows.

Find sequences a,, b, € R such that'?

Z, = a, + b\, (15.19)

and A, — A, in distribution as n — oo, where A has a non-degenerate
distribution. In other words, a,, and b,, should be such that the limit

H(x) = Y}erolo P{A,, < x}

1275 for sums of random variables, a, provides a measure of how large we expect the
maximum to be, whereas b, gives an estimate of how much the maximum can vary between two
different realisations of the sequence of n independent random variables, because Zfll) -Z ,(,2) =

n n n M
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yields the cumulative distribution of a non-degenerate random variable. The
key idea is that

P{A, < x} =P{Z, < a,, + b,x} (15.20)
= P{X; < a, + b,x, Vi} (15.21)
%) n
= (1 —/ dx’p(x’)) (15.22)
a,+b,x

In words, if Z,, < a,, + b,x then all X; must be less than a,, + b, x, and the
last equality is due to the fact that the variables are all i.i.d.. In order for the
limit as n — oo to be non-trivial, the integral in the last equation must be
proportional to n~!. Indeed, if a,, and b,, are chosen so that

n—oo

lim nf dx'p(x") = c(x) (15.23)
ay+b,x

n
then, for large n the right hand side of Eq. (15.22) is ~ (1 — %) and we have
H(x) = lim P{A,, < x} = e=<™), (15.24)
n—oo
The pdf of the random variable A is obtained as

= —c/(x)e ™), (15.25)

The problem is then condensed in finding a,, and b, such that the limit in

Eq. (15.23) is well defined. This limit probes the tail of the distribution, i.e.

that region of x such that the probability that X; > x is of the order of'3 1/n.
There are three main cases:

1) Power law distributions p(x) ~ Ax~"~1 for x > 1. Then the integral in
Eq. (15.23) can be done explicitly

n f dx'p(x’) = 2 (@, + b, x)"
a,+b,x 4

Then the choice

13This is intuitive, because the maximum of n random variables X; is expected to fall in this
region with finite probability.
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leads to the result

c(x)=x7, = H(x)=e* 6(x)
h(x) =yx 7 "lex" (x >0). (15.26)

Note that h(x) preserves the same behaviour of p(x) for large x and
is universal, in the sense that it does not depend on any other details
of p(x).

It is interesting to compare the behaviour of sums and of extremes, for
distributions with a power law tail.

« Fory > 2, the sum S,, is asymptotically described by the Central
Limit Theorems whereas the distribution of the maximum retains
the same tail behaviour of the distribution of X; (see Eq. (15.26)).
In addition, the sum is of the order S,, ~ n with fluctuations S,
of order y/n. The maximum Z,, is the largest element in the sum
S,, and since Z, ~ n'/?, it is negligible with respect to both the
sum and its fluctuations:

Z,<<6S,<S, (y >2)

« For1 < y < 2 the sum and the maximum have pdf’s with the same
asymptotic behaviour. The sum is still of order n with fluctuations
S, ~ n'/? which are of the same order of Z,,, i.e.

Z,~08S, <S8, 1<y<2)

« For y < 1 the maximum grows as fast as the whole sum, and both
grow faster than n (as n/7)y:

Zy ~8S, ~ Sy (r<1b

The maximum accounts for a finite fraction of the whole sum.

2) Distribution with a support bounded to x < w. If for x ~ w

N w=xyT x<w
p(x)—§ 0 >

the integral in Eq. (15.23) yields

“ An
nf dx'p(x") ~ > (w—a, —b,x)"
[e}

n+byx
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Then the choice

1/y
bn — (L) ~ n_l/y
leads to the result

c(x)=(-x), = Hkx)=e Y (x <0)
h(x) = y(—x) 7 le= (=07

and H(x) = 1, h(x) = 0 for x > 0.

Again, the singular behaviour of h(x) for x — 0~ coincides with that
of p(x) ~ (w — x)’~! for x - w™. This is the only relevant feature that
the limit distribution retains of the original distribution p(x).

Note that h(x) for y = 1 coincides with the exponential distribution for
x < 0. This implies that the minimum of many random variables with
a support which has a finite inferior limit w and whose pdf as x —» w™
is finite, is an exponential random variable. In particular the minimum
of many exponential random variables is itself an exponential random
variable.

3) p(x) with unbounded support, that falls off faster than any power for
Xx — oo. This includes distributions for which the moments E [|X|™] | <
+00 are finite for any m. Rather than carrying out the limit in general,
we consider a specificif example, the stretched exponential distribution

vx’le™ x>0
p(x) = { o o (15.27)
for which the limit can be carried out easily. Eq. (15.23) reads
(o]
nf dzvz'~ e = ne~(@ntbnx)’ (15.28)
a,+b,x
o —alvarlb,x— 2R g 2p2a2y
= ne 2

We can get rid of the factor n by taking a,, = (logn)!/”. Fixing b, such
that the coefficient of x in the second term of the exponential equals
one (i.e. va’~'b, = 1), yields

b, = %(log /71, (15.29)
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It is easy to check that all other terms in the expansion vanish asn — .
Therefore, with this choice of a,, and b,,, the limit in Eq. (15.23) becomes
c(x) = e™*. For a general distribution in this class, the coefficient a,
can be chosen as the value of x for which the expected number of points
larger than a,,, in a sample of n i.i.d. draws, equals one, i.e.

oo
nP{X > a,} = nf dxp(x) =1. (15.30)
an
In this way, a,, provides a measure of the value that we expect for the
maximum of n i.i.d. random variables. The coefficient b,, can be taken
as a measure of the scale of fluctuations of X; conditional to X; > a,,, i.e.

b, =E[X —a,|X >a,] = nf dyf dxp(x). (15.31)
ay y

Then it can be shown that the limit in Eq. (15.23) yields ¢(x) = e™ and

X

H(x)=e®", h(x)=e>* ¢

X

(15.32)

Eq. (15.32) is known as the Gumbel distribution.'*

It is interesting to note that b, in Eq. (15.29) diverges if v < 1 whereas
b, — 0 for v > 1. This means that the maximum Z, is well approxi-
mated by the deterministic sequence a,, for v > 1, because |Z,,—a,| — 0
in probability as n — c0.!> Conversely, for v < 1 the fluctuations of Z,,
become larger for larger values of n. The case v = 1, which corresponds
to the exponential, is special, because then b,, = 1 independently of n.

This last case can be considered as the limit y — oo of the first case.
Indeed there is a general formula that, apart from an affine transforma-
tion, includes the three cases discussed above, which is the Fisher-Tippet
distribution

Pe(x) = P{A > x} = e+ for £x > -1, (15.33)

whereas when §x < —1, Pg(x) = 0 for § > 0and P¢(x) = 1if§ < 0.
The first case corresponds to £ = 1/y > 0 whereas the second to § =
—1/y < 0. The third case to the limit £ — 0.

14Also the other limit distributions have names, but they are less used.

15The limit does not always exists. E.g. for p(x) = 1/[x(In x)?] there are no coefficients a,
and b, for which (Z, — a,,)/b, has a non-degenerate distribution. Indeed there is a limit for
Z, = max{lnXj,..,InX,} =1nZ,
of the form Z, = d, + b,Y. Therefore, for n > 1, the maximum of X; is well approximated by
Z, = e™*bn¥ This explains why there cannot be a non-degenerate limit of (Z, — a,,)/b,.
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15.2.1 Some applications*

The Gillespie algorithm. Consider the dynamics of a system that can be
in any of n states and that can make transitions from states i to j at any time
t € R.1 More precisely, if the system is in state i at time ¢, it can jump to
state j in the interval [¢, ¢ + dt) with a probability w; ;d¢. For infinitesimal
dt the probability that two transitions occur in the same interval [¢, t + dt) is
proportional to dt? and it is therefore negligible. The dynamics is a sequence
of transitions between states at different times. The constant w; ; is called the
transition rate.

Imagine that we want to generate a trajectory of this system with a com-
puter code. In order to do so — i.e. to simulate the dynamics — one can fix a
small time increment At and then, with probability w; jAt perform transition
i — j, for all j. The problem is that at most one transition should occur,
which implies that At should be taken very small. This is computationally
very inefficient.!” This method gets more accurate the smaller is At, i.e. the
more it is inefficient. There is a smarter way to simulate this process that
relies on the realisation that the waiting time for the transition i — j to occur
is exponential

pij(t) = w; je~ut
Hence, it is possible to draw n waiting times T; ; for all j = 1,..., n from the
corresponding exponential distribution and find the transition i — j* that
will occur first, i.e.

.....

Then one can execute the transition and advance time by At = T ;.. This is
exact but it still requires to draw n random variables for each transition. We
can do better because we can compute the probability that j* takes any value,

16A large number of systems can be described in these terms. For example, in a mixture of
molecules, state i will correspond to a particular composition of the mixture, and state j to the
composition that attains if a certain chemical reaction takes place. For completeness, let us
mention that the probability p;(t) to find the system in state i at time ¢ satisfies the so called
Master Equation

dp; _
qar - Z [pkwk,i - piwi,k] .
k#i
This states that changes in p; either occur because of transitions from other states k to i (the
first term in [...]) or because of transitions out of i, to other states k (second term in [...]).

"Tn order to find out whether jumpi — j occurs in the time interval [¢, t +At) in a simulation,
draw a uniform random number R € [0, 1] and compare it with w; ;At. If R < w; ;At then the
jump occurs. Doing this for each j implies that n random numbers are needed to perform one
transition.
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by computing the probability that the corresponding time is smaller than all
the others, i.e.

P{j* = j} = P{T;; < Tix, Yk # j}

oo
:f dtwl-je_wthHe_wiqkt
0

k]

w n
=w> W= 2 Wik
t k=1

where we used the fact that P{T;; > t} = e for exponential random
variables. Therefore with one draw from the distribution P{j* = j} we can
find the transition i — j* that will occur. In addition, the waiting time for
the transition is the minimum of the waiting times for all the processes, i.e.
T; j- = miny T;, and we can compute its probability distribution as

n
P{T; ;. >t} = P{T; > t, Vk = 1,...,n} = [ [ et = e Wil,
k=1

Hence At = T; j» can be drawn form this distribution directly. We need just to
draw two random numbers for each transition, instead of n, to simulate exactly
the process. This reasoning is the basis of the Gillespie algorithm, which is
routinely used to simulate stochastic processes.

On the validity of the CLT. LetX; bei.i.d. random variables with E[X] = u
and variance o2. Then the CLT says that the variable

v, = X1 +X2 + ... +Xn — Mn
e
o\

converges in distribution to a Gaussian variable with zero mean and unit
variance. This means that p(x) = e/2 /N 27 is a good approximation for
the pdf p,(x) of Y,,. Yet, for finite n, this is only true in an interval [—y,, y,]
around the origin. How does the size of the interval y, depends on n?

Let us first discuss the case where all the moments of X; are finite. Then

*d
pn(x)zf _qein+¢n(q)
v

2
where

2
$u(@) = log Ele™ @] = =L+

—iq)3 _iq\4
oy e S
3h/n 4ln
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Figure 36. The distribution of the variable Y, deviates from the Gaussian in the tails.
The pdf of Y,, is estimated with the empirical distribution of Y,, for 10° draws, for
n =102 and p(x) ~ |x|~ for |x| > 1.

and C,, is the m™ order cumulant of the variables X;. In the integral defining
Pn(x), we can expand

_i3 _im4 _in\6
eh@ = o2 |1 4 T1D Cs+ (=ia) C4+( 9 2|1,
3 4 232 3 n

Now, each power of (—iq) in the integral acts as a derivative — —dd taken outside
X
the integral, therefore

C; 3 c, d* C? de \1 1 2
=[1- — 42—+ — )= 4. | =2
Pn(x) l 31/n 43 (4! dx* = 2(31)2dx6 [ n \/Zne
2

C C c 1
= ll - 3!\/3;H3(x) + <4—?H4(x) + 2(?j)zH6(x)) - + ...

1 e—x2/2

\Vor

where we have used the relation ‘Zc—mme‘xz/ 2 = H,(x)e™"/? that defines the
Hermite polynomial of degree m. For a given value of n, the approximation of
the CLT is accurate as long as the correction terms are small. Since H,,,(x) =
x™ + ..., this requires that |x|> <« \/n when C; # 0, i.e. |x| < y, ~ n!/°.
Notice that, n'/® ~ 2.15 for n = 100, so one should be careful to apply the
CLT to deviations of sums Y, which are not small.

Things get better if C; = 0 and C4 # 0. Then the range of validity of the
CLT is larger, i.e. yy ~ nl/4. In general if the first non-zero cumulant is C,,,,
then the range of validity of the CLT depends on n as y, ~ n'/2=1/m,

When instead the distribution of X; has divergent moments, i.e. when
p(x) ~ |x|7%7!, with a« > 2, we can argue in the following manner. Consider
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the case where X; > 0 and let’s focus on the right tail, for simplicity, i.e.
p(x) ~ acx~%! for x > 1. Clearly the event {X; + ... + X,, < x} implies the
event {max(Xy, ..., X,) < x}, and hence

P{X; + .. + X, < x} < P{max(Xy, ..., X,) < x}

assuming that we’re in the range of validity of the CLT, and taking x = nu +
\/ﬁay, we approximate the l.h.s. as

PX, + ..+ X, < nu++\noy}~1-— eV /2 y>1

2wy

whereas

P{max(X,,...,X,) < nu+ \/Zoy} ~ [1 - c(un)*]"

ol pl-a —
~e T 1 —¢'nt

a

where we assumed un > U\/ﬁy, ey \/ﬁ Therefore the inequality above,
after some straightforward manipulations, leads to y? < 2(a — 1)logn + ...
where ... stands for subleading terms. Neglecting these, we arrive at

Yy <4/2(a—1)logn

This means that if y exceeds the value y, = 4/2(a — 1) log n then something
in the above derivation necessarily goes wrong. The only real assumption
that we made is that of the validity of the CLT. So we conclude that the CLT
does not hold if y > 1/2(a — 1)logn. The interval in which the CLT holds,
therefore, grows extremely slowly with n when the pfd of X has power law
tails.

Knowns and unknowns. In many cases, we are interested in phenomena
which are — or so we think — the result of an optimisation problem. For
example, we think of the sequence s = (sy, ..., s,,) of amino-acids of a protein
as optimising a specific biological function in an organism. Yet in reality
the optimisation may also involve many other variables 3§, besides s, which
may not be observed or even known.'® We may describe this situation as a
generic optimisation problem of a function U(s) over a certain number of

®There are many examples of problems of this type. The choice of the city (i.e. s) in which
John decides to live, does not only depend on the name s of the city, but also on other factors
(5) that enter in John’s decision.
A plant selects its reproductive strategy depending on the environment where it lives. There
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variables § = (s, §), where only a fraction of the variables — the “knowns” s
— are observable, whereas the other variables § — the “unknowns” — are
unobservable. To what extent does the available knowledge allows us to
predict the real behaviour of the system? How much should we know in order
to be predictive?

Formally, we can define that part of the objective function that is known
as u; = E [U(5)|s], where the expected value is taken over the distribution
that encodes all the knowledge available on U, for a given value of s. We shall
call ug the model, because it is the best possible description of the system on
the basis of what is known. Accordingly, we can write

UG) = ug + vy, (15.34)

where vg); = U(S) — E[U(5)|s] is an unknown function of § and s. Because
it is unknown, we assume it to be drawn randomly and independently for
each 5 = (s, 5) from a given distribution p(v). The assumption that vg; are
independent draws from p(v) is the simplest possible, but it also encodes a
state of (almost) complete ignorance.'® This is a very complex system, as the
full specification of U(5) for each value of s requires a number of parameters
Ug|s that grows exponentially with the number of unknown variables 3.
The behaviour of the system is given by the solution

$* = (s*,5%) = argmax U(5). (15.35)
N

Notice that, since U(5) is a random function, s* and its observable component
s* are random variables. The behaviour of the observable variables predicted
by the model, on the other hand, is given by

5, = arg msax Us. (15.36)

Therefore, the predictability of the model is quantified by the probability

Py, = Pis* =5} (15.37)

are measurable characteristics e.g. of its flowers, that can be classified according to a discrete
variables s. The fitness of that species is optimised over a much broader set of variables § = (s, 3)
which include unobserved variables 3, that influence other traits of the phenotype.
We can think that Shakespeare, in writing Hamlet, chose a particular sentence s in an optimal
manner. Each sentence s in the text has been chosen by Shakespeare, depending on the words
§ that precede and follow it.

YL.e. if vy, were dependent and/or not identical, we should know how they depend and/or
how they differ.
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that the model reproduces the behaviour of the system. This probability can be
derived for the following generic complex optimisation problem: we focus on
the case where all the moments of vy are finite and, without loss of generality,
we take s = (s, ..., 8,) and § = (si, :S;n), with the variables s;, slf = +1 taking
two values. If n and m were small, the problem would not be that complex. So
we consider the limit where both n and m are very large (ideally n,m — o),
with m = un, which may be more appropriate for a complex system such as
those discussed above.
For all s, extreme value theory implies that

+ s
B’

where a,, is a constant, 3,, depends on the tail behaviour of the distribution

of vg s (see later) and, because of our assumption on vg;, 7, are i.i.d. Gumbel

distributed, i.e. P{n§ < x} =e~¢". Therefore

max Ugjs & apy, (15.38)
< s

P{s* = s} = P{Bpus + 75 = Bty + 1y, Vs’ # s} (15.39)
00 s n£+ﬁm(u£—u§/) -
—0 §'#s J—o0 -
1 Bl By
= —— P Z(By) = Y ePmts (15.40)
Z(Brm) " Z

where, in the second line, we used the change of variables z; = e to ease
the calculation of the integral.?° Hence limit theorems on extremes dictate

1n the case where p(v) has a tail behaviour
p) ~ v

for v - o0, an analogous calculation leads to

* © —f(1+zs’¢s(1+ﬁm(us—us/)[1/7)—;/)
Pls* =5} = dte s s —ty
0
[so]
=./ dte! Ty A+Bnus=ugt/N7
0

Given that 8,, = B,e™™? < 1, it is possible to expand the argument of the exponential,
leading to

0
P{s* ~s} = f dte~ 2 =7Bmus—0) 7 +..]
0

1 _ntm
:2—n[1+02 v (ui—ﬁ)+...]
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the form of P{s* = s}, that for the class of models for which vy, has all finite
moments, coincides with Eq. (15.40). This distribution is known under the
name of Gibbs-Boltzmann distribution in statistical physics and of Logit model
in statistics, choice theory and economics. We will see that there are other
ways to derive the same result (Eq. (15.40)) from an assumption of maximal
ignorance. Notice that when 3, = oo the distribution P{g0 = s*} gets more
and more peaked around the maximum s 0 of uy, whereas when g,, — 0t gets
more and more uniform on all 2" states.

Exercise 15.8

If p(v) ~ (w — V)~ for v < w and p(v) = 0 for v > w, then P{s* ~
e 5§*:§0 for n, m large. Show it.

Let us specialise our discussion to the specific case of p(v) = yv?’~le™V
(asin Eq. (15.27) with y <> v and v < x). Then Eq. (15.29) with n ~— 2™,
gives

B, =v[mlog2]"™/" (15.41)

One may naively expect that the predictability of the model gets worse, i.e.
that P{g0 = 5"} decreases, when the number m of unknown variables in-
creases. This is only true for y < 1, as indeed f3,, decreases as the number
m of unknown unknowns increases in this case. When p(v) decays faster
than exponential (y > 1), which includes the case of Gaussian variables, 3,
diverges with the number m of unknowns. For y > 1, if the number n of
observed variables stays finite, we expect that P{s = s*} — 1in the limit
m — oo of an infinite number of unknown variables. For y > 1, the more we
don’t know the better we can predict.

An ensemble of random optimization problems. We can make further
progress if we assume that also U is drawn from a distribution p(u) with the
same behaviour,?! i.e. P{u, > u} = e~®/4”. The number of states with u; > u
is given by

|{§ Doug > u}| ~ Qo= W/AY u> 0. (15.42)

withc =yT’ <2 + l) B, a constant. The integral is evaluated first changing variables to x = 2"t
4

and then expanding the exponential to leading order. Therefore, for p(v) ~ v™7~! no prediction
is possible.

2This problem is similar to the Random Energy Model [25] studied in statistical mechanics as
a toy model for disordered systems, where the energy E; = E, — \/Zus is drawn independently
from a Gaussian distribution with mean E, and variance n. B
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Figure 37. Left: phase transition as a function of the ratio 4 = m/n between the
number of unknown and known variables. The vertical axis reports the value of the
exponential rate with which the probability P{s, = s*} — 0 vanishes. Right: phase
diagram in the (y, A) plane for different values of u. Notice that the upper region
where P{s_ = s*} is finite expands as u increases for y > 1, whereas it shrinks as u
increases for y <

The parameter A provides a scale of the known part of the function U with
respect to the unknown part, i.e. u;/vg, ~ A. For A > 1 we expect the
optimisation to depend weakly on the variables §, and to be dominated by the
term u;. Hence we expect that P{s = §*} — 1 for large A. The largest value
of ug predicted by the limit theorems for extremes, is given by

Uy = max u, ~ A(nlog2)'/7.
s s

Using this and Eq. (15.41), the probability that the model predicts the right
outcome is

P{§* =5 } — %eﬁmuo ~ %en(logZ)Aylxl*l/}'
is also exponential in n. The partition sum Z can be computed within a
saddle point approximation. When the sum is dominated by the state S, then
P{s* = §O} attains a finite value, otherwise P{s* = 50} — 0asn — oo. The
behaviour of P{s 0 = s*} as a function of the parameters y, A and u = m/n
in the limit n — oo, has been studied in ref. [26]. We refer to this paper and
report the main results in Figure 37.

The probability P{§0 = s*} features a phase transition between a phase
where it is exponentially small in n, and one where it is finite. Wheny > 1,
P{s, = 5"} is exponentially small in n for

m —y /(=
;=#<#c=AN(y1), (r>1)
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whereas for u > u. it is finite. As shown in Figure 37 (left), the transition
is continuous. For y < 1, instead, the transition is reversed and it becomes
discontinuous. More precisely, P{§O =s*} = 0asn — oo when

T—u> =0 <. (15.43)
and P{s e s*} suddenly jumps to finite values for u < u.. The phase diagram
of the system in the (y, A) plane is shown in Figure 37 (right).

The case of an exponential distribution (y = 1) is very peculiar, because
then the transition point is independent of x. This invariance is argued to be
a peculiar property of systems that learns, in the paper cited above.






Chapter 16

Information theory

All knowledge degenerates into probability.
(David Hume, 1739)

How can we quantify information?' Let us take a specific example: Alice
(A) is in a state of ignorance about a certain variable X which is known to
Bob (B). She anticipates that the answer X € X can be one of n = |X|
possible ones. One way to quantify the information content of X is to count
the number of binary questions (yes/no) that A needs to pose to B in order to
know the answer X. Indeed, A’s uncertainty will be dispelled after she hears
the answers because she will know what X is. Therefore, the number No of
binary questions needed to dispel A’s ignorance is an operative definition of
the information content of X, and it is measured in bits.2

Take for example the case X = {a, b, ¢, d}. Then A may ask a first question

Q,: is X € {a, b} or not?

and depending on the answer, A may ask
Q,: if X € {a,b}is X = a or not?
Else, if X & {a, b} is X = c or not?

The answers to these two questions reveal the correct outcome X. Hence the
information is N = 2 bits. Yet there are many other ways in which A could
ask questions, and hence N, could vary accordingly.

For example A can modify her questions as follows:

This chapter heavily draws from COVER, Chapter 2, and Chapter 4 of [27].
2A bit is a variable that takes two values, 0 (for no) or 1 (for yes).

225
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Qi /\ Qr  /\
a,b c,d a b,cd
Q /\ ]\ Q  /\
a b ¢ d b cd
11 10 01 00 Q;’g 01c/\
001 000

Figure 38. Different ways of asking binary questions.

Q}:isX = a or not?

only if X # a A will need to pose a further question. Then she may ask:
Q):i8 X = b or not?

Only if the result is no, she will need to ask
Q}: is X = c or not?

in which case the number of binary questions can be Np(a) = 1, No(b) = 2 or
Ng(c) = No(d) = 3, depending on the value of X. Indeed, No(X) is a random
variable, because it is a function of X.

Formally, the state of uncertainty of A is encoded in the probability distribu-
tion P{X = x} = p,, of X. We’re looking for a measure of information content
of X that can quantify the uncertainty of A before the questions are posed
and the answers are heard. Therefore, it makes sense to define a measure of
information content as the expected number E [NQ] of binary questions that
are needed to elicit the value of X.

The expected value

E[Ng| = D pxNo()

xEx

depends on the distribution p,, that we assume is known to A, and on the way
in which the answers are posed. For example, if A didn’t know p,, there is
nothing that would distinguish the different outcomes, e.g. X = a from X = b,
so there is nothing that suggests that p, should be smaller or larger than py,.
Hence, she would have to assume that p, = 1/4 for all x. This distribution in-
deed encodes a state of maximal ignorance, as we shall see. Then asking ques-
tions (Qy, Q,) yields E [Ng| = 2 whereas formulating questions (Q}, Q}, Q})



227

leads to a larger value of E [N | = 9/4. If instead p, = 1/2, p, = 1/4 and
Pe = pg = 1/8, then again E [N | = 2, but

7
[E[NQ,]=pa~1+pb-2+pc-3+pd-3=z. (16.1)
The optimal way of answering questions is different in the two cases. The
minimal expected number of binary questions that A needs to pose to elicit X
is a measure of her irreducible ignorance about X. Hence, we provisionally
define

The information content H[X] of a random variable X is the min-
imal expected number of binary questions needed to elicit the
value of X,

H[X] = rnén E [No] (16.2)

where the expected value is taken with respect to the distribution
P{X = x} = p, that defines the state of knowledge on X, and
the minimum is taken over all possible ways of posing yes/no
questions.

Note that the information content
H: X-R

is a functional that associates a real number H[X] to a function
X Q-R.

This is why we use square brackets in H[-].

The way in which Alice poses question associates to each values of X a
strings of binary variables that we can take to be 1 for yes and 0 for no. Such a
transformation between values of X and strings of bits is called a code. Imagine
that Alice asks Bob the same question many times (e.g. what’s the weather
today?) and that they communicate through a binary channel, i.e. a device
that allow Bob and Alice to send either a O or a 1 to the other end at any time.
Alice and Bob might be interested in finding the code which makes them
exchange the shortest possible strings of bits. This problem is the same as the
problem of finding the best way to ask questions.

Indeed, each protocol Q for asking questions corresponds to a scheme to
encode the possible answers X. For example, the protocol Q above would
correspond to the code

a—00; b—>01;¢c—10;d — 11.
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The bit strings associated to a given value of X is called its codeword.® This
code will require 2 bits for each answer transmitted from B to A. Protocol Q’
corresponds to a different association of values of X to codewords, i.e.

a—1;b—01; c - 001; d - 000

Notice that each codeword has length ¢ (X) = N (X) which is equal to the
number of binary questions needed to elicit X under protocol Q.

Therefore the problem of finding the code that is expected to use the least
number of bits (i.e. that minimises E [f Q]) is exactly the same as the problem
of finding the best way to pose questions. The fact that these two apparently
different problems — A posing questions to B optimally and B transmitting
answers to A efficiently — have the same solution, is interesting.

Note also that the optimal way Q* of posing questions, and hence H[X],
depends only on the probabilities p,., and not on what X is.* In particular, if an
answer x is more likely than x’, then it is natural that> ¢ o+(x) < €. (x’). For
example, the knowledge of p, in the example above, carries some information
on the answer, which can be quantified in the difference between E [Ny in
the two cases, and is 1/4 of a bit in that case.

16.1 Shannon entropy and Shannon theorem

The minimal number of binary questions needed to elicit X, or equivalently
the expected length of the optimal code for X, is given by the Shannon entropy

H[X]=E[log,1/px] =— Y. p.log, px (16.3)

xeX

of the random variable X, that we shall simply call entropy, henceforth. The
entropy depends on the distribution p,, and we will equivalently denote it as
H|[p], when referring to it as a functional of the probability distribution p,.
It is easy to check that this is the correct answer in the examples above,
where codewords have length exactly equal to log, 1/p,, but one can argue
that Eq. (16.3) works for all discrete random variables X, provided that we
consider messages X = (X1, ..., X,,) where each of the n characters X; € x, are
drawn i.i.d. from the distribution p,. Then, in the limit n — oo, almost surely,

3In coding theory jargon, X are called words.

4X could be football teams in the Premier League or species of bird on some island. As long
as the probabilities p, are the same, the information content is the same.

>Think of the first binary question you would ask to know which team won the last Premier
League championship.
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we need at most H[X| bits per character. This result, that goes under the name
of Shannon theorem, is a direct consequence of the Asymptotic Equipartition
Property. The idea of the proof is simple. Remember that the Asymptotic
Equipartition Property ensures us that, for any € > 0, a message X belongs to
the e-typical set

A9 = {)_( : ‘% log P(X) + H[X]‘ < e}

almost surely, as n — o0. Imagine that Alice and Bob assign to all messages
X e Agf) a different integer Q(X) from one to |A§f)|, and to messages X & Agf)

integers Q(X) larger than |A5f)|. Then each message will require a codeword
of length ¢ ,(X) = log, Q(X), which is given by the binary representation of
Q(X). Then, almost surely, Alice and Bob will need less than

1 1 ©
= 1 X)=—1log, |A
n s 108 QX) = ~log, |4,|
bits per character, as n — oo. In this limit, the Asymptotic Equipartition
Property also implies that
1
lim —log, |AY| = H[X].
n—oo N

because |A§f)| « 2"IX] Therefore, at most H[X] bits per character X need to
be used to transmit the message, almost surely.

Exercise 16.1

The Rényi entropy is defined as

1
1—a

H,[X] = log D" p2

XEx

with a > 0. Show that H,[ X is a generalisation of the Shannon entropy,
which is recovered in the limit a — 1. Show that if X and Y are
independent

H,[X,Y] = Ho[X] + H,[Y].

Show that, if the conditional Rényi entropy is defined as

1
HolX|Y] = 1—E|log 3, p*(x|Y)

- XEyx
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then the chain rule
Ha[X, Y] = Ha[Y] + Ha[le]

holds only for a — 1.

Exercise 16.2

Tsallis entropy is defined as

= 7 (€[]

Show that i) H,[X] reduces to the Shannon entropy for ¢ — 1, and that
it) H, is not additive for g # 1, i.e. if X and Y are independent random
variables, then

H,[X, Y] = Hy[X] + Hy[Y] + (1 — Q)Hy[X]H,[Y].

\. J

There are other ways to derive this result. For example, the same result
can be obtained observing that the optimal number of bits needed to code X,
should be a function f(pyx) of px. Then the expected number of bits needed
has to be of the form

HIX1=E[f(px)] = D, pxf(Py)-

xXEy

IfX =(Y,Z)whereY € yy and Z € y, are independent random variables,
then H[X]| = H[Y] + H[Z], because knowing Y does not give any clue on
what Z could be. Hence

> pypfpyp) = . pyp:[f(py) + f(p)]

Yexy.Zexz YExy.Z€x,

for any p,, and p,. Therefore f(p,p,) = f(p,) + f(p,), which means that
f(p) = alog p. If in addition we want to measure information in bits, then
f(1/2) =1,ie. f(p) = —log, p. The entropy quantifies how much B’s reply
can be surprising for A. Indeed if both A and B knows that p,, = 1if x = a and
px = 0 for all x # a, then B’s reply cannot be surprising. Actually A doesn’t
even need to ask because both of them know that X = a. So no bit needs to
be exchanged and, accordingly H[X] = 0. As we said, H[X] quantifies the
uncertainty of Alice about Bob’s answer before she hears the answer. After
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she hears the answer, she knows that one answer occurs with probability one
and the others with probability zero, i.e. H = 0. Then H measures how much
Alice has decreased her degree of uncertainty.
Conversely, the entropy is maximal when X is maximally uncertain: p, =
1/]X|. Accordingly
0 <H[X] <log|yl.

The entropy can be generalised to any number of random variables
Xi, ..., Xy in a straightforward fashion, i.e.

H[X;,...,X,] = —E [log, P{X;, ..., X,,}].
Likewise, we can define the conditional entropy

HIX|Y] = —E[log, PIX|Y}] = = > p(y) D p(x|y)log, p(x]y)
yeyY xeX

as the entropy of the conditional distribution p(x|y), averaged over y. The
law of conditional probability imply that

H(X|Y) = HX,Y) — H(Y). (16.4)

In words, the conditional entropy is the expected reduction of the uncertainty
about X if Y where known. Put differently, H(X|Y) quantifies the residual
uncertainty on X that Alice expects to reach if she asks Bob about Y. In
particular, for a sequence of random variables X1, ..., X,,, we have that

M=

H[Xl’"-’Xn] = H[Xlem_l,...,Xl] +H[X1].

2

3
Il

If the sequence is a Markov chain, then H[X,,|X,,,_1, ..., X1] = H[X,,,| X .11,
because X, given X,,_; isindependent of X, for all k < m—1. If the transition
probability p; ; = P{X,, = j|X,,_; = i} does not depend on n, and if the Markov
chain is irreducible, then

H[X,|X,] = —E [log px, x, |

is called the entropy rate, because H[ X1, ..., X,|/n - H[X,|X ] asn — .

Exercise 16.3

Derive Eq. (16.4).
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16.1.1 Entropy for continuous variables

The generalisation® of the concept of entropy to continuous variables is prob-
lematic. Indeed, imagine that Alice asks to Bob what is the area X of a unit
circle. She will need to ask an infinite number of binary questions in order
to know that X = 7 exactly, because an irrational number is represented
by an infinite number of bits. This does not match with the straightforward
generalisation of Eq. (16.3)

h[X] = E[log, 1/p(X)] = —fdxp(x) log, p(x) (16.5)

which is finite, barring pathological cases. Furthermore, Eq. (16.5) seems
problematic, since you may get negative numbers! So what is the meaning of
h[X]?

Exercise 16.4

Compute h[X] in Eq. (16.5) for p(x) = 1/[x(log x)?] for x > e and
p(x)=0forx <e.

Exercise 16.5

Check that h[X]| = —3 for a uniform random variable X € [0,1/8].

Coming back to Alice and Bob, Alice may be happy to know X to a pre-
assigned precision A. So imagine that Alice “quantizes” the random variable
X into the random variable X2 that takes values x; which are defined as’

>i+1)A
p(x;)A = f dxp(x), (16.6)
iA

for all integer i = 0,41, £2,.... With this definition, the distribution of X Ads
defined as P{X” = x;} = p(x;)A, which is the probability that X € [iA, (i +
1)A). She can now give a precise estimate of the information content of Bob’s

5See Chapter 8 of COVER.
"Because of the mean value theorem for integrals, x; € [iA, (i + 1)A] is inside the interval
of integration.
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answer, which is the entropy H[X2] of X. For A < 1, this can be expressed as

H[X] = =} p(x;)Alog, [p(x)A] (16.7)

(+1)A
= —Zf dxp(x)log, p(x;) —log, A ~ h[X] —log, A
i JiA

where the approximation gets more an more precise as A — 0. Here h[X] is
defined in Eq. (16.5), and it is called differential entropy. Its meaning is that
h[X]—log, A is the expected number of bits needed to specify X to a precision
A, for A - 0. The fact that h[X] may not be positive is not a problem. For
example, a uniform random variable X € [0, a] has h[X] = log, a which is
negative if a < 1. If a = 1/8 and you want to determine X up to the n'® binary
digit (i.e. A = 27"*), you will need n — 3 bits, because the first three bits will
be zero anyhow.

One property of the entropy that we used, is that H[X] does not actually
depends on what values X takes. It only depends on the value of the prob-
abilities p, = P{X = x}. In particular, if we do a bijective transformation
X - Y = f(X)—i.e. such that to every possible value of X there corresponds
one and only one value of Y — then H[X]| = H[Y].

This is not true for the differential entropy, because even when f(x) is
monotonous — and hence to every X there correspond one and only one
Y = f(X) — the pdf transforms as py(y) = px(x)/|f"(X)|x=f-1(). Therefore

h[Y] = h[X] + E[log, | f'(X)I] . (16.8)

Hence, the differential entropy is not reparametrization invariant. A simple
application of this is that, if a is a constant, then h[X + a] = h[X] and
hlaX] = h[X] + log, |a].

Exercise 16.6

Compute the differential entropy for a Gaussian with mean y and
variance o2, for an exponential distribution p(x) = ae=**, a,x > 0,
and for a multi-dimensional Gaussian with mean g and covariance
Cov[X;, X;] = A, .

16.1.2 Relative entropy

Imagine now that A has a wrong estimate g, of the probability p, of B’s
answers x. How much this impacts on the efficiency of the questions she’s
going to ask?
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Given g, A is going to effectively encode B’s answers in such a way that
answer x will require log, 1/q, bits, so the number of questions she will ask,

on average, is
[log2 ] Z:pxlog2

xeX

the difference between this and the most efficient way of asking questions,
which requires [ p] bits, is

p
Di;lpligl = prlogz -

xeX

which is known as the Kullback-Leibler divergence or relative entropy. It tells
us how costly is the error in the estimate of probabilities, in bits. In this sense,
Dy is a measure of how “far” Alice is from the true distribution. This is why
Dk is often considered as a distance, though it is not symmetric and it does
not satisfy the triangle inequality.?

Exercise 16.7

A coin can either be fair with P{head} = P{tail} = 1/2, or biased, with
P{head} = p and P{tail} = 1 — p. Show that it is worse to assume that

the coin is biased when it is not, than to assume that it is fair when it is
biased.

Though it is not evident Dg; [ pllq] > 0 and it vanishes only for ¢ = p. The
way to prove it, is to use the convexity of the logarithm log, x < (x —1)/log2
in the definition of Dy, i.e.

9x

Diilpligl = = D) pelog, = D (16.9)
XEX
2 2 |1 =
> —— — -1 0 (16.10)
log2 = Px|p,

because of normalisation of p, and q,.
The Kullback-Leibler divergence (or relative entropy) generalises to con-
tinuous variables as

p(x)
q(x)

8See Theorem 11.6.1 in COVER for an example where Dy, (p|q) satisfies the opposite of the
triangle inequality.

Do lpllgl = f dxp(x) log 22 (16.11)
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Contrary to the differential entropy, the relative entropy is reparametrization
invariant. If p and g represent two possible distributions for the random
variable X, their divergence remains the same if one changes parametrization
Y = f(X). As for discrete variables, it is easy to see that Dgy [p[lq] > 0 with
equality holding only if p = q.

Exercise 16.8

Show that the Kullback-Leibler divergence is invariant under changes
of variables.

16.1.3 Mutual information

Imagine you have two random variables X € X and Y € Y with joint distribu-
tion p(x, y) and marginals p(x) and p(y).> One way to quantify their mutual
dependence is to compute how much information is lost by assuming that
they are independent. This is given by

I[X,Y] = Dk, [p(x, )1 p(x)p(y)] (16.12)
p(x,y)
= 1 .
B PEos e (16.13)
= H[X] + H[Y] - H[X, Y] (16.14)

and it is called the mutual information between X and Y. The last equality,
which follows from simple algebra, with the positivity of Dg; implies that
H[X,Y] < H[X] + H[Y]. In other words, the state of maximal ignorance
about two random variables X and Y corresponds to the case where they are
independent.

In the same way, one can define the mutual information I[X, Y| between
continuous variables as

11X, Y] = Dgr[p(x, W p(x)p(y)] = hIX] + A[Y] - h[X,Y] (16.15)

where

p(x) = f dyp(x,y), p(y)= f dxp(x,y),

are the marginal distributions. This implies that I[X, Y| > 0 with equality if
and only if X and Y are independent. So the mutual information provides a
universal measure of statistical dependence. It is universal also because, the

°The abuse of the symbol p(-) follows the notation of COVER. It should be understood that
p(x) and p(y) are different functions of their arguments.
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mutual information is invariant under any transformation (X,Y) — (U, V)
of the random variables, where U = f(X) and V = g(Y) with f(x) and
g(y) monotonous functions. These transformations changes the “shape” of
the distributions of the two variables, but leaves their statistical dependence
invariant. This invariance becomes manifest if we apply the transformation
f(x) = P{X < x}and g(y) = P{Y < y} which transforms X and Y into two
uniform random variables U and V. The mutual information can then be
expressed as

1 1
I[IX,Y] = f duf dvuc(u, v)log, c(u, v), (16.16)
0 0

where
2

oudv

and the function C(u,v) is the joint cumulative distribution of U and V,
defined as

c(u,v) = C(u,v).

PIX <x,Y <y} =C(PIX <x},P{Y <yj). (16.17)

The function C(u, v) is called the copula function of the two random variables
X and Y.10

Exercise 16.9

Prove Egs. (16.16) and (16.17).

In order to illustrate the meaning of I consider the following problem. We
are interested in estimating a random variable X of which at present we know
the distribution p(x), and the corresponding entropy H[X ] which quantifies
our state of uncertainty about X. You can think of X as a parameter of a theory
of a given system.!! Now we have the possibility to perform an experiment,

10Egs. (16.16) and (16.17). suggest an easy way to check whether two variables are dependent
or not, based on a sample (X;,Y}), ..., (X,,, Y,,) of n joint observations. Let U(x) and V(y) be
the fraction of points for which X; < x and Y; <y, respectively. Plot the points (U(X;), V(Y}))
in the (u, v) plane. If X and Y are independent, the n points should be uniformly distributed
in the unit square [0, 1]2. Statistical dependence is spotted by the clustering of points in some
region. This plot reveals not only whether X and Y are dependent or not, but also how they
depend on each other. For example a monotonous dependence (e.g. if X increases Y tends to
increase or decrease) corresponds to points clustering on one of the diagonals of the square.
This is the kind of dependence which is usually quantified by covariance measures. Yet there
are many other possibilities of how X and Y can depend on each other, some of which may
not be detectable by covariance.

IT[X, Y] is the reduction of Alice’s uncertainty on X if, instead of asking Bob about X, she
asks Carl about a different variable Y.
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i.e. to measure a random variable Y, of which we know, before doing the
experiment, its distribution. We also know the joint distribution p(x,y) of
the two variables. How much information do we expect the experiment will
convey on X? The reduction in the uncertainty is given by

H[X] - H[X|Y] = I[X,Y]

as can be shown by a direct calculation. So the mutual information tells us
how much we learn, on average, about X if we know Y. Note that the mutual
information is symmetric

I[X,Y] = I[Y,X] = H[Y[-H[Y|X].

In other words, the amount of information that we can gain about a theory by
performing an experiment, is exactly equal to the uncertainty that the theory
provides on the outcome of the experiment.

Exercise 16.10

Let there be n + 1 boxes labeled w = 0, 1, ..., n, with n even. One of the
boxes contains a prize, the others are empty. The probability that the
prize is in box w is p, for w = 0 and (1 — py)/n for all w > 0. We have
two available strategies:

1) open the box w = 0
2) open the last n/2 boxes (w > n/2)

Which one is the most convenient? Which one conveys more informa-
tion on where the prize actually is?
Draw a plot of the threshold p for which strategies 1 and 2 are equiva-
lent, according to the two criteria. Show that the second is at least as
informative as the first for py = 1/(n+1) and hence py(n) > 1/(n +1).
This is a toy model for a situation where a phenomenon can be
explained by alternative theories, one of which is the prevailing one,
whereas the others are very unlikely but are many. The two options cor-
respond to two possible experiments, one that tries to refute or confirm
the prevailing theory, the other that can exclude half of the unlikely
ones. Check that even if p, = 0.99 it might be more informative to
exclude unlikely theories if n > 270.
(Adapted from problem 131 of Bialek’s book, Biophysics).

Another important point is that knowledge of Y reduces a priori the un-
certainty on X, since H[X|Y] < H[X], but a posteriori this might not be the
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case! Take, for example, two random variables X,Y € {1,2}, with a joint
distribution:

0 ifx=y=1
p(x,y)=1 3/4 ifx=2andy=1 (16.18)
1/8 ifx=1landy=2orifx=y=2

Then H[X] ~ 0.544 and H[X|Y] = 0.25 bits, i.e. I[X,Y] ~ 0.294 bits. How-
ever if the outcome Y = 2 occurs, the uncertainty on X actually increases,
because H[X|Y = 2] = 1 bit. It is instructive to check the opposite. Does
the uncertainty on Y decreases no matter what value X turns out to take or
not? This should give you a sense of what are the conditions under which the
uncertainty may increase after a measurement.

Exercise 16.11

Generalise this example to the case where P{X = 2,Y = 1} = a and
PiX=1Y=2'=bandP{X =2,Y =2} = 1 — a — b. What is the
values of a and b for which no measurement of one of the variables can
increase the uncertainty on the other? Are there values of a, b such
that measuring any of the two variables will increase the uncertainty
on the other?

16.2 The data processing inequality

Information is degraded at every passage, as we know from everyday life.
Imagine that Alice communicates a message X to Bob, and Bob refers the
message to Carl. The message Y that Bob receives may be corrupted by noise,
so Y # X, likewise Carl receives a message Z that may be different from
Y. Formally we represent the situation by saying that X,Y and Z are three
random variables that form a Markov chain, denoted as!?

X->Y->Z

which means that
p(x,y,z) = p(x)p(y|x)p(z|y).
As a consequence, conditional to Y, X and Z are independent, because

p(x,z|y) = p(x|y)p(z|y). Note also that the directions of the arrows can
be reversed by using Bayes rule, so X — Y — Z isequivalentto Z - Y — X.

12We mention in passing that this notion generalises to Markov fields, that specify the
dependence between n random variables with a graphical model of n nodes which are connected
by links (or hyperlinks) if the corresponding variables are dependent.
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For a Markov chain X — Y — Z, the Data-processing inequality states that
I[X,Z] <I[X,Y]. (16.19)

In words, the information that Y contains on X cannot be increased,'?® what-
ever transformation Y — Z one can apply. This result is important in statistics,
because it suggests that any manipulation of the data can only decrease the
information content of the data.

The proof of the inequality (16.19) is simple. The mutual information
between X and W = (Y, Z) can be written in two ways

IX,W]=E llog2 % (16.20)
_ pX,Z|Y) pX|Y)
-F llogz pCOPEIY) pXIY) (1620
— I[X, Y] +I[X, Z|Y] (16.22)
— I[X, Z] + I[X, Y|Z] (16.23)

where
p(X,Y|Z)

? p(X12)p(Y12)
is the conditional mutual information of X and Y given Z. In Eq. (16.22) the

term I[X, Z|Y] = 0 vanishes, because X and Z are independent, conditional
on Y. The inequality (16.19) follows from the fact that I[X,Y|Z] > 0.

IIX,Y|Z]=E llog

16.3 The entropy of Markov Chains

Let us consider Markov chains, i.e. sequences X = (X, ...,Xy) of random
variables generated by a transition probability matrix

P{Xt = S|Xt—1 = S,} = Dy

with s, s’ being elements of a finite set 8. We restrict attention to irreducible
chains, for which we know that the probability to observe state X; = s con-
verges to the invariant measure y; = ZS, Ds.s Mg . We further assume that we

13There are other general inequalities that can be derived from basic laws. For example the
mutual information between X, and X, cannot be larger than the average of the two entropies.
See the book [28].
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know that the sequence is sampled in the stationary state, i.e. P{X; = s} = u,.
Then, the probability of the sequence is given by

P{)—(} = pXNXN—leN—l,N—z sz»Xllqu ° (16'24)

Note that the time index goes from right (t = 1) to left (¢ = N) in this equation.
Taking the logarithm and dividing by N, please check that the law of large
numbers implies

Jim —< log PX} = HIX,[X, 1] = = 3 poskiv log Doy . (1625)

s,s’
Note that the entropy of the sequence is smaller than N times H[X;] =
- ZS U log ug which is the entropy of a sequence of i.i.d. random variables,
because knowledge of X;_; provides information on X,. From the point of view
of the Asymptotic Equipartition property, sequences of N random variables
explore a smaller space than that of N i.i.d. random variables drawn from .

16.3.1 Irreversibility and the arrow of time

Imagine that we do not know whether the sequence X generated from a
Markov chain with transition matrix p, ¢ has been given to us in the right
order — with time going from 1 to N — or in the reverse one — with time
going from N to 1. Can we figure this out? In order to do this, let us refine
our notation and call P{X} = P_ {X}, as defined in Eq. (16.24), to distinguish
it from the backward probability

P(_{)_(} = le,X2 pXN—Z,N—leN—l’XN’uXN . (1626)

Exercise 16.12

Show that the naive generalisation of Eq. (16.25)
log P_{X} ~ —NHI[X;_;|X]

is wrong.

Show also that H[X,_;|X;] = H[X;|X;_,] in the stationary state. In
loose words, given the present, the past is as uncertain as the future in
a Markov chain.

The probability of the sequence X can also be expressed in terms of the
reverse Markov chain with transition matrix q; ¢ = py sus/Hy, as

QiX} = Ax,, X, - Wy oy DXy Xy Xy = P_iX} (16.27)
Q_{X} = gxy Xy DXy " DX Mx, = PAX (16.28)
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where the proof of the last equalities relies on repeated use of the identities
dx,_,x,Mx, = Px,x,,Mx,,- The probability of the sequence in the reverse
process is given by

N
1 1 1
~ logPiX} =+ Z log px,_,.x, + 37 log iy, (16.29)

-¥

s,/

log Mx, (16.30)

where kg ¢ is the number of transitions from s’ to s in the sequence X. As
N — oo, the fraction kg ¢ /N of transitions s’ — s converges to the probability
Ds.s My - Therefore

11m — logP X} = Z Ds.s' Mg 108 Dy Z Ds.s' My 108 g ¢ (16.31)

s,s’ s,s’
where the proof of the last equality is left as an exercise. Therefore, for large N
P_{X} ~P_{X}eN* (16.32)

where

% = Dy [PIIP_] = Y pyyity log = o

s,s’

Ds,s
= Z Ds.s' Mg 10g 7 (16.33)

s,s’ 5,8/ s,s’

is called the entropy production. Aslong as g5y # psy, the probability of
the forward process is exponentially (in N) more likely than the backward
one, because Dg[P_ ||P_] > 0. Hence given the transition matrix pg ¢, we
can detect the arrow of time because the two transition probabilities p; ¢ and
qs,¢ are different and they define two distinguishable stochastic processes.
Furthermore, notice that the Kullback-Leibler divergence is symmetric in this
case, i.e. Dgr[P_||P_] = Dk [P ||P_]. This reflects the mirror symmetry of
the directions of the time arrow: the forward arrow of time under the reverse
process is as unlikely as the backward arrow under the forward Markov chain.

If, instead, the Markov chain is reversible, i.e. g; ¢ = p; ¢, then there is no
way in which the arrow of time can be detected.

The entropy production is a measure of how much the forward process
is more likely than the reversed one, which is expressed in Eq. (16.33) as the
difference between the logarithms of the forward and the backward transition
probabilities. Indeed irreversibility is related to the existence of a probabil-
ity current, whereby these two terms do not cancel each other and the net
probability flow is non-zero.
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Exercise 16.13

Show that a Markov chain with two states is always reversible. Irre-
versibility requires at least three states and a probability current that
either runs clockwise or counter-clockwise through the states.

16.4 Data compression and coding theory

Data compression deals with the problem of optimally representing messages.
We refer to Chapter 5 of COVER for a detailed discussion. This is a short
summary of the main ideas. The relation between information theory and
coding was already hinted at in the introduction. As discussed there, the
typical setting is the one where Alice and Bob need to communicate using
a binary channel. Then Alice will encode her messages to Bob in a string of
bits, transmit this string over the channel, and Bob will read it and decode
it to get the original message. A message X = (X, ...,X,,) is a sequence of
symbols X; € y drawn from an alphabet y. The simplest example is a text (e.g.
a book) which is a sequence of ASCII characters (letters, numbers, spaces,
punctuation, etc). But you can likewise think of images, e.g. digital pictures of
paintings, as sequences of RGB values for each pixel. Ultimately, each message
is stored in digital devices in the form of sequences of zeros and ones, so there
is a function C(X) that associates to each message X a string C(X) of bits.
Coding theory deals with the problem of finding ways of representing the data
as efficiently as possible, i.e. with the minimal number of bits. Each bit can
be thought of as the answer to a yes/no question, so efficient coding, i.e. the
problem of optimally'* representing information, coincides with the problem
of eliciting information in an optimal manner, that we already discussed.
Coding theory enters into play, for example, when you use a data compres-
sion algorithm (e.g. gzip) on your computer that transforms a text file written
in ASCII code into a file that occupies less space on the hard disk of your
computer. Compression is possible because messages contain regularities.

@ 9 [73t)

For example, if the character “q” is always followed by “u” in a text, a code
that translates “q” and “u” by different sequences of bits (called codewords)
is less efficient than one that codes the pair “qu” directly. Indeed, what the
compression program does when you invoke it, is to scan the file you want to
compress in search of regularities, i.e. of patterns that occur very frequently.
Formally we shall consider messages as being generated as random draws

from a probability distribution. Then the knowledge of the probability distri-

14In the sense of most parsimoniously.
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bution is what makes optimal compression possible. This is why probability
theory, coding theory and information theory are so intimately connected.!>

The main result in coding theory, due to Shannon, makes this connection
explicit in the simple case of messages generated as i.i.d. draws from a distri-
bution p(x) with x € y. We already discussed Shannon’s theorem when we
introduced information theory. Let us briefly recall it. Shannon theorem is a
consequence (or restatement) of the Asymptotic Equipartition Property. The
latter says that, almost surely a message X = (X7, ..., X,) composed of charac-
ters drawn independently from the same distribution p(x) belongs to the set
A, of typical sequences, which contains |A,,| ~ 2"7IX] elements. If we label all
messages X € A, with an integer C(X) we can take the binary representation
of C(X) as the code.'® Then, almost surely for n — oo, C(X) < 2"HIX] which
means that at most H|[X] bits per character are needed to transmit a message.

This strategy, however, is not very practical because the calculation of C(X)
requires ranking all messages which are exponentially many in n. This is
practically unfeasible. Also ifa message is composed of two parts X = (X , X )
the code of X is not easily related to those of its parts. For messages where
X; are drawn as i.i.d. variables from the same distribution, it may be more
practical to consider codes such that

CX) = (c(X1), ..., c(Xy))
that are sequences of codewords c(x) each of which corresponds to a character

x € y. So the key question is, how should the function c(x) be chosen?
We already encountered examples of codes in the introduction, for the

I5A theatre play, such as Othello, is an example of a message, because it is a sequence of
letters. It is definitely true that any understanding of the production of Shakespeare has to do
with a better understanding of the regularities that one can find in his works. Yet, thinking of
his works as being generated as a random draw from a probability distribution seems somewhat
extreme, and it is at best an approximation. The simplest such approximation is to think of
each letter as being drawn independently at random from a probability distribution. The
fact that letters from ‘a’ to ‘2’ do not occur with the same probability allows a certain degree
of compression of Othello. Furthermore, one realises that certain words (e.g. ‘the’ or ‘and’)
occur much more frequently than others (e.g. ‘Tago’) and some (e.g. ‘yqat’) never occur. This
leads to better approximations of the generative process, which affords further compression.
Furthermore, the occurrence of words depends on the occurrence of other words in the same
act or even in other acts. The more regularities one detects the better one can compress Othello.
Note that some of these features are generic of English texts some are generic of Shakespeare’s
production and some are specific of Othello.

16A good way of labelling messages is by their rank in probability, from the most probable to
the least probable. You can check that in this way at most H[X] bits per character are needed
to transmit a message.
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case where y = {a, b, ¢, d} has four elements, reported on the right.!” This
should allow one to translate each sequence of bits, such as

0010110101001 ...

into a sequence of characters in y. A minimal requirement for codes is that
they be uniquely decodable. This means that any sequence of bits that is
produced by translating a sequence of characters should be decodable in a
unique manner. This does not happen if there are two or more sequences
of characters X that correspond to the same sequence of bits. The three
codes ¢y, ¢, and c; satisfy this property. For example, ¢; would translate that
sequence into cbabbc ... whereas c, will give dbaccd .... In both cases, the
translated sequence can be computed as we scan the sequence of bits from
left to right. Codes that have this property are called instantaneous codes,
because they allow to instantaneously translate bit-strings into messages. The
key property that makes a code an instantaneous code is that no codeword is
the prefix of another codeword, i.e. no codeword coincides with the leftmost
part of another codeword.

This is not true for c; for which c;(a) is a prefix of c;(b) and c;(c), for
example. In this case it is not possible to figure out what the translation of the
leftmost bits is unless one considers also the bits that come after. For example,
according to cs, the first 0 in the sequence above could correspond to a or to
the beginning of the codewords for b or c. However the latter two options
should be discarded because the second bit is a 0, which is not compatible
with either a b or a c. If the first character is an a the second can be a b or
a c. Yet it cannot be a b because otherwise the bits that follow (11...) do not
correspond to a decodable sequence (c; has no codewords that starts with 11).
So the first characters should be accddd ... but the next characters depend
on what the following characters are. Hence c; is not an instantaneous code.
Finally code c, is not uniquely decodable. For example the bit string 000000
could either be aaa or dd.

We shall focus on instantaneous codes only. Each code admits a rep-
resentation as a tree, as shown in Figure 39. For instantanous codes, the
codewords correspond to the leaves of the tree (the terminal nodes) and the

Four examples of codes:

a0 | oM | 6 | )
1 11 0 00
01 10 010 01
001 01 01 10
000 00 10 000

Qo || Q(XR
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Figure 39. Representation of the codes cy, c,, ¢; and ¢, as trees.

length €(x) = |c(x)| of each codeword (i.e. the number of bits) corresponds to
the distance of the corresponding node from the root (which is the top most
node). For instantaneous codes, the lengths ¢(x) satisfy Kraft’s inequality

D2t <. (16.34)
xXEy

This is very easily proven.'?

With some more effort one can show (see COVER) that for any set of lengths
L ={€,05, ..., } that satisfy Kraft’s inequality Eq. (16.34), i.e. such that
o 27% < 1, there is at least one instantaneous code c(x) such that the lengths
|c(x)| match exactly the ¢;’s.

Exercise 16.14

There is more than one code that corresponds to the same lengths.
Count the number of codes which have the same lengths as the codes
¢; and c,.

18Proof: let £ = max, , £(x). Then continue the tree to all nodes at distance ¢ from the root.
For each word x, this results in 2°~/®) nodes at distance £ down the codeword corresponding
to x. The number of these nodes is 3} _ 2°~®. This number has to be smaller than the total

number of nodes at distance ¢ from the root, which is 2¢. This leads to Eq. (16.34).
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Among all instantaneous codes, we want to find those that make the ex-
pected length of the bit-string it produces as short as possible, when characters
are drawn from a distribution P{X = x} = p,. The two results above imply
that it is enough to find a set £ of lengths that satisfy Kraft’s inequality and
we’re guaranteed that an instantaneous code with those lengths exists. So it is
enough to solve the problem

min E [¢(X)] (16.35)

over all sets £ = {£(x) : ZX - 27¢™) < 1} of lengths that satisfy Kraft’s
inequality. Introducing this constraint with a Lagrange multiplier, leads to
the problem®

: _ —t(x) _
min D p ()= D)2 1{]. (16.36)
XEY XEY

What makes this problem complicated is that £(x) must be an integer variable.
If we neglect this problem and minimise over real values of £(x), then we’re
going to obtain a lower bound. The latter problem is simple and is solved by
setting to zero the first order derivative of the objective function in Eq. (16.36).
This yields ¢(x) = —log, p, and

min £ [£(X)] > H[X] = - ), pylog, p,. (16.37)

XEyx

If you take the smallest integer ¢(x) which is larger than —log, p,, then you
can get better estimate of the minimal expected length. The smallest integer
larger than —log, p, is smaller than —log, p, + 1. Therefore the expected
length must be smaller than H[X] + 1. Taken together these results show that
for any X there is an instantaneous code that allows to represent X with an
expected number of bits that is bounded by

H[X] < rtpei? E[¢(X)] < H[X]+1. (16.38)

This result can be improved by invoking block coding. This means that,
in sending a message X = (Xq,...,X,) with n > 1, instead of using codes
that translate each X; separately, we can look for the instantaneous codes

“Note the sign of the A term. The most efficient codes are those which have shorter code-
words, so those for which the left hand side of Eq. (16.34) is as large as possible, i.e. for which
Eq. (16.34) is satisfied as an equality.
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that translate a pair X;, X;,; of successive variables, or a subsequence X Em) =
(Xit1, - » Xiym) of m successive characters. The same argument that we have
applied above implies that
HIX™] < min E [¢X™)] < HIX™] +1.
—i teL —i —i
However H[X gm)] = mH[X] which means that block coding can achieve a
compression that satisfies

H[X] < % min E [f()_{lﬁ’"))] < H[X] + % (16.39)

This result, for m — oo, coincides with Shannon’s bound that ensures that at
most H[X] bits per character need to be exchanged by Alice and Bob in order
to communicate messages generated from the distribution p,.

This derivation also tells us how optimal codes should look like. Indeed
the equation ¢(x) = —log, py tells us that short codewords should be assigned
to most probable characters. The Huffman coding algorithm, for example, is
based on the idea of iteratively assigning bits to the least probable values of x,
by grouping them together.?® We refer to COVER for a detailed discussion of
this and other algorithms.

Exercise 16.15

Check that ¢; and c, satisfy Kraft’s inequality as an equality whereas
¢; does not satisfy it. What about ¢,? Can you find an instantaneous
code for which Kraft’s inequality is not satisfied as an equality?

Data compression is only the simplest of the problems discussed in coding
theory. A different class of problems have to do with the fact that most daily
life communication channels are affected by noise. The string of bits in output
is not equal to the one in input, because some bits may be turned from 0 to 1
or viceversa. Communication over noisy channels requires error correcting
codes, i.e. codes with a built in redundancy that can help recover the original

’Huffman codes: Huffman coding algorithm reconstruct the tree from the bottom, starting
from a partition of the set y of words into singleton sets {x} with an associated probability
D, At every step, the algorithm generates a new partition from the old one by merging the
two sets S and 8’ with the smallest probability, assigning to the new set SU 8’ the sum of the
probabilities pg,g = ps + Pg. At the same time, the algorithm assigns bits 0 and 1 to the
edges joining the nodes corresponding to S and 8’ to SU §'. The algorithm ends when the
partition formed by the single set y is reached, i.e. when all words are merged in the same set.
The codeword of x is given by the sequence of bits associated to all the merging of sets S that
contain X, starting from the root y, down to the set {x}.
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message, even if that was corrupted by noise. This is a fascinating subject
which we will not discuss, however. Yet again, the solution has to do with
understanding what the typical messages that need to be transmitted are and
how typically they would be corrupted by noise. This allows to get precise
bounds, again in terms of entropies, on the amount of redundancy that needs
to be embedded in messages, in order to achieve an error free communication.

If you understood the main gist of the arguments discussed above, then
you may consider pondering on the following questions:

1. What do you expect the sequence of bits of an optimally compressed
sequence X, ..., X, should look like? What is the probability that a
(randomly chosen) bit is equal to one? What is the difference of this
sequence from a sequence of random i.i.d. bits?

2. In all our discussion we have assumed a binary alphabet for the codes.
Yet the same results can be derived for codes in an alphabet with three
different characters (e.g. 0, 1 and 2), or the 26 characters of the En-
glish alphabet. How would this change the results, e.g. Eq. (16.34) and
Eq. (16.39)?

3. Languages (e.g. English, French, Chinese, etc) might be though of as
the codes that we use to communicate. A text is a representation of
something (an object, a concept, an idea, etc) that is coded as a sequence
of characters. Yet, if you look at texts as coded messages, the coding
looks rather inefficient. For example, you may delete a certain fraction
of characters from a text but still be able to reconstruct the entire text
or grasp the gist of the text. The most frequent words in a text (e.g.
“the”, “and”, “this”, etc) do not carry any meaning21 and the least fre-
quent words are very informative on the content of the text. There is a
lot of (apparently useless) redundancy in language. Why did humans
converged to such inefficient ways of communicating?

2 George Zipf found that for a text like the Holy Bible, the frequency with which the r'" most
frequent word occurs is roughly inversely proportional to r. This is true for many texts (but not
for phone directories) and for texts written in different languages. This implies that the number
of words that occur k times is proportional to 1/k?, or that the number of occurrences of words
used k times is inversely proportional to k. This is reminiscent of the Asymptotic Equipartition
Property, that states that the number of typical sequences is inversely proportional to their
probability. Is this a coincidence or does it hints to the fact that our language has evolved so
that text shares some statistical properties with typical sequences?
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Exercise 16.16

Let a text be generated by first drawing a subject Z € Z and then a
message X = (X3, ..., X},) of n characters X; € X drawn independently
from a distribution p(x|z) = P(X; = x|Z = z). There are two possible
strategies: A) use the same code irrespective of the subject, and B) first
code the subject Z and then code the text X depending on the subject
(two way code). Note that code B represents each text X optimally, at
the expense of the extra cost of coding Z, whereas texts X are never
coded optimally with strategy A, with an over expenditure of bits that
should grow with n. Show that, irrespective of this, the two way code
Bis never the best one.







Chapter 17

Large deviation theory

“It is just more likely, that is all. It is a good guess. And we always
try to guess the most likely explanation, keeping in the back of the
mind the fact that if it does not work we must discuss the other
possibilities.” (R.P. Feynmann, 1965)

Having discussed typical events, let us discuss a-typical events.! There
are two reasons (at least) why a-typical events may be of interest. First we
may be interested in rare events that involve fluctuations of quantities that are
larger than what one typically expects. For example, the credit rating of an
insurance company is based on its estimated default probability. This occurs if
an unexpectedly large number of contracts in its portfolio demand claims that
exceed the equity? A of the insurance company. The claims X; from contracts
i =1,...,n can be modeled as random variables and the default corresponds

to the event
n

D={S,>A}, S,=)X.
i=1

If n > 1, which is the case in this example, we know that as long E [S,] < A
this even does not typically occur. So default D is an a-typical event.
Communications engineers face a similar problem: they need to calcu-
late safe buffer and bandwidth sizes for network traffic which arises from a
population of many users. This entails estimating the probability of traffic
overflow, making sure that these will be very rare events. In both cases, we

IThere are several textbooks devoted to Large Deviation Theory, as e.g. [29].
The equity is a measure of the value of the company, and it equals the amount of money
that would result if all of the assets of the company were liquidated and all debts were paid off.

251
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want to estimate how small is the probability of the large deviation and how
do we expect it to occur.

In a stylised picture, biological evolution occurs through random muta-
tions. Most of them have neutral or deleterious effects, and the accumulation
of such deleterious mutations generally decreases the reproduction probability
— the fitness — of descendants. Yet some rare mutation bring advantages
that increase the fitness of individuals carrying them, whose descendants will
reproduce faster. So the fitness of the population as a whole does not decrease,
because evolution is propelled by rare events.

More in general, when we study a phenomenon we might represent our
current state of knowledge with a distribution Q(w) defined on the sample
space of all possible realisations w € Q of that phenomenon. You may think of
w as a complete description of that phenomenon and of Q as the distribution
encoding all known (experimental) facts. The distribution Q is the theory that
allows us to predict the value ugy = Eq [X] of a quantity X(w). Clearly, we're
interested in predictions of the theory Q going beyond the range of events that
have been used to derive it.

This prediction can be tested in a repeated series of independent experi-
ments X = (Xy,...,X,) and, if E,, [X] is finite, we expect that S, /n = Eq [X]
for n large. If this expectation is confirmed by the experiment, then the exper-
iment brings no new information. But if S,, /n is very different from E [X],
then the experimental result calls for a revised theory P that can accommodate
all existing knowledge and the new observation. In this case, the experiment
is an a-typical event because the theory Q is wrong.®> How should we revise
the theory Q — P in order to incorporate the new information? And how
much did we learn?

The study of rare (a-typical) events is the domain of Large Deviation Theory.
Let us start by formalising the main questions and concepts in the case of
sequences X = (X7, ...,X,) of i.i.d. random variables. Let us assume that the
variance V [X;] = o2 < oo is finite, so that both the Law of Large Numbers
(LLN) and the Central Limit Theorem (CLT) hold. Then, for large n, the
mean S, /n will be very close to u = E[X] (LLN) and the sum S, is well
approximated by S,, ~ nu + aﬁ{ where ¢ is a Gaussian random variable
with zero mean and unit variance (CLT). This is what we typically expect.

3This logic is routinely applied in statistics, when we want to test an hypothesis. Then Q(w)
stands for the distribution that we expect if a certain hypothesis H, is satisfied. A practical
example is that of subjects that receive a treatment for a certain disease. Then one wants to
rule out the null hypothesis H, that the treatment is completely ineffective, on the basis of a
sample X of measurement of a quantity X that is known to be relevant. In hypothesis testing,
we take Q(x) as the distribution that X would follow in untreated patients. In this case, if the
treatment is effective then the sample X is a-typical.
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Yet it may happen to observe large deviations,* i.e. events such that, for some
€>0,

] 1< ]
A, (x) = g)_( : EZXi - x
i=1
with X # u. These are clearly a-typical events that we expect to occur with a
vanishingly small probability, as n — 0.
The questions that we shall focus on are:

< e} (17.1)

1. whatis the probability P{A,(x)} of the large deviation? More specifically,
since P{A,(X)} - 0 asn — oo, we shall be interested in the leading
behaviour of P{A,,(X)} with n.

2. Conditional on the fact that A,(x) occurs, what is the distribution of
the X;? In other words, how are large deviations typically realised?

The answers to these questions depend on the distribution from which the
sample X is drawn. We shall discuss separately the different cases.

17.1 Large deviations for i.i.d. variables with finite
support
Consider® a sequence of n i.i.d. random variables X = (Xi,...,X,) drawn

from a distribution Q(x) over a finite alphabet x € X (i.e. | X| < +o0). The
probability of a sample X is given by®

PiX} = [ Cx) = [ Q)™= = = IPxl=nDelPxlC], (17.2)
i=1

xeX

where 1
P)_((x) = El{i X =x} (17.3)

“NY Times reports on Dec. 11, 2021 that Kentuky “was hit by four tornadoes [...] including
one that stayed on the ground for more than 200 miles.” The Governor of Kentuky said “This
has been the most devastating tornado event in our state’s history, [...] The level of devastation
is unlike anything I have ever seen.” This is a very unlikely event according to the distribution
of past events. Scientists suspect that this suggests that the distribution of severity of these
events has changed because of climate change.

5This part is discussed in COVER, Chapter 11.

SRemember that

H[P] = - ) P(x)log P(x)

xeX

is the entropy as a functional of P(x).
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is the empirical distribution,” which is the fraction of points in the sample that
are equal to x. In particular, the probability of a sample P{X} only depends
on its type Px. The event A, also can be defined in terms of types, as a
subset in the space of distributions® 2 or of types P, C P of samples of n
points. More precisely, the event defined in Eq. (17.1) can be rewritten as
A, ={Px € A, C P,} where

Ay ={PE P, |Ep[X]-%|<e}, Ep[X]= D P(x)x  (17.4)
XEX

is a subset of the space of distributions defined on XX.
The probability that an event A,, occurs can be written as

P{A,} = Z PX} = Z oI [Px]-nDk.[Px|IQ] (17.5)

XeA, XeA,

= Z Z e~ nI[PI-nDg.[P[Q] (17.6)
PEA, X: Py=P

— Z e—NH[Pl=nDg,[P|Q] ‘{)_{ D Py = p}‘ (17.7)
PeA,

“ Z e~ "Dxr[P)Q] (17.8)
PeA,

where we used the fact that, by Eq. (17.2) P{X} only depends on Py in the
first equation, and the fact that the number ‘{)_( t Py = P}' of samples with
Py = Pis -~ e"!IP], by the Asymptotic Equipartition Property.’

If | X — Eq [X] | < ¢ then the event A,, is typical, which means that there is
at least one distribution P € A, that is very close to Q, and that asymptotically

converges to it. Therefore for these distributions Dg;[P||Q] - 0 asn — o
and, as a consequence, P{4,} — 1. If X is significantly different from E [X]

7Px(x) is called the type of X. We refer to COVER, Chapter 11 for a detailed discussion
of types.
8The space of disrtibutions is defined as

P=]P: X >R, P(x)20, ). P(x)=1¢.

xXeX

The set P, of types is a subset of 2 of distributions where, for all x € X, p(x) = k,/n with
k., =0,1,..,nand erx k., = n. P, is a discrete set of points in P. For each x € X, k,
can take n + 1 values, so the number of points in , can be at most |?,| < (n + D). Asn
increases, the number of points in 2, becomes denser and denser, so that each P € P can be
approximated to arbitrary precision by a P € 2, if n is sufficiently large.

Let us remind that a, « e, where c is a constant, means that i loga, = casn — oo.
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Figure 40. Sketch of the minimisation problem in large deviation theory. We note in
passing that the relative entropy Dk [P||Q] > Dg1[P||P*] + Dgr[P*||Q] satisfies the
opposite of the triangle inequality (see COVER Theorem 11.6.1).

then Q is “far” from any P € A,,. Then A, is an a-typical event and its
probability vanishes as n — oo. Every type P € A,, contributes with a term
which is exponentially small in n, with a coefficient that is proportional to
Dy [P]|Q]. Then for n large, we expect that the sum will be dominated by the
type
P* = arg min Dg;[P||Q] (17.9)
PEA,

that is “closest” to Q, in terms of Dg; divergence. Indeed, taking only the term
P = P* in the sum over A, in Eq. (17.8), one gets P{A,} > e "PxIP"IQl On
the other hand, e "Px:IPIQl < o=nDxi[P*IIQ] that provides an upper bound

P{A,} < e "PrelPIQl| 4 | (17.10)
< (1 + n)Xle~nDrelPrlQ] (17.11)

where we used the fact that the number | A, | of types P € A,, is upper bounded
by the total number of types |, |, which is less than (n + 1)/*!. This means
that P{A,} decays exponentially with a rate which is equal to D [P*||Q]. This
is the content of Sanov’s theorem, i.e.

lim %logP{An} = D [P*[Q. (17.12)
n—oo

Summarising, the leading order in the behaviour of the probability of an a-
typical event A, when n — o, is given by P{4,} « e "PxelP"IQl where P* is
the solution of Eq. (17.9).

Let us illustrate this for the case

Ap=1P: Y P)f(x)> f

xeXx
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that corresponds to event A,, where the average of f(X) over a sample X of
points drawn independently from Q(x), is larger than f. If

Eo /(XD = D) Qf(x) > f

xeXx

then Q € A, and the event is typical. The interesting case is when Eq, [ f(X)] <
f because then A, is an a-typical event where the sample average

WO
i=1

does not satisfies the law of large numbers. In order to compute P{A,} we
should first solve the problem Eq. (17.9). This is done introducing Lagrange
multipliers and solving the problem

Dy [P]|Q] +6<Z P(x)f(x) —fo) +A(Z P(x) — 1)]

m1n
P.pA xeX xeX

where f, > f has to be chosen so as to satisfy Eq. (17.9). Equating the
derivative of the objective function in this minimisation problem to zero,
shows that the solution has the form

Q(x)e_ﬁf(x)

Pg(x) = 7 (17.13)
where
Z(B) = Eq[eP®] = 3 Q(x)e P/ (17.14)
xeX

is the normalisation constant.!® The parameter 8 has to be fixed so that

[fCO] = D) Pe(x)f(x) = ——logZ(ﬁ) (17.15)

xex 6

where we used Eg [...] for expectations over the distribution Ps. Notice that
when 8 = 0 then Pg(x) = Q(x) is the original distribution. For this reason,
the curve Eg [ f(X)] takes the value E, [ f(X)] for 8 = 0. In other words, the
point 8 = 0 corresponds to typical events, where the law of large numbers
holds. Varying 8 one “explores” rare events with large fluctuations of the

10Z(B) is often called the partition function. Note that the derivatives of log Z(f) is closely
related to the cumulant generating function of X, ¢(h) = log Z(—h). We use this property to
relate the derivatives of log Z(8) to the cumulants of X under the distribution Py.
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Drr(PslIQ)

B*

Figure 41. The shaded region corresponds to the event A,,.

sample mean of f. In particular, Eg [ f(X)] is a decreasing function of 3 (see
Figure 41), because

dEg [f(X)]
dp

So the event A, corresponds to all those 8 for which Eg [ f(X)] > f,i.e. to the
region § < * where * is such that Es.[f(X)] = f.
Among all the distributions Pz with 8 < §* we should chose that one with

the smallest Dg; [-]|Q]. Now

= ~{Es [F200] — Eg [FCOT} = =V [F 0O <0

Dgr[PgllQ] = —BEg [f(X)] — log Z(B)
and
dDg[PgllQ]
ag

has the same sign of 8. Therefore, D [Pg||Q] has a minimum at 8 = 0 and
its minimum for § < §* < 0 is attained at §*. Summarizing,

= Vg [f(X)]

P{A} ~ e PP Dy [P*IQ] = —B* f — log Z(*)

where §* satisfies Eg.[f(X)] = f and P* = Pg..

What is the meaning of the distribution Pg.? In order to address this
question, let us compute the marginal distribution of the first m variables
)_( = (Xh ’Xm)

P (}_(lAn()_c)) = P{Xl = X15.ee ’Xm = xmlAn(x)}
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when n — oo with m finite, conditional on the occurrence of the large devia-
tion A,(%). We observe that!!

P{{Xl = X1, Xy = xm} ﬂAn—m(x,)}

P(X|A, (%)) = PLA(D) (17.16)
_Q(x1) - Qx)P{A,_p (X))}
- P{AL)} 7.1
=~ Pﬁ*(xl) Pﬁ*(xm) (17.18)

where in the first equality, the event A,_,,(x’) is the event that the n — m
variables (X415 ... » X};) sum up to

> Xi=nx—).x;=n-mx. (17.19)

In Eq. (17.17) we use the fact that the variables X; are independent and they
are drawn from Q. Finally, Eq. (17.18) holds because'?

=/
PiAw (D} —nmmDi Py Q1D P51Q] (17.20)
P{A,(X)}
. on=m)p' ¥ ~nfz—nllog Z(§)~log Z(8")l-mlog Z(8")
R—
~ B X X
~ e B I 17.21
2@y (720

for n - o0. Eq. (17.17) shows that in the limit n — oo the joint distribution of
X coincides with the distribution of m variables X1, ..., X,,, which are drawn
independently from the same distribution Pg(x). In loose words, the large
deviation is realised as a typical sample of independently drawn variables from
a distribution Pg(x), which is different from Q.

We use the previous results with f(x) = x for simplicity.
12Here we use the shorthand 8 = 8*(x) and ' = B*(%'). The second line follows from the
fact that
Dy, [P*]|Q] = —fx — log Z(B).
In the first term of the exponent we use Eq. (17.19) so that

(n—m)B'x’ —nfx = n(p' — )% — ), X;
i=1
The first term cancels with
log Z(B') —log Z(B) =~ —(B' — B)x + ...

that is obtained expanding log Z(’) around S (note that 8 — 8’ ~ X — X' is of order 1/n) using
%= -é log Z(B).
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Exercise 17.1

Compute the function

I(%) = — lim %log P{A,(X)}

for a Poisson distribution with mean E, [X] = 4. Show that the solu-
tion satisfies the relation I(x) = Af(x/A1). Show that the same relation
should hold for any infinitely divisible distribution.

There are in principle many other ways in which a sample that satis-
fies A,(x) could be realised. Any other distribution P € A,(x) such that
Ep [X] = x would generate samples that satisfies A,,(X), typically. However,
the probability to generate samples with type Py = P is e "PxtIPIQl which is
exponentially smaller (in ) than the probability of typical samples generated
as i.i.d. draws from P* in Eq. (17.9). The distribution that is most likely to be
observed is the “closest” to Q in terms of the KL divergence.'?

17.2 Large deviations for i.i.d. continuous variables
with thin tails

The same solution can be derived'* by a direct calculation for the cases where
X; € R are continuous i.i.d. random variables whose common pdf q(x) decays
at least exponentially fast.!> We refer to this case by saying that g(x) has thin
tails. The case of fat tails, where q(x) decays slower than an exponential, will
be discussed later.

Let A, (%) be the event that the mean falls in an interval [X, X + dX) for an
infinitesimal dx. Then P{A,(X)} = p,(X)dx where p,(X) is the pdf of x. This

13Remember that the type Py of a random sample of i.i.d. draws from a distribution is not
random at all when n - oo, by?he Glivenko-Cantelli theorem.

14This derivation can be found also in the appendix of [30].

15L.e. distributions such that for some 1,K > 0

lim g(x)e**! <K.

X—+00
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can be computed using the integral representation of the delta function!®

pn(%) = nf H dx;q(x;)8 (Z X; — nx) (17.22)

o =1

o0 n
= nf %e”‘”’_‘ [fdxq(x)e‘ikx] (17.23)
Y (e
= nf_oo 7 ¢ (17.24)

where the function g(3) is defined as.

g(B) = px +log deQ(x)e_ﬁx

The integral in Eq. (17.24) can be evaluated by the saddle point method. This
entails looking at the stationary point of g(3) and expanding around it. The
maximum of g(B) is attained at §*(X) that satisfies the equation g’(8) = 0, i.e.

’E:fﬁ)f dxxq(x)e*,  Z(B) = f dxq(x)e ™ = Eq[e#¥] (17.25)

Then one can perform the integral in Eq. (17.24) by substituting

& e - gy + Ok — )

g(ik) = g(8*) +

Upon changing variables to y = 1/ng”(8)(k + i3*) one can check that higher
order terms in the expansion of g beyond the second one are small for n large
and can be neglected. Therefore one can compute the Gaussian integral with

the result
_ n . .
N P M (4729

where the leading order behavior in 7 is retained in the last equation.

16The Dirac’s §(x) function is defined as that (generalized) function such that for any function

JF(x) "
/ dx f(x)8(x — xo) = f(xo)

In particular with f(x) = 1 this shows that 6(x — x,) is a pdf whose mass is concentrated in
X,. With f(x) = e** the relation above shows that the Fourier transform of §(x) is 1. Hence

dk —th
5(x )—[wzﬂ -

Also note that §(ax) = §(x)/a.
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Exercise 17.2

There are other ways in which a large deviation X can be realised.
Imagine that a large deviation X = E [X] + a is observed, with a > 0.
The “explanation” of large deviation theory is that the event A, (%)
occurs because X; are actually not drawn from g(x) but from pg(x)
of Eq. (17.27), with § determined by the condition X = Eg[X]. A
different explanation is that, instead, the X; are drawn i.i.d. from a
“shifted” distribution p,(x) = g(x — a). Show, for the specific example
of exponential random variables, g(x) = e™™ for x > 0 and g(x) = 0 for
X < 0, that the “shifted” distribution hypothesis is much less plausible
than the one offered by large deviation theory.

There are few things to observe in this result:

1. The form of Eq. (17.25) that fixes §* is of the form x = Eg [X] where
the expectation is taken on the modified distribution

g(x)e=Fx
Z(pB)

This is not a coincidence, as we’re going to see.

pp(x) = (17.27)

2. The second derivative of g is positive as it is the variance of a random
variable X with pdf pg(x)

g"(B) = E5 [X?] - B4 [XT* = Vg [X]

3. The marginal joint distribution of a finite number m of variables, say
X = (X3, ...,X,,) conditional on the occurrence of A, (%), defined as

P (X|A,(X)) dx; - dxp,
= P{X; € [x1,x1 +dx1), ..., X\ € [x, + dXpp,)| A (%)}

can be estimated as before, and
lim p Cxy, e, X An(3)) = Pg(x1) -+ Pp(Xm)

This shows that the large deviation is realised as an independent draw
of variables from the distribution pg(x).
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4. The expression of the rate of exponential decay of the probability P{A, (%)}
can be written as

lim = log P{A,(D)} = 8(6") = ~Dgy[ps-lg]

as shown by a direct calculation. This is the same result as Sanov’s the-
orem Eq. (17.12). The fact that P{A,(x)} is related to a relative entropy
is not accidental, as we discussed earlier.

17.3 Large deviations and the Legendre transform

The function 1
I(x) = — lim = log P{A,(x)} (17.28)
n—oo

is called the Cramer’s function or the large deviation (rate) function. As shown
above, I(X) = Dg[Pg«x)[Q] is a relative entropy. Rephrasing the steps we
did above, the practical recipe to compute the Cramer’s function is condensed
in the following steps:!’

1. Compute the cumulant generating function
¢(h) = logf dxq(x)eh* = log Eq [e"X]

2. Take a derivative of ¢ and compute

d¢

(17.29)

3. invert this function and compute h(x)

4. compute

I(x) = xh(x) — ¢[h(X)]

The variables h and x are called conjugate variables. Notice that the function
¢(h) has to be concave, i.e. its second derivative must be positive. This is
always true in the present case, because ¢"(h) = V4 [X] > 0 is given by the
variance of X on the distribution Pz (with § = —h). Indeed the steps above

7In the derivation above we had

I(x) = —g(B"), h=-6

and ¢(h) = log Z(B). The reason for this change of notation will become clear in what follows.
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“map” a concave function ¢(h) into another concave function I(x), because
you can easily check that I"'(x) = 1/¢"(h) > 0.

As a general remark, note that the function I(x) contains (and it has to be
consistent with) both the law of large numbers and the central limit theorem.
The first implies that I(x) = 0 when X = E, [X]. The second implies that the
pdf of x is well approximated by a Gaussian for x ~ £, [X], i.e.

" _ n(x-Eq[X])?
pu(®) = [ e el

(x-Eq[X])?
2V,[X]
for X ~ [Eq [X]. This can indeed be checked explicitly, because the second
derivative of I(x) for X = E [X] is the inverse of the second derivative of the
cumulant generating function ¢(h) for h = 0, which is the variance V, [X].

Therefore, I(X) ~ + ... is well approximated by a quadratic function

Compute the Cramer function I(Xx) for the exponential distribution
p(x)=e*,x>0.

The mathematics described here is that of Legendre transforms.'® This
mathematical construction does not arise accidentally. Consider the following
constrained optimisation problem

I(x) = . m}pr)lz)E U(P) (17.30)

:x(

where P € R? is a d-dimensional vector and the function U(P) is concave.
In the case of large deviations for distributions with finite support, P is a
distribution, U(P) = Dk [P||Q] and x(P) = Zx P(x)x is a linear function of P
(an expected value). P identifies a point in the (x, U) plane, with x = x(P), and
the solution of the problem lies on the boundary in the (x, U) plane between
points that can be achieved for some value of P and points that cannot be
achieved. This boundary is the function I(x) that we want to characterise (see
Figure 42).

18A warmly suggested reading on the Legendre transform, which discusses its geometric
interpretation and gives much intuition on its nature, can be found in [31].
PlLe.
UAP, + (1 — A)Py) < AU(P,) + (A — D)U(Py).

for 1 €[0,1].
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Dki(P||Q)

I(z)

Figure 42. Construction of the large deviation function for Q(x) defined for x €
= {1,2,3,4} and Q(1) = 2Q(2) = 4Q(3) = 4Q(4) = 1/2 and n = 20 points. The
red curves show the construction implied by the Legendre transform for h = 1.

With the introduction of Lagrange multipliers, we transform the problem
in Eq. (17.30) into?°

I(%) = m1n max{U(P) h[x(P) — x]} (17.31)
= m}zl:lx{xh — ¢(h)} (17.32)
¢(h) = m}gx{hx(P) - UP). (17.33)

In this way we relate the original optimisation problem Eq. (17.30) to a dual
problem Egq. (17.33).

In order to understand the meaning of h, consider the same problem, but
for a value X + dx of the constraint. Then if P*(X) is the point where the
extreme is achieved in the original problem,

I(% + d%) = U (P*(% + d%)) = U (P*(%)) + VpU - P* +

where §P* = P*(Xx+dXx)—P*(%x). The first order conditions of the optimisation
in Eq. (17.31) on P imply that VU = hVpx. Hence the equation above reads
I(x + dx) = I(X) + hVpx6P* + .... The equation x(P(X)) = X, on the other

20The fact that the optimisation over & is a maximisation derives from the fact that it is the
solution of the optimisation of a concave function hx(P) — U(P). As I(X) inherits its concavity
from U(P), ¢(h) inherits its convexity from hx(P) — U(P).
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hand, implies that VpxdP* = dx. These, taken together, show that

_dI

T dx

is the slope of the tangent of the curve that is the locus of the set of solutions of
the optimisation in the (X, U) plane. This set can equivalently be described by
the coordinate k. Indeed, because of the concavity of U(P), the function h(x)
is an increasing function. Furthermore, this description is totally equivalent
to the one in terms of x. If we let P(h) be the solution of the problem in
Eq. (17.33), then one has

¢(h + dh) = x(P(h + dh))(h + dh) — U(P(h + dh))
= ¢(h) + %(h)dh + [WVpx — VpU] 8P + ...

h

The term in braces vanishes because of the first order conditions of the problem
in Eq. (17.33). Therefore one concludes that

d¢

dh’

Indeed the relation between I(x) and ¢(h) is completely symmetric, i.e.
I(x) + $(h) = h,

so I is the Legendre transform of ¢ and ¢ is the Legendre transform of I.
Indeed, notice that Eq. (17.33) can be rewritten as

X =

=max [hx —I(X)]. (17.34)

(P)=x

$(h) = max lh}? - P_min U(P)

The Legendre transform is not a mere change of variables. Rather it
is a mapping of the solution (%,I) of a constrained optimisation problem
Eq. (17.30) into the solution (h, ¢) of a dual unconstrained optimisation prob-
lem (Eq. (17.33)). The Legendre transform provides a precise prescription for
identifying the conjugate variable h that should be used in the transformed
problem.?!

ZThe Legendre transform is the bread and butter of statistical mechanics. As we shall see,
the thermodynamics of an isolated system is described by distributions of maximal entropy,
which is called the microcanonical ensemble. In an isolated system the energy E is a constant
of the motion and hence it is fixed, as well as the volume V and the number of particles. This
problem can be related to the description of a system in equilibrium with its environment (the
heat bath) removing the constraint on E. In this description, which is the canonical ensemble,
the new variable is the temperature T and the objective function is the free energy F = (E)—T'S.
Likewise, the constraint on fixed volume V' can be removed with a Legendre transform that
maps the problem in one where the pressure P is fixed, and the constraint on N can be removed
introducing the chemical potential u. As an Exercise, identify in each of these cases what are
the variables X and h and what are the functions I(x) and ¢(h).
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Let us illustrate the properties of I(x) for sums S,, = ZZ=1 X of binary
variables that take values X, = +1 with equal probability. Then, both the
recipe above and a direct calculation using Stirling’s approximation of the
binomial coefficient, show that

1-—

len(l—fc)+1+

len(1+>‘c)

I(x) =

which is just the relative entropy Dx; [Ps||Q] between the distribution Pg =

(1;—2, IZ—X) and the uniform distribution Q = (1/2,1/2), as it should.

Exercise 17.4

Compute I(x) in both ways for the case of binary variables discussed
in the text.

The expansion for |X| < 1 yields I(X) ~ %)_CZ + 0(x*) for x < 1, which
is consistent with the law of large number and the central limit theorem for
|X| ~1/ ﬁ < 1. For larger values of X the function I(x) provides much more
informations on the large deviation properties of the mean S,,/n. Note that
I(x) is defined only for ¥ € [—1,1]. Indeed also |S,,/n| < 1 by definition in
this case. Next note that I(+1) = In 2, and indeed the probability that S,, = +n
is exactly 27".

17.4 How much do we learn?*

Let us go back to our discussion?? where the distribution Q encodes our current
state of knowledge, i.e. our theory. The theory Q predicts that an observable X
should take a value ~ E [X]. When we perform an experiment and measure
X, the measurement may be consistent with this prediction or not. In the
latter case we need to revise our theory Q and replace it by Pg, depending on
the observed value X of X. How much do we learn?

The uncertainty is reduced from F[Q] to F[Pg]. Hence the acquired
information is

—AJ = H[Q] — H[P4] (17.35)
=I(%) + Eo [(e=#™ —1)10g Q], (17.36)

where the second line results from a trite calculation using the results in previ-
ous sections. The first term I(x) = Dg[Pg||Q] quantifies how surprising the

22This section is a side remark, and it should be taken as a digression for curious students.
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/A‘Q\/Ph
X

Figure 43. Probing the space of distributions around Q. Each experiments X explores
the space along a different trajectory Pj,.

result of the experiment is. The second instead, has the form of a covariance?
between e"X~#(" and log Q. Hence it depends on what observable X has been
probed in the experiment. This allows us to ask, given Q, what quantity X
should be probed in order for the experiment to be as informative as possible?
Yet AJ also depends on A, i.e. on the observed value x of X. One way to
address this question is to “explore the neighbourhood” of Q, searching for
“directions” X where the reduction in uncertainty AF increases faster. Hence
we expand AJ{( for small values of h and, after some work, we find**

AJ ~ —h Covy(X,logQ)
- %hz {\/Q [X]+ Covq (X — Eg [X])2 ,log Q]} +0(h?)

which is an interesting result. The leading linear term implies that the largest
change in A occurs when X = logQ, which is the X that maximises the
covariance with log Q. Note indeed that, by the Asymptotic Equipartition
Property, the value of —logQ ~ H[Q] permits to identify the set of typical
outcomes.

The choice X = log Q explores the space of distributions along the curve
of parametric distributions®®

Pu(x) = @Q“h(m.

“Note that E,, [e™—#"] = 1.
%We remind that the covariance is defined as
Covy(X,Y) = Eo [(X — Eq [XD(Y — Eo [Y])]
where the index specifies that the expectation is taken with respect to Q.
251n a statistical mechanics analogy, as we shall see Q takes the form Q(x) = ~e EC/T,
where T is the temperature. Then also P,(x) has the same form, with 7" = T/(1 + h). In
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The change A% can however be either positive or negative, depending on
whether h < 0 or & > 0. In order to make sure that the measurement reduces
the uncertainty on the system, the measured quantity X should be such that
Cov(X,log Q) = 0, so that the linear term vanishes.

The first term of order h? is I(X) ~ %hz\/Q [X], which suggests that the
most potentially surprising experiments, are those that probe quantities with
large fluctuations. This is indeed a well established recipe in experimental
design.

17.5 Weakly correlated variables: phase transitions
and the Gartner-Ellis theorem

The results we have derived so far for large deviations extend to the case where
the random variables X; are weakly dependent. How weak the dependence
can be will be clarified below.2°

Consider the following situation: we have a sample X3, ..., X,, drawn i.i.d.
from a distribution, but we’re not sure what the distribution is. With proba-
bility a the sample comes from the distribution P and with probability 1 — a
it comes form the distribution Q. Both P and Q have either finite support or
thin tails. What is the probability P{A,(X)} in this case? Clearly

E[X] = aEp [X] + (1 - a)Eq [X],
where Ep [...] and Eg [...] stand for expectations on the distributions P and Q,

respectively. Do we expect that the law of large numbers

% > X; - aEp[X] + (1 — @)Eq [X]

i=1
holds?
addition
h
AH = —EWQ [E]
W 1 ,
- 37 Vo [E] + T[EQ [(E-E [ED?]|+ .

and the coefficient of the linear term in h is the specific heat.

26To give an idea, one example where the theory applies is when random variables interact
only “locally”. This means that for each X; there is a finite subset J; C {1, ..., n} of indices such
that, conditional on the values of the variables X ; for j € J;, X; is independent of all the other
variables k & 0, i.e.

PX;|X;, Vj #i} = P{X,|X;, Vj €6}

A Markov process, where X; only depends on X;_; and X, (i.e.9; = {i—1,i+1}), is a sequence
of weakly dependent random variables.
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Figure 44. The construction of the Cramer function I(x) for the example discussed
in the text.

The answer can be found by a direct calculation:

P{A,(X)} = aP{A,(X)|P} + (1 — a)P{A,(X)|Q} (17.37)
w ae~Mr®) 4 (1 — a)e o) (17.38)

where P{A, (x)|W}is the probability of the large deviation, conditional on the
assumption that the variables X; are drawn i.i.d. from the distribution W = P
or Q, and

_ .1 ) .
Iy (%) = — lim —log P{A,(X)|W} = pmin Dg[P|W].

It is now clear that
I(%) = — lim %logP{An()Z)} = min[Ip(%), Io()]. (17.39)
n—oo

Notice that:

« The curve I(X) touches the X axis in two points X = Ep[X] and X =
Eq [X]. This means that, typically we expect that the sample mean
converges to either Ep [X] or to Eq [X], but not to E [X]. This violation
of the law of large numbers occurs because the variables X, ..., X, are
not independent. Indeed, knowledge of a subset k of the X; allows us to
infer whether the right distribution is P or Q, and hence informs us on
the values of the remaining n — k.

« The curve I(X) is not convex. Locally it is convex, apart from the point
X, where Ip(X.) = Io(X.), where it has a cusp.
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 The derivative h of I(X) is no longer a continuous function of x. Rather
it has a jump at the point X, i.e. limg_, ¢+ I'(x) = h,.

« Following the geometric construction of the function ¢(h), one finds
that the function ¢(h) is not single valued in the interval h € [h, h_]
and that it is not continuous.

The Maxwell construction and the Gértner-Ellis theorem. The fact
that I(x) derived above is non convex makes the recipe based on the Legendre
transform, that we discussed for i.i.d. variables inapplicable. The Gdrtner-Ellis
theorem describes what happens if we apply this recipe anyhow. Suppose that
the function

#(h) = lim %log[E[eh(Xl*‘"'*X")] (17.40)
n—oo

exists and is finite, for & in a neighbourhood of the origin. Then the convex
hull I(x) of the large deviation function is given by the Legendre transform of

$(h).

Exercise 17.5

Let X = (Xy,..,X,) where X; = Y,Y;, with Y, = +1 with equal
probability, and Y; € {0, 1} arei.i.d. random variables with P{Y; = 1} =
p = 1 — P{Y; = 0}, and they are all independent of Y,. Compute the
large deviation function for the random variables X;, i.e.

1 -
I(x)=— r}l_)n.}o - log P gl;Xi € [x, %+ e)}
for some € > 0. Compute the function I(x) by Girtner-Ellis theorem,

i.e. as the Legendre transform of ¢. What is the posterior distribution
that the true distribution is P, given A,,(X)?

Let us see how this works for the problem we discussed above, of a se-
quence X of variables which is drawn i.i.d. from either P or Q. It is easy to
see that E [e"X1+-+X0)| W] = enéw(W) where ¢y, (h) is drawn in Figure 45 for
W = Por Q. Then

&(h) = lim %1og (0o 4 (1 — @)ento®]
n—oo

= max [¢p(h), po(h)] (17.41)
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Figure 45. The functions ¢p and ¢, for the example discussed in the text.

o(h) T

h Ep[X] Ea[X] x

Figure 46. The Gértner-Ellis theorem applied to the problem of a sequence X drawn
i.i.d. from either P or Q.

as shown in Figure 46 (left). Notice that ¢(h) has a cusp — i.e. a discontinuity
in its first derivative — for h = 0. The derivative of ¢(h) as h — 0% equals
Eq [X] whereas when i — 0~ one finds ¢'(h) = Ep [X].

The Legendre transform I(x) of $(h) is shown in Figure 46 (right). This
function I(%) is identical to I(x), except for the part in the interval X €
|[Ep [x], Eq [x]], where I(%) is replaced by a straight line.

The Girtner-Ellis theorem provides the solution to a different yet related
problem, which is the case where an unknown fraction of the variables are
drawn from P and the rest from Q. Specifically, let X; be drawn from P if
i <vnand from Q ifi > vn, with v € [0, 1] which is unknown.

Again we consider the event A,(X), i.e. that the mean of a sample X1, ... X,
of points obtained in this way equals X, and we want to compute the probability
of A,(x). The probability of finding a large deviation with a sample mean
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equal to X is

1
PAL(D)} = f dv f dxp f AP Ayn(%) PYP{AGyn(%0)|Q)
0

5()2 - VXP - (1 - V)XQ)

1
~ f dv f dxp f dee—"[vIp(ﬁp)+(1—v)IQ(xQ)]
0

5()2 - V.)Z'p - (1 - V)XQ)

where we assume a uniform prior on v. For all values of x € [[E pX],Eq[X ]]
this multiple integral is dominated by the values Xp = Ep [X]and X, = Eq [X],
and v such that X = vEp [X]+(1-v)E( [X], because then Ip(Xp) = In(Xg) = 0,
and one finds that

L,(%) = — lim %mgp{A;”)(x)} =0 Vxe[E[X].E[X]].

Put differently, for every x € [Ep [X], Eq [X]] it is possible to find a value

_ EgX]-x
T Eo X1 — Ep [X]

e[0,1] (17.42)

such that the above construction allows us to realise the large deviation X as a
typical event (i.e. with I,,(X) = 0).

As we’re going to discuss (see footnote 17) the replacement of the non-
concave part of I(X) with a straight line is conceptually identical to the
Maxwell’s construction in thermodynamics. In physics this construction
relates the thermodynamics of homogenous but unstable states to that of
inhomogeneous states, which are a mixture of two homogeneous states. Here,
it relates the (large deviation) properties of a system which is either in one
pure state (P) or in another (Q), to one which is a mixture P, = vP + (1 — v»)Q
of the two states. Mathematically, the first case is described by the Cramer
function I(x) while the mixture is described by its convex hull I(x), defined in
Eq. (17.39), which is the Legendre transform of ¢(h) in Eq. (17.41).

Exercise 17.6

Consider yet a different problem where each of the variables X; is drawn
from P, with probability v, or from Q with probability 1 — v. What
is the large deviation function I(X) in this case when v is known and
when v is unknown?
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a) {X } b) {X}
AP)

‘ A@) APUQ)

Figure 47. Pictorial representation of the space of typical samples X drawn i.i.d.
from either P or Q (a) or from mixtures vP + (1 — v)Q (b).

Notice the difference in the structure of the typical set in the different cases.
When the sample is drawn from one of the distributions but we do not know
which one, the typical set is the union of two disjoint sets, the typical set of
samples generated from P and of those generated from Q. When instead each
point may be generated from either P or Q with unknown probabilities, then
the typical set extends to the union of typical sets of all mixtures vP + (1 —v)Q
for all v € [0,1]. This will be an important point when we will discuss
statistical inference, which deals with finding those models Q such that a
given data set X may be considered a typical draw.

17.5.1 Large deviations for Markov Chains

A further example of a sequence of weakly dependent random variables is
given by Markov Chains. Let us recall that a Markov Chain Z,, Z;, ..., Z;, ... is
a sequence of random variables that take values in a discrete set S, and which
is defined by a transition matrix

psy =P{Z, =512, =5}, s,s' €8. (17.43)

We restrict our attention to irreducible Markov Chains for which the distri-
bution p{Z, = s} converges, ast — oo, to the unique invariant measure u,
which satisfies the equation y, = ZS, Ds.s' Mg -

For an observable X; with a distribution P{X; = x|Z; = s} = g(x|s) that
depends only on the state Z; at time ¢, we expect that its time average between
times 7 + 1 and 7 + N converges as N — oo to the expected value of X; on ,
fort — o0, i.e.

T+N

lim lim l Z X, > By [Xi] = qu(x|s)us

700 Nooco N
t=7+1
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What is the probability to observe instead a value X different from E,, [X;]? In
order to apply Eq. (17.40) we need to compute the expected value

T+N

[E[ehztxf] = Z H ps,,s[_lE[tht|St]P0(Sr) (17.44)
Sz38z 4150874 N E=T+1

= >, {0, v Po(so), (17.45)

Sto84N

where {UN Y55, 18 the s.oy, s; element of the N th power of the matrix Usy =
E [tht |s] ps.¢- In the repeated matrix multiplication, the dominant compo-
nent is the one corresponding to the largest eigenvalue of U, corresponding
to the right eigenvector

/’le = Z US’SIUSI = Z E [tht |S] ps,srvsl (1746)

N N

which leads to E |e" Z:Xt | ~ AN, Note that, by virtue of the Perron-Frobenius
theorem, A and all components of v are positive, because, if the chain is
irreducible, the matrix U™ has all strictly positive elements for N large enough.
Hence the limit in Eq. (17.40) leads to $(h) = log 1.

Summarising, the recipe of large deviations for a Markov Chain is i) com-
pute the matrix U, ii) compute its largest eigenvalue 4 as a function of h, iii)
compute the rate function I(x) from the Legendre transform of ¢(h) = log 1.
The distribution of Z, conditional on the large deviation is given by the nor-
malised right eigenvector

P{Z, = s|Ap(2)} = =2

s Uy

(which implicitly depends on h, which is the solution of Z—i = X). Note that
when h — 0, this distribution reverts back to the invariant measure yu;.

17.6 Large deviations for fat tailed distributions

The Cramer function I(X) has the property that it is positive and it vanishes
for x = E [X], which corresponds to the point & = 0. The machinery above
works if ¢(h) exists at least for & in an open neighbourhood of the origin. This
requires that the pdf of X decays at least as an exponential for |x| - co. What
happens if this is not true?
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We shall call fat tailed distribution any distribution Q(x) for which

. 1
lim —
|x|— o0 |x|

logQ(x) =0 (17.47)

for x —» 400 or X > 400, or both. In this limit, e"*Q(x) diverges for at least
one value of & in the neighbourhood of h = 0 as x — +o0.

For simplicity, we focus on the right tail of the pdf, and assume that Q(x)
vanishes at least exponentially fast as x — —oo. This includes stretched ex-
ponential distributions Q(x) ~ e~%*" with a < 1 and power law distributions
Q(x) ~ Ax~7 for x > 1. Again we focus on the event

4

for some arbitrarily small € > 0 and our goal is to compute the Cramer’s
function I(X) in Eq. (17.28). For h < 0 we can follow the recipe outlined in the
previous sections because E [th ], and hence ¢(h), is finite. This allows us to
define the Cramer function I(X) for all X < [, [X], which is expected to vanish

(x—Eq X1 + ...

n

Ap(%) = {)_{ ; |%in - x

i=1

as X — [Eq [X] with a quadratic behaviour I(X) =~
for x S Eq [X].
However, for h > 0 this recipe does not work because the integral that

defines ¢(h) diverges. In order to explore the behaviour of I(x) for x > E, [X],
let us consider the event

2, [X]

n
o 1
A, =[J{x: mZ)(l-—[EQ[)(] <e Xp=x5
i*=1 i#i*
x, = nx —(n—1Eq [X] (17.48)

In words, A, (%) describes a large deviation event where the mean % Zi X; =
X deviates from the expected value E, [X], but all the excess of the mean
is concentrated on only one variable X;» = x;, which is proportional to n,
whereas all the other variables are “typical”, i.e. X; & Eq [X]. The probability
of this event is

P{A, (%)} > (1 —e)nQ (nx — (n — DEq [X])

where the factor 1 — € comes from the fact that the n — 1 variables i # i* take
typical values, the factor n accounts for the fact that i* can take n values, and
the last factor is the probability of X;. = x;..
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» Eq[X]
do
dh

&I

h

Figure 48. Large deviations for a (right) fat tailed distributions: Sketch of the Legen-
dre transform construction for & < 0 (left) and the resulting Cramer function (right).

The event A,(%) is only one way in which the large deviation can occur,
therefore A,(%) C A,(X). As a consequence P{A, (%)} > P{A,(x)} and

(%) = — lim %logP{An(JZ)} (17.49)
< — lim %logP{An(x)} =0 (17.50)

where the last equality is a consequence of Eq. (17.47). Therefore, for all
X > Eq [X] the Cramer function vanishes, I(X) = 0.

In loose words, “democratic” ways to realise large deviations, where X is
obtained as the average of i.i.d. draws from a modified distribution, are not
typical. For fat tailed distributions, large deviations typically concentrate on
a single variable X;. which is responsible for the whole excess of the mean
X. The symmetry between the variables, which are identically distributed a
priori, is broken spontaneously, because one of them takes an extensive value
(i.e. a value proportional to n). Spontaneously refers to the fact that, a priori,
any variable X;. can carry the excess deviation.

The fact that I(x) = 0 for all X > E [X] implies that I(x) has a singularity
at X = E, [X] in the second derivative. This is the analogue of a second order
phase transition in statistical physics,?’ that generally occur when a symmetry
of the system is spontaneously broken,?® precisely as in the current situation
where the a priori (permutation) symmetry between the variables X; is broken.

?’In thermodynamics, the order of a transition is defined as the order of the derivative of the
thermodynamic potential that develops a singularity at the critical point. As we shall see, I(x)
is related to the entropy in statistical mechanics.

2The typical example is the spontaneous magnetisation of metals when the temperature is
decreased below the Curie temperature.
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This phenomenon is similar to the typical behaviour of sums of i.i.d. ran-
dom variables with a pdf p(x) that decays slower than |x|~2. As we have seen,
in that case averages are dominated by few variables which are of the same
order of the whole sum.?° Yet in that case the expected value of X does not
exist so large deviations cannot be defined.

®In the special case where X are Cauchy variables p(x) = 771(1 + x?)7}, you can check
that the 3. X;/n is itself a Cauchy variable. Therefore the probability of a large deviation

P{A, (%)} = %ﬁ

does not decay exponentially with n. Actually it does not decay at all.






Chapter 18

States of knowledge

Now that we have a quantitative notion of information, we can address the
problem of finding distributions that are consistent with a given state of
knowledge. Just like Socrates has been claimed to say that

The only true wisdom is in knowing you know nothing

it seems the only state of knowledge we can precisely identify is the one where
we “know nothing”. If lack of information can be measured by the entropy,
the state where we know nothing corresponds to a probability distribution of
maximal entropy. In addition, as we shall see, large deviation theory allows
us to be precise in understanding how new information can be incorporated
in our current state of knowledge (i.e. in probability distributions). This
“becomes a methodology for a very general type of scientific reasoning”, as
claimed by E. T. Jaynes [32]. We shall discuss this general approach and then,
statistical mechanics as one of its particular applications.

18.1 Maximum entropy

Consider the case of a discrete random variable X € y drawn from a finite set y.
The state of maximal ignorance corresponds to a distribution p(x) = P{X = x}

of maximal entropy’

1
p(x) = |)(_| (18.1)

Indeed, in order to dispel uncertainty the number of binary questions we need
to ask is as large as possible, i.e. H[X] = log, | x|. In this state, we’re also

You can show this by studying the maximisation of #([ p] with the normalisation constraint

>, p(x)=1.

279
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maximally uncertain on what is the best way to ask questions.? The state of
maximal ignorance is also such that the distribution of X is invariant under
any permutation of the possible values x € y. This is consistent with a state of
knowledge where we don’t know anything that can distinguish event {X = x}
from event {X = x'}.

Now assume that we know that

E[FX)] = D, p(x)F(x) = f (18.2)

xe€x

for a function® F(X). Then the distribution that encodes this and only this
information, is given by the one that maximises the entropy, subject to these
constraints. This implies that we have to solve the problem:

max | - >, p()logp(x)+ A | D) p()F(x) = f [+v]| D) p(x) -1

XEY XEY xXex

The solution is

pa(x) = Z(ll) e ) (18.3)

where Z(1) ensures normalisation, and the value of A should be adjusted in
such a way that Eq. (18.2) is satisfied, i.e.

E[F(X)] = d logZ

= f. (18.4)

*In this case, the optimal way to elicit information is to ask questlons that split the number
of possible alternatives in half each time. If | y| = 2%, there are ( ) ways to choose how to

make the first question, (;H) ways to pose the second and so on. In total there are

k
HA oy 2

N = g (2H—k—1)

ways to ask the H questions. Which of these ways one choses to ask questions is irrelevant. If
p(x) were not independent of x, some of these ways would be better than others. In a state of
maximal ignorance there is no clue of how to pose questions in a smart way.

5We expect that E [F(X)] = f based on theoretical grounds, or this knowledge may come
from the fact that, in a series of N > 1 independent experiments where we measure the
variables Y; = F(X;) fori = 1, ..., N, we observe that

L
NZF(Xi):f
i=1

and that we expect the Law of Large Numbers to hold.
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Note that the solution to this problem is unique. The way to show this is
to observe that A is the solution of a convex optimisation problem. Indeed
Eq. (18.4) corresponds to the first order condition of the maximisation of the
entropy as a function of 4

Z(A) = Hp;zl =log Z(A) — AE[F(X)] .
where E [F(X)] is a function of 1. Note that

dz dE [F(X)]
== A2 - AV[FX

- a AV [F(X)]

has the opposite sign of A, where V [F(X)] > 0 is the variance of F(X) under
the distribution p;. So Z(1) has a unique maximum at 4 = 0, because it
increases for A < 0 and it decreases for A > 0.

Yet it is important to stress that the entropy

S(f) = p:[EI[g&%]:fﬂ[p] (18.5)

is a function of f, which is the independent variable. The variables f and 1
are conjugate under the Legendre transform that maps the problem Eq. (18.5)
into the conjugate problem*

YD) = mgn [-H[p] - AE[F]] (18.6)

The solution of Eq. (18.5) is given by S(f) = log Z(4) — Af, where 4 = A(f)
is given by the solution of Eq. (18.4), whereas the solution of Eq. (18.6) is
given by

P = rr}in[—S(f) —Af]=—logZ(2). (18.7)

The function 3 is not an entropy.® It is called a free energy.

4This follows from

S(f) = min max {Hpl+ AE[F] - )}

= m}n —Af —min[-H[p] — AE[F]]
p

= min{-A/ — Y(D)}

SNote that —(1) is the cumulant generating function of the random variable F(X).
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Summarising, the maximisation of the entropy at a fixed value of f = E [F]
corresponds to the minimisation of the free energy ¥ at a fixed value of the
conjugate parameter 4. Because of this
_das

df
and the functions S and ¥ stand in the relation S + 3 = —Af.

Mf) = and  f() = _d¥ (18.8)

Exercise 18.1

The construction discussed in this section is identical to the one we
have followed in large deviation theory. for Q(x) = 1/|x|. What is
the relation between the parameters h, X and 4, f, and between the
functions I, ¢ and S, 1?

This construction generalises in a straightforward manner to the case
where F(X)=(F;(X), ..., Fx(X))isavector of K observablesand f=(f1, ..., fx)
is a vector of measurements. The solution of the maximisation of the entropy
is again given by Eq. (18.3) with 4 = (4, ..., Ax) being a vector of parameters,
fixed by egs. (18.4), where the derivative is replaced by the gradient, and
AF(x) =), i 4Fi(x) is given by the dot product.

There are several ways to see that Eq. (18.3) is the correct choice that
encodes only the information that E [F(X)] = f in the probability of X, as
discussed in [33]. Let us discuss one of them. Imagine the situation where
you have a sample of n > 1 values of X, that you think are drawn from a
distribution p(x). Then the analogous of Eq. (18.2) is
1
f=- DIF(X) = ), Px(X)F(x). (18.9)
i=1

= X€Eyx

where Px(x) is the fraction of times that the outcome x occurs in the sample
X = (Xj, ..., X,). The number of samples X that correspond to a given Px =
Pis |

n!

X : PX=P‘=—ze”%[P1
H— = } Hx[nP(x)]!

where the second relation is a trite application of Stirling’s formula. Then it
is clear that, among all the possible distributions P that are consistent with
Eq. (18.9) those for which #[P] is maximal correspond to an overwhelmingly
larger number of samples. So the probability that the observed sample is not
one of these, is negligibly small as n — 0.
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Distributions of maximal entropy are special because the probability of a
sample X = (X1, ...,X},)

RGO = 7z exp ZZ A 23 Fe(X0)
k

i=1

depends on the data only through the empirical averages
1 n
fi@0) = — 3 (X))
i=1

of Fj.. Therefore these averages contain all the information that is needed
to identify the parameters 1 of the distribution p®). All other information
in the sample is uninformative noise. This is why the empirical averages
f are called sufficient statistics. This should not be surprising. Indeed, the
distribution p®) has been derived precisely as the one that encodes the state
of knowledge in which the values of F, and only these, are known.

18.1.1 Generalised thermodynamics

Equilibrium: the principle of maximum entropy can also be applied to
a system composed of two or more parts, of which we know the value of
an aggregate quantity. More precisely, let X;,, = (X;,X,) be the variables
that specify the state of the combined system, where X; are the variables of
subsystem i (with i = 1 or 2). These can be the coordinates that specify
microscopic states in physical systems, but we shall deal with them as (vectors
of) random variables in the general case. Let F(X) be an additive quantity.®
F(X142) = F(Xy) + F(X;). Then the state of maximal entropy where this
quantity takes a specific expected value

Jf112 = E[F(X142)] (18.10)
is given by the maximum entropy distribution

1

P142(x) = meﬂF(xl)JrF(xZ)] = p1(x1)pa(x2). (18.11)

where the variables X; and X, are independent, which is indeed consistent
with a maximum entropy state. In addition, the distribution of the states of

SIn physics, additive quantities are proportional to the size of the system and they are called
extensive. Examples include the entropy, the volume, the energy and the number of particles.
Variables that are independent of the system’s size — such as the temperature, the pressure
and the particle density — are called intensive.
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the subsystems are also maximum entropy states p;(x;) = ﬁeli}r X, This
is again consistent with the principle of maximum entropy. Flurlthermore, the
conjugate variable takes the same value of 4; = A. This is again a consequence
of maximum entropy. Indeed the entropy H[X;,,] = S;42(f142) is related to

the entropy of the subsystems H|[X;] = S;(f;) by the relation

S142(f142) = max [S1(f1) + So(f142 — f1)] (18.12)

The first order condition of this maximisation problem requires that f; be
such that

d ds, ds
_[Sl(f1)+52(f1+2_f1)]=_1——2 =0.
4h: dfv - dfalppr,
This, in view of Eq. (18.8) applied to each subsystem, implies
M=A=2 (18.13)

In words, the maximum entropy principle is associated to a notion of equilib-
rium where each of the parts has the same value of the conjugate variables
4;. In physics, conjugate variables of extensive variables are called intensive,
meaning that they are independent of system size. This is because thermo-
dynamic potentials — i.e. the functions S and ¢ — are themselves extensive,
so the conjugate variable to an extensive variable cannot be extensive. In a
maximum entropy equilibrium all the intensive variables take the same value
in each part of the subsystem. In other words, equilibrium states are homoge-
neous. This is called the zeroth law in thermodynamics. This generalises to
systems composed of many parts X,, ¢ = 1, ..., L in a straightforward manner.

The first law of thermodynamics: consider now a different problem
where the observables F;(X) change slightly, i.e. F, — F; + dF) and the
measurement also changes f; — fi + 6 f%. This transformation involves an
arbitrary (infinitesimal) change of both the “internal” parameters F) and of
the “external” variables f}, and it can be regarded as a generalised infinitesi-
mal “thermodynamic” transformation. The new system is described by new
parameters /11’c = Ay + 61y, which are again given by the solution of egs. (18.4).
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The change in the entropy, to leading order, can be written as’

K
8H = H prysz] — Hpal = D, 46Q; (18.14)
k=1
where
5Q4 = =81} + E [FL(X)] (18.15)

is a generalised “heat”, that is composed of two parts. The first is due to
the action 6 f} of the external variables on the system and the second is the
change of the internal observables. Put differently, the change § f}. of f in
any transformation between maximum entropy states is given by two terms,
one is the “work” E [6F(X)] done on the system and the other is due to the
change 8Qy, in the information content. Eq. (18.15) is the analog of the first
law of thermodynamics in physics.

18.1.2 Maximum entropy learning*

Maximal entropy — sometimes called maxent — provides a procedure to learn
theories from data. Imagine we’re interested to acquire knowledge about an
unknown quantity X, that we know takes values in a finite set X € y. Our
goal is to learn the distribution p(x) = P{X = x}and to reduce our uncertainty
about X. If we're in a state of total ignorance about X then our starting point
is the maximum entropy distribution p®(x) = 1/||. Imagine that we make
an experiment and measure® the observable E [Y;] = E [f,(X)]. If the value
f1 = E[Y,] that we obtain is consistent with the theory, i.e. if

f1=2) POF,(x)

xEx

"The entropy at the maximum is given by

H[pil = —Af +1logZ(Q)

where Af = 3}, AFy stands for the scalar product. The change in the first term is given by
8(Af) =87 f + 18f. The change in the second term instead is given by § log Z = SAE [F] +
AE [8F], where expected values are taken with respect to p,, and hence E [F] = f so that the
terms proportional to 61 cancel.
8For example, we can take a sample Xl = (Y(l), s YiN)) and estimate
1<
Em:NZﬁ%
i=1

if N is very large.
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then the experiment confirms the theory. If it does not, then, in order to
include this observation, the theory has to be modified as

1
(1) X) = —e/llFl(x)’
p(x) 7@y
)
where A; has to be fixed so that Zx e PP ()F(x) = % = f;. This
1

procedure can be repeated by performing further experiments on other ob-
servables Y}, = F;(X), for k = 2,3, .... At each step, if the prediction of the
current theory p—1 does not match the outcome f} of the experiment, i.e. if
fe# Yey p*k=D(x)F,(x), then the theory has to be refined p*— - p®*)

with the procedure given above. In this way the theory p®) encodes, at each
step, all the knowledge that has been accumulated in past experiments. Notice
that if 1, = 0 then p® = pk-1),

The entropy #[p®] is clearly a non-increasing function of k, so it gener-
ally decreases in the process of refining the theory.® The difference H[ p*—1]—
H[p®] is the amount of information that is learned in the k™ step.

There are different ways in which the principle of maximal entropy enters
statistical inference. For example, one should be aware that each statistical
method which are based on the covariance of the data — as e.g. principal
component analysis or K-means clustering — implicitly assume that the data
follows Gaussian statistics. Indeed, the conclusions drawn from these methods
would be exactly the same if the data were drawn from a Gaussian distribution
that reproduces the empirical covariance. All information contained on higher
order statistics (e.g. three point correlations) is lost.

In other situations maximum entropy distributions are assumed precisely
because one intends to focus on specific properties. For example, in the
problem of the reconstruction of the three dimensional structure of proteins
from their sequence, one can assume that the stability of the structure depends
on the presence of contacts between amino acids that attract each other. These
are amino-acids which are close in space even if they are far apart along the
sequence. Because of their relevance for the stability of the three dimensional
structure, these amino-acid pairs should be conserved by evolution, or rather
they should co-evolve. This means that a mutation on one of them should be
accompanied by a compensatory mutation on the other.

In a data set of many sequences of proteins with the same structure, this

9Remember our discussion on the mutual information: the knowledge of a random variable
Y decreases our uncertainty on X a priori, but a posteriori there may be values of Y such that
the entropy of X is actually larger. Why is this not the case in the situation we’re discussing
here?
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Figure 49. The three dimensional structure of a protein.

reflects in the distribution of pairwise correlations between amino-acids sug-
gesting that contacts can be identified by fitting a model of pairwise interacting
amino-acids on the data. For more information on this, see [34].

18.1.3 Continuous variables

It seems natural to generalise the discussion above to continuous variables X
with pdf p(x), by adopting the differential entropy h[X] instead of H[X] and
replacing partial with functional derivatives. So, for example, the distribution
of maximal (differential) entropy for X € [0, o0) with E[X] = u is the expo-
nential p(x) = u~'e~*/* and the distribution of maximal entropy for X € R
with E[X] = u and V[X] = o2 is the Gaussian

1 _ (x—p)?
e 22

p(x) =
2o

The main problem with this approach is that re-parametrisation invariance
is lost. Imagine two observers that want to make inference on the same
system and measure the same quantity ¢. Yet the first observer represent the
observables ¢(x) as a function of x and the second as a function of y, where y =
f(x), with f(x) a strictly increasing function of x. Hence, the second observer
represents the same quantity with a different function ¢(y) = ¢(f~1(»)). On
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the basis of the same data ¢ = (¢4, ..., $,,) and the same measurement

their states of knowledge would be encoded in the two distributions
Z ’ VA

respectively, where we assume that the two distributions are normalisable
(i.e. Z,Z < +00). Yet these correspond to two different states of knowledge.
Indeed, by a change of variable, the pdf p(y) for the second observer would
correspond to

Af () _ 1 gy 4SC0)

p(x) =p(f(x) “ix 7 dx

which is different from p(x). Indeed it is not even a maximum (differential)
entropy distribution.!® Indeed, the two observers maximise two different
functions h[X] and h[Y] subject to the same constraint. It is no wonder that
their states of knowledge are different. The problem is that for continuous
variables the differential entropy does not provide a way to encode a state of
complete ignorance, rather it allows us only to quantify changes in our state
of knowledge. The issue of how to represent, from first principles, a state of
ignorance for continuous variables, corresponds to the problem of choosing
the non-informative prior in Bayesian statistics that is discussed in [8]. The
bottom line is that, when possible, symmetries of the problem can be used to
determine the prior. In order to give a flavour of the argument, imagine we
want to find the pdf py(x) that encodes the state of complete ignorance for a
random variable X € R. We shall call this a prior because this pdf represents
what is known on X before we make any measurement. Imagine two observers,
one that measures the variable X and the other that measures Y = X + a, with
a € R a constant. Because of translation invariance, the state of knowledge
of the two observers must be the same, they both have no clue of what the
value of X (or Y) is, i.e. they should both use the same prior p,. They must
also assign the same probability py(x)dx = py(y)dy to the same intervals of
X. This means that py(x) = po(x + a) for all values of a, which means that

po(x) =c

For discrete variables X this problem does not arise. Both observers assign the same
probabilities to corresponding values of X and Y, because f is a bijection between discrete
values.
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must be a constant. The problem is that in order for this pdf to be normalisable
one should have ¢ — 0, i.e. py(x) is an improper prior.

Exercise 18.2

Using the same argument, show that the prior that encodes a state
of complete ignorance on a positive real random variable X > 0 is
Do(x) = ¢/x. This is again an improper prior.

In order to understand the origin of the problem, let’s go back to the
discrete case. There, the state of complete ignorance is the one which is
further away from the state of complete knowledge X = X, in terms of the
minimal number of binary questions that need to be asked to determine X.
If X is continuous, it is clear that the minimal number of binary questions
should be infinite. This tallies with the fact that, when symmetries can be
used, one finds improper (i.e. non normalisable) priors, i.e. priors for which
h[X] = +c0.

Even if it is disturbing, the fact that p, is not normalisibale, does not
prevents us from using it in learning. Imagine indeed that we collect a sample
¢ of N independent observations of the variable ¢(X), and we observe that

1Y _
ﬁgcﬁ(xi) =¢.

Then we can use the machinery of large deviation theory to incorporate this
information in the state of knowledge p,. Formally, the updated state of
knowledge now would read

po(x)e )

p(x|¢) = 70

, Z(A)zf dx po(x)et?™), (18.16)

If we substitute py(x) = c, the constant ¢ cancels in both the numerator and
the denominator. So the fact that p,(x) is improper, does not prevent p(x|¢)
to be a proper pdf, provided that Z(1) < co.!

1A limiting procedure that could be applied is to limit the values of X to the interval
[-1/(2c),1/(2¢c)], do the calculation, and then let ¢ — 0. This is an example of a regularisation,
a technique used to remove singularities from a problem. The prior p, should be invariant
under affine transformation X’ = a + bX for all @ € R and all b > 0. This suggests that
location and scale of a random variable X both need improper priors and both introduce a
singularity that needs to be regularised. An interesting question, which is open to the best of
my knowledge, is: are these the only (primitive) singularities or can there be other ones?
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Yet there’s another problem with Eq. (18.3). Take the example where our
current state of knowledge p® implies that X is a Gaussian random variable
with mean u and variance o2. On the basis of this, you would predict that
S = E[X?] should take the value S = u3 + 3uc?. Imagine you observe that S
is significantly different from this value. What should you conclude?

If you try to incorporate this information in the distribution, you end with
a distribution

pO(x) = % XAt A x

that cannot be normalised, so the recipe of maximum entropy fails.
There is a way to accommodate the observation S # w3+ 3uo? that requires
a minimal modification of the distribution p(®). Take

PV(x) = €8(x = A) + (1 = e)pV(x)

then, a trite calculation leads to

E[X]=pu+elA—pun) (18.17)
V[X]=0?+¢€[o?+ (1 —e)u(u — 2A)] (18.18)
E[X3] = u3 +3uc? + ¢ [A3 — 3uc? — 3u°] . (18.19)

If we take "
A= (S—pu®-3uc?) 3 =173

then in the limite — 0we recover all the three observed moments. At the same
time, in this limit, p — p© which is the original distribution. Formally this
is correct, but what does it mean?

The fact that h[pV] = h[p©®] implies that the observation on S does not
dispel any uncertainty on X. 2 The distribution p») can be realised by a
sample of n ~ ¢! observations of S; = X 13 in n — 1 of which, X; is a typical
draw from p(®, and one of them takes value X;. = A ~ n!/3 which is very large.
All this is reminiscent of the discussion we had concerning large deviations
of fat tailed distributions.

Indeed the pdf of S, behaves asymptotically as

P{S € [s,s + ds)} ~ e“'|s|2/3ds, [s| = oo.

12This discussion suggests that statistical analysis should be carried out on variables whose
distribution has thin tails. For example, gene expression is measured in experiments based on
PCR (Polymerase Chain Reaction), which is a method by which a weak signal is amplified in a
multiplicative process. As a result, the outcome of PCR is a concentration (of mRNA) which
has a very broad distribution. For this reason, it is customary to base statistical analysis on
the logarithm of the concentration and to discuss gene activation or suppression in terms of
fold-increase or decrease of the measured concentration.
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Therefore S has a fat tailed distribution. As we have seen in the previous
chapter, we expect that large deviations (or unexpected events) of samples
drawn from such distributions occur in a peculiar manner, where one of the
points in the sample attains an anomalously large (or small) value, whereas all
the others take typical values. In this situation, the observation on S cannot
change the state of knowledge on the variable X.

This indicates what type of observables will bring new information, in
the sense that unexpected events allow us to update our state of knowledge
on X, and what observables do not. This suggests that it is useless to sample
observables which have a fat tailed distribution under the current state of
knowledge, if our goal is to test a theory p(©.

18.1.4 What can we learn?

Remember our discussion on complex systems that maximise a complex
function U(s, §) over a set of variables s = (s, §) which are known only in
part, because § are unknown unknowns. We concluded that the probability to
observe a certain value s is given by

s _a__L pu
Ae=s=2m
where u; = E [U(s, 5)|s] is the known part of the function that is optimised
and 8 > 0 depends on the optimisation over unknown variables.

If we do not know the function ug, can we use the procedure outlined
above to learn it? In other words, can the function u, be learned from a series
of experiments? B

Let p(O)(g) be the distribution that encodes the current state of knowledge
about the system. For a quantity g, it is possible to compute its distribution

p ) =2, p()é(q — qy)

N
Imagine running an experiment where the value gy, is measured. In par-
ticular, for a complex system, we can assume that s is a high dimensional
vector of weakly dependent variables. So that the distribution of g should be
sharply peaked around its expected value E@[q] = Y p©®(s)q,, and hence

~ E@[q]
qexp ql-

If gexp ~ EQ[q] within experimental errors, then the state of knowledge
p© does not need to be updated. Otherwise it has to be revised.!> In the latter

B3There is a long tradition of experiments designed to test our state of knowledge in physics.
For example, until 1964, we expected that the laws of Nature should be invariant under
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case, the standard recipe to update p( is given by Large Deviation Theory.
This maintains that the new distribution should be such that E®[q] = Qexp>
without assuming anything else. More precisely, the amount of information
that the measurement gives on the state s is given by the mutual information
1(s,q) = Dg[pPV | p©@]. Hence, p™ should be the distribution with EV[q] =
Gexp for which Dg; [pV| p©@] is minimal. The distribution that satisfies this
requirement is

1

p(l)(g) — Z(g)

pO(s)et®,  Z(g) = f dgp©(g)esd (18.20)

where g is adjusted in such a way to satisfy EV[q] = dexp- This process can
be continued with additional measures of different observables g}, g7 , ..., and,
in principle, it leads to infer

Bug = log pO(s) + gqs + &'qs + &"q) + - (18.21)

to the desired accuracy from a series of experiments.

This recipe, however, only works for quantities which have a distribution
which falls off faster than exponential as ¢ — +oo. If —log p©(q) =~ c|q|”
for |g| - oo with y < 1, then the integral defining Z(g) in Eq. (18.20) is
not defined. There is no well defined way to incorporate an observation
dexp # E [q] in the current state of knowledge in this case. This clearly applies
to uy itself. The only models ug that can be learned are those for which the
density of states -

N@)du = |{s : us; € [u,u +du)}|

has thin tails, i.e. decays like or faster than an exponential as u — o0. In
this sense, systems where V(1) have an exponential behaviour with u are
special, because they separates the region of learnable systems — those for
which V' (u) has thin tails — from unlearnable ones — those where u, has
a fat tailed distribution. Interestingly, these are the systems that are best at
learning according to [35, 36].

time reversal T. The CPT theorem states that the laws of Nature should be invariant under
the combined transformation CPT, where C stands for charge conjugation and P for parity
transformations. The discovery of the violation of the CP symmetry in experiments on the
decays of neutral kaons, changed our state of knowledge in particle physics.



Chapter 19

Statistical mechanics

Statistical mechanics describes the macroscopic behaviour of systems of many
particles. Let us briefly recall the standard approach to statistical mechanics,
following ref. [37] — to which we refer as LANDAU— or [38] — to which
we refer as KARDAR. A configuration X = (X1, ..., X,,) of a physical systems
is a vector of the n coordinates X; of the particles, where n =~ 6 - 10?3 is of
the order of Avogadro’s number.! The coordinates X; satisfy Newton’s law
of classical mechanics, that defines a trajectory X(¢) of the configuration in
phase space T'. These provide a complete microscopic description of the system.
Statistical mechanics aims at deriving a statistical description from mechanics,
in which the information on the microscopic configuration X is lost. The idea
of statistical mechanics is that time averages can be replaced by statistical
averages on an ensemble of systems with a distribution p(X) onT'. This means
that, for any observable O(X),

to+T

lim & dt0 (X(1)) = f dXp)OX). (19.1)

T—oo T t T

The objective of statistical mechanics is to compute p(X), so that the values
of observables can be computed theoretically.

For an isolated systems that is not subject to external forces, the energy
E(X) is a constant of the motion. So the dynamics X only spans the manifold
of T with a fixed value of E(X) = U. In addition, Liouville’s theorem? ensures
that the probability p(X) is also a constant of the motion. Under the ergodic

n classical mechanics the coordinates X; = (g;, p;) of a particle specify its position g; and
its momentum p;, each of which is a d dimensional vector.

The Liouville theorem concerns the evolution of the probability distribution p(X, t) under
Hamiltonian dynamics.

293
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hypothesis, that affirms that all states X with the same energy E(X) = U are
visited,* one concludes that for an isolated system whose initial energy is in a
narrow interval E(X) € [U,U + A) around U

1

o0 =) o TEXREUU+A
N 0

(19.2)
otherwise

where AT'(U) is the volume of I such that E(X) = [U,U + A). Eq. (19.2)
is called the microcanonical ensemble. There is no proof that the ergodic
hypothesis is true in general, and there are several counter-examples. In prac-
tice, however, for systems of many degrees of freedom the ergodic hypothesis
typically holds because the set of initial conditions for which Eq. (19.1) fails
vanishes as n — oo. These arguments are discussed in detail by Baldovin et
al. [56], which is a recommended reading.
For a subsystem of a larger isolated system, instead, one can argue that

Z(B)

where §8 is the inverse temperature.* Eq. (19.3) is called the canonical ensemble.

pX) = L, z(8) = f dXe PEX) (19.3)
T

It combines Hamilton’s equations

L, __3E _3E
bi = 3, ql_api

with the continuity equation in phase space Z—f + VK(p)j ) = 0, that states that the change in
p(X,t) in any volume dX is due to trajectories X(¢) entering or leaving dX. As a result, the
Liouville theorem states that

dp @ .
d—f:;f+[@p])_{=0.

3The ergodic hypothesis has the same flavour of irreducibility in the case of Markov chains.
In an irreducible chain, every state can be reached from any other state by a sequence of
transitions with positive probability. In Markov chains irreducibility ensures the uniqueness of
the invariant distribution, i.e. it ensures that the asymptotic distribution is the same, irrespective
of the initial conditions. Likewise, the ergodic hypothesis ensures that all states X with energy
U can be reached from any other state X' with the same energy.

*One way to reach this conclusion is the one offered by LANDAU: if p(X(t)) is a constant of
the motion, then it has to be a function of the constants of the motion. For a system at rest,
this means that p(X) = f (E(X)) must be a function of the energy. The function f(-) can be
identified by requiring that if X and X are two subsystems of a larger system in equilibrium,
and if the interaction between particles are short ranged, then X and X should be independent,
ie. pp(X,X ) = py(X,)p,(X)). At the same time, the energy of the combined system is
additive, i.e. EHZ()_(I,)_(Z) = El()_(l) + Ez()_(z). This implies that f(E) = e*** should have an
exponential form, as in Eq. (19.3). Note that the assumption of independence of X and X,
implies that H[X ,X ] is maximal.
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Both Egs. (19.2) and (19.3) have the form of a maximum entropy distribu-
tion. Indeed Boltzmann spent considerable effort to show that the distribution
p(x,t) of the coordinates of a single particle in a classical fluid, satisfies an
equation — later named after him — that admits —%(| p] as a Lyapunov func-
tion.> In other words, the entropy cannot decrease, i.e.

d[p]

T >0. (19.4)
This is called the Boltzmann H-theorem. This result relies on the so-called
molecular chaos hypothesis that states that when two particles of the fluid col-
lide, we can assume that their velocities are independent random variables.°
This is not true, strictly speaking, because the same two molecules collide
many times with each other, so in principle the velocity of one of the parti-
cles depends on the exchanges of momentum it had with previous particles,
including the other one. Yet this hypothesis makes a lot of sense, because
between two consecutive collisions between the same two particles, both of
them collide with so many other particles that the memory of past encounters
is “lost in collisions”.

The molecular chaos hypothesis has nothing to do with physics. Itis a
purely statistical hypothesis, that however has remarkable consequences. In-
deed, the laws of motion of classical mechanics are invariant for time reversal
whereas Eq. (19.4) states that the entropy is not. The H theorem is also in
contradiction with Poincaré recurrence theorem that states that an Hamilto-
nian system that starts in a given state will return to it, or arbitrarily close to
it, after a sufficiently long time. Apparently also time reversal invariance is
“lost in collisions”. How is this possible?

Loosely speaking, this is because “sufficiently long” means an astronomi-
cally long time. The time a system spends in equilibrium states is astronom-
ically longer than that spent in non-equilibrium states, because the latter
are astronomically more numerous than the latter. This is a statement of
the same nature as the Asymptotic Equipartition Property. Hence, a system
prepared in a non-equilibrium state will soon relax to equilibrium, but it is
practically impossible to observe an equilibrium state that will evolve into a
non-equilibrium one. Furthermore, the molecular chaos hypothesis assumes
that particles loose memory of their previous encounters. Understandably,

A Lyapunov function is a function that decreases on all the trajectories of the dynamics.

SWithout this assumption, the equation for the distribution of the coordinates of a single
particle would depend on the joint distribution of the coordinates of two particles. The latter,
in turn, satisfies an equation that involves the joint distribution of even more particles. This is
the so-called BBGKY hierarchy of equations (see KARDAR). The molecular chaos hypothesis
closes this hierarchy, by assuming independence.
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a system that looses memory will converge to a state of maximal ignorance,
i.e. a state of maximum entropy. Note, furthermore, that the molecular chaos
hypothesis itself entails maximum entropy at the molecular scale, by assuming
independence of the momenta of two colliding particles.

In this derivation, the appearance of the entropy as the functional whose
maximisation describes equilibrium states looks like a coincidence. In hind-
sight it makes a lot of sense:’ the equilibrium state of macroscopic systems
can be described even if all microscopic details are ignored completely, which
is exactly what the maximum entropy principle implies. The fact that equilib-
rium states of a system are described by a state of maximal ignorance means
that they can’t be distinguished. Non-equilibrium states can be distinguished
because there are many ways of driving a system out of equilibrium. The
information on how a system is driven out of equilibrium, is precisely the
information which is lost when the system relaxes back to equilibrium — a
state of maximal ignorance.

Ultimately, the macroscopic behaviour arises from the interplay of two
key quantities: the probability p(X) of configurations, or its logarithm which
is proportional to the energy, and the number W(E) of configurations with
the same probability (or with the same energy), which is the entropy S(E) =
log W(E). The tradeoff between energy and entropy has its roots in typical
behaviour, and it is of the same nature of the one that relates the probability of
typical sequences to their number in the Asymptotic Equipartition Property.

Before continuing, it is worth to remark that the same system can be
described at three different levels:

Configurations. Classical mechanics describes the system at the level of
configurations X, which is the vector of coordinates and momenta for
all particles.

States. The same system can be described in terms of the single particle
probability distribution p(x). For example, the Boltzmann equation
(see KARDAR) is based on the distribution p(x) of the coordinates of
single particles.

Thermodynamic variables. The macroscopic description of the equilib-
rium of the system is described by thermodynamic variables. Some of

"From what we have learned so far, the entropy measures exactly how much information
is “lost in collisions”, i.e. how much the uncertainty on a system whose microscopic state is
initially described by a state p,(X) increases in time. It is worth remembering, at this point,
that the exact knowledge of the state of a system is theoretically impossible, because an infinite
number of bits would be needed to specify exactly the position of even a single particle.
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these are extensive, like the internal energy, the entropy and the volume,
in the sense that they are proportional to the number n of particles.
Some are intensive, such as the temperature the pressure or the chemi-
cal potential. Some of these have a mechanical origin, like the energy,
in the sense that they are functions of the coordinates X of the system.
Others have a purely statistical origin, such as the entropy, in the sense
that they depend on the distribution p(X).

We have seen these different levels of description when we described the prop-
erties of sequences X of many i.i.d. random variables. As a consequence of the
Asymptotic Equipartition Property, we have seen that all typical sequences cor-
respond to the same type Py (which corresponds to a state) and that averages

: 2 f(X;), such as e.g. the energy, become deterministic (i.e. non-random)
n

quantities, much like thermodynamic variables. The limitn — oo corresponds
to the thermodynamic limit, when the number of particles in the system and
its volume both diverge. A macroscopic physical system with a number of
particles which is of the order of Avogadro’s number n ~ 6 - 10?3, is very close
to this limit.

The coordinates of the particles are not independent random variables,
because of the presence of interactions. Yet these interactions are local, which
means that each particle interacts with only a finite number of other particles.
Particles which are sufficiently far apart are in practice independent. So the
vector X can be considered as a sequence of weakly interacting particles, for
which the description of the Asymptotic Equipartition Property applies.®

19.1 Statistical mechanics as maximum entropy
inference

The attempt to derive the macroscopic behaviour — i.e. thermodynamics —
from the laws of classical mechanics relies on the ergodic and the molecular
chaos hypotheses, and it arrives at the maximum entropy principle. Yet neither
of these hypotheses is strictly necessary. The Hamiltonian, which is the energy
of the system as a function of its coordinates, contains all information on
its dynamics. The energy itself is a constant of the motion. Therefore, the

81t is important to note that interaction between particles (e.g. collisions in a gas) are
essential for the system to reach an homogeneous equilibrium. If particles did not interact,
each would follow its trajectory with its own conserved quantities (e.g. momentum and kinetic
energy). We can consider the coordinates of particles as random variables precisely because in
between two observations at different point in time, the same particle has undergone so many
interactions with other particles, that its state is totally unpredictable.
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maximum entropy principle can be invoked at the outset to predict the state
of the system: the best description of a system is the one that does not make
unnecessary assumptions. This leads to Eq. (19.2) for an isolated system at
energy E and to Eq. (19.3) for a system in contact with a larger system with
which it can exchange energy.’ This approach to statistical mechanics was
proposed by Jaynes [32], to which we refer for more details.

As we have seen, the microcanonical and the canonical distributions are
direct consequences of the maximum entropy principle. The second law of
thermodynamics is implicit with it, whereas the zeroth (Eq. (18.13)) and the
first (Eq. (18.15)) law of thermodynamics, as we have seen, are also a direct
consequence of it. Let us review them here. The equilibrium entropy of the
system with internal energy U = E [E(X)] is defined as

S(U) = p:{Er[lg])iU}([p]. (19.5)

The inverse temperature 8 = kLT is defined as'”
B
_ds

b=3w

The zeroth law says that the temperature of systems in thermal equilibrium
must be the same. For a system composed of two parts, the entropy satisfies

SWU) = n}]ax [S1(U1) + S,(U = Uy)] (19.6)

where S; and S, are the entropies of subsystems 1 and 2, each of which is the
solution of the maximisation of the entropy on the respective subsystem, with
E [El-()_( i)] = U, (i = 1,2). The first order condition of the maximisation in
Eq. (19.6) yields

ds, ds,

— = = =B1—B=0
dU;,  dUsly_yy, '+ °

which implies that the temperatures in the two subsystems must be the same,
in equilibrium. If the system is slightly out of equilibrium and §; # 3,, then
we expect the equilibrium will be restored by means of an exchange in energy
between the two parts of the system. If the energy of system 1 increases by

°Indeed, the energy E(X) is a sufficient statistics of Egs. (19.2), (19.3).
10With respect to the notation used in the derivation of Eq. (18.15), here f = U is the internal
energy, 3 = —1 is the inverse temperature and SF(8) = ¢(1) defines the free energy F(j).
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dU, then that of system 2 decreases by the same amount, because the energy
of the combined system is conserved. Hence the increase in S is given by

ds = (B, — B)dU, > 0.

This states that energy (i.e. heat) will pass from hotter to colder bodies, and not
vice-versa.!! This is Clausius statement of the second law of thermodynamics.

In a thermodynamic transformation where the energy levels E(X) change
by §E(X) and the internal energy U changes by dU, the change in entropy
S(U) is given by the same argument leading to Eq. (18.15), i.e.
dS = B(dU — E[6E(X)]). This can be rewritten as

dU = 8Q + W . (19.7)

which is the first law of thermodynamics. In Eq. (19.7) 6Q = dS/f is the heat
supplied to the system, whereas SW = E [§E(X)] is the work done on the
system. Note that dU is an exact differential (i.e. it is the differential of a state
variable), whereas §Q and §W are not.

For an isolated system of n particles in a finite volume V, the entropy
S(U,V,n) is a function of U, V and n. The thermodynamics description
of systems in thermal equilibrium at temperature 1/8 is obtained from the
Legendre transform, and it is given by the free energy

F(B.V.n) = %mpin [BE [E] - #c[p]] = —% logZB.V.n).  (19.8)

Hence, in practice, the equilibrium of a system at (inverse) temperature 3 is
derived from the partition function Z in Eq. (19.3) using Eq. (19.8) to compute
the free energy.

The same recipe of Legendre transform can be applied to obtain a de-
scription where the volume or the number of particles are allowed to change.
The first step is to identify the conjugate variable and the second to find the
corresponding thermodynamic potential. For example, for systems that can
freely expand in their environment (i.e. V' is not fixed), at temperature 1/,
the conjugate variable that replaces V is the pressure

oF

P=—a—V

BIf B, > B,, i.e. if 1 is colder than 2, then dU; > 0, which means that heat will flow from
2to 1.
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and the thermodynamic potential is G(8,P,n) = F + PV. Likewise, the
conjugate variable to n is the chemical potential 4 = ‘;—F and the potential'? is
n

Q(B,V, u) = F—un. We refer to LANDAU or KARDAR for a detailed discussion.

In the rest of this Chapter, we shall focus on applying the recipe of statistical
mechanics in few interesting cases, where we shall put to use what we have
learned.

19.2 The classical ideal gas

In order to illustrate the concepts discussed so far, let us consider a gas of n
non-interacting particles of mass m in a box of volume V" at temperature 1/p.
The Hamiltoninan, in terms of the canonical coordinates (q, p), is given by

n p?
E(q,p) = ﬁ
i=1

where q = (q, -.-,q,) is the vector of positions of the particles and p the
vector of momenta. In D dimensions these are nD dimensional vectors. The
canonical partition function is obtained integrating over all coordinates, i.e.

Z(B,V,n) = qudpe‘ﬁE(q’P) (19.9)
0 o nD
=V" f dpe_ﬂl (19.10)
o .
_— (2”7"1) ’ (19.11)

Hence the free energy is given by

1 n 2rm\ 2
F=—=logZ =——log V(—) . (19.12)
B B B
All thermodynamics quantities of interest, like the energy
0 nD
U=—(fF)=—
35 (BF) = = 5

12This is called the grand potential and it corresponds to a distribution p that is called the
grand-canonical ensemble.
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or the pressure
oF n

Pz_W_‘B_V

are obtained from F.

A disturbing fact of this result is that the free energy of the ideal gas is not
extensive. Indeed F /n diverges in the thermodynamic limit n — oo with V' /n
finite (see Eq. (19.12)). The root of the problem lies in the entropy

S=p(U—-F)=nlogV + %logc”em)

B

which is non-extensive, because of the first term. This fact, known as the
Gibbs paradox is not a mistake. The entropy is exactly what it should be, i.e.

(19.13)

S=-n / diddBe(d, B)log (G, B) (19.14)

where (g, p) is the single particle probability density function

L 1/ B D/2 o2

p(q,p) = v (ﬁ) e am.

The origin of the “paradox” lies in the distribution of positions, which is
uniform in the volume occupied by the gas. The fact that there is no paradox,
is illustrated by comparing the state of a gas of n particles in a volume V at
temperature 1/ with that of the same system which is divided in two equal
parts of volume V' /2, each of which contains n/2 particles. The free energy
of the split system is smaller than that of the original system by an amount
nlog2. This is precisely the number of bits needed to specify in which part
each of the molecules is confined when the gas is divided in two parts. The
calculation leading to Eq. (19.12) correctly accounts for this loss of information.
Ultimately, the “paradox” arises because the particles are distinguishable and
they carry their own identity as they travel around the system. Note that there
is no Gibbs paradox if instead of a gas one considers a solid, where each atom
is localised in its specific location. It is only when particles are allowed to
exchange their roles by physics that problems with extensivity arise.

There are two ways to recover an extensive free energy. The first is to con-
sider indistinguishable particles. For example, you can check that in a Bose
gas the free energy is extensive. The second is to remember the discussion we
had on generating functions for labelled objects Eq. (7.19). There we learned
that when counting distinguishable (i.e. labelled) objects we need to mod-
ify our mathematical counting device, in order to preserve the composition
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property. After all, the partition function is nothing but a generating function,
so that discussion suggests that we should use a modified partition function,
dividing it by n!. In this way the free energy

D

g "nl B n\ g B

regains its extensive character. Yet, this mathematical artifice spoils the inter-
pretation of the entropy in information theoretic terms.

Exercise 19.1

Note that p and ¢ are continuous variables and Eq. (19.14) is a differen-
tial entropy. Does introducing a finite precision in our measurement of
the positions and momenta, e.g. as suggested by Heisenberg uncertainty
principle, fixes Gibbs paradox?

Exercise 19.2

In a Bose gas, particles occupy single particle states with energy
hk?/(2m) with each component of k taking discrete values 27¢ /L,
and V = L3. Compute the free energy of the ideal Bose gas and check
that it is extensive.

Summarising, non-extensivity derives from the assumption of distinguisha-
bility of classical mechanics. Quantum mechanics shows that this assumption
is wrong: particles are indistinguishable. Yet one could envisage a system
of classical distinguishable particles and one could ask whether the non-
extensive part of the free energy could have some physical effect, and if so, can
it be used? In other words, can the information on which particle is which be
used to do work?

19.2.1 The Slilard information engine*

Far from providing an answer, let us see how (some) information can be
turned into work in a simple case. Let us consider the same system, but in a
box that is partitioned into g different compartments, by g — 1 vertical walls.
Let ¢, be the longitudinal length of compartment a = 1, ..., q. We assume the
box to have unit area in the perpendicular direction, so ¢, is also the volume
of partition a. We denote by X; the partition to which particle i belongs. The
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Figure 50. An ideal gas in a box divided by walls. If walls can move horizontally the
gas in different partitions will expand or contract so as to reach equilibrium.

probability to find particle i in box a is

C, d
pazf’ Lsza

a=1

and since all particles are independent, the probability of a configuration
X = (Xy,...,X,,) is given by

n q
PX) =] px =] pa (19.15)
i=1 a=1
where n, = |{i : X; = a}| is the number of particles in partition a and

ZZ=1 n, = n. Each of the sub-systems is an ideal gas of n, particles in thermal
equilibrium at temperature 1/3. We can derive the Hamiltonian of the system
in terms of the coordinates X, by equating Eq. (19.15) with the Boltzmann

equation P(X) = %e‘ﬁEo—(). This gives

q q

t

EX) = _l Z n,logp, = Z €qMgs €, = _l 10g7‘1 , (19.16)
6 a=1 a=1 ﬁ

with Z(8) = 1. This is equivalent to a system of n particles distributed on
q energy levels €,. Let us now imagine that each wall is allowed to move



304 CHAPTER 19. STATISTICAL MECHANICS

freely in the longitudinal direction. The pressure in each partition is given
by P, = ;7“, which is also the force acting on the walls. The wall between

partition a and a + 1 will experience a force equal to P, — P, and it will
move accordingly, until the new positions ¢, are such that the pressure in
each compartment is the same

~ n
P, =—"2 =
Bta

P

where P = ﬁiL This condition implies that the new positions ¢, should be
such that

.ty g
Pa =T =

is exactly equal to the probabilities p, that make the configuration X as likely
as possible (these will be called the maximum likelihood parameters in the

next chapter).

Exercise 19.3

The temperature of Bernoulli trials: let X = (X, ..., X},) be a sequence
of Bernoulli trails, where X; = 0,1. We wish to interpret this as a
system of n independent particles in a two state system. Each particle
has energy €(X) depending on which state X = 0,1 it is in, so the

energy is given by
n

EX) =D e(X)).

i=1

Take €(0) = 1 and €(1) such that E [E(X)] = 0. With this choice, all
effects of the randomness should be ascribed to the temperature, which

is the only free parameter. By equating p(X) to %e‘ﬁE()—() show that the

(inverse) temperature is given by 8 = plog IL. Comment the result.
-p

The work done in this transformation is

q éa q f?a
n n R
W=7 | dtP,(t)=7), dfﬁ—; = gPwlplpl. (19.17)
a=1Y7¢, a=1Y¢,

which is related to the Kullback-Leibler divergence between the final and the
initial state. So W is related to the change in the information content of
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Figure 51. The Szilard engine.

the system. The key point is that this work can be used if the number n, of
particles in each partition is known.'3

Exercise 19.4

Show that W = nlI(n, q) can also be written as the mutual information
between the x-position g of one of the particles and the vector n =

(nq,..., nq).

Eq. (19.17) equates the work that can be done by a quasi-static transforma-
tion to a Kullback-Leibler divergence. This relation is true in general. Indeed
the work done in a quasi-static transformation at constant temperature equals
the difference in the free energy, because by the first law of thermodynamics,
AW = AE [E] — AQ = AE [E] — TAS = AF. This relation is true if the initial
and final states, as well as all intermediate states, are equilibrium states. It
also holds whatever is the distribution p(X) of the initial state, provided that
the entropy of the final state is given by Shannon’s formula S = kzH[X], with
AF = kpTDgr[pllpeqls as shown by Esposito and Van den Broeck [40], where
Deq is the equilibrium distribution.

Finally note that, because of Eq. (19.16), the work is precisely given by its

13If the number n,, of particles in each partition is known, it is possible to anticipate in which
direction the walls will move and to exploit the movements of the walls to perform work (e.g.
by lifting a weight attached to the walls). Szilard used this to device a cyclic transformation of
an ideal system in which the knowledge of n makes it possible to extract work from a system
at finite temperature 1/. Szilard proposed this as a simple manifestation of Maxwell’s demon
idea, i.e. that knowledge of the microscopic state of a system makes it possible to (apparently)
violate the second law of thermodynamics. Note that the amount of work W = nI(n, q)/ can
be measured in bits. For more details, see [39].
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loss in internal energy, i.e.
W = EQX) - E'(X)

due to the change d¢, in the energy levels.

19.3 The Ising model

The Ising model is the workhorse of statistical mechanics. It describes a
magnetic system where each atom is characterised by a magnetic moment —
a spin for short — that can either point up or down. Hence X = (X, ..., X,,)
is a vector of variables X; = +1 that take only two values. The Hamiltonian is
defined as

n
EX)=-h)X;—J Y, XX;
i=1 <i,j>
The first term describes the influence of an external magnetic field & that
promotes an alignment of the spins in the direction of the sign of h (remember
that states of minimal energy are more likely). In the second, the sum runs
on all pairs <i, j > of interacting spins and promotes states where spins are
aligned (for J > 0). In real physical systems, a spin i interacts only with spins
of atoms that are nearby in space. Here we consider the mean field version of
the model, where the sum on <i, j> is replaced by a sum over all pairs, but
with an intensity reduced by a factor n, i.e.

EX)=-h) X;— %ZXin. (19.18)
i=1

i<j
The factor 1/n ensures that the energy of the ground state'*

. J
rrgnE()_() =—|h|ln— E(n -1 xn

is extensive.
In order to compute the partition function, we use the fact that

2 2
g =3(2x) -32x=3(3x) -5
1 ] )

i<j

4This is obtained by aligning all spins with h, i.e. X; = sign h for all i.
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Therefore, neglecting the last term n/2, that only contributes a constant, and

Z(B) = Y, e PEXD (19.19)
X
. n o\ gam+Eme
= >0 (e )™ (19.20)
M=-n 2
n 1
~ f dme—"B8mph) (19.21)
-1

where we changed variables from M to m = M /n. The function g is given by

g(m, B, h) = —%}([m] —hm — szmz, (19.22)

where

1 n
#lm] = 1 10g (1am )
2
N_1+m10 1+m_1—m10 1-—
R T 2 8T

(19.23)

is the entropy of a random variable X = +1, with P{X = +1} = HTm, and

the last expression is a trite application of Stirling’s formula. Eq. (19.21) can
be evaluated by the saddle point method, so the free energy per particle is
given by!>

1(8.) = 5 lim T108.2(6) = g(m", 6, ) (19.24)

where m*(3, h) is the solution of the equation ;—g = 0. The equation for m*
m
can be put in the form?!®

m* = tanh (Bh + fIm*). (19.25)

I5Note that m* is the conjugate variable to h, because

df _dg dg dm*

dh ~oh T amdn

*

E)
because 5—3 = 0when m = m*.
m
6Here we use the relation

1+m
1-m

1
arctanhm = 3 log
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tanh(Bh + BJm) 4 tanh(Bh + BJm)4

B8J <1 BJ >1

m m

g(m)s m

g(m) ¢

. J

Figure 52. Graphical solution of the saddle point equations for the magnetisation of
the mean field Ising model. The top graphs show the solutions of Eq. (19.25) and the
bottom graphs the corresponding values of g for high temperatures (8J < 1, left) and
low temperatures (3J > 1, right).

The behaviour of m* as a function of & can be analysed by plotting the left
and the right hand side of Eq. (19.25), as in Figure 52.

For BJ < 1 the solution to Eq. (19.25) is unique for all values of &, and
it continuously increases from —1 to 1. For gJ > 1, instead, there is an
interval of h around the origin where Eq. (19.25) has three solutions. The plot
(see Figure 53) of all three solutions, as a function of h, exhibits an s-shaped
behaviour around the origin. Inspection of the function g reveals that one
of them is a maximum of g, that corresponds to an unstable state. The other
two are minima. Of these, the one that has the same sign of h attains a lower
minimum. This corresponds to the equilibrium state. The other minimum is
called a meta-stable state.

Therefore the correct solution “jumps” between the negative solution and
the positive one, as soon as h crosses zero. The resulting value of m* as a
function of & is shown in Figure 53.

As a function of temperature, as shown in Figure 54, we observe that for
h # 0 the magnetisation varies between m* = +1 (depending on whether
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Figure 53. The solutions of Eq. (19.25) as a function of h for 8J = % and BJ = 2. In
the latter case, also the unstable and metastable solutions are shown. The dashed
vertical line connects the negative and the positive branch of the equilibrium solution,
that corresponds to the global minimum of g.

-

1/8J

Figure 54. The solutions of Eq. (19.25) as a function of 1/J for different values of h.

h>0orh <0)forf - oco,and m* = 0 for 8 = 0. For h = 0 instead, we
observe a singular behavior. For 8J < 1 the magnetisation vanishes (m* = 0),
whereas for 8J > 1 the magnetisation splits in two branches of opposite sign.
At h = 0 the distribution of M is symmetric for changes M — —M. This
symmetry (which is explicitly broken when & # 0) is spontaneously broken.
For BJ > 0, in spite of the fact that E [M] = 0, in each realisation of the Ising
model we find that the magnetisation takes value M = +nm™*.

In the region BJ > 0, the distribution p(X) is “divided” into two pure states
that correspond to the phases with opposite magnetisations. The distribution
of the magnetisation per spin m = M /n in the two states is approximately a
Gaussian
*)2

(mFm

pa(m) =\ [ =™ 2
- 27tV [m]
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where V [m] is the inverse of the second partial derivative of g with respect to
m, computed at m*. Any state with a magnetisation m € [—-m*, m*] (on the
vertical dashed line of Figure 53) can be obtained as a mixture

1+m/m* 1-m/m*
pmy = LB oy 4 2 o).
This corresponds to a situation where the two phases coexist. In physical sys-

tems with short range interactions this is realised by having a fraction Lt /e
in the phase with magnetisation m* and the rest in the opposite phase.'’

The singularity at the phase transition §J = 1 becomes evident if one
studies the behaviour of the susceptibility, which quantifies the change in the
observable m* if the parameter h is varied

dm*
x=— (19.26)
_ %2 dm*
- (1—m )[,8+ﬁ] o ] (19.27)
1-m*
- . (19.28)
61 - BJ (1= m*?)
For h = 0 and BJ < 1, the magnetisation vanishes. Hence the susceptibility
B
= ) h=0, I<1
=147 B

divergesas fJ — 1°.

7The thermodynamic phase a physical system with short range correlations, corresponds
to a system of weakly dependent variables which can be described in terms of a single par-
ticle distribution function, as if each particle’s coordinate were drawn independently from
a distribution P. The situations where more than one phase coexists, is then analogous to
the case of a sample X of i.i.d. draws from either P or Q, which we discussed earlier in the
context of large deviations. As we saw, the large deviation function I(X) is non-convex in
that case. In thermodynamics, non-convex thermodynamic potentials are un-physical. For
example, the van der Waals theory of liquids, predicts a non-convex potential. This contrasts
with thermodynamic stability because it results in a non-monotonic relation between pressure
and volume. The Maxwell construction remedies to this problem, by drawing an horizontal line
that cuts the non-monotonic part of the P — V curve in such a way that the areas above and
below the line in the P — V plot are equal. This condition identifies a quasi-static cycle that
can be performed exerting no work, which means that the two states at the extremes of the cut
have the same free energy. Mathematically this is equivalent to the construction leading to
I(x). Physically, the states on the horizontal line in the Maxwell construction, are mixture of
the two phases, where a fraction of the system is in one phase and the rest is in the other. In
physics, these are the thermodynamically stable states and they can be realised because it is
possible to grow bubbles of one phase into the other. The energetic cost of the mixed states is
of the order of the interface between the two phases, which is negligible with respect to the
bulk energy, which is proportional to the volume.
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Exercise 19.5

Using Eq. (19.25), prove that the same behaviour y ~ 1/|8J — 1| also
attains as §J — 17.

The singular behaviour of thermodynamic quantities at a second order
phase transition point is traditionally characterised in terms of the critical
exponents which describe the singular behaviour of thermodynamic quantities
close to a phase transition. For example, the divergence of the susceptibility
as the temperature approaches the critical point is usually described as y ~
|8 — B.177, where . is the critical value of the (inverse) temperature and y is
an exponent. Hence we found that y = 1 for the mean field Ising model (with

B =1/0).

Exercise 19.6

The exponent § is defined by the behaviour of m* ~ (8J — 1)? for
BJ — 1* at h = 0 and the exponent § by the behaviour m* ~ h'/®
when h — 0 with 8J = 1. Using the expansion of Eq. (19.25), find
B=1/2andé = 3.

Note that, the large deviation function I(X) of the magnetisation X =
L Zi X; can be computed directly for the mean field Ising model, and it reads
n

I(x) = Bf (B, h) — FH(x) — Bhx — %sz (19.29)

where F((X) is the function in Eq. (19.23). You can check that for SJ > 1 this
function is not convex and therefore its Legendre transform has a singularity
when the conjugate parameter equals —h.

19.4 The Random Energy Model

The Ising model describes a magnetic system where all atoms interact in the
same way. There are other systems where, because of impurities of different
types (called generically disorder), the interaction can be of either sign and
they can involve more than two spins. As a way to model these situations,
you can consider an Ising model where each of the interactions J; ; is drawn
at random from some distribution.'® As a result of this, the energy E(X)
itself, for a fixed configuration X, becomes a random variable. The Random

8These models are called spin glasses.
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energy Model (REM) was proposed by Derrida in 1981 [25] as an extreme
realisation of these systems, where each energy E(X) is drawn from a Gaussian

distribution
EZ

eZn’

p(E) =
2nn

independently, for each configuration!® X. With X = (X1, ..., X,,)and X; = +1,
the partition function is a sum of N = 2" random variables. One may expect
that, because of the law of large numbers,

Z(B) = Z e PEX) ~ o[ [e—BE] = 2”e552 . (19.30)
X

This immediately yields the free energy
F(B) = —llogZ(ﬁ) ~-"log2-2p, (19.31)
B 2 2
the internal energy

Uup) = —% logZ(B) ~ —nf, (19.32)
and the entropy
S(8) = B(U — F) = nlog2 — gﬁz . (19.33)

The problem with this solution is that, for § > S, = 4/2log2 the entropy
becomes negative. This is not possible, because the entropy of a discrete
variable X must be non-negative. In order to understand what is going wrong,
let us compute the minimal energy (which is called the ground state energy)
Ey = miny E(X). This is the minimum of N = 2" i.i.d. random variables, and

N is really very large. Let us write E(X) = —/nY(X), so that Y(X) are N i.i.d.
Gaussian random variables with mean zero and variance one. Then

E, = n}(inE()_() = —\/Em)?x Y(X) ~ —\/Z\/ZlogN

where we have used the expression of the coefficient ay ~ 4/2log N that we
have computed for the maxima of Gaussian random variables. This shows
that the minimal value that the energy can take is E, = —n4/2log2. There

The reason why the variance of E is taken to be proportional to n is because this ensures
that the thermodynamic quantities are extensive, i.e. proportional to n, as we shall see. The
variance of E is also the specific heat at infinite temperature, which has to be extensive.
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are no states with energy lower than that. This means that Eq. (19.32) has to

be modified as
U(B) = —nmin (B, \/2log 2) .

Notice that the change in U occurs precisely at the value - where the en-
tropy vanishes. For f > f. the Gibbs distribution p(X) = %@e‘ﬁw—() is

concentrated on very few states with energy close to E,. Hence S ~ 0 for
B>p.1ie.
Uy
S(B) = max [nlogz — 56 ,0] .

The problem with the calculation leading to Eq. (19.31) is that the law of large
numbers only holds when the number of terms that contribute to the sum
is large. This occurs only for § < B.. For 8 > (. the partition function is
not self-averaging. The assumption Eq. (19.30) goes under the name of the
annealing approximation. It makes the calculation easy, as in this case, but
often wrong, specially at low temperatures. In general, the self-averaging
quantities are the extensive ones, like the free energy. This means that rather
than taking the expected value of Z(3) one has to take the so-called quenched
average

1
F(B) = _E[E [log Z(B)]
which is much harder computationally.?°

19.4.1 A gas of weakly interacting particles and the Grand
Canonical ensemble

The phenomenon of concentration of large deviations is a simple realisation
of a second order phase transition. This is made more apparent by translating
the problem into that of the statistical mechanics of an interacting gas problem.
This problem was first discussed in a paper of Bialas et al. [41]. Later the same

The trick that is often used to deal with E [log Z(B)] is to write
zZ"'—1

logZ = lim
r—0

which has the advantage that one needs to take the expected values of powers of Z. For integer r,

ZrB) = Z e PEX) Z e FEX,)
X

X

=1 =r

is the partition function of r replicas of the same system. This is why the approach that uses
this trick to compute E [log Z] is called the replica method. This method is based on computing
E [Z"] for integer r, then to interpret the result for real values of r (by analytic continuation)
and finally to take the limitasr — 0.
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Figure 55. The entropy and the internal energy of the REM model.

phenomenon was discussed in a much broader set of particle models, known
as zero-range processes (see e.g. Evans et al. [42]).

Consider N particles distributed in n boxes (or states) and let the Hamilto-
nian be given by

n
E(X) = Y, log(1 +X))
i=1
where X; is the number of particlesin boxi = 1, ..., n, and Zi X; = N. Thisisa
gas of particles with weak attractive on-site interaction.?! We shall consider the
equilibrium distribution of the particles at temperature 1/3. You can consider
the boxes arranged on a d-dimensional lattice, with particles jumping from box
to box, with any dynamics that obeys detailed balance with the Hamiltonian
above.?? The probability of a configuration X is given by

_ e PEX)
P{X} = Z(B N) Oy X,N = Z(,B N L H(l +X;)” 52XN,

ZIn order to see why the interaction is an attractive one, take two sites with X; and X,
particles. The configurations where all particles are moved to the same site has always a lower
energy, because log(1 + X;) + log(1 + X,) > log(1 + X, + X,).

2Detailed balance for a system at fixed temperature means that the probability w(X — X")
of a transition from state X to state X' satisfies

wX - x) P&

= = ¢ BIEXN-EQO]
wX -X) PX)

(see the chapter on Markov chains).
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where the delta function imposes the constraint of particle number conser-
vation, and the canonical partition function Z(8, N) is obtained as usual
summing the Boltzmann factor e ##&) over all states with N particles.??

A simpler way to study the system is to use the Grand Canonical ensemble
instead of the Canonical one. The Grand Canonical ensemble describes a
system where the number of particles is allowed to fluctuate, as if the system
were in contact with a larger system at the same temperature, with which it
can exchange particles. The variable N is replaced by its conjugate variable,
which is the chemical potential u. This entails introducing a statistical weight
e~P¥ for each particle. The Grand Canonical partition function is given by

2B, )= Y, e PHNZ(B,N) = Z(HX)‘ﬁe‘ﬁ“l :
N=0

x=0

The thermodynamic potential in this ensemble is called the grand potential

QB, 1) = —%IOgZ(ﬁ,M)-

The expected number of particles in the system is obtained as
EIN] = 208, 1)
= alu , M

From which one defines the density p = E[N] /n. In the thermodynamic
limit (n — o0) the grand canonical ensemble’s description is equivalent to the
description of the canonical ensemble because the variance of the density?*
p = N /nis proportional to 1/n. Hence, the density p converges to a constant
value p = E [N] /n, which is a function of . Hence, adjusting the chemical
potential u it is possible to change the density p of particles in the sub-system.
This implies that the gas is in a state where the number of particles on each
site has a distribution

PX;=x}=A0+x)Pe P x=0,1,.. (19.34)

where A(S, 1) is a normalisation constant.
The emphasis is different but the machinery and the concepts are exactly
the same as the ones used for discussing large deviations or states of maximal

ZNotice that this corresponds exactly to studying large deviations from a distribution Q(x) =
Q,(1 + x)~* where E [X] = p = N/n. The Cramer function I(p) = S(p,) — S(p) is related to
the decrease in entropy with respect to the typical case where o, = Eq [X], and S(p,) = H[Q]
is the entropy of the distribution Q.

Zwhich is obtained form the second derivative of Q with respect to .
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Figure 56. A weakly interacting gas. Left: density as a function of chemical potential.
Right: the phase diagram.

\

entropy. The grand canonical trick is biasing a priori probabilities (with u = 0)
on the distribution of particles in each box in such a way as to recover states
with a given density as large deviations, i.e. as typical outcomes under the
biased distribution.

However, the trick only works as long as Z(8, u) is well defined. In our
case this corresponds to u > 0, because Z is undefined for u < 0. In our case,
the density, as a function of u and f3, is given by

p(B, 1) = A D x(1+ x)PePrx, (19.35)

x=0

When 8 < 2 the density diverges in the limit 4 — 0%. Therefore, for every
value of N /n it is possible to find a value of u such that p(8, u) = N/n.
For 8 > 2, instead, the limit

lim p(u) = p.(B) < +o0
u—0

is finite. All states with a density of particles smaller than p. can be described
by finding the value of u > 0 such that p(u) equals N /n. In order to achieve
states with a density p > p(0) the symmetry between the different boxes has to
be broken. The most likely state for a gas with N /n > p,. is given by a situation
where all sites i # i* but one have p, particles on average, with X; distributed
independently according to Eq. (19.34) with u = 0, and the remaining one (i*)
gathers all the excess N — (n — 1)p, particles. These are the states of maximal
entropy, hence these are those that are expected to be typically observed. In
summary, as we increase the density of particles, if § > 2, the system crosses
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the critical point p.(3) beyond which a finite fraction of the particles “localises”
on a single site.

Exercise 19.7

Plot the phase diagram in the (p, T) plane, solving numerically the
equation for p(u). Perform a numerical simulations with a Metropolis
algorithms where moves are just hopping of single particles from one
box to another. Verify numerically the phase transition.

One may wonder what is the relation between this phenomenon and Bose-
Einstein condensation (BEC). Without entering into many details, BEC is a
phase transition where a finite fraction of the particles of a quantum ideal gas
of bosons condensates in the state with zero momentum, where the single
particle wave function is completely delocalised. Also in that case, the analysis
can be carried out in the grand canonical ensemble, with the introduction of
the chemical potential 4 > 0 that should be fixed so that the density equals
p= % In d > 2, however, there is a maximal density of particles that can be

accommodated in states with non-zero momentum, which is

Zd/2-1

p(d) = Af dz (19.36)
0

ez —1

where A is a constant. When the density p > p, exceeds this threshold, a finite
fraction of the particles have to “condensate” in the state of zero momentum.
We refer to other sources [38] for the derivation of this result. Here we observe
that the critical density in our case can be written as?

p(B) =AY, A +x)Fx (19.37)
x=0
=AY Q+x)F1-1 (19.38)
x=0
A ® g2

ZHere we used the identity

A+x)¢= L / dzz* te~(+¥)z
I'(a) Jo

in the last step, in order to sum the series on x.
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The condition for the existence of the BEC (i.e. p.(d) < +0) is then very
similar to the one that guarantees the existence of a localised phase in the
gas we're studying (i.e. p.(8) < +o0). In both cases, the power of z in the
integral should be larger than zero, to prevent the divergence of the integral
when z — 0. Therefore, at least at a formal level, the localisation transition
discussed here is similar to the BEC phase transition.

19.5 A teaser in stochastic thermodynamics*

The coordinates X of a physical system define its state. X provides also all
the information that enter the laws of motion of the system, which define
how X evolves over time. In other words, the dynamics of a physical system
is such that conditional to the present state X, the future (X,,q,X;4,,...) is
independent of the past (..., X;_,,X;_;). In technical terms, X, is a Markov
process. The dynamics satisfies general laws of thermodynamics, which we
will now derive in the simplest case where X; evolves as a Markov chain.

Consider a Markov chain X = (X, X;,...,Xy) defined on a finite state
space X, € 8 with transition matrix p(*’ with elements

p_g?/ = P{Xt = SlXt—l = S’} t = ]_,.“’N'

We explicitly allow for a time dependence in the transition matrix because
we want to describe general situations in which the system under study can
be manipulated. We assume that all states s € S are ergodic for each of the
transition matrices p*). Hence each transition matrix p*) admits an invariant

measure ygt) = ZS, pgts), ygf). For simplicity, we consider a situation where the

system is unperturbed until ¢ = 0, so that the transition probability is p¥ for
all t < 0. Hence we can assume that the distribution of X, is P{X, = s} = ,ugl).
Following Hack et al. [43], we define the energy function at time ¢ as
t t
O = gyl
and Ego) = EED. The reason for this choice is that it is consistent with equi-
librium statistical mechanics. Indeed, a physical system with this energy
. . . I o, .

function will converge over time to an equilibrium state ,ugt) = %e‘ﬁEs‘[ (with
Z = B = 1) which coincides with the invariant measure associated with the
Markov chain with transition matrix p(®.

Over time, the energy will change either because the state changes or
because the energy function itself changes. Therefore one can define work W
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Figure 57. The energy changes either because work is done on the system (blue full
arrows) or because the state X, changes and heat is released (dotted red arrows).

and heat Q for the transformation X as

N-1

W) = [E)(?:D —E)((':l)] (19.40)
n=0
N

QX = [E)(?) ~Ep (19.41)
n=1

Work W is defined as the change of energy levels due to some applied force,

when the state X; is fixed. Note that W is work done on the system, because

W > 0 when the energy increases. Heat Q is the change in energy due to the

variation of the state X;, on a fixed energy landscape. Their sum
_ M) _ pO _

W(X) +QX) = Ey ’ — Ey = AE(X) (19.42)
is the variation of the energy during the transformation. This is the first law
of thermodynamics. When AE = 0 work done on the system is transformed
into heat.

In order to derive the second law of thermodynamics, let us recall that the
reverse Markov chain is defined as

qg,ts)' =PXi =s|X; =51} = ’([)
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Now note that the probability of this trajectory in the reverse process is

1 2 N N
Q_(Xy, - Xo) = qg(o),xl @, d N)_hXN o (19.43)
) @) ™)

— o @ Hx () Mo o
= Px,.x, 0 Pxox, ) Py ) M

X, X, Xy
N-1 ﬂ(}’l)

. RN ) N RN V) X,

Pxyxy " Pxyx, Pxy xoMx, D)
n= ,an

=P_(Xp, ..., Xn)e WX (19.44)

which coincides with Eq. (16.27), i.e. when p®) = p@® for all t then W = 0
and Q<—(XN’ ,Xo) = P_)(Xo, ’XN)

Summing over all values of X, ..., Xy one obtains Jarzinski equality
E [e‘W] = 1. A consequence of Eq. (19.44) is that

Ew] = [log =& XV b ip o120 (194s)
Q.Xy, -, Xp)
which is a generalised second law of thermodynamics, that states that no work
can be extracted from a thermodynamic transformation between states with
the same free energy.?®
It is worth to contrast Eq. (19.45) with Eq. (16.33), which defined the
entropy production X = Dg;[P_ ||P_]. While Eq. (19.45) compares the direct
and the inverse process in a time varying set-up, Eq. (16.33) compares the
two arrows of time in the same process with time independent transition
probabilities, thereby providing a measure of irreversibility.

260ur choice of Z = B = 1 implies that the free energy F = —~!log Z = 0 at all times.



Chapter 20

Statistical inference

Essentially, all models are wrong, some are useful. (G.P.E. Box)!

G.P.E. Box was a statistician not a physicist. A physicist would proba-
bly think that Newton’s law is the right model for phenomena described by
classical mechanics (e.g. bodies falling from a height). Yet, even there, every
experiment is subject to effects that cannot be controlled by the experimenter.
Evidently these effects are not in the simple model

mh = —g

that describes the trajectory of the falling body.> No matter how much care we
take, when we take measures many times, we’ll always get slightly different
numbers. That’s why we take experimental averages.

In most cases, all the statistics a physicist needs does not go beyond mean
and variance, because experiments can be repeated many times and the con-
trol of experimental conditions can be improved.® As one moves away from
physics, one faces phenomena that are not ruled by known fundamental laws,
with experiments that cannot be done or repeated. All one has is a series of

IThis sentence is attributed to George P.E. Box, quoting his paper in Journal of the American
Statistical Association [44]. The paper does not contain such a sentence, yet it clearly discusses
it at length, together with an interesting discussion of the scientific method and some notes
on the remarkable life of R.A. Fisher, one of the founding fathers of statistics. The paper is a
recommended reading.

2Here h(t) would be the height of the body, m its mass and g the acceleration due to the
gravitational force.

3In particle physics, there is a convention that, in order for an experimental result to
be considered a discovery, it should be statistically validated to a confidence of 99.99994%,
which corresponds to an interval of five standard deviations around the average of a Gaussian
distribution.

321
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observations and the question is what can we learn from these. Learning is
not only describing, it is also generalising, i.e. predicting data which has not
been seen yet. The trade-off between accuracy, i.e. how well you describe the
data you have already seen, and generalisation, i.e. how well you predict the
outcome of experiments not yet done, is a key issue in statistics.

Here we shall discuss a general class of problems that is usually encoun-
tered in classical statistics and inference. We're given asample X = {X, ..., X},}.
We suppose X; are i.i.d. draws from an (unknown) distribution* Q(x). Our
goal is that of inferring Q or to say something about it. The first framework is
that of hypothesis testing, where we have to choose between two alternative
possibilities for Q. This is a decision problem. How can we make this decision
in the best possible way? How can we do it in order that the number of samples
needed to make the correct decision with a given accuracy is minimal? This
does not apply only to statistics. Any alarm system needs to sense the envi-
ronment and test whether the particular conditions under which a specific
response is needed occur. Taking this decision optimally and as quickly as
possible (i.e. with the least number of samples) may determine life or death.’

Next we move to parameter estimation. In this case, we know (or we as-
sume) that the distribution that has generated the data belongs to a parametric
family of distributions, but we do not know the value of the parameter(s).
Maximising the likelihood is the simplest recipe but, strictly speaking, it is
not the right answer. Indeed it produces an estimate of the parameter that
depends on the data, and that varies as the data accumulates. Indeed, the
right way to think about the problem is that we should encode our state of
knowledge on the parameters into a distribution. Before we see the data, this
is the prior distribution and after we see the data we can update our state of
knowledge using Bayes rule. In this way the likelihood can be used to compute
the posterior distribution. But how do we choose a prior distributions that
correspond to a given state of ignorance on the parameters, and which prior
corresponds to a complete state of ignorance on the parameters of a given
model?

At any rate, we expect that as the data accumulates, prior knowledge
becomes less and less relevant. Indeed, as we shall see, maximum likeli-

“In other words, the problem is to find a distribution Q such that X can be considered as

a typical sample drawn from Q. Remember that there are « e"" (Px] typical samples, where
Py is the type of the sample, and for each of these, the probability to be drawn from Q is

e2x Px(I10g Q) 54 the probability that X is a typical sample is «~ e "PktlPxlQ],

SFor example, an organism has to decide whether to switch on or not a genetic program,
or to switch metabolism from one state to another. This depends on the estimate that the
organism computes of the concentrations of different nutrients and toxins in the environment.
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Figure 58. Three snapshots of a 2-D Ising model at different temperatures. What is
your uncertainty on the temperature in the three cases?

hood estimates converge to asymptotic values, or equivalently, the posterior
distribution becomes more and more sharply peaked around the maximum
likelihood estimates. The speed of convergence, i.e. the width of the posterior
distribution, is controlled by the Fisher Information. The (inverse of the)
Fisher Information quantifies the uncertainty in parameter estimation or how
much the estimates of parameters change when new data is added. When the
Fisher Information is large, the estimated parameters do not change much
if new data is added. This means that the model estimated on past data also
describes well yet unseen data. This means that it generalises well.

Statistical inference is the inverse problem to statistical mechanics. While
the first deals with understanding which model best describes a dataset, the
latter studies which behaviour — i.e. which type of data — is generated by a
given model. The Fisher Information has its counterpart in the susceptibility
in statistical mechanics, because it quantifies how observables change when
the parameters change. This gives a special significance to those points where
the susceptibility becomes very large (or diverge in the thermodynamic limit).
These are associated to critical behaviour at continuous phase transitions
in statistical mechanics. In statistical inference, we expect that these same
“critical” models to be good at generalising.

Finally we discuss model selection, which is the situation where we have to
choose between several parametric models, with different level of complexity
and detail. Hypothesis testing is not the right approach here, as noted by
Akaike [45], because all hypotheses are wrong to start with. Several recipes
have been suggested (such as AIC, BIC, MDS, etc) and it is important to see
where they come from and how they are related.

This is an outline of the results discussed in chapter 11 of COVER plus
other subjects. We discuss the main ideas and refer to textbooks for the
derivations. In this chapter we consider a sample X = {Xj,..., X}, where
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Figure 59. A sketch of the space of probability distributions and hypothesis testing.

X; can be considered as the outcomes of n independent experiments, run
under the same conditions. Therefore we think of X; as i.i.d. draws from an
(unknown) distribution Q(x).

This chapter concentrates on the regime of classical statistics, where the
dimensionality of the data and of the parameters of the models are finite and
the number of samples diverge (n — o). In this regime we can rely on the
asymptotic results that we have discussed thus far. We shall briefly comment
at the end about high dimensional statistical inference, a regime in which
the dimensionality of the data or of model’s parameter is of the same order or
larger than the number of data points.

20.1 Hypothesis testing

A simple example of hypothesis testing is the case where we have two alterna-
tive hypotheses on the unknown distribution Q:

Hl: Q:P1 Hz: Q:P2,

and we want to decide which one is most appropriate for the data X. We
restrict attention to the case where X; € y takes values in a finite set y (with
n> |x.

The way to design a statistical test is to define an acceptance region A for
H,, such that if X € A then H; is accepted and H, is rejected and vice-versa.®
Of course P; € A and P, ¢ A, because when n > 1 we expect that Py ~ P; if
H, is true. There are many possible ways to define A. What is the best way to
choose A?

In order to address this issue, let us introduce the error probabilities

a=P(Ad)= ), PX) B=PA)= ) PX). (20D

X¢A XeA

6A can either be defined in the space of samples X or in the space 2 of types Py.
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These are the probabilities to reject the hypotheses H; or H,, if they are correct,
i.e. if X were actually drawn from P, or P,, respectively. The optimal choice
for A is the one that makes o and 3 as small as possible.

The answer to this problem is given by the Neymar-Pearson lemma, that
states that the optimal acceptance region is defined in terms of thresholds on
likelihood ratios. Indeed, if

A= z;_( . h& > T% (20.2)

" PyX) T

where T > 01is an arbitrary threshold, then there is no other acceptance region
Bsuch that & < @ and g < 8, with

55=P1(B) B=P2(B)

and a, 8 given by Eq. (20.1) and A given in Eq. (20.2)” The significance of this
result is particularly transparent if one takes logarithms. Then the acceptance
region reads

1
A= {)_( : Dgr[Px|P1] < Dgr[Px|IP2] — ZlogT}.

For T = 1, the hypothesis which has to be accepted is the one closest to the
data in terms of relative entropy.

Let us now compute the error probabilities. Take  for example and let’s
focus on the case T = 1 for simplicity. The event that a sample X generated
as i.i.d. draws from P, lands in A is clearly a large deviation. Hence 8 can be
computed using Sanov’s theorem Eq. (17.12). This tells us that

‘3 ~ e_nDKL[P* 1P-]

where
P* = argmin Dg; [P||P,].
PeA

The constrain that sequences X having types Px = P belong to A can be
imposed with a Lagrange multiplier in the optimisation problem

min Dg[P||P,] = min_ [Dg[P|P,] + A[Dgy[P||P1] — Dgr[P|P,]]] -
PeA PeA, 1

"The proof of this statement relies on the inequality

(64 — X [P,(X) — TP,(X)] > 0

where, for any set S, ¢5(X) = 1if X € S and ¢4(X) = 0 otherwise. This inequality is easily
proven considering the different cases, e.g. if X € A and X ¢ B, the first factor is one and the
second is positive, because P,(X) > TP,(X) for X € A. Taking the sum of this inequality on
all X, one finds o + T8 < & + Tf.
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Figure 60. As A varies, the distribution P, connects the distributions P; = P;_; and
the distribution P, = P,_,. The different values of 1 correspond to different choices
of T for the acceptance region.

The solution of this constrained minimisation problem is given by
v 1-2
P1(x)P,™"(x)
2 1-1
2o PTGNDP (X))

where A should be fixed so that Dg; [P;||P;] = Dgr[P;||P,] (for T = 1). The
calculation for a can be done in the same manner, and the solution turns our
to be the same as Eq. (20.3), i.e.

Pi(x) = (20.3)

o ~ e—”DKL[P/1||P1] , 6 ~ e_nDKL[P/1"P2]

where 4 is such that Dg; [P;||P1] = Dk [P;||P-].

Exercise 20.1

Show that, for a given T, the value of 1 that optimises Dk [P;||P;] is
the same as the one that determines f.

Graphically, the space 2 of all probability measures on y, is divided in two
parts: the acceptance region A for H,, with P; € A, and the acceptance region
A for H,, with P, € A. In the determination of 8 we look at the distribution
P € A thatis closest to P, whereas a entails looking for the distribution P € A
that is closest to P;. The general solution, of both problems is given by P;: as
Avaries in [0, 1], the point P, traces a path in 2 that goes from P, (for A = 0)
to P, (for A = 1). This path intersects the boundary of A in a single point, that
corresponds to the solution of both problems. Notice that as T varies from 0
to o0, A shrinks from the entire space P excluding a small neighbourhood of
P,, for T = 07, to a small neighbourhood of P;, for T > 1. Correspondingly
the parameter A changes from 0, for T = 0%, to 1 for T > 1.
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Figure 61. A sketch of the space of probability distributions and parameter estima-
tion.

The next question to be addressed is how to choose T. One recipe is that
of fixing o™ = € to a preassigned value independent of n. Then the smallest
error B* that can be achieved is given by

B* ~ e~ "Dxr[P1P2]

for large n. This result is known as Stein’s Lemma.

A different way to choose A comes from a Bayesian approach. We assume
that hypotheses H; and H, have prior probabilities 77; and 7,. Then it is
natural to require that the posterior error

P, =moa+m,p
should be as small as possible. By Sanov’s theorem

P, ~ n-le_nDKL[Pi"PI] + nze_nDKL[PA"PZ] ~ e~ min{Di; [P; [|P1].Dg [P; [P, ]}

for n large.

Exercise 20.2

This analysis is reminiscent of the one we discussed in the context of
the Gartner-Ellis theorem. Reformulate the problem and the results in
terms of large deviations.

Therefore, the optimal value of 1 is the one for which

. 1 .
lim - log P, = min{Dg[P;||P;], Dg.[P; P, ]}

n—oo
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is the largest possible, which is indeed the point A* where Dg[P;-||P;] =
D1 [P;+]|P,]. You just need to sketch a plot of the two distances as 1 varies in
[0, 1], to convince yourself of this. The value

C(Py,Pp) = /lfg[%%] min{Dgy [P;||P1], Dk [P;|IP>]}

is called the Chernoff bound and it provides the minimal a posteriori error
in Bayesian hypothesis testing. Notice that prior distributions, for n large,
do not play any role. Put differently, the Chernoff bound yields the minimal
number of samples (—log P,)/C(P,, P,) that are needed to reach a decision
with a given level of confidence P,.

Exercise 20.3

LetP,(X =1)=P,(X =0)=1/2and P,(X =1) = p = 1—P,(X = 0).
Compute the minimal number of points needed to distinguish between
P, and P, on the basis of a sample X of independent observations
of X; = 0,1, with a precision of 1%. Plot the result as a function of
p €[0,1].

Exercise 20.4

Show that

C(P1,Py) = —Aren[(i)r}] log

>, Pf(x)P;—ﬂ(x)l :

20.2 Parameter estimation and the Fisher
Information

Let us now consider the case where the distribution Q has the parametric form
f(x]6). In other words, we either know or assume that X can be considered
as i.i.d. draws from f(x|6,) for an unknown parameter 6,. The question
then becomes that of estimating the value 6, on the basis of a sample X =
(Xy, ..., X,,) of n data points. Here 6 can be a vector of parameters, though
most of the arguments can be discussed for a single parameter.

The simplest idea is that of finding the parameter 6 that maximises the
likelihood P{X |6} = Hil f(X;|6). This is the maximum likelihood estima-
tor (MLE). Of course the parameter that maximises P{X |6} also maximises
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~f(:10)

Figure 62. The volume of indistinguishable distributions in parameter space is an
ellipsoid.

log P{X 63}, therefore

G(X) = arg rnaleog f(X;18) (20.4)

i=1
= argmin Dy, [Px| £(16)] (20.5)

where we used again types and got rid of constants that do not depend on 6.
Note that this is consistent with Large Deviation Theory and Sanov’s theorem.
You can visualise the result in the space of distributions in the following
manner: the parametric family f(x|6) identifies a manifold in this space and
the MLE identifies that point on the manifold that is closest, in terms of KL
divergence, to the type.

Imagine that X is drawn i.i.d. from f(x|6,), so there is one point on the
manifold, 6, which is the true value of 8. For every draw of X the MLE 6 will
take a different value, so 8 is a random variable. What is it’s distribution?

A more complete description of 6 can be obtained using Bayes rule. If p,(6)
is the distribution encoding all prior® knowledge on 6, then the distribution
of 0, after we see the data (the posterior), is given by

61X )——Hf(X Opo(®),  PIX}= f d6 T] £X.16)po(®).
PiX} o i1

(20.6)
When n is very large, we expect this distribution to be well approximated by a
Gaussian. The argument is the following: define

£0.X) = 3 Y 0g f(Xi6) = [ dxPy(x)1og f(x16).
i=1

81.e. before seeing the sample.
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This is expected to be finite as n — co by the law of large numbers.” Then by
definition,

p@|X) = ﬁ nﬁ(e’)—()Po(e)

so the distribution is sharply peaked around the MLE § = arg max, L£(6,X):
£61X) = £OIX) - 56— 67+

with T(8) = —6;5 |g—g- This also implies that the integral that yields P{X} can
be computed by the saddle point method

PiX} ~ ent@0 [ 2T 4
X}~e ,/nr(é)po()

nL©) -5y po(6)

27 Po(6)
Notice that, for n > 1, p(6|X) is well approximated by a Gaussian because it
is very small outside the interval |6 — 8| ~ 1/ \/I’_l, and py(6) ~ py(8) for 6 in
this interval.

Therefore the prior plays no role in the limit n — oco. The variance of 8 is
1/(T(O)n), i.e. the typical error that we expect on the MLE is

so that

pO1X) =

16— 6| ~ 1/4/ nT(®).

When 6 is a vector, T is replaced by (minus) the Hessian'® of £ at 8, and

d/2 6
p(O1X) = (%) /detl"(e)e 23 5@a~0a)Te5(6)85~65) Po(0)

Po(e)

°The law of large numbers implies that £(6, X) converges to
E [log f(X16)] = —H[6,] — Dg.(6,116)

as n — oo, where we used shorthands for the entropy of f(x|6,) and for the Dy, between
f(x|6,) and f(x|6). This is maximal for 6 = 8 = ,, which shows that when n — co maximum
likelihood estimates are consistent, i.e. they converge to the true value.

10The Hessian is the matrix of second derivatives. In this case,

92

Tap(0) = 36,06,

———L(0).
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Figure 63. 77?

The inverse of the Hessian yields the covariance matrix of the parameters:
-1
Fa, 5

E [(ea —6,)(65 — éﬁ)] ~ =L,

The log-posterior log p(6|X) around 6 is well approximated by a quadratic
function. So the region where p(6|X) > ¢ are well approximated by ellipsoids
whose principal axes are aligned to the eigenvectors of I'(8). The length of the

axes is proportional to 1/ \/I, where A is the corresponding eigenvalue of T'.
Large eigenvalues A correspond to directions where the posterior probability
decreases steeply, and hence the uncertainty of the parameters 6 along these
directions are small. Small eigenvalues instead correspond to directions along
which p(6|X) is flatter, and the errors on & may be large. These flat directions
have been called sloppy modes by J. Sethna and collaborators [46], who have
found that they appear in many cases where models with many parameters had
been used to fit experimental data. In some cases, the error along sloppy modes,

whichis 1/ m can be quite large. This situation occurs, when the model is
very complex, i.e. it depends on too many parameters. This general situation
is called over-fitting and is an indication that the model is not appropriate or
that the dataset is not large enough.

The matrix I depends generally not only on the maximum likelihood
point § where the expansion is done, but also on the data X itself. There is a
case where this is not true, which is worth recalling. These are models in the
exponential family:

f(x16) = g(x)e® @ (20.7)
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You can check that the Hessian of £ w.r.t. § does not depend on X, and the
negative of the Hessian becomes!!

Lap = Jup(®) = — f dxf (x10) = log f(x]6).

32
96,65
This is the Fisher information.

As we have seen, exponential families describe the typical way in which
large deviation are realised and they arise from a constrained maximum en-
tropy (or minimal D ) principle. For these models there is a sharp separation
between relevant variables and irrelevant ones. Indeed, you can directly check
that all that matters for computing the maximum likelihood parameter 6 is

the average!?
n

) = - X, 7(X)

i=1

of the random variable 7(X). This is called a sufficient statistics. All other
information contained in the sample, besides the value of 7, is irrelevant. This
is shown by the fact that the distribution of the sample conditional on the
event 7(X) = t is independent of 6. Indeed,

PX,7(X) =1t|0)
PG(X) = t]6)

Q(t) H ax), QW) =[] a)dzx, -

X i=1

PX|6,7(X) = 1) =

This result is a special case of the Fisher-Neyman factorisation theorem, that
states that T(X) is a sufficient statistics ifand only if P(X |6) = Q(X)g (6, T(X)),
for some functions Q and g.

'When f(x|6) is given by Eq. (20.7) the Fisher information matrix is

3°¢(6)

Jop(®) = —M .

2Indeed the first order conditions of the maximisation of the likelihood yield

0
200) = -2 = E[e(0)

where the expected value is taken on f(x|6) of Eq. (20.7).
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20.2.1 The Data Processing Inequality and Sufficient statistics

Consider the typical inference problem:!? imagine we have a theory that
depends on an unknown parameter 6. In order to gain information about 8,
we run a series of independent experiments each of which returns a measure
X of a given observable. We think of X as being drawn from a distribution'#
f(x]6) that depends on 6. Let X be the sample obtained from the series of
independent experiments. In order to “extract” the information on 6 from the
sample, we form a particular combination T'(X) of the variables in the sample.
For example T'(X) can be an estimator é()_( ) of 0. Yet X is generated from ©
and T(X) from X, i.e. in terms of Markov chains 8 — X — T(X). This means
that, conditional on X, T and 6 are independent.

It is intuitive that T(X) cannot provide more information on 6 than the
information that X contains about 6. I.e.

I(T(X),6) < I(X,0). (20.8)

This is a particular instance of the data processing inequality which we dis-
cussed in Eq. (16.19) (see also COVER 2.8).1°

T(X) is called sufficient statistics for 6 if Eq. (20.8) holds as an equality, i.e.
if I (T(X),0) = I(X, 6). Equivalently, T(X) is called sufficient statistics for 6 if
8 - T(X) — X, i.e. if conditional on T, 6 and X are independent. This states
precisely that, when T'(X) is known, X does not contain any information about
0. Not all distributions f(x|6) admit a sufficient statistics for 6. In general it
is not true that the information on the generative model can be condensed
into few empirical averages.

As a simple example, in the case of Bernoulli trials, the number of success
in n trials is a sufficient statistics for p. Indeed, the probability P{X |k} of
any string X of n trials with k successes has the same probability, which

13This part is discussed in COVER Section 2.8 and 2.9.

14Note that f(x|0) is derived from the theory itself we want to test. Yet the only part of the
theory that is assumed to be unknown is the value of 8. The rest is assumed to be true. This is
not dissimilar from how the mass of the Higg’s boson was measured at CERN.

15As a reminder, the data processing inequality states that if there are three variables X, Y
and Z and X and Z are conditionally independent, given Y, then

1[X;Z] <I[X;Y]. (20.9)

Conditional independence on Y, which can be denoted as X — Y — Z, means that the joint
distribution of X, Y, Z has the form

p(x,y,z) = p(x|y)p(z|y)p(y)
so that p(x, z|y) = p(x|y)p(z|y).
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is independent of p. For any prior distribution p(p) of p, it is easy to find
that I(X, p) = I(k, p) by a direct calculation. Notice that the entropy of the
distribution of X is

H[X] = nH(p), H(p)=—plogp—(1-p)log(1— p)

proportional to n, whereas the entropy of k is bounded above by log(n + 1).1°
Therefore most of the information in the sample X is irrelevant, and only a
tiny fraction contains relevant information on the generative model (in this
case). This fact is general, indeed, from Eq. (20.32) it is possible to compute
the number of bits gained on 6, because the mutual information I(X, 0) is
obtained by

I(X,6) = E [Dgr(p(61X)lpo(8))] (20.10)

where the expected value is taken over the distribution p(X) = fd0p(X|0)p,(6).
For large n, within the saddle point approximation, we have that

d n . R
Dir(pXIO)po(6)) = 5 log 5o + log\/ det 1(8) — log py(©).  (20.11)

The first two terms count the number of bits needed to know a Gaussian vector
to precision ~ 1/ ﬁ whereas the last term counts how surprising the outcome
6 is on the basis of prior information. Only (logn)/2 bits per parameter are
learned because, given the data, each 6 can be estimated to a precision n-1/2,

Exercise 20.5

What is a sufficient statistics for the Poisson distribution?

Notice that i) as already mentioned, the number of “useful” bits (those that
are informative on 6) is very small compared to the total number of bits, ii) the
leading contribution g log n only dependes on the number of parameters and
it does not depend on the model used, as long as it has d parameters, finally iii)
we learn these many bits irrespective of whether the model is right or wrong,
i.e. whether the data X are generated from f(x|6), for some 8, or not.

The second and last terms depend on X. The second accounts for the
uncertainty 66 on the parameters and it is large when the posterior distribution
on 6 is sharply peaked around its maximum 8. The second term is small when

16This is because k can only take n + 1 values. Indeed, for n large,

H(k) ~ log[2mwenp(1 — p)]/2.
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the posterior distribution of 8 is broad. This is a signature of overfitting and it
suggests that the modeller didn’t do a good job in choosing the model. The
last term informs us that we learn more if the parameters a posteriori turn out
to attain values & that are very unlikely a priori. Yet, a reasonable modeller
would not choose a prior such that values 8 for which the statistical errors are
small are very unlikely. This suggests that the sum of the last two terms should
compensate each other, in a principled approaches to statistical inference.
This is the case, as we shall see.

20.2.2 The Fisher Information

How much information does a datapoint X carries on the unknown parameter
0? If f(X|0) varies sharply with 6, then X provides a lot of information on the
likely values of 6, because a small deviation in 6 will result in a large deviation
of f(X|6). Conversely, if f(X|60) as a function of 0 is flat, an observation X
will not make it possible to identify 6 with high precision. In order to turn
this observation into a quantitative measure,'” we need to consider how the
information content, which is related to — log f(X6), changes with 6. This
leads us to consider the score, which is a random variable defined as

5() = 2 log f(X(),0),

where X is a random variable with distribution f(x|6). Notice that

E[s] = f dx(x16) 2 log f(X(@),6) = = f dxf(x|6) =

So the expected value of the score is not a good candidate to measure how
sharply f(X|6) varies with 6, i.e. how much information an observation X
provides on 8. The next natural candidate is the variance of the score, which
is the Fisher Information. This is defined as

J(6) = E [$?] (20.12)
2

fdxf(x|9)[ log f(X(w),0) (20.13)

fdxf(xl@)an log f(X(w),0) (20.14)

where the last equality is derived using integration by parts (we assume that
boundary terms can be neglected). The idea underlying the Fisher information

17Let us first discuss the scalar case and then the case where 8 € R? is a d-dimensional
parameter.
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is that variations of the coding cost provide information on the distribution
that generate a random variable, so the broader the distribution of coding costs
the more informative is a variable X on the (parameters of the) distribution
from which it is drawn.

Exercise 20.6

Compute the score and the Fisher information for the binary distribu-
tion
f(x|6) = 6¥(1 — )™, x=0,1

and for the Poisson distribution

8% o
f(x|6)=;e , 6 e N.

The same definition applies to a sample X of n i.i.d. variables. Then
the score S(X) = Zi S(X;) is just the sum of the scores, because f(X|0) =
Hl. f(X;16). Since S(X;) are i.i.d. random variables, the Fisher information
for a sample X is nJ(6).

For a model f(x|0) that depends on d parameters 6 = (64, ...,6,), the
score becomes a random vector with components

Se(w) = 10g fX(w),0),
and the Fisher Information is the covariance of the scores, with elements:

T 5(6) = E[S,Ss] (20.15)

f dx f(xl@)[ log f(x, e)][ log f(x, e)l (20.16)

fdxf(xl@) log f(x,0) (20.17)

96,06,

Exercise 20.7

Compute the scores and the Fisher information matrix for the Gaussian

distribution
1 (x—61)2

e 20

f(x10) =
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20.2.3 The Cramer-Rao bound

The significance of the Fisher information for parameter estimation is made
precise by the Cramer-Rao bound. Let T(X) be an estimator of the parameter
0. An estimator is unbiased if E[T] = 6. It is consistent if T(X) — 6 as
n — oo, in probability. So for example, if f(x|0) is a Gaussian'® with mean
0 and unit variance, the sample mean X = % Zi X; is un unbiased estimator,

but also X; is an unbiased estimator. However while X is consistent, by the
Law of Large Numbers, X; is not. A measure of the quality of an unbiased
estimator is given by its variance V [T'], that characterises the statistical error
of the estimate T(X). The Cramer-Rao bound states that, given an unbiased
estimator T(X) of 6, the variance of T satisfies'’

1

VI[T] > m

(20.18)
This is remarkable, because even without knowing the estimator, one can
give a lower bound to its variance. Loosely speaking, J(6) quantifies the
maximal amount of information each observation carries on the parameter 6.
Estimators that saturate the Cramer-Rao bound are called efficient.

The generalisation of Cramer-Rao bound to the case where 0 is a d-dimen-
sional vector of parameters, states that the covariance matrix C, whose ele-
ments are E [(68, — E [6,])(6, — E [6p])], satisfies

L 1.
C-—=J1>0
n

) N PN . . :
in the sense that C — ~J~! is a non-negative definite matrix.
n

18An estimator for the parameter 6 can be built observing that the expected value of a
function g(x) is in general a function of 6, i.e. E [g(X)] = G(8). On the other hand, by the law
of large numbers, we expect that g(X) = L Zi g(X;) —» G(8), as n —» oo. Inverting this relation

it is possible to obtain a consistent estimator § = G~! (§(X)) of 6. A consistent estimator is
one that converges to the true value, when n — oo. Hence its variance vanishes as n — 0.

YThe proof of Eq. (20.18) is straightforward. It relies on the Cauchy-Schwartz inequality
Cov(S,T) <4/ V[T]V][S] and the observation that Cov(S,T) = E[ST], and

E[ST] = /dxf[%logf]T
d d
d

a6
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Exercise 20.8

Show that if f(x|6) is an exponential family as in Eq. (20.7), then
it admits estimators for which the Cramer-Rao bound holds as an
equality.

20.2.4 Distinguishability of distributions and Fisher
information

Further insight on the meaning of the Fisher Information is given by looking
at the problem of parameter inference in the following way: let 6 be the
maximum likelihood estimate of 6 for a given sample X. This means that 6
maximises the log likelihood per point

£(0) = %Z log f(X;]0) (20.19)
i=1

Now imagine to consider a different sample X that is very similar to X
and let 8(X") be the maximum likelihood estimate of 6 for X’. If the samples
are similar, we expect the maximum likelihood estimates to be close to each
other, i.e. |66| < 1 where §9 = é()_(') - é()_(). Can these two samples be
distinguished? Can one say that they come from different distributions?
Stein’s lemma provides a quantitative answer to this question, for a given error
threshold €. Indeed, you can think of a test between two hypotheses

Hy @ Q(x) =Pi(x) = f(x]0),  H;: Q(x) =Py(x) = f(x,]6" + 56).

Ifweseta =¢,then § = e~ "DxL(f(x|O)If(x10+80)) The two distributions cannot
be distinguished if 8 > €, on the basis of a sample of #n points, at a confidence
level e.

This means that there is a region of distributions around the point & that
cannot be distinguished from f (x|6). A measure of the size of this region is
given by that §6 for which 8 = €. This condition implies

L 10gB = Dyt (FxIB)F(x10 +60))

~ _%az;i 56, F [(a%a 10gf(X|6)> (a%b logf(Xle))] 56, + ...

- %5ef(é)5e +o
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Figure 64. The Fisher information introduces a metric in the space of parameters.
This insight is developed using differential geometry, in what is called Information
Geometry.

where the second equality comes from the expansion of log f(x|6+86) in small
86 to second order. There are two non-trivial aspects worth remarking here.
First, the linear terms in the expansion of Dg; vanishes. Second, although Dg
is not symmetric in its arguments, it is symmetric for small “distances”. So
the size of the region where distributions cannot be distinguished is given by

86J(6)s6 < %| loge]. (20.20)

The intuition behind this equation is the same as that of the Cramer-Rao bound.
This result also offers an insight on the nature of the mapping between the
space of samples X and the space of the parameters © of the models. Where
the Fisher Information is large, the discriminative power of the model is larger,
because the size of the region around 6 where models cannot be distinguished
is smaller. Pictorially, the result above allows us to discretize the region of
parameters in cells of indistinguishable models, a discretisation that becomes
finer and finer as n increases. For a model with K parameters, the argument
above generalises in a straightforward manner. The condition above identifies
cells of elliptic shape, whose main axis are proportional to the inverse of the
square root of the eigenvalues of the matrix J(6) and their directions are given
by the eigenvectors. The volume of such cells is proportional to 1/4/detJ(0).
Therefore, in a region of unit volume, there are a number of distinguishable
distribution which is proportional to 4/detJ(6). Within a maximum entropy
approach, each of these models should be a priori equiprobable. This means
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that the non-informative prior for 6 should be
1

This prior is called Jeffrey’s prior. The normalisation constant

¢ = f d6+/ detf(8) (20.21)

gives an estimate of the number of distinguishable models, when it is finite.
The number ¢/ is an intrinsic degeneracy (or uncertainty) on the possible
model that has generated the data, that is lifted when we observe the data.
So the logarithm of ¢; quantifies the information in bits that we learn about
the model, and it can be taken as a measure of the intrinsic complexity of
the model. A very complex model induces a fine resolution on the sample
space, and it makes it possible to distinguish many samples. A sample X
can be explained well by the model with 6 ~ é()_( ), but it’s very unlikely (or
atypical) for 6 that is significantly different from é()_( ). On the contrary, a
simple model induces a coarser resolution on the space of samples. Even
very different samples can be described by the same model. In the extreme
case of a model that assigns the same probability f(x) = p to all outcomes
X, no samples can be distinguished, because this model assigns the same
probability to all samples. This suggests a relation between maximal entropy
and minimal complexity, which is reminiscent of the basic idea in coding
theory: compressed representations (i.e. reduction of entropy) are achieved
by exploiting the structure or patters in the data (i.e. their complexity).

Exercise 20.9

Verify that Dg7(p|q) is symmetric under exchange of the arguments if
g and p are close, i.e. if g = p+ dp with 6p < 1.

Exercise 20.10

Compute the Fisher Information for i) a binary variable P{X = 1} =
p = 1 — P{X = 0}, ii) an exponential variable with mean u, and
iii) a Gaussian with mean u and variance o2. Can you compute the
distribution p; for these examples? What is their intrinsic complexity c ;7

20.2.5 Exponential families

Consider the case S
f(x,0) = B0+ 2y Bcg(x)
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where the distribution depends on a vector 6 = (64, ..., 8,) of parameters and

60 = — log Z ezk Orgr(x)
X

is a normalization constant. This distribution is called an exponential family,
and as we have seen it has several nice properties: it is the maximum entropy
distribution consistent with the constraints E [g;(x)] = g, fork = 1,...,d. As
already mentioned, g, (x) are sufficient statistics.?° This is the distribution
that is typically considered in statistical mechanics, where the operators g
are the terms that define the energy. The parameters 6; correspond to the
conjugate variables (the temperature, the chemical potential, the magnetic
field, etc ...) of the observables. Then 6y is proportional to the corresponding
thermodynamic potential.

Notice that %60 = —E;[gr(X)]. Taking a further derivative, it is easy to
k
compute the Fisher information and to show that

Tt @) = E[g.()g,(X)] — E [g, O] E [g,(X)] (20.22)
__ %% (20.23)
T 36,00, '
_OE[g(X)] _ OE[g,(X)]
=56, = a6 (20.24)

The first relation tells us that the Fisher Information is the covariance matrix
of the observables. The last equation tells us that it is also the matrix of
susceptibilities. This is natural. In physical systems, a susceptibility tells us
how much the behaviour of a system changes when we change some parameter
(e.g. the temperature). Inference corresponds to the inverse problem where
the behaviour of the system is known and is given by the data, whereas the
parameters are the quantities one aims at computing. A model that describes
well the data is one that generalises well, i.e. a model whose parameters 6 do
not change much if the data changes a little (e.g. if a new data point is added).
The best models are those with a large Fisher Information, i.e. with a large
susceptibility. In physics, models with a large susceptibility are those that
describe systems close to a phase transition, that exhibit anomalously large
fluctuations (see Eq. (20.22)). Therefore the theory of critical phenomena
in physics plays a particular role in inference problems: when a model is
appropriately chosen to describe a data set, it is likely that inference will
return models that are close to critical points [47].

0The sample averages of g, (x) are sufficient statistics for 6.
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error (accuracy)

in sample

>

number of parameters (complexity)

Figure 65. Left: the same data can be fitted by different models of different complex-
ity, such as polynomial of higher degrees. Right: while the error on the training set
(the sample used to fit the model) decreases, that on yet unseen (out of sample) data
first decreases and then increases.

20.3 Model selection

Speech is silver, silence is golden.

Imagine that you're not sure about the model f(x|6) that describes your
data. In this situation, you may be uncertain among a number M of models
fm(x16,,) each depending on a different number d,, of parameters 6,, =
©1.ms »64,,m) (m = 1,..., M). Some models may be very complex and give a
detailed description of the data, others may be more parsimonious and provide
a rougher description of the data. Loosely speaking, different models provide
a description of the data with different degree of detail. Which model should
we listen to?

The typical example is that of points (X;, Y;) on the plane, that may be
described by different models of the form

Yi=ag+ aXi + X2+ o+ ag X2+ ¢

where §; are i.i.d. random variables from a Gaussian distribution with zero
mean and variance g2, s0 6 = (aq, ..., a4_y, o). The number d of parameters
can be taken as a measure of the complexity of the model, with more complex
models containing simpler ones as special cases.

For a sample of n points, the model with d = n + 1 parameters provides
a perfect fit, because it can exactly interpolate between the points. Yet, it
does not describes appropriately other data that may become available (out
of sample data). This means that a very complex model does not “generalise”
well. At the same time, if a new point is added and we estimate again the
model, we expect that the parameters will change considerably, and the Fisher
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Figure 66. Model selection and the AIC. Two models are shown in the space of
distributions.

Information is expected to be small. Conversely, a linear fit (d = 3) provides
a less accurate description, but this will be more robust with respect to the
addition of further points. So there is a trade-off between accuracy and gen-
eralisability in statistical inference, which is what we want to address here.
In particular, if the data were really generated by a high order polynomial, as
long as the size n of the sample is not large enough, it might well be that a
linear fit might be the best option, because a fit with a high order polynomial
may return coefficients that are very far from the true ones. Yet, as the number
of points becomes large, we expect more and more features of the true model
to surface, and then we expect the “appropriate” models to have higher and
higher complexity.

So it is clear that the best model depends on a trade-off between accuracy,
quantified by the log-likelihood, and complexity. But how can we quantify
complexity?

20.3.1 Akaike Information Criterium (AIC)

Let us consider a sample X that is generated from an unknown distribution
Q. The above discussion implies that, in order to find the best model that
describes X, we cannot rely only on the likelihood. The most complex model
(i.e. the one with more parameters) will also be the most likely one. However
this model will not be efficient in generalisation, i.e. in describing data which
have not been used to estimate the model’s parameters. Akaike proposed a
method to correct the maximum likelihood, by adding a complexity penalty,
in order to score different models.

The starting point of the AIC is that the appropriate quantity to score the
validity of a model f(x|0) is the distance

Dk (Ql6) = S(QIQ) — S(Q1) (20.25)
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between the true distribution and the maximum likelihood distribution, f(x|6).
Here we used the shorthand?! S(Q|P) = S dxQ(x)log P(x) for the likelihood
of P with respect to Q. The maximum likelihood estimator 6 = arg max,S(Px|6)
does not coincide with the point B

0 =arg max S(Q|8)

where D¢ (Q]|6) is minimal. Yet these two points are close, when n > 1, be-
cause Py — Q when n — oo, and hence 6 — 6, because the two optimisation

problems that define 8 and 8 coincide asymptotically.
Then, we can estimate S(Q|6) by expanding S(Q|9) around its maximum 8

A ~ 1,4 =z 0Sp1.» =
S(Q16) = 5@I8) - 5 X (6 - 8)Eq [#] ©—6)+..  (2026)
a,b a
where we used the definition of the score, S, = — log f(X|6). To leading

order, we can replace the expected value over Q i 1n the quadratic form, with
the expected value over f(x|8), therefore

3s,
Eo[S22] = [ dxsxio) 2 0g 1) = ~E 184501 =

where we used the fact that E [S,] = 0. Therefore

S(QI6) = SQI8) + 5 (B — 8M (OB, — ) + . (2027)
a,b

S(Q16) = S(QI6) + %Zfa,b(é)rE [6a =86, —6)| + .. (2028)
a,b

- 1 _ d
~ S(Q16) - n Zja,bj;}, +..=5(Q|6) — o + ...
a,b

In Eq. (20.28) we approximate the quadratic form with its expected value over
the distribution 6, and use the fact that 6 is a Gaussian random variable with
expected value 6 and covariance J~! /n.

1_S(Q|P) = H[Q]+D.(Q|P)is called the cross entropy. We also use the simplified notation
Dy, (Q||6) for the Kullback-Leibler divergence between Q and f(x|6).
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We use this expression in Eq. (20.25) and we replace Q with Px in the first
argument of S(+|-) of the resulting expression, i.e.??

Dyr(QlI8) = S(QIQ) ~ S(QI8) + A= + . (2029)
~ S(Px|Q) — S(Px|0) + % + ... (20.30)

As a function of 8, S(Px|6) is maximal at 6. We then expand around 8 and
estimate the leading term as in Eqgs. (20.26)—(20.28), which leads to

= A d
S(P)_(le) ~ S(P)_(|6) ~ o + ...
Taken together, this leads to
A A d
Dg(Ql6) = S(Px|Q) — S(Px|0) + i (20.31)

When the last expression is used to compare different models, the first
term S(Px|Q) is the same for all models, whereas the other two can be com-
puted from the data and the knowledge of each model. This means that the
likelihood per data point of each model has to be penalised by a term —d/n
which only depends on the number of parameters of each model.

For some unknown reason, Akaike defined his complexity with a factor
—2n, i.e. he defines

n
AIC = 2d — 2 log f(X;|6)

i=1

as the score that should be used to compare different models, suggesting that
the model with the lowest AIC should be preferred.

The way in which AIC should be thought is as an estimate of the expected
value of the Kullback-Leibler divergence between the true model and the
model with maximum likelihood parameters.

20.3.2 Bayesian Information Criterium (BIC)

A different way to address the question of how to penalise models for their
complexity comes from a direct Bayesian approach. Before seeing the data,

22The distance between Q and Py vanishes as n — co. Likewise 8 is expected to converge
to & asn — oo. Yet the distance between Q or Py and the distribution f(-|0) does not vanish.
The reason why the substitution Q — Py cannot be done directly in Eq. (20.25) is that 6 also
depends on X, whereas 6 does not. B
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you may have some prior information on which model is most likely. This is
encoded in the prior probability Py(m), m = 1, ..., M, where M is the number
of models. If you have no prior information at all, maximum entropy suggests
that you should take Py(m) = 1/M, which is what I will assume.

When you see the data X, this allows you to revise your prior estimate of
the models, and to compute the posterior probability P(m|X) using Bayes rule

Py = — PEIMIPoC) 0

S PX|m)Py(m)

where the likelihood of model m
P(X|m) = f 0, f (X 16,) P ()

is computed by averaging the likelihood of each model over the prior distribu-
tion py ,,(0) of the parameters. In order to estimate P(X|m), for n large, we
observe that the integrand is of the form f(X|6,,) = e"“©n) (see Eq. (20.19))
and hence we can resort to the saddle point method. Hence we find the
maximum 8,,, of £(6,,,) and expand around it. To second order

. 1 . . .
L(em) = L(em) - E Z(ej,m - ej,m)Jj,k(em)(ek,m - 6k,m) + ..
Jj.k

Upon changing variables to z; = ﬁ(@ im— 6 i,m)» the integral can be done by
Gaussian integration, with the result

nL(ém)—dTm logn-C,,

P(X|m)~e (20.33)

where p
C, = %log detJ(8,,) — Tm log(27) — 1og po ;m(6m)

is a constant (see [48] for a detailed discussion).

In the simplest case where the models are a priori equally probable (P,(m) =
1/M), the most probable model is the most likely one, i.e. the one that has
the largest likelihood P(X|m). Yet this is not only given by the value of the
likelihood at the maximum 6,,, but it is also penalised by terms (the second
and third in the exponent of Eq. (20.33)) that account for the complexity of
the model m.

Notice that while the likelihood term in the exponent is proportional to n,
the second is proportional to log zn and the third is a constant. Therefore, for n
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very large, the term that dominates is the likelihood, but for smaller values of
n the second term becomes important, and for even smaller values of n even
the third term becomes important. Notice in particular, that when » is not
very large, even the choice of the prior becomes relevant. In these situations,
choosing a prior such as p; that introduces no bias in the space of samples,
becomes important.

Selecting the best model based on the first two terms is called Bayesian
Information Criterium (BIC) whereas the last term is usually associated to the
Minimal Description Length (MDL) [48]. Both these two criteria are more
severe in penalising models than AIC.

A final remark. At a formal level, for n very large, the denominator in
Eq. (20.32), which is nothing but the probability of X (called evidence in
inference), looks like a partition function

M K C
~ ~nF,, — L) 4 om Em
P{X} ~ mZ::le . Fu=—LEpn)+ 5 logn+ = (20.34)

where n plays the role of the inverse temperature and, as we have seen, F,, can
be regarded as the free energy of the model m. Imagine a situation such as that
described at the beginning of this section, where model m includes as special
cases simpler models. Passing from model m to model m + 1 entails switching
on a coefficient a,,_; that was set to zero in model m. This is equivalent
to breaking a symmetry between models with a,,_; > 0 and models with
a,,—1 < 0. As we have seen, as n increases (i.e. as the temperature decreases),
the complexity of the model that dominates the sum in Eq. (20.34) typically
increases. This is a common phenomenon in physics: as the temperature
decreases, the state of matter passes through phases of decreasing degrees of
symmetry.

An illustrative case: two states Dirichelet’s model. Consider a repeated
experiment where there are two possible outcomes X = 0,1 and assume
there are n independent observations, k with X = 1 and n — k with X = 0.
There are two possible models: in the first the two states are equiprobable,
i.e. po(X = 1) = py(X = 0) = 1/2. In the second, the states have different
probabilities p;(X = 1) = p = 1 — p;(X = 0). These correspond to different
models that we can identify with different partitions of “states” X, according to
their probabilities. So the first case corresponds to a model M, = [({0, 1},1/2)]
where the two states are symmetric because they have the same probability,
whereas the second to a model M; = [({0}, 1—p), ({1}, p)]. Clearly P{X | My} =
27" whereas for M the likelihood P{X|M;} can be obtained by integrating
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the likelihood over the prior distribution of the parameter p, for which we
take a Dirichelet form?

I'(a)?
I'(2a)

Py(p) = pt @ - p)*h.
The probability of the data X given model Mj, is obtained averaging the
likelihood p(X|p,M;) = p*(1 — p)"*~* over the prior Py(p) and one obtains:

_TQa)yrtkk+a)l(n—k +a)
PX| M} = (@ T(n + 20) . (20.35)

In order to compare the two models, we invoke Bayes rule and compute the
posterior probability

P(X|M;)Py(MM;) _ P(X|M;)Po(M;)
2 ; PXIMPo(M) P(X)

P(M;|X) =

where P, (M) is the prior probability of model i. For the sake of simplicity,
we’re going to assume that all models are a priori equally likely.>* So the most
probable model is the one with the highest likelihood P{X|M}. In the present
case, it is easy to check that, for n > 1, in the representative case of a uniform
prior (a = 1) we have that as long as

log(2
k_1‘< og(2n/m)

n o 2 8n

the symmetric model M, should be preferred.

This argument extends in a straightforward way to the general case where
the outcome X can take more than two values or states. The argument above
suggests that, in the general case, for each pair of states X = sand X = s’ their
probability should be the same, unless they occur in the data a sufficiently
different number of times. If k; ~ kg instead, they should be assigned the

BThis choice is convenient because the posterior distribution over model M;, which is
obtained by Bayes rule,

I'k+a)I(n—k+ a)pkﬂ_l(1 _

P(pI$, M) = I'(n + 2a)

p)n—k+a—1.
keeps the form of a Dirichelet’s distribution. Priors with these property are called conjugate
priors.

24By Occam’s razor, one would be tempted to prefer simpler models, i.e. those with fewer
parameters. Yet Occam’s razor already arises from the integration over the parameters implied
by Bayes rule, without the need to introduce it ad hoc.
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same probability, i.e. the symmetry between states s and s’ should not be
broken.

Given the set S of states s that are seen (with multiplicity kg > 0), then
a generic model M = [Q, i] is one where different states are divided into a
partition

N
2=0Q1Q Q) |Jog=3s
q=1

of a number N of disjoint sets, and each state in the g subset of the partition
(s € Q) has the same probability u,. If my = |Q,| is the number of states in
subset Qq, then Mq satisfies the normalisation

D mgug = 1. (20.36)
q

Any possible partition corresponds to a different model, including the one
where each state is in the same subset (s € Q,, Vs), and the one where each
state is in a different subset (s € Q,, Vs). Hence, each partition Q identifies a
different model M, and it is possible to carry out Bayesian model selection
on the set of all these models. We refer to Haimovici and Marsili [57] for a
detailed discussion. In brief, what one finds is that the most likely models are
those that group states that are observed a similar number of times in the same
subset of the partition. It is clear that, as n increases, unless some symmetry
implies that some states should have the same probability, the degeneracies
between states will be lifted because all states will be observed a sufficiently
different number of times. This series of successive symmetry breaking events
as n increases, is equivalent to phase transitions in physics, as the temperature
decreases, according to the analogy discussed above.

20.3.3 Minimum Description Length

Conclusions very similar to those of Bayesian Model Selection, can be drawn
from a seemingly very different perspective, that of Minimum Description
Length. The problem is the following: Alice chooses a value of 8, draws n i.i.d.
samples from f(x|6) and send them over to Bob. Before receiving X, he has
to make enough space available on his hard drive. Bob does not know 6 but
he knows that the sample X is drawn from f(x|68). How much space should
he reserve?

If Bob knew the distribution P(X) he could store efficiently the data in
—log P(X) bits. If he could see the data before deciding how much space
to reserve, then he could compute the MLE 6 and use PX) = fX |é(§ )
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for coding the data, so he would need —nL(é) bits. However he has to take
this decision before seeing the data. There are several equivalent ways to
see the problem: one is to ask Alice to send the parameters 6 before making
the decision. Then Bob should set aside enough space to store 6 besides the
space —nL(0) needed to store X. But then Bob would need to know what is
the distribution py(8) from which Alice has drawn 8, which looks like the
problem of choosing a prior.

A different solution is given by assuming that Bob wants to avoid at all
cost to end up in a situation where he would not have enough space. To play it
safe, he will assume that, whatever P(X) he chooses to encode the data, Alice,
knowing it, will choose the worst possible sample X. Knowing this, Bob will
choose the P(X) that minimises the amount of disk space he has to reserve.
This problem can be formalised by introducing the regret of P for X

R(X, P) = —log PX) + log £ (X]6)

which is the difference between the number of bits used by Bob, if he adopts
the code P(X) and the minimal possible coding cost —log f(X |6). Then the
MDL code is

P = argmin max R(X, P).
P X -
The solution to this minimax problem turns out to be surprisingly simple:

by = D)
Sy FE 16

which is called the normalised maximum likelihood. The number of bits
needed by Bob are

—log P(X) = —log f(X|6(X)) +log ) f(X'|6(X")) (20.37)
X/

The second term must be equal to the additional disk space Bob would need
to store the parameters 8. The best model should be the one that allows for
the most concise description, i.e. with the minimal value of — log P(X).

In order to estimate the second term of Eq. (20.37), let us assume that
f(x]6) belongs to an exponential family (so the Hessian of the likelihood is
given by the Fisher Information) and consider the integral

20T d/2 R
f de\/ detJ(6)f(X|6) ~ <7> JXI6(X))
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where we used saddle point integration. Now summing over X and taking the
logarithm one finds

log Y, fX'I6(X")) ~ glog % +log f do\/detJ(0).
}_(I

The first term comes because each of the d parameters in 8 is know to a
precision 1/ ﬁ, which requires (log n)/2 bits. In addition the parameters are
not independent, which is what the second term accounts for. So the last term
in the expression above encodes the intrinsic complexity of the model f(x|0).

Codes in MDL are efficient in a very precise manner: P(X) provides a
generative model for samples generated as i.i.d. draws from f(x|6) from some
unknown 6. This means that the code-length

n

£ =23 P(X)log P(X)
X

achieved by MDL is the smallest possible. In order to check this idea, one can
study the large deviations of the code-length. This is discussed in Cubero et
al. [58] that finds that MDL codes sit precisely at a phase transition in terms
of the code-length. There are only distributions that encode samples with a
higher code-length, attempts to achieve a lower coding cost triggers a localisa-
tion phase transition like the ones we discussed for fat tailed distributions.

20.4 The high dimensional limit and beyond

Yet in truth there is no form that is with or without features; he
is cut off from all eyes that look for features. With features that
are featureless he bears a featured body, and the features of living
beings with their featured bodies are likewise.

(the Immeasurable Meanings Sutra, foreword to the Lotus Sutra)

All the discussion up to now has focused on the limit n — co when the
range of variability | y| of the data points X were kept fixed.

There are cases, which are of considerable current research interest, where
the data is very high dimensional. Examples range from recording of neural
activity and gene expression data to time series in economics and finance. It is
not rare that each point X; consists of a point in a d-dimensional space, where
the dimension can range in the thousands, and that the sample size n consists
of few hundreds of data points.
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Describing these data necessarily requires models that depend on many
parameters, at least as many as the number d of variables. Things are made
worse by the fact that, in the end, what one would like to estimate are the in-
teractions among the variables that are responsible for the observed behaviour.
Yet, if the number of variables is d, the number of possible pairwise interaction
grows with d?. The situation is even worse as in many of these systems we
have no reason to believe that pairwise interactions are the relevant ones. The
number of three body interactions grows in number as d* etc ...and the total
number of possible interactions among d variables is 2¢ — 1. Even Big Data is
not big enough.

This is clearly a situation where the saddle point approximation used in
the previous section becomes questionable and all the results we discussed so
far cannot be applied. There are two different ways of approaching statistical
inference in these situations. The first invokes regularisation schemes that
inhibit large fluctuations of inferred parameters by constraining them. In
practice this entail introducing priors on parameters. For example, L, reg-
ularisation correspond in maximising an objective function that is a linear
combination of the log-likelihood and the sum of squares of the parameters.
This implicitly corresponds to assuming a Gaussian prior distribution on
parameters.

A different approach is that of resorting to dimensional reduction schemes,
such as principal component analysis (PCA) or data clustering. PCA aims at
identifying directions in the d dimensional space along which the data exhibit
a significant variation. In its simplest form, these directions correspond to the
eigenvectors of the largest eigenvalues of the covariance matrix.

Data clustering aims at mapping each point X of the sample to a discrete
variable s = 1, ..., S, which is the label of the cluster to which point X belongs.
The mapping X — s aims at grouping similar points in the same cluster, where
similarity is defined in terms of a distance between points X; in the sample.
For the same data, there is a large choice of data clustering methods, based
on different distances and algorithms. Which of these methods should one
choose?

Any regularisation, dimensional reduction or data clustering approach
implicitly entail some assumptions on the data. For example, L, regularisation
implies a Gaussian prior, as mentioned above, and PCA implicitly assumes a
Gaussian generative model because the method is based on pairwise statistics.
These may be strong hypotheses in the high dimensional regime, which may
be uncontrollable or arbitrary specially in case where the generative model of
the data is completely unknown. Furthermore, statistical inference in the high
dimensional limit is strongly affected by computational limits, that in many
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cases limit the choices to algorithms. Algorithms that require computational
times that scale as the square of the dimensionality or of the number of data
points are often already unaffordable.?

The theory discussed in these lecture notes may provide a critical analysis
of what assumptions we are projecting on the data when using one or the
other method of data analysis.

20.5 Beyond statistical inference: learning and
intelligence

All the approaches discussed thus far do not address the fundamental issue of
what learning actually is. All the problems we discussed define learning at the
outset, providing a solution in terms of an optimisation problem. Learning is a
fundamental feature of living beings. A fundamental aspect of it is that it must
be possible to identify “interesting” patters in the data before understanding
why they are interesting. Furthermore it must be possible to do so on the
basis of very little data. This is possible because uninteresting data (noise)
is described by maximum entropy distribution and, as such, it is detectable.
This leads to a notion of learning intended as “making sense of data that
make sense” that has been developed on the basis of a notion of relevance
(see e.g. [36]). This goes well beyond the material discussed in this lecture
notes, but it makes sense to discuss how far the landscape of concepts we have
discussed thus far may bring us in addressing fundamental issues in cognition.
Indeed David Marr [55] has argued that the conceptual underpinnings of
cognitive functions are independent of whether they are implemented in-
silico or in a biological brain. If these is true, these functions should be based
on principles of information theory and statistics.

It must be said at the outset that one of the main hurdles in this venture
is that a precise definition of concepts such as awareness, intelligence or
consciousness is still lacking.?® While these concepts may be hard to define
in general, it may be easier to define them within the limited scope of some
simple models. Therefore, following Marr, one can address these questions
studying simple artificial neural network models trained on complex data, by
dissecting their internal states.

ZBFurther computational issues arise when the inference problem involves non-convex
optimisation problems. In these cases, inference may turn out to be a computationally hard
problem. Issues of this type arise in the high noise regime of signal detection problems, see
e.g. [30].

26Until recently, we relied on Turing’s test as an operational definition of intelligence. The
advent of large language models has shown all the limits of this definition.
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For example, an absolute, quantitative notion of relevance can distinguish
systems that “know” from those that “do not know”. Those that do not know,
like systems in statistical mechanics, have an internal state consistent with
the maximum entropy principle. The internal state of systems that know
should instead be described by states of maximal relevance. If the relevance
of the internal state of a system can be measured, then it can also be measured
by the system itself, leading to a very rudimentary notion of awareness as
“knowing to know”. Most importantly, an information theoretic notion of
relevance would allow a system to know that it knows irrespective of what
it knows, just like the entropy measures information content irrespective of
what that information is about. What type of architectures would support
this function in a neural network? And what architecture would support an
infinite recursion of “knowing of knowing of ... knowing to know”, which
may approach a primitive notion of consciousness?

As for intelligence, it has been argued that intelligent behaviour relies
on “extreme generalisation [intended as] the ability to handle entirely new
tasks that only share abstract commonalities with previously encountered
situations, applicable to any task and domain within a wide scope” [52]. This
suggests that the ability of abstraction is a prerequisite for intelligence. Find-
ing “abstract commonalities” requires a representation that may encompass
a wide variety of tasks and which, therefore, should be independent of any
task. In other words, an intelligence spanning an unbounded scope of tasks
should navigate a universal map with a metric defined in terms of “abstract
commonalities”. But how does this abstract, universal representation comes
about? This is a question which has been much debated in the context of
language. Chomsky has convincingly shown that languages share a common
structure — the so-called universal grammars — that entails the capacity of
infinite recursion [53] thus making it possible to generate an infinite variety
of sentences with a finite vocabulary.?’ The fact that this capacity emerges
in children without exposure to much data (spoken language) has led to the
hypothesis that universal grammars need to be biologically hardwired, an
hypothesis that is not widely accepted [54] . Yet, such universal represen-
tations could emerge spontaneously in deep cortical areas which integrate
input inputs from a broad set of sources, across all sensory modalities, not just
from spoken language. While this hypothesis is hard to test in the context of
language, it is much easier to test it within simple machine learning models.
When these are trained on complex data of increasing variety one should

¥’The actual form of language as it is spoken or written derives from this universal gram-
mar through a series of transformations that encodes abstract semantic structures as well as
grammatical rules.
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expect the internal representations of these models to converge to universal
distributions.

I hope that the material presented in these lecture notes can help address-
ing deep questions about cognition, learning, and intelligence, in the simplest
possible models, anchoring approaches on principled theoretical frameworks
rooted in the fundamental laws of information and probability.






Chapter 21

Exercises for the second part

These exercises are of different degree of complexity, some are open ended,
but given the material discussed in the lectures, you should be able to tackle
them.

1. Imagine that O is friend with A, and A has n friends By, B,, ..., B,,, each
of which is friend with C (who is not a friend of A and O). You can draw
a graph where persons are the nodes and links are friendship. Imagine
that O is positive for a virus that can be transmitted to friends with
probability p. Compute the probability that C gets infected. Compute it
inthecase p=1/2and n = 4.

2. Let Z, = max{Xy, ..., X, } be the maximum of n independent and iden-
tically distributed random variables X; > 0 with pdf p(x) = yx?~le™.
Find sequences a,, and b,, such that the variable Y,, defined by Z,, =
a, + b,Y, of has a non-degenerate distribution as n — oo. Find
P{Y < x}.

3. Let X be a non-negative integer random variable with expected value
A. What is your best estimate of its second moment? Imagine that you
get a sample of N > 1 i.i.d. observations X; of X and that the sample
mean is close to 4. Yet the sample second moment is twice as small as
this best prediction. What do you conclude? What if instead you find
that the sample second moment is twice as large as what you expect?

4. Consider the variable
Y=aX+Z7Z

where X and Z are independent Gaussian variables with mean zero and
unit variance. Compute the mutual information I(X,Y).
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5. Compute the large deviation function for random variables with distri-

bution p(x) = e™*¢ ", x € R.

. Consider the accelerated random walk S,,,; = S, + nX,, where X,, are

i.i.d. random variables that take values +1 with the same probability
and S, = 0. Find the value of a for which the variable Z,, = n™%S,,
admits a limiting distribution. Using this show that the probability that
the accelerated random walk returns to a neighbourhood S,, € [-K,K]
of the origin infinitely often is zero (K is a finite positive integer).

. Winning in desperate situations. Imagine you are a coach and, in the

game you are playing there are n rounds left and your team is under by
ny > 0 points. The final score of the match will be

n
ZXi —ny
i=1

in your favour, where X; is the score difference in round i (X; > 0isin
your favor, X; < 0 if your opponent scores).

Assume that X; is i.i.d. (very unrealistic, but...) drawn in each round
from the probability

0 wp.l-2q
Qq(x) =1+1 w.p.q(1 —nq)
-1 wp.q(1+7q)

with 7 > 0. You can choose the parameter q € [0, 1/2]. Informally, you
can decide how much to attack or defend, but if you decide to attack
(large q) then your opponent can score more easily (n > 0).

In the end, you are interested in events E = {Zi X; > ny}in which you

win or draw the match. How would you find the best “tactics” g*?

. Consider a machinery that can undergo mis-functions at random times.

The waiting time distribution (pdf) for mis-function eventsis p(t) = e™"*
(i.e. mis-functions is a Poisson process). The machinery breaks down
completely when n consecutive mis-function events occur. Estimate the
probability that the time to breakdown is larger than n7, with 7 € R™,
and n is very large.

. Compute the large deviation function I,,,(x) for random variables X; >

0 with distribution p(x) = x™ e~ /T'(m) and for binomial random
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10.

11.

12.

13.

14.

15.

variables P(X; = k) = (’:) p*(1 — p)"*. Check that, in both cases, the
solution has the scaling form I,,,(X) = mI;(x/m). Why is this so?

Consider arandom walk S,, = X;+X,+...+X,, where the steps X; arei.i.d.
random variables with pdf p(x) = ie‘\/m for x € (—o0, ). Consider

the limit of Z(t) = \/ES,m sat When dt — 0. Is the random curve
so obtained continuous? Consider now random walks which attain
the value Sy = vN and show that a continuous time limit can now be
achieved when N = T /dt — oo, for the function Z(t) = dtS,, /dr When
dt — 0 (t < T). Draw a typical realisation of Z(¢) for ¢t € [0, T]. What
would this graph look like if instead X; where i.i.d. Gaussian variables
with mean zero and unit variance?

Consider the large deviations of sums of uniform random variables (i.e.
p(x) =1for 0 < x <1and p(x) = 0 otherwise). Estimate the behavior
of the Cramer function I(X) for i) X ~ 1/2, ii) X ~ 0 and iii) X ~ 1.

Let there be n + 1 boxes labeled w = 0,1, ..., n, with n even. One of
the boxes contains a prize, the others are empty. The probability that
the prize is in w = 0 is p whereas the probability that it is in any other
box is (1 — p)/n.You have the options to open the box w = 0 or to open
simultaneously all boxes w > n/2. Show that the option that gives you
more information on where the price is not always the most convenient
one. Show that if n > n*(p) the second option is more informative than
the first, and find n*(p). Show that for p = 1/(n + 1) the second option
is always more informative. Show that, under one of two options, the
uncertainty on where the prize is can increase, if n > 7i(p), and find

n(p).

How many bits do you need to specify a Gaussian random variable with
mean y and variance o2 to a precision of n bits? Notice that the result
depends on o but not on u. Yet the binary representation of a Gaussian
variable with u = 10* up to precision A, is very likely to contain more
bits than a Gaussian variable with ¢ = 10. Can you explain this apparent
paradox?

Compute the differential entropy for a multi-dimensional Gaussian with
mean  and covariance Cov[X;,X;] = A; ;.

Show that, in the case of Bernoulli trials, the number of successes is a
sufficient statistics for the probability p of success. What is a sufficient
statistics for the Poisson distribution?
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16.

17.

18.

19.

20.

Blackwell-Rao estimator: let X = (X, ..., X,,) be a sample of i.i.d. draws
from a Poisson distribution with parameter 1. We want to estimate the
probability e~ that X,,,; = 0. A very rough unbiased estimatoris § = 1
if X; = 0 and 6 = 0 otherwise. This is not a consistent estimator but it
is unbiased. In order to get a better estimator, Blackwell-Rao theorem
suggests to look for a sufficient statistics T for the unknown parameter
and to consider the estimator 6zx(T) = E[§|T]. In the present case,
a sufficient statistics for 4 is Z?zl X;. Compute the Blackwell-Rao im-
proved estimator dpz and show that it is consistent (in fact, since T is
complete and ¢ is unbiased, Lehmann-Scheffé theorem implies that 6z
is the unique minimum variance unbiased estimator).

Among n objects at most one of them may be lighter or heavier. Given a
balance find an upper bound to the number of weighings necessary for
finding the lighter or heavier object, it it exists. For n = 12 what would
be the optimal first weighing?

Let p(s) = P{S = s} be the probability distribution of a discrete random
variable S € 8§ with |8| < +oc0. Mixing this distribution with that of a
deterministic variable taking value s, € 8 yields the distribution

pa(s) =(1- OC)P(S) + aas,so’ ae [Oa 1]

Show that the entropy of the new variable S’ described by this distribu-
tion is given by

H[S'] = (1 — ) [H[S] = h(p(so))] + h(q),
h(x) = —xlogx — (1 — x)log(1 — x)

where ¢ = a + (1 — a)p(sp) and H[S] is the entropy of the original
variable S (measured in nats). Show that, for sufficiently small a, H[S']
increases if p(sy) < e HIS],

Drawing with and without replacement. An urn contains r red, w white,
and b black balls. Which has higher entropy, drawing k > 2 balls from
the urn with replacement or without replacement? Set it up and show
why.

Let X,Y > 0 be two random variables with joint distribution density
p(x,y) = Ax%e™*=*Y_ Compute the normalization constant and find the
interval of 6 where this is a well defined probability density. Compute
the mutual information between X and Y.
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21. Mutual information and copulas: given two random variables X, Y with
joint pdf p(x, y) and distribution

x y
P(x,y) = f dx’' f dy'p(x'y")

The marginal distributions are

x y
Py(x) = f dx’ f dy'p(x'y"), P,(y)= f dx’ f dy'p(x'y").
the copula function is defined by the identity!

P(x,y) = C(Px(x), P\ (y))

The idea is that the transformation (X,Y) — (U = P(X),V = P,(Y))
maps the marginal densities to uniform ones so the distribution C(U, V)
contains information on the statistical dependence of X and Y that is
independent of the marginal distributions. Show that

I(Xa Y) = DKL(C’ Q)

where Q(u, v) = uv is the uniform distribution in [0, 1]%. Discuss the
result. Generalize the result to n > 1 random variables X, ..., X,,.

22. LetX = (X, ...,Xy) be a vector of random variables whose marginal
distributions p(x;) are all Gaussian with zero mean and unit variances.
Prove that

I(Xy,...,XN) > —% logdetC

where C is the covariance matrix with elements ¢; ; = E [X;, X;]. Notice
that any random variable X; can be transformed into a Gaussan variable
X; = ¢(X,) by a suitable transformation. Then these bounds can be
used to determine instances where variables have non-trivial statistical
dependencies. For more information, see [51].

23. Let px(x) be the N dimensional multivariate Gaussian distribution
with zero average, unit variance and correlation matrix X. Show that

detX
det>’

See R. B. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics (New York:
Springer, 1999) or some other standard text for an introduction to copulas.

1
Dkr(pyllps) = 5 |log +Tr(E"'12) =N
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24,

25.

26.

Consider a random rectangular box in d dimensions. Each side X; is an
i.i.d. random variable with uniform distribution in [0,1] (i = 1, ..., d).
What is the expected value of the volume of the random box? What is
the side ¢ of the hypercube in d dimensions that has the same volume
of the random box, in the limit d — co? How big can the radius r; of an
hyper-sphere that can be contained in the random box be, for d > 1?

Optimal binning: imagine you have a sample X = (X;,...,Xy) of N
observations of a random variable X with unknown pdf p(x) with sup-
port on [0, 1]. In order to estimate p(x), you divide the interval in m
bins of size 1/m. What is the optimal number of bins m if you want to
minimise the relative uncertainty on the point (x, p(x)) of the graph of
the pdf? (hint: having m small gives a lot of precision on the estimate
of p but a poor resolution on x, large m gives high resolution of x but
large errors in p.)

Let X; be the x coordinate of the i particle of an ideal gas at temperature
T in a cubic box of size one. Now imagine to set a wall at position
¢ € [0,1] perpendicular to the x direction and let Y be the number
of particles to the left of it. Depending on Y the wall will experience
unequal pressures from the left and from the right. If Y is known the
force that results from this difference in pressure can be used in order
to perform work.?

Show that the expected value of the work done by the system in the
isothermal expansion of the gas® is equal to

E[W]
KT = NI(X,,Y).
Show that, in this case
al p(X|Y)
DX, Y) <I(X,Y) =E log
i=1 o p(X)

so that E [W] < KgTI(X,Y), which generalises the second law of ther-
modynamics to cases where information on the microscopic state of a
system is available.

2This relation between information and work in thermodynamics has been first epitomised
in Maxwell’s demon, a creature that observing the velocities of particles in a gas can open and
close a small gate and create free energy differences that can be used to perform work.

3The work differential is given by dW = PdV where P = nKzT/V is the pressure of an
ideal gas and V is its volume.
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27.

28.

29.

30.

When N = 1 the work extracted is precisely equal to KzT times the
information that the measurement Y gives on the microscopic state X
of the gas. When N > 1 not all the information I(X, Y') extracted from
the measurement can be used to perform work.

Consider two random variables X, Y = 0,+1, with u(X = +1) = w(Y =
+1) = u, u(X = 0) = wW(Y = 0) =1 —2uand E[XY] = 0. Find
the distribution p(X, Y) with a given mutual information I(X,Y) = I.
How does the distribution with maximal I(X, Y') looks like?

Chernoff bound: in hypothesis testing, let X € {0, 1} be arandom variable
that has distribution

P{X =1|H,;} = p and P{X = 0|H;} = 1 — p under hypothesis H; and
P{X = 1|H,} = q and P{X = 0|H,} = 1 — q under hypothesis H,.
Compute 1*(p, q) and check that this satisfies the symmetry 1*(p, q) =
1 — A*(qg, p). Why is this so?

Imagine that vaccines are being developed to contrast an ongoing pan-
demics. Let’s assume that a vaccine is efficient if a subsequent blood
test reveals the presence of antibodies with high probability p. If in-
stead the vaccine is not efficient, antibodies are detected with a baseline
probability g. Can you help the health authorities to decide how many
people should be tested in the trial phase, in order to conclude that the
vaccine is efficient with high confidence?

Bias in the MLE estimate of the entropy. Let X, ..., X,, be n i.i.d. draws
from a distribution p, for x,X; € y in a finite set. The Maximum
Likelihood Estimate (MLE) of p, is p, = k,/n where k, is the number
of X; = x. Show that the MLE estimate of the entropy

H=- Z Dy log Py
x€y

is a biased estimator of the entropy

Hlp] = - pylogp,

xXEy

in the sense that

[E[H]—H[p]:—l)(lzrzl +%nzll+ D i]
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31.

32.

33.

34.

35.

Hint: use repeatedly the formula

logk = f du [e7% — e ku].
0

u

Differential entropy estimates: let x, ..., x5 be a sample of N i.i.d. draws
from a pdf p(x). Show that an estimate of the differential entropy can
be given by

N-1

1
hlp) = [ dxpCologp() ~ g . logis —x) + g
i=1

Compute the differential entropy of the random variable X > e with pdf
p(x) = 1/[x(In x)?] for x > e and p(x) = 0 for x < e.

Coarse graining. Let p(x) and q(x) be two distributions for the discrete
random variable X € y, where | y| < +oo takes a finite number of values.
Let Z = f(X) be a random variable that takes values on a set Z, with
|Z| < |x|. The transformation f : y — Z generates a representation
of X that eliminates some details, because different values of X can be
mapped into the same value of Z. In this sense it is a coarse graining.

Let p(z) = .. Foo=z p(x) and 4(z) = . . Foo=z q(x) be the distribu-
tions of Z. Show that Dg;(p|lG) < Dk (pllq)- In loose words, the two
distributions p and q approach each other under coarse graining.

Compute the Cramer function for a sequence X of i.i.d. Gaussian ran-
dom variables with unit variance and mean which, for all of them, is
either E [X] = u with some probability v, or —u with probability 1 — v.
Compute the function

¢(h) = lim 1 log E [eh(X1+...+Xn)]

n—oo

and its Legendre transform I(x). What is the distribution density p(x|x)
of the variables, conditional to the value of x?

Use the identity

[e]
B pp2 BIn A2 BrmM
exm’ =4[ — dme 2
27
—00
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36.

37.

38.

39.

with M = . X; and compute the partition function

Z(B) = Z e~ BEX)
X

for the mean field Ising model. Recover the equation of state Eq. (19.25).
Compute Jeffrey’s prior for the Poisson and the Gaussian distribution.

Compute Jeffrey’s prior for the binary distribution P(X = 1) = p =
1 — P(X = 0). Show that the unconditional distribution of the sufficient
statistics T(X) = X; + ... + X, for a sample X of n i.i.d. draws, under
Jeffrey’s prior, obeys an arc-sine law for n > 1. What is the distribution
of T instead under Laplace’s prior py(p) = 1 for p € [0,1]?

Let € R be a random variable with distribution
x—p
f(x16) = %eg(T) (21.1)

where 8 = (u, o) and €8 is a pdf such that

o0 (o]
f dzes@z =0, / dze8@z2 = 1.
—00 —00

Check that the expected values of the scores vanish. Show that the
Fisher Information is given by

Tu= SE|@@Y] he=SE|zE@@)]
Too = = [E|(zg@)’| -1

and therefore Jeffrey’s prior is proportional to p;(u, ) « 1/d2. Show
also that, if g(z|9) depends on other parameters 9 € R, then J 108, &
o~! and Js,.9, is independent of u and . Conclude from this that
Jeffrey’s prior is independent of u and proportional to o~2 for all distri-
butions of the form (21.1). Discuss the result in terms of dimensional
analysis.

Let p(u, o|X) be the posterior distributions of the parameters of a Gaus-

sian
_ G
e 202

p(x|u,0) =
2o
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given a sample X = (X3, ...,X,) of ni.i.d. observations.

Show that assuming the uninformative prior py(u, o) = c/o, the poste-
rior p(u, o|X) is also improper for n = 1.

Show that for n > 2 provided X; # X,, the posterior is instead a proper
probability density.

Show that the same is true under Jeffrey’s prior.*

40. Model selection in the limit of uninformative priors.
Let X = (X3, ..., X,) be a sample of n points that we know have a
Gaussian distribution. In order to decide whether the correct
distribution has mean E [X] = 0 and variance o2 or a mean E [X] = u
and variance o2, we can assume that u has a prior distribution

Po(u) = \/ %3_5“2

and that ¢ has a prior py(c) in both models.

Show that in the limit € — 0 of total a priori ignorance about u, the
model with E [X] = 0 will always be selected, in a Bayesian model
selection scheme. Interpret the result.

Hint: it is possible to show that, when py(c) = c/o, to leading order in
¢ the model with u # 0 is more likely than that with u = 0 when

n

-2\ 2
n X
e>—|1—-=
x2 x2

where X = - 2 Xjand x2 = 2 >,; X?. In loose words, only if the initial
n n
uncertainty on u is finite it is possible to conclude that u # 0.

41. What is the probability that democracy works in a random population?
Consider a population of N individuals with preferences over three
choices, A, B and C. Let the preference ranking over the alternatives

“The intuition about this result is the following. A state of complete ignorance about y is
one where an infinite number of bits would be needed to specify u to any precision A, because
|| can be arbitrarily large. Similarly, an infinite number of bits would be needed to specify o to
any precision A. When we see two data point, we can estimate the scale of both u =~ (X; +X,)/2
and o ~ X; — X,. This removes the divergencies and yields a state of knowledge that is a finite
number of bits away from the knowledge of x and o to a finite precision. One may conjecture
that those associated to scale and location are the only primitive divergencies in the state of
knowledge about a real random variable x. Then two points should be sufficient to make the
posterior derived from Jeffrey’s prior finite, whatever is the distribution f(x|6), no matter how
many parameters it depends on.
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42.

43.

44.

be random and independent for each individual. Consider pairwise
majority voting among the alternatives, e.g. if the number of individuals
which prefer A to B is larger than N /2 that the majority prefers A to B.
In the limit N — o0, find the probability that pairwise majority voting
is transitive, i.e. that if the majority prefers A to B and B to C, then the
majority also prefers A to C.

Lets = (s, ..., $,) be a string of n bits (s; = 0, 1). Consider the distribu-
tion )
p(s) = e #®,  E(s)=max{i : 5, =1}

In words, the function E returns the largest index k such that s, =1
(and E(s) = 0if s; = O for all i). Notice that any s with s; = 1and s, =0
for all ¢ > k has probability p(s) = e~8K/Z, where Z is a normalisation
constant. Compute the partition function Z, the expected value of E
and its variance. Show that in the limit n — oo this model features a
phase transition.

Let £ = (xy, ..., X,;) be a sample of variables drawn from an exponential
distribution p(x) = 6e=%*. How big do you expect n should be in
order to know the parameter 6 > 0 to a precision A? i) give a heuristic
argument for an estimate of the asymptotic behavior of n with A for
A < 1, ii) describe the calculation that you would do to prove this result
iii) do the calculation. [There are different ways to find the solution. If
yours needs a prior on 8, use py(8) = ae™%°]

The Z-channel: let X, Y € {0, 1} be two binary random variables. Let
P{Y =0|X =0} = 1and P{Y = 1|X = 1} = 1 — e. This is called the
Z-channel in channel coding. You can think of X as being the input of
a noisy communication channel that gives Y as output. Hence when
the input is X = 0 it is transmitted without error, whereas when X = 1
the input may be corrupted by noise. Show that when the distribution
of X is such that I(X,Y) is maximal, X = 1 should be more probable
than X = 0.
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