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Abstract

In this work we study the stability of the equilibria reached by ecosystems formed by a large number of
species. The model we focus on are Lotka—Volterra equations with symmetric random interactions.
Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous
interactions the system displays multiple equilibria which are all marginally stable. This property
allows us to obtain general identities between diversity and single species responses, which generalize
and saturate May’s stability bound. By connecting the model to systems studied in condensed matter
physics, we show that the multiple equilibria regime is analogous to a critical spin-glass phase. This
relation suggests new experimental ways to probe marginal stability.

Introduction

Ecosystems can be incredibly rich and their understanding remains an outstanding challenge. A number of
aspects of the problem make the tools of statistical mechanics uniquely suitable for the challenge: highly-diverse
ecological communities involve many degrees of freedom (e.g., the species), with intricate interactions. At the
same time, there is special interest in system-wide, aggregate quantities, such as the total biomass, overall
diversity, system stability and fluctuations, and the response to large-scale perturbations.

The use of statistical mechanics in a growing body of works has provided insight into the behavior of diverse
ecosystems. In particular, they have highlighted role of collective phenomena, and the emergence of phases with
distinct qualitative behaviors, with phase-transitions between them [1-10].

Here we study a canonical model for a community of interacting species. We identify a phase which is critical,
in the language of condensed matter physics. This means that all stable equilibria are in fact very close to
marginal stability. Beyond the implications to ecology, discussed throughout this paper, this observation makes
contact with many complex systems in Nature that are poised just at the edge of stability [11-19]. One important
common trait of all examples is that they are formed by strongly interacting units—species, neurons, agents and
particles depending on the situation. The possible explanations of such phenomenon are varied. They include
the need for flexibility and adaptiveness to time-varying conditions [ 12, 20], balance between functionality and
stability [20], self-organized criticality [21], self-organized instability [22], and continuous constraints
satisfaction [11]. In this work we provide exact results which uncover an underlying mechanism in a many-
variable, interacting system.

We focus on the generalized Lotka—Volterra (LV) equations. They provide a simple and general setting to
study assemblies of interacting degrees of freedom; as such they are used in several fields [23-26]. In particular,
they provide a canonical model for ecosystems, with growing connections to systems across biology [23, 24, 27].
The study of stability of equilibria and their properties using LV equations and generalizations has become a very
active research subject. Several important results were obtained recently; in particular general techniques to
count the number of equilibria and their properties have been developed [8], and criticality and glassiness have
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Figure 1. Possible scenarios for the energy landscape associated to Lotka—Volterra dynamics. (A) There is only a single equilibrium,
i.e. aunique global and local minimum, as illustrated by the cartoon of the energy landscape. The corresponding density p(\) of
eigenvalues of the stability matrix associated with a given minimum (the Hessian) has a strictly positive support and the number of
species in the community is strictly smaller than May’s bound. Here we show the numerical example obtained for the standard Lotka—
Volterramodel (f(N) = 1 — N,r; = K; = land t = 4,0 = 0.5, S = 400). As explained in the text, for a large number of species, p
() is in this case a shifted Wigner semi-circle. (B) The energy landscape is rugged: there are many equilibria and local minima, as
illustrated by the cartoon of the energy landscape. The corresponding density p(\) of eigenvalues of the stability matrix associated with
aminimum has a support whose left edge touches zero, corresponding to marginal stability, and the number of possible surviving
species saturates May’s bound, see figure 3. Here we show the numerical example obtained for the standard Lotka—Volterra model
(fON) =1 - N,r; =K; = land pt = 4,0 = 0.9,S = 200) in blue and for a different functional response

(fN) =1 — N —3/4N — 1)%,r; = K; = land s = 4,0 = 0.5,S = 200) in magenta. In the former case p()\) is a shifted Wigner
semi-circle, whereas in the latter it has a different shape.

been found to be emergent properties of ecosystems [2—7]. A phase-transition similar to the one we find was
identified in the related replicator equations [2, 3], but the properties of the new phase were not analyzed. More
recently, a phase-diagram for the LV equations was suggested in [7], see the Discussion section for the relation to
the present work.

By mapping the model to condensed matter system, our approach reveal the generality of the results beyond
LV models. Moreover, by transferring knowledge developed in glass physics, we propose ways to directly check
the degree of criticality using experimental data on abundance distributions, see the Discussion section below.

In the model we consider, an ecological community is assembled from a pool of available species. We focus
on the cases where the number of species is large. Since the detailed parameters of all interactions are not known
in the majority of cases, and in any case not all details are expected to matter [28], we follow the long tradition
pioneered by May in ecology [1] and Wigner in physics [29], and sample the interactions randomly. As recently
shown in [28], this framework encompasses a wide array of ecological models, from resource competition to
predation and mutualism. It is important to remark that we go beyond May’s classical work since randomness is
here introduced at the level of interactions between all possible species, while the community self-organizes by
choosing which species are present. In other words, the number and identity of the species that are present in the
community is selected dynamically [2, 30]. Understanding the emergent stability of the equilibria reached
dynamically and its dependence on the external parameters is the main purpose of this work.

We find, in agreement with [5, 6, 9], that when the interactions are weak or highly uniform, only one
equilibrium is present and is determined mainly by self-regulation within each species. For stronger and more
heterogeneous interactions, multiple equilibria emerge. Our main result is that when this happens, all possible
states of the system are close to be marginally stable for large number of species and this determines the diversity
of the ecosystem, see figure 1. Marginal stability has several important consequences, in particular it leads to
extreme susceptibility to small perturbations. This situation is referred as ‘critical’ in the physics literature [31].
In a well-known work, May suggested that complexity and interactions limit the stability of ecosystems [1]. Our
results provide a complementary perspective: complex ecological communities reduce dynamically their
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instability through a reduction of the possible number of coexisting species, i.e. diversity, and eventually reach a
marginally stable state saturating May’s bound. Since this phenomenon stems from a dynamical process, it holds
for a broad range of system parameters. It is robust against a range of variations in the model, including noise
and different functional forms of responses and interactions (see figure 1 for two possible forms of the dynamics,
and figure 6 for additional functional forms). Although in many physical cases criticality emerges only at phase
transitions, i.e. for very special values of the parameters, there also exist critical phases of matter which instead
cover a wide portion of their phase diagram. By relating the LV model to systems studied in condensed matter
physics, the multiple equilibria regime is shown to be akin to a critical spin-glass phase. This connection to a
phase that exists in a broad range of situations suggests that the applicability of our results goes well beyond the
LV model and it offers a possible explanation of why so many different systems are found at the edge of stability:
they are in a critical marginally stable phase. It also makes clear that this result, while general, is expected to have
awell-defined regime of validity, as we shall explain at the end of this work. Finally it makes predictions on some
distinctive features of the dynamical behavior of ecological systems at criticality, which will be interesting to test.

Results

The LV model we focus on is defined as follows. There are S species in the regional pool, whose abundance is
N; > 0.The dynamical equations read

o

= N = N) = N ST N+ N0 + (1)
i

J(j=1)
where r; is the intrinsic growth rate of species 7, and K; s the carrying capacity. It corresponds to the equilibrium
abundance to which species i would self-regulate in absence of interaction. For sake of clarity, in the following we
focus on the case where r;and K; are constants (that we set equal to one by rescaling N — NK, t — t/rK and
absorbing those changes in redefinition of avjj, 7i(?), A). Later, we shall consider the effect of variability in r;and K,
and also different functional responses by replacing N;(K; — N;) with more general forms, such as N; f (N;), and
models with nonlinear interactions. In equation (1) the interaction between species is encoded in the matrix ;.
We also add a small (infinitesimal) immigration rate A to ensure that all invadable species exist, thus avoiding
absorbing states that are unstable under small migration. Note that a species dependent A; would not change the
results of our analysis. Finally, 7)(t) is a white noise with variance 2w”, and /N; captures the scaling of the noise
due to the population size. We chose to use Ito’s convention for the multiplicative noise since it correctly
captures the fact that a species with N; = 0 remains at zero abundance also in presence of noise. We consider a
symmetric interaction matrix a;; = «j;, corresponding to competitive (or weakly mutualistic) interactions; we
will discuss in the conclusion the effect of asymmetry. Except for this constraint, no additional structure is
incorporated, and the entries «;; are taken to be independent identically distributed random variables. This
provides a null-model, to which additional structure, such as trophic levels or space, can be subsequently added.
Note that, as already anticipated above, the assumption on the randomness is done at the level of the pool and
not of the community. The random variable c;; can be drawn from any distribution without long tails, all that
matters are its mean and variance. It turns out that the parameters that play a role in the final theory are the
average number oflinks, C, per site and the first two moments of v;; though the combination 1 = Cmean [oy;]
ando” = C var[a;]. For the sake of clarity, we now focus on the case C = Sin which all species interact,
extensions are discussed at the end of this paper”.

The LV equations (1) can be rewritten in a way that makes their relationship with stochastic equations
studied in physics more transparent:

dN;
dt

= —N| W VitN) + 30 N[+ JNimp(®) + A, @
J(G70)
where the ‘potential’ V;(IV;) is equal to %(—K,-Ni + N?/2). Without noise these equations admit a Lyapounov
function, i.e. a function whose value increases in the dynamics [32], dL/dt > 0, with
1
L= -3 Vi) — =3 a;NiN; + A logN;.
i 2= i
In presence of noise, equations (2) are generalized Langevin equations. In the SI we show that they represent
equilibrium dynamics of a thermal system with temperature T = w” and characterized by the following effective
Hamiltonian, or energy, H = —L + >_; T log N;. As a consequence, the long-time stationary probability

distribution is the Boltzmann law: P = ¢~ ™/ 7/ Z, where the partition function Z guarantees the normalization.
This result reveals that understanding the equilibria and the dynamics associated with the LV equations (1) can

> Our results hold also for a different scaling of the mean, in particular for larger i aslongas [a;;] < 1. See mappingin [9].
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be exactly reformulated as a problem of statistical physics of thermal disordered systems, in which the N;
represent the degrees of freedom interacting via random couplings a;;; and subjected to individual potentials
Vi(N)) + (T — M)logN;. Therefore, we can deduce properties of the equilibria reached dynamically by a
thermodynamical analysis. In particular, without noise, i.e. at zero temperature, the equilibria correspond to the
minima of the energy function, i.e. to the ground state and the metastable states In order to obtain the full
solution of this model we shall use tools developed in statistical physics of disordered systems, including replica
computations, discussed in detail in the SI. Analogous strategies have been already used in the past in similar
contexts. Equilibrium thermodynamics was used to study the related replicator equations without noise in [2, 3].
More recently, in [5], the LV dynamics were studied in the context of the niche versus neutral debate. An
approximate Hamiltonian was suggested, and the analytical solution of the random energy model was employed.
Note, however, that in the present context such approximations would not allow to obtain the marginal stability
we report here.

The phase diagram without noise, i.e. at zero temperature, and for small migration, A\ — 0%, had been
obtained beforehand [9]. We reproduce it in the SI for completeness (supplementary figure 1 available online at
stacks.iop.org/NJP/20/083051/mmedia) and show that it coincides, as it should, with the one obtained by the
replica method. One finds that when interaction strengths are all identical, all species coexist in the community
when g > 0. (Therange —1 < p < 0is not of interest for this work because the multiple equilibria phase we want
to study is not present.) By increasing the variability in the interactions, more and more species are driven out of
the community. They are characterized by N; = 0 for A — 0" (we will call them ‘extinct” henceforth). The
equilibrium reached dynamically is stable under perturbations, that is by changing V; (N;) — Vi(IN}) — N, and
there is a gap in the spectrum of the corresponding stability matrix [9], see figure 1(A). (This matrix, determining
the stability under changes that affect the carrying capacities, is different from the one governing stability under
the demographic noise 7;.) Note that in this regime the final community composition is unique, independent of
the assembly history, e.g. the initial conditions for the dynamics. This picture persists up to o, = 1/~/2. By
increasing randomness in the interactions above o, a transition to another regime, which is sharp for large
systems, takes place. Our purpose is to study the phase reached when crossing the transition. Henceforth we
continue to focus on the zero-noise case, the effect of the demographic noise is discussed at the end of the paper.

In physics terms, the single equilibrium regime corresponds to a ‘paramagnetic phase’ where the zero
temperature values of the degrees of freedom N; are mainly fixed by the external potential V(N;) and a mean-
field anti-ferromagnetic (competitive) interaction. By increasing the randomness in the c;j variables the system
undergoes a zero temperature phase transition toward a spin-glass phase, characterized by many local minima of
the energy (or maxima of the Lyapounov) function and, hence, multiple equilibria. We have used the replica
method to study it (see SI) and found that the regime with multiple equilibria corresponds, technically, to a full
replica symmetry breaking (RSB) solution. On the basis of all previous analysis of mean-field spin-glasses
[33, 34], we can then make general statements about the regime with multiple equilibria. Note that here the term
mean-field refers to the fact that the underlying interaction network is fully connected, and not (as often used in
ecology) that all interactions are identical in strength.

First, it is characterized by a large number of equilibria. These equilibria are minima of the energy, separated
by regions with higher energies that form what are called barriers. The lowest equilibria are typically separated by
barriers that diverge in the large Slimit, while the higher ones by barriers of order of one, i.e. that do not scale
with S[35]. Second, and central to our discussion, all minima display a stability matrix characterized by arbitrary
small eigenvalues for large S, i.e. minima are marginally stable and characterized by flat directions in the energy
landscape at quadratic order. The ground state has this property, and also the higher energy local minima which
are usually less stable.

We now explain the main findings of our thermodynamic analysis and relate them to random matrix theory

( ‘* . . .
results, see SI for details. The two main observables we focus on are: (i) %, which is the response of a single

species to a perturbation V (IN;) — V (IN;) — &N, where the star indicates that only non-extinct species are

considered and (i) ¢ = S$*/S, which is the fraction of species present in the community, called diversity in what
ON
¢

follows. For identical interaction strengths, i.e. at ¢ = 0, all species coexist (¢ = 1) and = 1.Increasing o

ON/ . . . . . . .
5 5; is constant across species and increasing. Concomitantly, the diversity decreases. As found

beforehand [9], at o, = 1/+/2 the system undergoes a sharp transition from the single to the multiple equilibria
regime. This corresponds physically to a phase transition to the spin-glass phase. In this phase we find that for all

equilibria and all species i,
ON/* 1 , 1
TR ®

we find that
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Figure 2. Single species response as a function of o for given species in a single equilibrium reached dynamically for the LV model with
r; = K; = 1and S = 400. The numerical results follow the continuous line, which is the analytical prediction valid in the large S limit
for all species. The response of one out of ten species is shown. The fluctuations are finite S effects. The single species response first
increases with o and then sticks to the value 2 in the whole marginally stable phase.
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Figure 3. Diversity ¢ in the standard LV case, f(N) = 1 — Nandr; = K; = 1,asafunction of c and for § = 100, 200, 400. The
diversity hits and sticks to the May bound throughout the entire multiple equilibria phase. The difference with the analytical
predictions are finite S effects.

where ¢, is the value of the diversity at the transition. These identities hold throughout the entire multiple
equilibria phase and they are consequences of the criticality of the spin-glass phase. We also find that for o > o,
the number of equilibria, i.e. of energy landscape minima, is exponential in S. In fact, the number of equilibria
scales as e where 1 goes to zero at the transition from one to multiple equilibria. One cannot make general
statements on its order of magnitude, since it depends on the external parameters and on the model, in particular
the functional response f(IN). When comparing to numerical and experimental results, it is important to keep in
mind that it can be small, as we found for instance for the standard LV model. In consequence even for rather

large S ~ 100 the number of equilibria may be modest, see SI. Figures 2 and 3 confirm our analytical predictions
ON

by showing, respectively, numerical results for ac*

and ¢ corresponding to a given equilibrium reached
dynamically.

The second identity in equation (3) corresponds to a saturated form of May’s original bound,
var(a;j) = 1/(45%) = 1/(4C*), where C" is the average number of interactions per surviving species [1] (the
prefactor 4 comes from the symmetry of a;;in the present model). In order to reveal this connection with
random matrix theory we focus on the $* x S$* stability matrix M™ associated to a given equilibrium, defined by

ON
the relation (M *)gl = [g;;
j

. Using the fixed point equation corresponding to equation (1) it is easy to check that
Mj = & + ag, (4)

where §;;is the Kronecker delta. In this equation the indices i, j have to be reduced to the surviving species since
extinct species remain so if one adds an infinitesimal perturbation §j, and do not contribute to the stability of the
equilibrium reached dynamically In fact, in the limit of small migration, A — 07, extinct species are those that
cannotinvade: Vi, V;(0) + i N ]* > 0. Adding an infinitesimal £; does not change this property and thus
the species remains extinct. Following procedures developed for mean-field spin-glasses [36], one can show (see
SI) that the spectrum of M; isidentical for large S to the one ofa $* x $* matrix with independent identically
distributed Gaussian off-diagonal entries having the same first and second moment of c;;. This is by no means
trivial since the equilibrium reached dynamically [37], and hence the identity of the surviving species, depend on
a;and induce correlations in the off-diagonal elements of M,;k The relation with random matrices implies that

the eigenvalue density of the stability matrix is a Wigner semi-circle with support [—20\/5 +1, 20\/5 + 1],
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Figure 4. Numerical test of the identity (5) combining diversity ¢ and single species response valid throughout the multiple equilibria
phase,for f(N) =1 — N — (N — 1)}/4, r, = K; = 1and S = 400. The fluctuations are finite S effects.

as we indeed find numerically, see figure 1. Moreover, this directly connects (3), which holds in the entire spin-
glass phase, to marginal stability. We have therefore recovered May’s original stability bound but in a saturated
form: the number of surviving species, S¢, is exactly the one guaranteeing that the system is poised at the edge of
stability, similarly to what was proposed in the self-organized instability scenario [22].

Let us now discuss extensions and the range of validity of our results. We have verified that our conclusions
on the multiple equilibria regime continue to hold for several different convex functional responses f (), the
standard f (N) = N (1 — N)being only an example among others, and with variability in the values of r;and K.
This is a direct consequence of the properties of the spin-glass phase to which the multiple equilibria regime is
related to. In these more general cases, the critical character of this phase is encoded in the following identity
valid for the average of the square of the single species response in the whole multiple equilibria regime:

1 S (anxY
2 — ! p—
b0 [S* Zil( o} ]] - ©

Note that equation (5) reduces to the first identity in equation (3) when single species response are identical, as
previously discussed. We show in figure 4 the numerical results obtained for f(N) = 1 — N — (N — 1)?/4
confirming this prediction: the rhs of equation (5) is less than one in the single equilibrium phase, it reaches one
at the transition and then remains stuck to this value in the whole multiple equilibria phase. As before, the
criticality of the spin-glass phase implies marginal stability. Indeed, similarly to the standard LV case, the
spectrum of the stability matrix M;k = V"(N;")6; + o canbe shown to be identical for large S to that ofa

§* x §* matrix with independent identically distributed Gaussian off-diagonal entries having the same firstand
second moment of o5 and independent identically distributed diagonal entries with the same statistics of
V"(N;*). As we show in the SI, the condition that the left edge of the eigenvalues density touches zero for this

* *
class of random matrices is ¢o (;—*Zf: (M *)31)2) = 1, which using = (M*); turns out to be identical to

equation (5). Therefore we obtain that the multiple equilibria regime is indeed generically characterized by
marginal stability and, by doing so, we derive a new generalized version of May’s bound (equation (5)).
Remarkably, these properties hold despite the fact that for this general class of random matrices the density of
eigenvalues is no longer a shifted semi-circle and the singularity at the left edge is not necessarily a square root, as
shown numerically in figure 1 forthe f (N) = 1 — N — 3/4(N — 1)? case (which has f’(N) > 0 for some
values of N, corresponding to an Allee effect). In particular, the singularity at the edge depends on the statistics of
the diagonal components M., i.e. of V”(N:*). Itis a square root if the distribution of the random variable

V (N;*) approaches the left edge of the support slower than linearly, in the other cases it may be a square root or
instead inherit the singularity of V" (N;*) at the left edge [38]. Note that for general f(N) the phase diagram is
modified compared to the standard LV model. For instance for f(N) = 1 — N — 3/4(N — 1) thesingle
equilibrium phase is absent even for infinitesimally small interactions. In conclusion, our investigations show
that the class of f(IN) leading to the marginally stable multiple equilibria phase, i.e. the phase boundaries of the
critical spin-glass phase in the physics terminology, is quite large. Determining its boundaries is an important
and interesting task that we leave for future studies. Based on previous results on mean-field glassy systems [39],
itis possible that the property that the multiple equilibria probed by the system are marginally stable is robust,
even though the detailed properties of the landscape might be different depending on the shape of f(N). This is
due to the fact that in many different situations, the most numerous minima, which are the ones with the biggest
basins of attraction, are marginally stable [39]. Therefore it is not necessary that all minima are marginally stable
to find that the ones reached dynamically are like this. Another extension of our work worthy of future analysis
concerns the role of the interactions network. As long as the connectivity C per species is large and the underlying
structure rather homogeneous, e.g. no fat tails in the distribution of the local connectivity, the mean-field

ON;
o¢r
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approach we developed is a very good approximation. In consequence, our results are expected to hold also in
this more general setting where C >> 1 but Cis not necessarily equal to S. As a first interesting extension one
could consider LV models on random regular graphs [40].

The properties (and the existence) of the multi-equilibria phase continue to hold also in presence of small
noise. On the basis of previous studies on mean-field spin-glasses [34, 35], we can state several general facts. In
presence of small noise the system moves around between multiple dynamical states. These correspond to low
temperature spin-glass states associated with the local minima discussed above. Assuming that the free-energy
landscape is akin to the one found for mean-field spin-glasses, e.g. the Sherrington—Kirkpatrick (SK) model [41]
(more complicated free-energy landscapes have been found in generalized glass models [42]), we expect that
only the low energy minima are able to trap the dynamics of the ecosystem over long periods of time, while the
ones higher in energy are instead separated by small energy barriers; the transitions between them are so
frequent that their identities as separate states disappear even for small noise. The stability of these dynamical
states can described by the matrix Mj;, which is a generalization of the stability matrix and is defined as the

(matrix) inverse of %?) ((-) denotes the average over the noise). As the stability matrix in absence of noise, M;; is

positive definite and h}as arbitrary small eigenvalues for large S, thus leading to marginal stability. Physically, this
is a consequence of the fact that the spin-glass phase is not destroyed by small thermal fluctuations and is critical
over a finite range of temperatures [33].

In summary, by mapping the LV models to thermal disordered systems and studying their thermodynamics,
we find that marginal stability is a property of all communities that are reached dynamically by an ecosystem in
the multiple equilibria phase. Equation (5), combined with our random matrix analysis, relates this property to
the single species response. This is the main result of our work: it represents an exact statement of May’s stability
bound [1], with three notable differences: 1. it follows from an exact analysis of the communities reached
dynamically rather than from a priori assumptions on the stability equations, it is thus a property of the emergent
community; 2. itis saturated, with an equality rather than an inequality; 3. it is more general, allowing to
incorporate nonlinear f (N).

Discussion

Having established that marginal stability is a generic property of the multiple equilibria phase, we now discuss
some of its consequences and propose measurable tests. The most striking effects are expected to appear in
dynamical phenomena. Again, previous results on dynamics of mean-field spin glasses provide useful guidelines
[34]. In particular, starting the LV dynamics from random initial conditions one expects slow relaxations toward
the minima and history dependence for large S. Both phenomena are tightly linked to marginal stability which
results in flat directions in configurations space. The response to perturbations is also expected to be very
unusual: marginal stability should lead to strong and wildly fluctuating nonlinear responses [43] and avalanches
of extinctions and invasions [11]. Working out the relevance of this phenomena in various ecological contexts
certainly warrants future research. Note that, these avalanches of extinctions are different from cascades in
trophic systems [44], as here no trophic structure is included. The results we found for symmetric interactions
have also important consequences for cases where «;; are asymmetric. Indeed, given that the multiple equilibria
are marginally stable, we expect that adding asymmetry leads immediately to a chaotic behavior in which the
system moves among the different regions of configurations space corresponding to the vestige of those
equilibria [45-47]. Chaotic dynamics of LV equations have been observed in simulations in some region in
parameter space in [7], and may be related to the phase we describe here.

Throughout this paper, we stressed that the unusual properties of the multiple equilibria phase are related to
the criticality of the corresponding spin-glass phase. In the following, we show that this relationship also suggests
new ways to test for marginal stability. Criticality corresponds to a state in which the microscopic degrees of
freedom are all strongly correlated, which naturally leads to singular responses. The properties of the stability
matrix in the multiple equilibria phase are one facet of this phenomenon; diverging fluctuations are another.
Note, however, that simple fluctuations such as (N?) — (N;)? or its time-dependent counterpart
C(t, t') = (N;(t)N;(t")) — (N;()) (N;(t")) do not capture criticality [33] (the overbar denotes the average
across the species). One needs to probe large scale fluctuations, hence inter-species correlations (this is the
counterpart of correlations between different points in space in standard critical phenomena). As it was
understood in the context of disordered systems, a good probe for this are four-points correlations [33] (see also
SI for detailed computations on this point and the following). As a matter of fact, in the LV model we considered,
which can be mapped onto thermal dynamics, diverging responses and fluctuations are exactly related by the
fluctuation—dissipation relation % = w2((N;N}) — (N;) (N;)). On this basis, and following previous work
on glassy systems [48], we propose to probe criticality, or the collective nature of the equilibria and more
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Figure 5. We show x, (¢, t’) in the single equilibrium phase for the standard LV model (f (N) =1 — N, r; = K; = 1),0 = 0.55,
S = 400and T = 10" . The top and bottom dashed lines show the values of 2ysg and xs, respectively. Inset: Analytical prediction
for x4(t, ) = 2xsg as a function of o approaching the transition toward the multiple equilibria phase. xs¢ diverges for 0 — ¢.

generally of the dynamical states by looking at a fourth-order correlation function, called x, (¢, t'), which reads:

Xa(t, t) = éZ:[<6Ni(t)&\]i(t/)&\]j(t)&\jj(t/» — (0N (1) N; (1)) (6N; (1) 6N; ()],

K

where 8N;(¢) = (N;(t) — (N;(1)))/+/C(#, t). This function allows one to measure to what extent species are
dynamically correlated and is therefore a way to quantitatively test criticality and marginal stability. In the LV
modeland for ¢ < o, the dynamics becomes stationary after a short transient. In this case x, (¢, t') depends on
t — t' only. Itslong time limit (¢ — ¢/ >> 1)isequalto:

1
o = L STIUNN — (NN,
o= T

whereas for t = ¢’ and small temperatures x4(%, t) is equal to twice X sg. As shown in figure 5, where we check
these analytical predictions by numerical simulations for S = 400, x,(+ — ') isa decreasing function of t — .
The shape of y, (¢, t') is different from the one found in glassy systems. The main difference which lies in the
different nature of the degrees of freedom is that x4(t, £) becomes large approaching the transition, whereas in
glassy systems it is featureless. In the condensed matter theory context X is known as the spin-glass
susceptibility and is known to diverge in the entire spin-glass phase. We indeed recover this result and connect it
to marginal stability since

LRI
wom () S ®

where p() is the density of eigenvalues of the matrix M;;. The divergence of xsg as S 1/3 comes from the fact that
the minimum eigenvalue of M scales [49] as S~/ In the inset of figure 5 we show the behavior of ysg obtained
analytically in the large S limit. Note that if the singularity of p()) is milder than a square root, as it is the case for
example for f(N) = 1 — N — 3/4(N — 1)?, then one needs to consider high-order moments. The bottom
line of this discussion is that if data on the time-dependence of abundances is available, the function y, (¢, )
allows one to measure to what extent species dynamics are correlated and test directly for criticality and marginal
stability. Even though in the simple LV case, measuring xsg would be sufficient for that purpose, measuring the
time dependent four-point function y, (¢, t') is the way to go in order to obtain information in more general
cases, which may be neither stationary, nor related to thermal equilibrium dynamics. In particular, x, (¢, t) can
show history dependence of dynamic correlations [34, 48], by being a function of t and ¢’ separately, and not
onlyoft — ¢t/

These results provide measurable predictions useful to probe whether the system is at (or close to)
marginality: First, the single-species response is predicted to follow equation (3) or more generally equation (5).
Experimentally, such perturbations may be measured using press perturbation experiments [50]. Secondly, the
fourth moment y, defined above is expected to be very large, diverging as S'/?, see equation (6), whereas in the
Unique Equilibrium phase it does not grow with the diversity S. Note that x, can be computed directly from
species abundance data.

In conclusion, our analysis of LV equations in the limit of large species shows a mechanism for which many
systems in Nature are poised at the edge of stability: we have shown that when the parameters of an ecosystem
cross the limit of stability, the system dynamically self-adapts to remain exactly marginally stable. It does so
reducing the number of species in such a way to saturate May’s bound, which therefore emerges as aresult of a
dynamical process. This leads to a whole critical phase with multiple marginally stable equilibria, which is
expected to be present for several different models and to display highly non-trivial dynamical behaviors that
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Figure 6. Density p(\) of eigenvalues of the stability matrix associated with a minimum has a support whose left edge touches zero,
corresponding to marginal stability, also when nonlinear interactions are introduced in the model. Here we show the numerical
example of two additional models obtained introducing a nonlinear g(x) or f (x) in equation (7), as further detailed in the main text.

may be measured experimentally. Its consequences can be relevant and important in many fields
[13,16,20,51,52].

Materials and methods

Numerics
Simulations of equation (1) in the main text for figures 14 were done without noise (T = 0). This results in a set
of coupled ODESs, that where run with A = 10~ '® and terminated when d(In N;) /dt < 10~'° for all i. To
calculate the spectra in figure 1 and the diversity in figure 3, species were considered to have positive N; if
N; > 10" at the final time. In figures 1—4, each data point used 3000 runs, where for each one a new matrix o
was sampled.

The noisy simulation in figure 5 was run with a simple Ito discretization of the stochastic differential
equation: AN; = A; At + /B;At, where A;are the noiseless terms of dN;/dt and B; = 2TN;. The simulation
wasrunwith T = 107>

Models with nonlinear interactions

In this section we show that a marginal phase can also be found in cases where the interactions assume a
nonlinear form. As in figure 1(B), and in contrast to figure 1(A), the distribution of eigenvalues of the equilibria
reached dynamically by the system, is seen to touch the y-axis, indicating marginal stability. The two studied
models are defined by

(ZI;E:GM lNig[ZOéijf(Nj)] ; (7)
j

where two different forms of g (x) are taken into account. In the model in panel (A) of figure 6, g (x) is taken to
have a Holling type I form g(x) = 5x/(1 + |x|)and f (x) = x. The model in panel (B) is defined via

fx) = x/(1 + x)and g(x) = x. The matrix o is symmetric with (a;j) = 0.25, ¢ = 0.7 for panel (B) and
(ajj) = 0.125, 0 = 1.3 for panel (A). All7; = 1,and S = 400. In both cases p(\) has a support whose left edge
touches zero, corresponding to marginal stability, even when its shape is different compared to the shifted
Wigner semi-circle of a standard LV model (figure 1). The parameters have not been fine-tuned, and can be
varied within some limits—which define the phase boundaries—while maintaining the marginality property.

Spin glasses
Many of the theoretical methods used in this work were originally developed to study disordered systems in
physics, and in particular spin-glasses. Here we make some brief comments on such systems and how they relate
to the present problem.

The behavior described in this work requires variability in the interaction strengths a; (as measured by their
standard deviation o). In physics, systems where interactions between the constituents exhibit analogous
variations are known as ‘disordered systems’. In particular, a spin glasses is systems where magnetic interactions
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vary between the different pairs of atoms. Models of such systems, starting with [53], traditionally use binary
variables to model the state of each magnetic spin o € {—1, 1}, while the complex interactions were modeled as
i.i.d. Gaussian random variables. For example, the first spin glass model [53] is the Edwards and Anderson model
where the Hamiltonian (the energy of a state) is given by

Hsx = =Y J;,j0i0js

1)

where only terms involving pairs of nearest neighbors (i, j) are included in the sum, and J; jare randomly sampled
with zero mean. The first model to be solved is its fully connected analog, the SK model where all pairs of spins
are taken to interact [41, 54]. A number of other spin glass models were considered along the years [33, 55-57].
Among the most interesting ones, we mention those where interactions involve p > 2 variables at a time, called
p-spin models [55]

H,=— > Jisisy....i, Oy Oy oo Oy
(s rip)
It turned out that spin glass models show interesting new phases and phase transitions and can be classified in
different universality classes which correspond to different macroscopic behaviors.

The techniques developed for the solution of spin glasses are in general useful to describe systems with high
level of frustration [58] (i.e. absence of optimal solutions for certain instances of the couplings). For this reason
they are widely applied nowadays in different fields including condensed matter (magnetic systems, supercooled
liquids), biology (protein folding, neural networks), social sciences, economics, computer sciences
(optimization theory, machine learning).

The major obstacle that had to be tackled while dealing with the solution of spin glass models is represented
by the task of performing disorder averages of quantities of physical interest to extract information on the
macroscopic behavior of the system. The information about equilibrium is contained in the so-called free energy
of the system

1 e —
F=——log z exp[—ﬁH]] ,
{ai}
where the overline represents the average over difference instances of the disordered couplings, the inner sum
runs over all the possible configurations of spins, and the argument of the logarithm is commonly called
partition function

7 = Z exp[—PH].
{ai}
The operation of taking the average usually is reduced to perform a Gaussian integration. This would have
required little computation effort indeed had the logarithm not been on the way. Yet its presence cannot be
neglected nor the operation of taking the average simply performed on the logarithm’s argument (the last
procedures is called annealed calculation but does not lead to the correct solution in the interesting regimes). To
keep the order of the operations and yet end up with an analytically tractable problem the so-called replica trick
was introduced [33]. It amounts to use the fact that
n
Togx = lim log x ,
n—0 N

which can be easily verified. Hence the free energy can be written in terms of the so-called replicated partition
function Z" as

>

n log{ Lexp[—0H]}"
P = 1im 282" _ i Lo
n—0 n n—0 n

where the power # can be interpreted, before the limit n — 0 is taken, as we were focusing on n independent
copies of the same system in presence of a unique sample of random couplings. Averages over different
realizations of the disorder are in this form straightforward. The copies in the spin glass jargon are usually called
replicas.

To give an intuition of the physical meaning of the results that can be obtained within replica computations
we must remember that frustrated systems are usually characterized by a multi minima structure of the energy,
or any equivalent cost function that might be of interest. This arrangement of minima is uniquely associated to
any instance of the random couplings. The role of replicas is the one of revealing the main features of this multi
minima structure by independently probing different minima. In fact one of the most important piece of
information that comes out from a replica computation is the average width of equilibrium minima and the
average distance between pairs of them, or more in general the hierarchical arrangements of minima in the space
of configurations. All this is contained in the structure of overlap Q,;, (or similarity, which accounts for the
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inverse of distance in the space of configurations) between pairs of replicas a, b:

1 a b/

1 Y Z[Uf}exp[—ﬁECHc]oio? 1 Nuibf
Qa,b:_z " :_Z<0i0i>AR >
N Z{of}eXp[_ﬁZcHC] N

where ()ar denotes the measure over all replicas with the Boltzmann weight and after averaging over disorder
(rhs of the first equation above). Along a typical replica computation a new conceptual obstacle arises when the
free energy is rewritten in terms of an integral over all the possible choices of the overlap matrix. In the
thermodynamic limit (N — o) the Laplace method (or saddle point method) can be applied to evaluate the
integral but it requires to find the overlap matrix that maximizes the argument of the integral. This operation
requires the introduction of a good ansatz for the overlap matrix. The currently used scheme was proposed by
Parisi [59, 60] and subsequently proved to be the one providing the correct saddle point result [61]. It is called
RSB scheme and will be discussed in more details in the following sections.

Depending on the number of steps of breaking of the replica symmetry required to get a meaningful solution
[62] (i.e. stable in the replica space), we could end up working with replica symmetric scheme, one step replica
symmetry breaking, 00 steps replica symmetry breaking (FRSB), just to mention the most relevant ones. This
differentiation allows to classify spin glass models and characterize the features of their relevant phases and phase
transition.

It turns out that the ecological model we consider in this work, at large values of 7, is characterized by a FRSB
solution. The FRSB solution represents, as stressed in the main text, a critical phase. From the technical point of
view, it is marginally stable, meaning that within the Laplace method it corresponds to an extremum with
vanishing small eigenvalues.
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