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Abstract. A fresh look is taken at the problem of bias in information-based attribute selection measures, 
used in the induction of decision trees. The approach uses statistical simulation techniques to demonstrate 
that the usual measures such as information gain, gain ratio, and a new measure recently proposed by Lopez 
de Mantaras (1991) are all biased in favour of attributes with large numbers of values. It is concluded that 
approaches which utilise the chi-square distribution are preferable because they compensate automatically for 
differences between attributes in the number of levels they take. 
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1. I n t r o d u c t i o n  

The task of inducing a decision tree is typically handled by a recursive partit ioning 
algorithm which, at each non-terminal node in the tree, branches on that attribute which 
discriminates best between the cases filtered down to that node. 

Traditionally, the measure called ' information gain'  by Quinlan (1986), has been using 
for the purpose of  deciding which of the available attributes should be branched on. 
However, in recent years, researchers such as Kononenko et al. (1984) have become 
aware that this measure is liable to favour unfairly attributes with large numbers of  
values at the expense of those with few. 

As a preferred alternative, Quinlan (1986) suggested the use of another information- 
based measure which he termed the 'gain ratio ' .  This was derived from information gain 
by dividing by attribute information. This acted as a sort of normalising factor by virtue 
of  the fact that attribute information tends to increase as the number of possible values 
increases. At  the time, it was thought that this would eliminate the bias. However, it 
was acknowledged that attributes with very low information values (i.e. low attribute 

information) then appeared to gain an unfair advantage. 

More recently still, Lopez de Mantaras (1991) proposed another information-based 
criterion which, it was claimed, was free of this latter problem also. The purpose of  this 
paper is to take a fresh look at the problem of  bias in measures which should preferably 
be bias-free in deciding between contending attributes with different numbers of values. 
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2. Definit ions of  the measures  

Although the various measures have been defined elsewhere, it is felt that a simpler 
approach to the definitions than is given in other papers would be beneficial. 

Suppose that we are dealing with a problem with k classes and that an attribute, A, with 
m distinct values is under consideration at a particular node. The fol lowing contingency 
table (Table 1) represents the cross-classification of  classes and attribute values: 

Table 1. A general contingency table. 
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where Ci (i = 1, k) and aj (j = 1, m)  represent class and attribute values respectively; 
nij  (i = 1, k; j = 1, m)  represent the frequency counts of  cases with attribute value aj 
and class Ci; and: 

m 
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Various probabilities can be defined, as follows: 

n i j  
P i j  = - -  

n . .  
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n . .  

n . j  
p . j  = - -  

n , .  

Given an event with l possible outcomes,  each of  probability Pi ( / =  1, 2 . . . . .  /), the 
information associated with this event is (Edwards, 1964): 
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l 

- E pi log2 Pi 
i = t  

Applying this to the contingency table above, we can define the information associated 
with each possible cell, class and attribute, respectively, as: 

k m 

Heeu = - E EP~J  l°g2pij 
i=1  j = l  

(1) 

k 

Hc = - E Pi. log2 P~. 
i = 1  

(2) 

'~TZ 

HA = -- E P'J l°g2 P'J 
j = l  

(3) 

From these quantities, transmitted information may be defined as: 

HT = HC + HA -- Hcetl (4) 

The concept of transmitted information is very useful. In the current context, it means 
the information about class membership which is conveyed by attribute value. 

Each of the information-theoretic measures can now be expressed in terms of the quan- 
tities defined in Equations 1 to 4. Firstly, it should be noted that Quinlan's 'information 
gain' measure is identical to transmitted information, HT. The 'gain ratio', GR, is 
simply transmitted information 'normalised' by attribute information: 

HT 
oR = HA (5) 

Perhaps it should be mentioned that Quinlan (1986) favours an application of the gain 
ratio which, in his words: 

. . .  selects, from among those attributes with an average-or-better gain, the at- 
tribute that maximises the above ratio. 

The distance measure proposed by Lopez de Mantaras (199I), dN, is: 

HT 
d N =  1 - -  ~ ( 6 )  

Hcell 

This needs to be minimised over attributes, rather than maximised like the other measures, 
so it seems preferable to discuss the complement of this measure, 1 - d g ,  which is simply 
transmitted information 'normalised' by cell information. 
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H T  
1 - - d N = h  

Hcell 
(7) 

Another measure of interest is the G statistic, described by Mingers (1987, 1989), as: 

G = 2NHT 

Unfortunately, Mingers is in error. 2 The problem arises from the fact that Kullback (1959, 
pp. 158-159) was working with logarithms to base e, whereas all the other information- 
based measures use logarithms of base 2, in order that all the quantities concerned are 
expressed in bits. Therefore, file correct definition should be: 

G = 2NHT loge 2 (8) 

We also need to define a statistical measure, X 2, from the same table: 

i j E i j  
(9) 

where O~j is the observed number of cases with value aj in class Ci, i.e. Oij = n~j, and 
E~j is the expected number of cases which should be in cell (Ci, aj)  in the contingency 
table, if the null hypothesis (of no association between attribute and class) is true: 

Ei  j _ ?z.jni. 

Both the G statistic and X 2 are well approximated by the chi-square distribution with u 
degrees of freedom, where: 

1) 

However, it should be remembered that this will not be true for the G statistic if loga- 
rithms of the wrong base are used. It should also be mentioned that both approximations 
become poor with small expected frequencies. This fact is well documented in the case 
of X 2. For example, Siegel (1956) recommends that the X 2 test should not be used if 
more than 20% of the expected frequencies are less than 5, or any are less than 1. If this 
warning is not heeded then, in this type of situation, the probability derived from the 
chi-square distribution will be smaller than the true probability of getting a value of xZas 
large as that obtained. This means that the x2test becomes over-optimistic in detecting 
informative attributes under these circumstances. 

3. The problem of bias 

The whole problem of bias arising from differences in the number of levels of attributes 
has not been adequately addressed in the area of machine learning. Until now, arguments 
for or against the existence of this type of bias have been based on a particular type of 
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argument which relies on randomly partitioning an attribute A to produce a derived 
attribute A t which has a larger number of values. 

This line of argument was initiated by Quinlan (1986, 1988) who showed that: 

HT(A') >_ HT(A) 

This means that, in general, the derived attribute will transmit more information about 
class membership than the original one. However, as the additional partitioning required 
to derive A t from A was random, A t cannot be reasonably be preferred to A as a 
candidate for branching. Thus, the information measure, HT, is not comparable between 
attributes which have different numbers of values. 

More recently, Lopez de Mantaras (1991) proved that: 

dN(A t) > dN(A) 

This result is then taken to imply that this distance measure does not favour attributes 
with large numbers of values. In fact, this type of proof is inappropriate. What is needed 
is a statistical approach which takes into account the distributional properties of the 
measures. More precisely, for any attribute selection measure, f ,  to be fair requires that, 
under the null hypothesis of no association between class and attribute: 

p(f(x') > f(At)) = p(f(x) > f(A)) 

where x t and x represent general attribute variables with the same number of attribute 
values as A t and A respectively. This means that, under the null hypothesis, the prob- 
abilities of getting values for f greater than or equal to those actually obtained must 
be equal for A and A t. Anything other than equality in this equation would mean that 
attributes with larger numbers of values would be favoured at the expense of those with 
fewer, or vice versa. 

The reason that a statistical approach is preferable is concerned with the risk of in- 
cluding in the tree attributes which do not provide genuine discrimination between the 
classes. Previous work by Liu and White (1994) has shown the importance of the 
attribute selection measure discriminating between attributes which are genuinely infor- 
mative concerning class membership and those that are not. If  the attribute selection 
measure is biased towards variables with large numbers of values, then noise variables 
with large numbers of values could be in contention for selection with genuinely in- 
formative attributes with fewer values. In general, this would lead to poorer predictive 
performance from the induced tree. For optimal predictive performance, the attribute se- 
lection process should avoid the selection of noise variables, because of their degrading 
effect on performance. Similar remarks can be made concerning the suboptimality of se- 
lecting attributes with large numbers of values which discriminate only weakly between 
the classes, when more powerful discriminators are available among those attributes with 
fewer distinct values. 
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4. Demonstration of bias by simulation 

4.1. Introduction 

The issue raised in the previous section is really a matter of the distribution of the test 
statistic differing according to the number of levels of the attribute under consideration. 
The proposal here, is to use Monte Carlo simulation techniques to explore these dif- 
ferences and thereby expose the bias (if any) in the use of various information-based 
measures. The point is that each of the information-based measures is affected by the 
number of cells in the class × attribute contingency table. Consequently, changing either 
the number of attribute values or the number of classes would be expected to affect the 
magnitude of the measure. Of course, for any given application, the number of classes is 
fixed. However, we would expect the effect of number of attribute values to be present 
whatever the number of classes. On the other hand, the probability-based measures are 
appropriately parameterised for the number of cells in the contingency table and hence 
would not be affected by either of these factors. 

The intention here is to use simulation techniques to derive approximations to the 
theoretical central distributions for the various information-based test statistics, in order 
that the estimated parameters derived from these distributions may be compared for 
attributes with different numbers of values, m. The central distribution of a test statistic 
is the distribution of that statistic when no effect is operating in the population from 
which the samples are drawn. In the current context, this means that we are concerned 
with the distribution of a particular test statistic when there is no actual association 
between class and attribute in the population from which the samples are drawn. For a 
given measure, if the distributions differ significantly according to ra, then bias is present 
in that measure. 

The demonstration described below was designed to illustrate the presence of such a 
bias and also to show the effects of class probability and number of classes on this bias. 

~2. Me~od  

The basis of the demonstration involved simulating attributes with different numbers of 
values, drawn from populations that had no association with class. 

Three different conditions were employed, as follows: 

1. two equiprobable classes 

2. two classes with an odds ratio of 4:1 

3. five equiprobable classes 

A sample size of 600 cases was used, with the number of cases fixed as belonging 
to each of the classes, according to the condition just described. Class membership 
was cross-tabulated against three attributes, having respectively two, five and ten values. 
For each attribute, the values were generated independently for each class, from the 
appropriate discrete uniform distribution. 
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Table 2. Means for the various measures, for each condition. 

Attribu~ SelecOon Measure 
Condition HT GR 1 - dN p(X z) p(G) 

m=2 0.0012 0.0012 0.0006 0.5005 0.5023 
1 m=5 0.0048 0.0021 0.0015 0.5006 0.5019 

m=10 0.0107 0.0032 0.0025 0.4869 0.4910 
m=2 0.0012 0.0012 0.0007 0.4989 0.5002 

2 m=5 0.0049 0.0021 0.0016 0.5026 0.5049 
m=10 0.0109 0.0033 0.0027 0.4960 0.5029 
m=2 0.0049 0.0049 0.0015 0.5052 0.5064 

3 m=5 0.0196 0.0084 0.0042 0.5058 0.5132 
m=10 0.0441 0.0133 0.0079 0.4980 0.5189 

1000 Monte Carlo trials were employed. On each trial, each of  the information-based 
measures, HT, GR and 1 - dN were calculated for each attribute. In addition, X 2 and G 
were also calculated and the probabilities for getting values as extreme as those obtained 
(denoted by p(x  2) and p(G), respectively) were derived from the cumulative chi-square 
distribution with (k - 1 ) ( m -  1) degrees of  freedom. 

4.3. Results and discussion 

Means for each of the five measures, for each value of ra are displayed in Table 2. The 
following points should be noted: 

1. The results show clearly that, for each condition, the mean value for each of the 
first three measures increases as m is increased. Conversely, the means for the two 
probabil i ty-based measures show no tendency to vary systematically with m. The 
significance of these findings was checked by performing F tests for the application 
of each measure to each condition. The results of these were so clear that it was 
felt unnecessary to quote each one separately. Briefly, for the three information- 
based measures, the F ratios for the three conditions ranged from 443 to 6727, with 
2, 2997 degrees of freedom. Even the smallest of these was significant beyond the 
0.001 level. By contrast, the corresponding F ratios for the two probabil i ty-based 
measures ranged from 0.07 to 0.75, giving p values all greater than 0.4. 

2. The results also show clearly that, for any particular value of ra, the means for 
the first three measures do not really differ between the first two conditions but 
are substantially higher in the third condition. By contrast, the means for the two 
probabil i ty-based measures do not really differ between any of the conditions. 

The reasons underlying these findings are as follows. Both X 2 and HT (and the other 
information-based measures derived from it) are quantities whose distributions are pa- 
rameterised by the number of  degrees of  freedom of  the contingency tables from which 
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they have been derived. For a contingency table with k rows and ra columns, the number 
of degrees of freedom is given by (k - 1)(m - 1). The practical consequence of this 
fact is that measures derived from tables with different numbers of cells are not directly 
comparable, because they have different probability distributions. This is why the means 
for the first three measures in Table 2 increase as m is increased. It also explains why 
the means for these measures are higher for the third condition than for the other two, 
i.e., because the number of classes has been increased. On the other hand, changing 
the class probabilities while keeping the number of classes constant does not produce 
changes in these measures because this operation does not change the number of cells 
in the contingency table. 

By contrast, the two probability-based measures do not suffer from these problems 
because the manner in which they are calculated takes into account the number of degrees 
of freedom. This means that probabilities derived in this way from tables with different 
numbers of cells are directly comparable. 

For comparison purposes, a brief test was also made of the behaviour of Quinlan's 
variant of the gain ratio on the first experimental condition, i.e. with two equiprobable 
classes. (As Quinlan did not define what he meant by 'average',  this was calculated 
using the median value for HT as the first stage in the computation). The results showed 
the same tendency as the other information-based measures, with means of 0.00206, 
0.00314 and 0.00439 for 2, 5 and 10 attribute values, respectively. 

5. Conclusions 

The simulation demonstration, just described, shows convincingly that HT, Gn and 
1 - dN each favour attributes with larger numbers of values. The results suggest that 
HT (transmitted information) is the worst of the three measures in this respect and also 
that GR is the least biased. Furthermore, the results also show that the magnitude of 
this bias is not affected by class probability but is strongly dependent on the number of 
classes, increasing as k is increased. 

The nature of the problem is this. The central distribution for HT is really dependent 
on m and so is that of the 'normalised' measures derived from it. These distributions are 
also dependent on k. In fact, each of the information-based measures is dependent on 
the number of  cells in the contingency table. Of course, for attribute selection proposes 
in real inductive applications, the dependence on k is not important because the number 
of classes is fixed for the application concerned. However, the dependence on m remains 
and failure to take this fact into account in the proper way means that bias is operating 
in situations where various attributes differ in the number of values that they take. 

The simple demonstration provided in this paper also shows a way out of the problem. 
Either X 2 probabilities should be used or, if information-theoretic measures are preferred, 
then the G statistic (as defined in Equation 8), could be used instead. In either case, the 
statistic is distributed approximately as the chi-square distribution with (m - 1)(k - 1) 
degrees of freedom. As the results show, comparing the resulting probabilities offers a 
simple and fair way of evaluating the relative importance of discrete attributes having 
different numbers of levels. The problem of small expected frequencies that was men- 
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t ioned  ear l ie r  c an  be  h a n d l e d  in one  of  two ways.  In the  case  of  p r o b l e m s  wi th  j u s t  two  

c lasses ,  F i s h e r ' s  exac t  p robab i l i ty  tes t  (Siegel ,  1956) can  b e  used  in p lace  o f  the  x2tes t .  

Fo r  m o r e  than  two  classes ,  a s imi la r  app roach  could  be  deve loped .  

Notes 

1. A.P. White is also an Associate Memober of the School of Mathematics and Statistics at the University of 
Birmingham. 

2. In fact, the arithmetic examples in Mingers (1987) are correct because he uses natural logarithms for his 
computation of information gain. 
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