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Abstract
In this workwe study the stability of the equilibria reached by ecosystems formed by a large number of
species. Themodel we focus on are Lotka–Volterra equationswith symmetric random interactions.
Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous
interactions the systemdisplaysmultiple equilibria which are allmarginally stable. This property
allows us to obtain general identities between diversity and single species responses, which generalize
and saturateMay’s stability bound. By connecting themodel to systems studied in condensedmatter
physics, we show that themultiple equilibria regime is analogous to a critical spin-glass phase. This
relation suggests new experimental ways to probemarginal stability.

Introduction

Ecosystems can be incredibly rich and their understanding remains an outstanding challenge. A number of
aspects of the problemmake the tools of statisticalmechanics uniquely suitable for the challenge: highly-diverse
ecological communities involvemany degrees of freedom (e.g., the species), with intricate interactions. At the
same time, there is special interest in system-wide, aggregate quantities, such as the total biomass, overall
diversity, system stability and fluctuations, and the response to large-scale perturbations.

The use of statisticalmechanics in a growing body of works has provided insight into the behavior of diverse
ecosystems. In particular, they have highlighted role of collective phenomena, and the emergence of phases with
distinct qualitative behaviors, with phase-transitions between them [1–10].

Here we study a canonicalmodel for a community of interacting species.We identify a phasewhich is critical,
in the language of condensedmatter physics. Thismeans that all stable equilibria are in fact very close to
marginal stability. Beyond the implications to ecology, discussed throughout this paper, this observationmakes
contact withmany complex systems inNature that are poised just at the edge of stability [11–19]. One important
common trait of all examples is that they are formed by strongly interacting units—species, neurons, agents and
particles depending on the situation. The possible explanations of such phenomenon are varied. They include
the need forflexibility and adaptiveness to time-varying conditions [12, 20], balance between functionality and
stability [20], self-organized criticality [21], self-organized instability [22], and continuous constraints
satisfaction [11]. In this workwe provide exact results which uncover an underlyingmechanism in amany-
variable, interacting system.

We focus on the generalized Lotka–Volterra (LV) equations. They provide a simple and general setting to
study assemblies of interacting degrees of freedom; as such they are used in several fields [23–26]. In particular,
they provide a canonicalmodel for ecosystems, with growing connections to systems across biology [23, 24, 27].
The study of stability of equilibria and their properties using LV equations and generalizations has become a very
active research subject. Several important results were obtained recently; in particular general techniques to
count the number of equilibria and their properties have been developed [8], and criticality and glassiness have
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been found to be emergent properties of ecosystems [2–7]. A phase-transition similar to the onewefindwas
identified in the related replicator equations [2, 3], but the properties of the new phasewere not analyzed.More
recently, a phase-diagram for the LV equationswas suggested in [7], see theDiscussion section for the relation to
the present work.

Bymapping themodel to condensedmatter system, our approach reveal the generality of the results beyond
LVmodels.Moreover, by transferring knowledge developed in glass physics, we proposeways to directly check
the degree of criticality using experimental data on abundance distributions, see theDiscussion section below.

In themodel we consider, an ecological community is assembled from a pool of available species.We focus
on the cases where the number of species is large. Since the detailed parameters of all interactions are not known
in themajority of cases, and in any case not all details are expected tomatter [28], we follow the long tradition
pioneered byMay in ecology [1] andWigner in physics [29], and sample the interactions randomly. As recently
shown in [28], this framework encompasses awide array of ecologicalmodels, from resource competition to
predation andmutualism. It is important to remark that we go beyondMay’s classical work since randomness is
here introduced at the level of interactions between all possible species, while the community self-organizes by
choosingwhich species are present. In other words, the number and identity of the species that are present in the
community is selected dynamically [2, 30]. Understanding the emergent stability of the equilibria reached
dynamically and its dependence on the external parameters is themain purpose of this work.

Wefind, in agreementwith [5, 6, 9], that when the interactions are weak or highly uniform, only one
equilibrium is present and is determinedmainly by self-regulationwithin each species. For stronger andmore
heterogeneous interactions,multiple equilibria emerge. Ourmain result is that when this happens, all possible
states of the system are close to bemarginally stable for large number of species and this determines the diversity
of the ecosystem, see figure 1.Marginal stability has several important consequences, in particular it leads to
extreme susceptibility to small perturbations. This situation is referred as ‘critical’ in the physics literature [31].
In awell-knownwork,May suggested that complexity and interactions limit the stability of ecosystems [1]. Our
results provide a complementary perspective: complex ecological communities reduce dynamically their

Figure 1.Possible scenarios for the energy landscape associated to Lotka–Volterra dynamics. (A)There is only a single equilibrium,
i.e. a unique global and localminimum, as illustrated by the cartoon of the energy landscape. The corresponding density ρ(λ) of
eigenvalues of the stabilitymatrix associatedwith a givenminimum (theHessian) has a strictly positive support and the number of
species in the community is strictly smaller thanMay’s bound.Herewe show the numerical example obtained for the standard Lotka–
Volterramodel ( f (N)=1−N, ri=Ki=1 andμ=4,σ=0.5, S=400). As explained in the text, for a large number of species, ρ
(λ) is in this case a shiftedWigner semi-circle. (B)The energy landscape is rugged: there aremany equilibria and localminima, as
illustrated by the cartoon of the energy landscape. The corresponding density ρ(λ) of eigenvalues of the stabilitymatrix associatedwith
aminimumhas a support whose left edge touches zero, corresponding tomarginal stability, and the number of possible surviving
species saturatesMay’s bound, see figure 3.Herewe show the numerical example obtained for the standard Lotka–Volterramodel
( f (N)=1−N, ri=Ki=1 andμ=4,σ=0.9, S=200) in blue and for a different functional response
( f (N)=1−N−3/4(N−1)2, ri=Ki=1 andμ=4,σ=0.5, S=200) inmagenta. In the former case ρ(λ) is a shiftedWigner
semi-circle, whereas in the latter it has a different shape.

2

New J. Phys. 20 (2018) 083051 GBiroli et al



instability through a reduction of the possible number of coexisting species, i.e. diversity, and eventually reach a
marginally stable state saturatingMay’s bound. Since this phenomenon stems from a dynamical process, it holds
for a broad range of systemparameters. It is robust against a range of variations in themodel, including noise
and different functional forms of responses and interactions (see figure 1 for two possible forms of the dynamics,
andfigure 6 for additional functional forms). Although inmany physical cases criticality emerges only at phase
transitions, i.e. for very special values of the parameters, there also exist critical phases ofmatter which instead
cover awide portion of their phase diagram. By relating the LVmodel to systems studied in condensedmatter
physics, themultiple equilibria regime is shown to be akin to a critical spin-glass phase. This connection to a
phase that exists in a broad range of situations suggests that the applicability of our results goes well beyond the
LVmodel and it offers a possible explanation of why somany different systems are found at the edge of stability:
they are in a criticalmarginally stable phase. It alsomakes clear that this result, while general, is expected to have
awell-defined regime of validity, as we shall explain at the end of this work. Finally itmakes predictions on some
distinctive features of the dynamical behavior of ecological systems at criticality, whichwill be interesting to test.

Results

The LVmodel we focus on is defined as follows. There are S species in the regional pool, whose abundance is
Ni�0. The dynamical equations read

N

t

r

K
N K N N N N t

d

d
, 1i i

i
i i i i

j j i
ij j i i

,
å a h l= - - + +
¹

( ) ( ) ( )
( )

where ri is the intrinsic growth rate of species i, andKi is the carrying capacity. It corresponds to the equilibrium
abundance towhich species iwould self-regulate in absence of interaction. For sake of clarity, in the followingwe
focus on the case where ri andKi are constants (that we set equal to one by rescaling N NK t t rK,  and
absorbing those changes in redefinition ofαij, ηi(t),λ). Later, we shall consider the effect of variability in ri andKi,
and also different functional responses by replacing N K Ni i i-( )withmore general forms, such as N f Ni i( ), and
models with nonlinear interactions. In equation (1) the interaction between species is encoded in thematrixαij.
We also add a small (infinitesimal) immigration rateλ to ensure that all invadable species exist, thus avoiding
absorbing states that are unstable under smallmigration. Note that a species dependentλiwould not change the
results of our analysis. Finally, ηi(t) is a white noise with variance 2ω

2, and Ni captures the scaling of the noise
due to the population size.We chose to use Ito’s convention for themultiplicative noise since it correctly
captures the fact that a species withNi=0 remains at zero abundance also in presence of noise.We consider a
symmetric interactionmatrixαij=αji, corresponding to competitive (orweaklymutualistic) interactions; we
will discuss in the conclusion the effect of asymmetry. Except for this constraint, no additional structure is
incorporated, and the entriesαij are taken to be independent identically distributed randomvariables. This
provides a null-model, towhich additional structure, such as trophic levels or space, can be subsequently added.
Note that, as already anticipated above, the assumption on the randomness is done at the level of the pool and
not of the community. The randomvariableαij can be drawn fromany distributionwithout long tails, all that
matters are itsmean and variance. It turns out that the parameters that play a role in thefinal theory are the
average number of links,C, per site and thefirst twomoments ofαij though the combinationμ=Cmean [αij ]
andσ2=C var[αij]. For the sake of clarity, we now focus on the caseC=S inwhich all species interact,
extensions are discussed at the end of this paper5.

The LV equations (1) can be rewritten in away thatmakes their relationshipwith stochastic equations
studied in physicsmore transparent:
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where the ‘potential’Vi(Ni) is equal to K N N 2r

K i i i
2i

i
- +( ).Without noise these equations admit a Lyapounov

function, i.e. a functionwhose value increases in the dynamics [32], dL/dt�0, with

L V N N N N
1

2
log .

i
i i

i j
ij i j

i
iå å åa l= - - +

¹
( )

In presence of noise, equations (2) are generalized Langevin equations. In the SI we show that they represent
equilibriumdynamics of a thermal systemwith temperatureT=ω2 and characterized by the following effective
Hamiltonian, or energy, H L T Nlogi i= - + å . As a consequence, the long-time stationary probability
distribution is the Boltzmann law:P=e−H/T/Z, where the partition functionZ guarantees the normalization.
This result reveals that understanding the equilibria and the dynamics associatedwith the LV equations (1) can

5
Our results hold also for a different scaling of themean, in particular for largerμ as long as [αij ]<1. Seemapping in [9].
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be exactly reformulated as a problemof statistical physics of thermal disordered systems, inwhich theNi

represent the degrees of freedom interacting via random couplingsαij and subjected to individual potentials
V N T Nlogi i il+ -( ) ( ) . Therefore, we can deduce properties of the equilibria reached dynamically by a
thermodynamical analysis. In particular, without noise, i.e. at zero temperature, the equilibria correspond to the
minima of the energy function, i.e. to the ground state and themetastable states In order to obtain the full
solution of thismodel we shall use tools developed in statistical physics of disordered systems, including replica
computations, discussed in detail in the SI. Analogous strategies have been already used in the past in similar
contexts. Equilibrium thermodynamics was used to study the related replicator equationswithout noise in [2, 3].
More recently, in [5], the LVdynamics were studied in the context of the niche versus neutral debate. An
approximateHamiltonianwas suggested, and the analytical solution of the randomenergymodel was employed.
Note, however, that in the present context such approximations would not allow to obtain themarginal stability
we report here.

The phase diagramwithout noise, i.e. at zero temperature, and for smallmigration, 0l  +, had been
obtained beforehand [9].We reproduce it in the SI for completeness (supplementary figure 1 available online at
stacks.iop.org/NJP/20/083051/mmedia) and show that it coincides, as it should, with the one obtained by the
replicamethod.One finds that when interaction strengths are all identical, all species coexist in the community
whenμ> 0. (The range−1< μ< 0 is not of interest for this work because themultiple equilibria phasewewant
to study is not present.)By increasing the variability in the interactions,more andmore species are driven out of
the community. They are characterized byNi= 0 for 0l  + (wewill call them ‘extinct’henceforth). The
equilibrium reached dynamically is stable under perturbations, that is by changingV N V N Ni i i i i ix -( ) ( ) , and
there is a gap in the spectrumof the corresponding stabilitymatrix [9], see figure 1(A). (Thismatrix, determining
the stability under changes that affect the carrying capacities, is different from the one governing stability under
the demographic noise ηi.)Note that in this regime the final community composition is unique, independent of
the assembly history, e.g. the initial conditions for the dynamics. This picture persists up to 1 2cs = . By
increasing randomness in the interactions aboveσc a transition to another regime, which is sharp for large
systems, takes place. Our purpose is to study the phase reachedwhen crossing the transition.Henceforthwe
continue to focus on the zero-noise case, the effect of the demographic noise is discussed at the end of the paper.

In physics terms, the single equilibrium regime corresponds to a ‘paramagnetic phase’where the zero
temperature values of the degrees of freedomNi aremainly fixed by the external potentialVi(Ni) and amean-
field anti-ferromagnetic (competitive) interaction. By increasing the randomness in theαij variables the system
undergoes a zero temperature phase transition toward a spin-glass phase, characterized bymany localminima of
the energy (ormaxima of the Lyapounov) function and, hence,multiple equilibria.We have used the replica
method to study it (see SI) and found that the regimewithmultiple equilibria corresponds, technically, to a full
replica symmetry breaking (RSB) solution.On the basis of all previous analysis ofmean-field spin-glasses
[33, 34], we can thenmake general statements about the regimewithmultiple equilibria. Note that here the term
mean-field refers to the fact that the underlying interaction network is fully connected, and not (as often used in
ecology) that all interactions are identical in strength.

First, it is characterized by a large number of equilibria. These equilibria areminima of the energy, separated
by regionswith higher energies that formwhat are called barriers. The lowest equilibria are typically separated by
barriers that diverge in the large S limit, while the higher ones by barriers of order of one, i.e. that do not scale
with S [35]. Second, and central to our discussion, allminima display a stabilitymatrix characterized by arbitrary
small eigenvalues for large S, i.e.minima aremarginally stable and characterized by flat directions in the energy
landscape at quadratic order. The ground state has this property, and also the higher energy localminimawhich
are usually less stable.

We now explain themain findings of our thermodynamic analysis and relate them to randommatrix theory

results, see SI for details. The twomain observables we focus on are: (i) Ni

i

*

*x
¶
¶

, which is the response of a single

species to a perturbation V N V N Ni i i ix -( ) ( ) , where the star indicates that only non-extinct species are
considered and (ii) S S*f º , which is the fraction of species present in the community, called diversity inwhat

follows. For identical interaction strengths, i.e. atσ=0, all species coexist (f=1) and 1
Ni

i

*

*
=

x
¶
¶

. Increasingσ

wefind that Ni

i

*

*x
¶
¶

is constant across species and increasing. Concomitantly, the diversity decreases. As found

beforehand [9], at 1 2cs = the systemundergoes a sharp transition from the single to themultiple equilibria
regime. This corresponds physically to a phase transition to the spin-glass phase. In this phase wefind that for all
equilibria and all species i,

N 1
2 and
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4
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wherefc is the value of the diversity at the transition. These identities hold throughout the entiremultiple
equilibria phase and they are consequences of the criticality of the spin-glass phase.We alsofind that forσ>σc
the number of equilibria, i.e. of energy landscapeminima, is exponential in S. In fact, the number of equilibria
scales as e hSwhere h goes to zero at the transition fromone tomultiple equilibria. One cannotmake general
statements on its order ofmagnitude, since it depends on the external parameters and on themodel, in particular
the functional response f (N).When comparing to numerical and experimental results, it is important to keep in
mind that it can be small, as we found for instance for the standard LVmodel. In consequence even for rather
large S∼100 the number of equilibriamay bemodest, see SI. Figures 2 and 3 confirmour analytical predictions

by showing, respectively, numerical results for Ni

i

*

*x
¶
¶

andf corresponding to a given equilibrium reached

dynamically.
The second identity in equation (3) corresponds to a saturated formofMay’s original bound,

S Cvar 1 4 1 4ij * *a = =( ) ( ) ( ), whereC* is the average number of interactions per surviving species [1] (the
prefactor 4 comes from the symmetry ofαij in the presentmodel). In order to reveal this connectionwith
randommatrix theorywe focus on the S S* *´ stabilitymatrixM* associated to a given equilibrium, defined by

the relation M ij
N1 i

j

*
*

*
=

x
- ¶

¶
( ) . Using thefixed point equation corresponding to equation (1) it is easy to check that

M , 4ij ij ij* d a= + ( )

where δij is the Kronecker delta. In this equation the indices i, j have to be reduced to the surviving species since
extinct species remain so if one adds an infinitesimal perturbation ξj, and do not contribute to the stability of the
equilibrium reached dynamically In fact, in the limit of smallmigration, 0l  +, extinct species are those that
cannot invade: V N0 0N i j i ij ji

*a + å >¹( ) ( ) . Adding an infinitesimal ξi does not change this property and thus
the species remains extinct. Following procedures developed formean-field spin-glasses [36], one can show (see
SI) that the spectrumof Mij* is identical for large S to the one of a S S* *´ matrix with independent identically
distributedGaussian off-diagonal entries having the samefirst and secondmoment ofαij. This is by nomeans
trivial since the equilibrium reached dynamically [37], and hence the identity of the surviving species, depend on
αij and induce correlations in the off-diagonal elements of Mij*. The relationwith randommatrices implies that

the eigenvalue density of the stabilitymatrix is aWigner semi-circle with support 2 1, 2 1s f s f- + +[ ],

Figure 2. Single species response as a function ofσ for given species in a single equilibrium reached dynamically for the LVmodel with
ri=Ki=1 and S=400. The numerical results follow the continuous line, which is the analytical prediction valid in the large S limit
for all species. The response of one out of ten species is shown. The fluctuations arefinite S effects. The single species response first
increases withσ and then sticks to the value 2 in thewholemarginally stable phase.

Figure 3.Diversityf in the standard LV case, f (N)=1−N and ri=Ki=1, as a function ofσ and for S=100, 200, 400. The
diversity hits and sticks to theMay bound throughout the entiremultiple equilibria phase. The difference with the analytical
predictions are finite S effects.
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aswe indeed find numerically, see figure 1.Moreover, this directly connects (3), which holds in the entire spin-
glass phase, tomarginal stability.We have therefore recoveredMay’s original stability bound but in a saturated
form: the number of surviving species, Sf, is exactly the one guaranteeing that the system is poised at the edge of
stability, similarly towhatwas proposed in the self-organized instability scenario [22].

Let us nowdiscuss extensions and the range of validity of our results.We have verified that our conclusions
on themultiple equilibria regime continue to hold for several different convex functional responses f (N), the
standard f N N N1= -( ) ( ) being only an example among others, andwith variability in the values of ri andKi.
This is a direct consequence of the properties of the spin-glass phase towhich themultiple equilibria regime is
related to. In thesemore general cases, the critical character of this phase is encoded in the following identity
valid for the average of the square of the single species response in thewholemultiple equilibria regime:

S

N1
1. 5

i

S
i

i

2

1

2
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*

*

åfs
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¶
¶

=
=
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⎝
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⎞
⎠
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⎞
⎠
⎟⎟ ( )

Note that equation (5) reduces to the first identity in equation (3)when single species response are identical, as
previously discussed.We show infigure 4 the numerical results obtained for f N N N1 1 42= - - -( ) ( )
confirming this prediction: the rhs of equation (5) is less than one in the single equilibriumphase, it reaches one
at the transition and then remains stuck to this value in thewholemultiple equilibria phase. As before, the
criticality of the spin-glass phase impliesmarginal stability. Indeed, similarly to the standard LV case, the
spectrumof the stabilitymatrix M V Nij i ij ij* * d a=  +( ) can be shown to be identical for large S to that of a
S S* *´ matrix with independent identically distributedGaussian off-diagonal entries having the samefirst and
secondmoment ofαij, and independent identically distributed diagonal entries with the same statistics of
V Ni*( ). Aswe show in the SI, the condition that the left edge of the eigenvalues density touches zero for this

class of randommatrices is M 1
S i

S
ii

2 1
1

1 2*
*

*fs å ==
-( )(( ) ) , which using M

N
ii

1i

i

*
*

*
=

x
¶
¶

-( ) turns out to be identical to

equation (5). Thereforewe obtain that themultiple equilibria regime is indeed generically characterized by
marginal stability and, by doing so, we derive a new generalized version ofMay’s bound (equation (5)).
Remarkably, these properties hold despite the fact that for this general class of randommatrices the density of
eigenvalues is no longer a shifted semi-circle and the singularity at the left edge is not necessarily a square root, as
shownnumerically infigure 1 for the f N N N1 3 4 1 2= - - -( ) ( ) case (which has f N 0¢ >( ) for some
values ofN, corresponding to anAllee effect). In particular, the singularity at the edge depends on the statistics of
the diagonal components Mii*, i.e. ofV Ni*( ). It is a square root if the distribution of the random variable
V Ni*( ) approaches the left edge of the support slower than linearly, in the other cases itmay be a square root or
instead inherit the singularity ofV Ni*( ) at the left edge [38]. Note that for general f (N) the phase diagram is
modified compared to the standard LVmodel. For instance for f N N N1 3 4 1 2= - - -( ) ( ) the single
equilibriumphase is absent even for infinitesimally small interactions. In conclusion, our investigations show
that the class of f (N) leading to themarginally stablemultiple equilibria phase, i.e. the phase boundaries of the
critical spin-glass phase in the physics terminology, is quite large. Determining its boundaries is an important
and interesting task thatwe leave for future studies. Based on previous results onmean-field glassy systems [39],
it is possible that the property that themultiple equilibria probed by the system aremarginally stable is robust,
even though the detailed properties of the landscapemight be different depending on the shape of f (N). This is
due to the fact that inmany different situations, themost numerousminima, which are the oneswith the biggest
basins of attraction, aremarginally stable [39]. Therefore it is not necessary that allminima aremarginally stable
tofind that the ones reached dynamically are like this. Another extension of ourworkworthy of future analysis
concerns the role of the interactions network. As long as the connectivityCper species is large and the underlying
structure rather homogeneous, e.g. no fat tails in the distribution of the local connectivity, themean-field

Figure 4.Numerical test of the identity (5) combining diversityf and single species response valid throughout themultiple equilibria
phase, for f N N N r K1 1 4, 1i i

2= - - - = =( ) ( ) and S=400. Thefluctuations are finite S effects.
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approachwe developed is a very good approximation. In consequence, our results are expected to hold also in
thismore general settingwhereC? 1 butC is not necessarily equal to S. As afirst interesting extension one
could consider LVmodels on random regular graphs [40].

The properties (and the existence) of themulti-equilibria phase continue to hold also in presence of small
noise. On the basis of previous studies onmean-field spin-glasses [34, 35], we can state several general facts. In
presence of small noise the systemmoves around betweenmultiple dynamical states. These correspond to low
temperature spin-glass states associatedwith the localminima discussed above. Assuming that the free-energy
landscape is akin to the one found formean-field spin-glasses, e.g. the Sherrington–Kirkpatrick (SK)model [41]
(more complicated free-energy landscapes have been found in generalized glassmodels [42]), we expect that
only the low energyminima are able to trap the dynamics of the ecosystemover long periods of time, while the
ones higher in energy are instead separated by small energy barriers; the transitions between them are so
frequent that their identities as separate states disappear even for small noise. The stability of these dynamical
states can described by thematrix ij , which is a generalization of the stabilitymatrix and is defined as the

(matrix) inverse of Ni

jx
¶á ñ
¶

(á ñ· denotes the average over the noise). As the stabilitymatrix in absence of noise, ij is

positive definite and has arbitrary small eigenvalues for large S, thus leading tomarginal stability. Physically, this
is a consequence of the fact that the spin-glass phase is not destroyed by small thermalfluctuations and is critical
over afinite range of temperatures [33].

In summary, bymapping the LVmodels to thermal disordered systems and studying their thermodynamics,
wefind thatmarginal stability is a property of all communities that are reached dynamically by an ecosystem in
themultiple equilibria phase. Equation (5), combinedwith our randommatrix analysis, relates this property to
the single species response. This is themain result of ourwork: it represents an exact statement ofMay’s stability
bound [1], with three notable differences: 1. it follows from an exact analysis of the communities reached
dynamically rather than from a priori assumptions on the stability equations, it is thus a property of the emergent
community; 2. it is saturated, with an equality rather than an inequality; 3. it ismore general, allowing to
incorporate nonlinear f N( ).

Discussion

Having established thatmarginal stability is a generic property of themultiple equilibria phase, we nowdiscuss
some of its consequences and proposemeasurable tests. Themost striking effects are expected to appear in
dynamical phenomena. Again, previous results on dynamics ofmean-field spin glasses provide useful guidelines
[34]. In particular, starting the LVdynamics from random initial conditions one expects slow relaxations toward
theminima and history dependence for large S. Both phenomena are tightly linked tomarginal stability which
results inflat directions in configurations space. The response to perturbations is also expected to be very
unusual:marginal stability should lead to strong andwildly fluctuating nonlinear responses [43] and avalanches
of extinctions and invasions [11].Working out the relevance of this phenomena in various ecological contexts
certainly warrants future research.Note that, these avalanches of extinctions are different from cascades in
trophic systems [44], as here no trophic structure is included. The results we found for symmetric interactions
have also important consequences for cases whereαij are asymmetric. Indeed, given that themultiple equilibria
aremarginally stable, we expect that adding asymmetry leads immediately to a chaotic behavior inwhich the
systemmoves among the different regions of configurations space corresponding to the vestige of those
equilibria [45–47]. Chaotic dynamics of LV equations have been observed in simulations in some region in
parameter space in [7], andmay be related to the phasewe describe here.

Throughout this paper, we stressed that the unusual properties of themultiple equilibria phase are related to
the criticality of the corresponding spin-glass phase. In the following, we show that this relationship also suggests
newways to test formarginal stability. Criticality corresponds to a state inwhich themicroscopic degrees of
freedomare all strongly correlated, which naturally leads to singular responses. The properties of the stability
matrix in themultiple equilibria phase are one facet of this phenomenon; diverging fluctuations are another.
Note, however, that simplefluctuations such as N Ni i

2 2á ñ - á ñ or its time-dependent counterpart

C t t N t N t N t N t, i i i i¢ = á ¢ ñ - á ñá ¢ ñ( ) ( ) ( ) ( ) ( ) do not capture criticality [33] (the overbar denotes the average
across the species). One needs to probe large scale fluctuations, hence inter-species correlations (this is the
counterpart of correlations between different points in space in standard critical phenomena). As it was
understood in the context of disordered systems, a good probe for this are four-points correlations [33] (see also
SI for detailed computations on this point and the following). As amatter of fact, in the LVmodel we considered,
which can bemapped onto thermal dynamics, diverging responses and fluctuations are exactly related by the

fluctuation–dissipation relation N N N N
N

i j i j
2i

j
w= á ñ - á ñá ñ

x
¶á ñ
¶

- ( ). On this basis, and following previouswork
on glassy systems [48], we propose to probe criticality, or the collective nature of the equilibria andmore
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generally of the dynamical states by looking at a fourth-order correlation function, called t t,4c ¢( ), which reads:

t t
S

N t N t N t N t N t N t N t N t,
1

,
ij

i i j j i i j j4 åc d d d d d d d d¢ = á ¢ ¢ ñ - á ¢ ñá ¢ ñ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]

where N t N t N t C t t,i i id = - á ñ( ) ( ( ) ( ) ) ( ) . This function allows one tomeasure towhat extent species are
dynamically correlated and is therefore a way to quantitatively test criticality andmarginal stability. In the LV
model and forσ<σc the dynamics becomes stationary after a short transient. In this case t t,4c ¢( ) depends on
t t- ¢ only. Its long time limit (t t 1- ¢  ) is equal to:

S N
N N N N

1
,

i c i j
i j i jSG 2 2

,

2åc =
á ñ

á ñ - á ñá ñ[ ]

whereas for t t= ¢ and small temperaturesχ4(t, t) is equal to twiceχSG. As shown infigure 5, wherewe check
these analytical predictions by numerical simulations for S=400, t t4c - ¢( ) is a decreasing function of t t- ¢.
The shape of t t,4c ¢( ) is different from the one found in glassy systems. Themain difference which lies in the
different nature of the degrees of freedom is thatχ4(t, t) becomes large approaching the transition, whereas in
glassy systems it is featureless. In the condensedmatter theory context SGc is known as the spin-glass
susceptibility and is known to diverge in the entire spin-glass phase.We indeed recover this result and connect it
tomarginal stability since

N
Sd , 6i

i
SG

2

2
1 3òc

x
l
r l
l

=
¶á ñ
¶

~
-⎛

⎝⎜
⎞
⎠⎟

( ) ( )

where ρ(λ) is the density of eigenvalues of thematrix ij . The divergence ofχSG as S
1/3 comes from the fact that

theminimumeigenvalue of scales [49] as S−2/3. In the inset offigure 5we show the behavior ofχSG obtained
analytically in the large S limit. Note that if the singularity of ρ(λ) ismilder than a square root, as it is the case for
example for f N N N1 3 4 1 2= - - -( ) ( ) , then one needs to consider high-ordermoments. The bottom
line of this discussion is that if data on the time-dependence of abundances is available, the function t t,4c ¢( )
allows one tomeasure towhat extent species dynamics are correlated and test directly for criticality andmarginal
stability. Even though in the simple LV case,measuringχSGwould be sufficient for that purpose,measuring the
time dependent four-point function t t,4c ¢( ) is theway to go in order to obtain information inmore general
cases, whichmay be neither stationary, nor related to thermal equilibriumdynamics. In particular, t t,4c ¢( ) can
showhistory dependence of dynamic correlations [34, 48], by being a function of t and t ¢ separately, and not
only of t t- ¢.

These results providemeasurable predictions useful to probewhether the system is at (or close to)
marginality: First, the single-species response is predicted to follow equation (3) ormore generally equation (5).
Experimentally, such perturbationsmay bemeasured using press perturbation experiments [50]. Secondly, the
fourthmoment 4c defined above is expected to be very large, diverging as S1/3, see equation (6), whereas in the
Unique Equilibriumphase it does not growwith the diversity S. Note thatχ4 can be computed directly from
species abundance data.

In conclusion, our analysis of LV equations in the limit of large species shows amechanism forwhichmany
systems inNature are poised at the edge of stability: we have shown thatwhen the parameters of an ecosystem
cross the limit of stability, the systemdynamically self-adapts to remain exactlymarginally stable. It does so
reducing the number of species in such away to saturateMay’s bound, which therefore emerges as a result of a
dynamical process. This leads to awhole critical phasewithmultiplemarginally stable equilibria, which is
expected to be present for several differentmodels and to display highly non-trivial dynamical behaviors that

Figure 5.We show t t,4c ¢( ) in the single equilibriumphase for the standard LVmodel ( f N N r K1 , 1i i= - = =( ) ),σ=0.55,
S=400 andT=10−5. The top and bottomdashed lines show the values of 2χSG andχSG, respectively. Inset: Analytical prediction
forχ4(t, t)=2χSG as a function ofσ approaching the transition toward themultiple equilibria phase.χSG diverges for cs s .
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may bemeasured experimentally. Its consequences can be relevant and important inmany fields
[13, 16, 20, 51, 52].

Materials andmethods

Numerics
Simulations of equation (1) in themain text for figures 1–4were donewithout noise (T= 0). This results in a set
of coupledODEs, that where runwithλ=10−18 and terminatedwhen N td ln d 10i

10< -( ) for all i. To
calculate the spectra infigure 1 and the diversity infigure 3, species were considered to have positiveNi if
Ni>10−14 at the final time. Infigures 1–4, each data point used 3000 runs, where for each one a newmatrixα
was sampled.

The noisy simulation infigure 5was runwith a simple Ito discretization of the stochastic differential
equation: N A t B ti i iD = D + D , whereAi are the noiseless terms of dNi/dt and B TN2i i= . The simulation
was runwithT=10−5.

Modelswith nonlinear interactions
In this sectionwe show that amarginal phase can also be found in cases where the interactions assume a
nonlinear form. As infigure 1(B), and in contrast tofigure 1(A), the distribution of eigenvalues of the equilibria
reached dynamically by the system, is seen to touch the y-axis, indicatingmarginal stability. The two studied
models are defined by

N

t
r N N g f N

d

d
1 , 7i

i i i
j

ij jå a= - -⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) ( )

where two different forms of g x( ) are taken into account. In themodel in panel (A) offigure 6, g x( ) is taken to
have aHolling type II form g x x x5 1= +( ) ( ∣ ∣) and f x x=( ) . Themodel in panel (B) is defined via
f x x x1= +( ) ( ) and g x x=( ) . Thematrixα is symmetric with 0.25, 0.7ija sá ñ = = for panel (B) and

0.125, 1.3ija sá ñ = = for panel (A). All ri=1, and S=400. In both cases ρ(λ) has a support whose left edge
touches zero, corresponding tomarginal stability, evenwhen its shape is different compared to the shifted
Wigner semi-circle of a standard LVmodel (figure 1). The parameters have not been fine-tuned, and can be
variedwithin some limits—which define the phase boundaries—whilemaintaining themarginality property.

Spin glasses
Many of the theoreticalmethods used in this workwere originally developed to study disordered systems in
physics, and in particular spin-glasses. Herewemake some brief comments on such systems and how they relate
to the present problem.

The behavior described in this work requires variability in the interaction strengthsαij (asmeasured by their
standard deviationσ). In physics, systemswhere interactions between the constituents exhibit analogous
variations are known as ‘disordered systems’. In particular, a spin glasses is systemswheremagnetic interactions

Figure 6.Density ρ(λ) of eigenvalues of the stabilitymatrix associatedwith aminimumhas a support whose left edge touches zero,
corresponding tomarginal stability, alsowhen nonlinear interactions are introduced in themodel. Herewe show the numerical
example of two additionalmodels obtained introducing a nonlinear g x( ) or f x( ) in equation (7), as further detailed in themain text.
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vary between the different pairs of atoms.Models of such systems, startingwith [53], traditionally use binary
variables tomodel the state of eachmagnetic spinσä{−1, 1}, while the complex interactions weremodeled as
i.i.d. Gaussian randomvariables. For example, the first spin glassmodel [53] is the Edwards andAndersonmodel
where theHamiltonian (the energy of a state) is given by

H J ,
i j

i j i jSK
,

,å s s= -
( )

where only terms involving pairs of nearest neighbors (i, j) are included in the sum, and Ji,j are randomly sampled
with zeromean. Thefirstmodel to be solved is its fully connected analog, the SKmodel where all pairs of spins
are taken to interact [41, 54]. A number of other spin glassmodels were considered along the years [33, 55–57].
Among themost interesting ones, wemention thosewhere interactions involve p>2 variables at a time, called
p-spinmodels [55]

H J ... .p
i i i

i i i i i i
, , ,

, , ,

p

p

1 2

1 2 1 2 2å s s s= -
¼

¼
( )

It turned out that spin glassmodels show interesting new phases and phase transitions and can be classified in
different universality classes which correspond to differentmacroscopic behaviors.

The techniques developed for the solution of spin glasses are in general useful to describe systemswith high
level of frustration [58] (i.e. absence of optimal solutions for certain instances of the couplings). For this reason
they are widely applied nowadays in differentfields including condensedmatter (magnetic systems, supercooled
liquids), biology (protein folding, neural networks), social sciences, economics, computer sciences
(optimization theory,machine learning).

Themajor obstacle that had to be tackledwhile dealingwith the solution of spin glassmodels is represented
by the task of performing disorder averages of quantities of physical interest to extract information on the
macroscopic behavior of the system. The information about equilibrium is contained in the so-called free energy
of the system

F H
1

log exp ,
J

i

åb
b= - -

s
[ ]

{ }

where the overline represents the average over difference instances of the disordered couplings, the inner sum
runs over all the possible configurations of spins, and the argument of the logarithm is commonly called
partition function

Z Hexp .
i

å b= -
s

[ ]
{ }

The operation of taking the average usually is reduced to perform aGaussian integration. This would have
required little computation effort indeed had the logarithmnot been on theway. Yet its presence cannot be
neglected nor the operation of taking the average simply performed on the logarithm’s argument (the last
procedures is called annealed calculation but does not lead to the correct solution in the interesting regimes). To
keep the order of the operations and yet end upwith an analytically tractable problem the so-called replica trick
was introduced [33]. It amounts to use the fact that

x
x

n
log lim

log
,

n

n

0
=



which can be easily verified.Hence the free energy can bewritten in terms of the so-called replicated partition
functionZn as

F
Z

n

H

n
lim

log
lim

log exp
,

n

n

n

n

0 0

i
å

b
b

- = =
-s

 

{ [ ]}{ }

where the power n can be interpreted, before the limit n 0 is taken, as wewere focusing on n independent
copies of the same system in presence of a unique sample of random couplings. Averages over different
realizations of the disorder are in this form straightforward. The copies in the spin glass jargon are usually called
replicas.

To give an intuition of the physicalmeaning of the results that can be obtainedwithin replica computations
wemust remember that frustrated systems are usually characterized by amultiminima structure of the energy,
or any equivalent cost function thatmight be of interest. This arrangement ofminima is uniquely associated to
any instance of the random couplings. The role of replicas is the one of revealing themain features of thismulti
minima structure by independently probing differentminima. In fact one of themost important piece of
information that comes out from a replica computation is the averagewidth of equilibriumminima and the
average distance between pairs of them, ormore in general the hierarchical arrangements ofminima in the space
of configurations. All this is contained in the structure of overlapQa,b (or similarity, which accounts for the
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inverse of distance in the space of configurations) between pairs of replicas a, b:

Q
N

H

H N

1 exp

exp

1
,a b

i

N
c

n
c i

a
i
b

c

n
c

J

i

N

i
a

i
b J

, AR
i
c

i
c

å
å å
å å

å
b s s

b
s s=

-

-
= á ñs

s

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

{ }

{ }

where ARáñ denotes themeasure over all replicas with the Boltzmannweight and after averaging over disorder
(rhs of thefirst equation above). Along a typical replica computation a new conceptual obstacle arises when the
free energy is rewritten in terms of an integral over all the possible choices of the overlapmatrix. In the
thermodynamic limit (N  ¥) the Laplacemethod (or saddle pointmethod) can be applied to evaluate the
integral but it requires tofind the overlapmatrix thatmaximizes the argument of the integral. This operation
requires the introduction of a good ansatz for the overlapmatrix. The currently used schemewas proposed by
Parisi [59, 60] and subsequently proved to be the one providing the correct saddle point result [61]. It is called
RSB scheme andwill be discussed inmore details in the following sections.

Depending on the number of steps of breaking of the replica symmetry required to get ameaningful solution
[62] (i.e. stable in the replica space), we could end upworkingwith replica symmetric scheme, one step replica
symmetry breaking,¥ steps replica symmetry breaking (FRSB), just tomention themost relevant ones. This
differentiation allows to classify spin glassmodels and characterize the features of their relevant phases and phase
transition.

It turns out that the ecologicalmodel we consider in this work, at large values ofσ, is characterized by a FRSB
solution. The FRSB solution represents, as stressed in themain text, a critical phase. From the technical point of
view, it ismarginally stable,meaning that within the Laplacemethod it corresponds to an extremumwith
vanishing small eigenvalues.
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