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Abstract

A key sticking point of Bayesian analysis is the choice of prior distribution, and there is
a vast literature on potential defaults including uniform priors, Jeffreys’ priors, reference pri-
ors, maximum entropy priors, and weakly informative priors. These methods, however, often
manifest a key conceptual tension in prior modeling: a model encoding true prior information
should be chosen without reference to the model of the measurement process, but almost all
common prior modeling techniques are implicitly motivated by a reference likelihood. In this
paper we resolve this apparent paradox by placing the choice of prior into the context of the
entire Bayesian analysis, from inference to prediction to model evaluation.

1. The role of the prior distribution in a Bayesian analysis

Both in theory and in practice, the prior distribution can play many roles in a Bayesian analysis.

Perhaps most formally the prior serves to encode information germane to the problem being ana-

lyzed, but in practice it often becomes a means of stabilizing inferences in complex, high-dimensional

problems. In other settings it is treated as little more than a nuisance, serving simply as a catalyst

for the expression of uncertainty via Bayes’ theorem.

These different roles often motivate a distinction between “subjective” and “objective” choices

of priors, but we are unconvinced of the relevance of this distinction (Gelman and Hennig, 2017).

We prefer to characterize Bayesian priors, and statistical models more generally, based on the

information they include rather than the philosophical interpretation of that information.

The ultimate significance of this information, and hence the prior itself, depends on exactly how

that information manifests in the final analysis. Consequently the influence of the prior can only

be judged within the context of the likelihood.

In the present paper we address an apparent paradox: Logically, the prior distribution should

come before the data model, but in practice, priors are often chosen with reference to a likelihood

function.

We resolve this puzzle in two ways, first with a robustness argument, recognizing that our

models are only approximate, and in particular the relevance to any given data analysis of particular

assumptions in the prior distribution depends on the likelihood; and, second, by considering the

different roles that the prior plays in different Bayesian analyses.

1.1. The practical consequences of a prior can depend on the data

One might say that what makes a prior a prior, rather than simply a probability distribution, is

that it is destined to be paired with a likelihood. That is, the Bayesian formalism requires that a

prior distribution be updated into a posterior distribution based on new data.
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The practical utility of a prior distribution within a given analysis then depends critically on

both how it interacts with the assumed probability model for the data in the context of the actual

data that are observed. Consider, for example, a simple binomial likelihood with n = 75 trials

and some prior on the success probability, p. If you observe y = 40 then you can readily compute

the posterior and consider issues of prior sensitivity and predictive performance regardless of the

choice of prior. But what if you observe y = 75? Then suddenly you need to be very careful with

the choice of prior to ensure that your inferences don’t blow up. This doesn’t imply that the prior

should explicitly depend on the measured data, just that a prior that works well in one scenario

might be problematic in another.

Consequently, to ensure a robust analysis we have to go beyond the standard Bayesian workflow

where the prior distribution is meant to be chosen with no reference to the data and, ideally, the

data generating experiment itself.

1.2. Existing methods for setting priors already depend on the likelihood

This tension between the conceptual interpretation of the prior and more practical considerations

has largely split the long literature of prior choice into two sides: either you build a fully subjective

prior distribution with no knowledge of the likelihood, or you leverage at least some aspects of your

likelihood to build your prior. We refer to the first of these positions as maximalist in that the prior

distribution represents, at least ideally, all available information about the problem known before

the measurement is considered. The maximalist prior is implicitly backed up by the Bayesian’s

willingness to bet on it.

Any prior that isn’t fully informative but has any sort of theoretical or practical benefit leans

heavily on some aspect of the likelihood. The classic example of this is building priors from the

minimalist position which takes data and a model of the measurement process, and considers a

prior as little more than an annoying step required to perform a Bayesian analysis. From this

perspective, a natural starting point is a noninformative prior. Although it is impossible to define

“noninformative” with any rigor, the general idea is that such a prior affects the information in the

likelihood as weakly as possible. In practice the drive for noninformativity leads to the naive use

of uniform distributions as the limit of an infinitely diffuse probability distribution.

Related is the idea of the reference prior (Bernardo, 1979) which, again, serves as a placeholder

to allow Bayesian inference to go forward with minimal problem-specific assumptions. These as-

sumptions frequently require the statistician to replace knowledge of the likelihood with an asymp-

totic approximation, with the validity of this asymptotic regime ultimately affecting the practical

performance of the prior.

A structural prior encodes mathematical properties such as symmetry that represent underlying

features of a model. Examples of structural information include exchangeability in hierarchical

models and maximum entropy models in physics, which Jaynes (1982) and others have applied to

more general statistical settings. A structural prior is not minimalist as it includes information

about the underlying problem which is not driven by the measurement process, but neither is it

maximalist as it does not attempt to include all available information about the problem at hand. It

also makes the implicit the assumption that the structural information is consistent with reasonable

data generating processes.

A regularizing prior is designed to yield smoother, more stable inferences than would be ob-

tained from maximum likelihood estimation or Bayesian inference with a flat prior. Exactly how a

regularizing prior accomplishes this goal clearly depends on the exact nature of the likelihood itself.

Regularization, even if applied in a Bayesian context, is a frequentist goal (Rubin, 1984) in that
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its success is quantified in terms of the statistical properties of the inferences from an ensemble of

possible measurements.

The ground between structural and regularising priors is occupied by the more recent, and

considerably more hazy, idea of weakly informative priors that are explicitly designed to encode

information that applies to a general class of problems without taking full advantage of problem-

specific knowledge (Gelman et al., 2008, Simpson et al., 2017). We argue that these are, in a

pragmatic sense, hyper-Jaynesian in that they are designed to regularize inferences with structural

information.

1.3. The role of the prior in generative and predictive modeling

One aim of this paper is to critically examine the common misconception that prior modeling

doesn’t matter. We argue that for the sorts of complex data encountered in modern applications,

aspects of the prior distributions persist into the posterior and, as such, we have to think carefully

about how to specify the prior in the context of the likelihood.

In particular, understanding this context requires that we think generatively by considering the

potential measurements consistent with a given prior and predictively by validating those potential

measurements against data that we collect. The fundamental tool for understanding the effect of

the prior on inference before data has been collected is the prior predictive distribution, while the

fundamental tool for validating the model after data have been collected is the posterior predictive

distribution. The careful application of these tools leads us to some concrete recommendations of

how to choose a prior that ensures robust Bayesian analyses in practice.

2. A simple motivating example

To appreciate how impactful the prior can be in a real problem, consider the paper, “Beautiful

parents have more daughters,” by Kanazawa (2007), who analyzed data from a longitudinal survey

that included a measure of adolescent respondents’ attractiveness on a 1–5 scale, and followed

up over the several years and recorded the sex of these people’s children. The sample size was

approximately 3000. There was positive correlation between attractiveness and sex ratio in the

sample: a linear regression found that a 2-point difference in attractiveness corresponds to a 3.0

percentage point difference in the probability of a girl birth, with a standard deviation of 2.7

percentage points.

This estimate is not statistically significant at the conventional level and, as such, would not be

generally taken as useful evidence. The published paper, however, featured a comparison between

the sex ratio of children of the most attractive parents (category 5), compared to those of categories

1–4. For this particular comparison, the proportion of girl births was 8 percentage points higher

among most attractive parents, and this difference was reported as having a t-statistic of 2.44,

implying a standard error of 3.3 percentage points.

For simplicity, we shall proceed with the simple comparison—the estimate of 8±3.3 percentage

points—setting aside legitimate concerns of selection and multiple comparisons because they are

not relevant to our concerns in this paper. The resulting model has two parameters: the probability

of girl births for beautiful parents, p1, and for others, p2, which we shall parameterize as p2 and

δ = p1 − p2. The overall probability of girl births is very well estimated from aggregate data, with

approximately 4 million births per year in the United States, and so here we only concern ourselves

with the prior distribution and inference for δ.
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2.1. Bayesian analysis under different priors

With a uniform prior on δ, the posterior is proportional to the likelihood, approximately normal

with mean 0.08 and standard deviation 0.033, thus an implied 99.2% chance that beautiful parents

are more likely to have girls in the general population, and an implied 50% chance that the difference

in probabilities exceeds 8 percentage points.

While it is well known that the definition of a uniform prior depends on parameterization, in

this case the estimated probabilities are so far from 0 and 1 that there would be essentially no

change in posterior inferences if the scale of the uniform prior distribution were changed to logit or

probit or any other reasonable transformation.

The danger here is that any uniform prior distribution contradicts what is known about the

stability of the human sex ratio. Over time and across populations, the proportion of girl births

has been remarkably stable at about 48.5%. There is some variation but this variation is low,

except in cases of selective abortion, infanticide, and extreme poverty and famine. For example,

the proportion of girl births is about half a percentage point higher among whites than blacks in

the United States, and there are similar or smaller differences when comparing younger mothers

and older mothers, babies born in different seasons of the year, and other factors that have been

studied. It is hard to imagine sex ratio having a higher correlation with parental attractiveness

than with these other variables—especially given that attractiveness in this particular study was a

one-time assessment from a survey interviewer.

For a fully informative prior for δ, we might choose normal with mean 0 because we see no prior

reason to expect the population difference to be positive or negative (see Gelman and Weakliem,

2009, for further discussion of this point) and standard deviation 0.001 because we expect any

differences in the population to be small, given the general stability of sex ratios and the noisiness

of the measure of attractiveness. The resulting posterior distribution of δ is then approximately

normal with mean 0.00007 and standard deviation 0.001; that is, our best estimate of the difference

in sex ratio is 7/1000 of a percentage point, with uncertainty of one-tenth of a percentage point.

Somewhere in between these two extremes would be a weakly informative prior, such as normal

with mean 0 and standard deviation 0.005, which would allow for the population difference δ to be

as large as one-half to one percentage point. The resulting posterior distribution is approximately

normal with mean 0.002, that is, 0.2 percentage points, and standard deviation 0.005, or 0.5

percentage points). For either the fully informative or the weakly informative prior, or variants

such as obtained by substituting a t distribution for the normal, the data are so weak that the prior

dominates.

2.2. Understanding the problem

The point of this example is that for the particular problem of estimating the parameter δ—a

difference in sex ratios that is certainly less than 1 percentage point in the general population—the

available data from 3000 survey respondents is laughably weak. A uniform prior then represents a

strong statement that δ can be large, which has has malign consequences for the posterior distri-

bution (and for science more generally given that the resulting paper was published in a reputable

journal and received uncritical publicity in major media, as discussed by Gelman and Weakliem,

2009). In other settings, however, a uniform prior distribution for a parameter estimated in this

way would work just fine: 3000 is a large sample size for the purpose of estimating real underlying

differences of 5 percentage points or more.

Thus, the prior distribution here can only be interpreted in the context of the likelihood. This

point is in some sense mathematically obvious—after all, the product of any Bayesian inference
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is the posterior distribution which filters the prior through the likelihood—but it contradicts the

conceptual principle that the prior distribution should convey only information that is available

before the data have been collected. The resolution of this apparent contradiction is that priors

(and, for that matter, likelihoods) can only be approximate, and the sensitivity of conclusions to

certain aspects of the prior will depend on the model for the data.

3. When exactly is the prior irrelevant in practice?

The sex ratio example shows how uniform priors can lead to nonsensical inferences even with what

can seem like a large sample size. A skeptical reader, however, should question whether this example

is pathological or indicative of a general problem.

Our experience is that in contemporary statistical practice the problem is indeed general. The

dominance of the information encoded in the measurement depends not only on the size of the

data but also on the structure of the likelihood and the effect being studied. The more complex

the likelihood and the smaller the effect being considered, the more data are needed to render the

prior irrelevant. To put it another way, when sample sizes are large and data are rich, one can and

should be asking more fine-grained questions. Given the challenging problems being analyzed at

the frontiers of applied statistics, priors are unlikely to be irrelevant.

3.1. Uniform priors are not a panacea and can do unbounded damage

To see why uniform priors are inappropriate, we need to think about what went wrong for the sex

ratios. The core of the problem was that, because the true difference δ was small, the data did a

bad job of finding it. There is an easy frequentist argument for this: the randomness of the data

means that the maximum likelihood estimator will take n data points and produce an estimate of

δtrue that satisfies δ̂ = δtrue + Op(n
−1/2). Unfortunately the random fluctuation in the estimator

is additive, which means that when δtrue is small n needs to be very large to avoid the natural

variation in the data from overwhelming the signal. It’s not so much that the uniform prior is

inherently bad, but rather that its interaction with the likelihood and the data facilitates poor

performance. It does not help that uniform or extremely broad prior distributions are often viewed

as a safe default prior choice.

3.2. Asymptotics: so close, yet so far away

Asymptotic arguments have traditionally played two roles when constructing priors. The first role

is to dispel concern by appealing to the Bernstein-von Mises theorem, which suggests that priors

have a second-order effect, in the sense that they wash out from the inference faster than the

inherent variability of the measurement. The sex ratio example shows that even for quite simple

models, this reasoning often doesn’t apply in real applications.

The second role asymptotic reasoning has had is in the actual construction of priors. Arguments

for the validity of reference priors, maximum entropy priors, and matching priors all rely on some

sort of asymptotic justification, which may or may not hold in practice. Indeed, these asymptotic

assumptions themselves represent prior information that has been chosen, explicitly or implicitly,

to have been included into the model.

The foundational work for most of the priors listed in Section 1.2, the key exception being

weakly informative priors, was done in the mid-to-late 20th century. Critically, these priors were

conceived, constructed, and publicized long before the computational revolution of the 1990s which
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has driven the the analyses of ever larger and more intricately structured data. Ultimately, the

applications that these priors were built to solve are not necessarily the same as applications of

interest today.

Today, datasets are bigger, and the models needed to capture the structure of those data can

be considerably more complex than those that were practical in the pre-Markov chain Monte Carlo

days. One of the most significant consequences of this big data, small signal revolution is the

failure of reference priors, maximum entropy priors, and most priors that try to match frequentist

properties. The problem is that these priors are justified at least partly by asymptotic arguments,

which requires a strong signal for parameters of interest.

In hindsight it is not surprising that using certain priors in situations where their asymptotic

justification does not hold results in poor statistical analyses. Given these challenges, we argue

that asymptotic analyses are best limited to quantifying when priors may perform poorly rather

than motivating the design of default families of priors.

3.3. For complex models, certain aspects of the prior will always be relevant

There are important classes of models in which the number of parameters increases with sample

size so that inferences are not identified by data even asymptotically. In such cases, the posterior

eventually concentrates not on a point but rather around some extended submanifold of parameter

space—and the projection of the prior along this submanifold continues to impact the posterior even

as more and more data are collected. When confronted with such a poorly identified likelihood

we must be particularly careful to ensure that the prior is sensible along the poorly identified

submanifold.

This problem is best understood though another example. Once the statistical equivalent of

“the good china,” coming out only on special occasions, Gaussian processes are now ubiquitous

in applied statistics. They also provide a tractable case where the interaction between priors,

likelihood, and data can be laid out precisely. Consider, a mean zero GP x(t) defined on the

interval [0, 1] with covariance function

cov(x(t), x(s)) = σ2 exp (−κ|t− s|) , σ, κ ≥ 0,

where σ is the marginal standard deviation and κ controls the range of the correlation, with x(t)

and x(t± 2κ−1) being approximately independent.

The usual asymptotic regime for this sort of model, known as the infill regime, involves more

observations of the same realisation of the GP within the interval [0, 1]. Under such infill asymp-

totics it is well known that the product σ2
√
κ is consistently estimable from the data, while the

individual parameters κ and σ are not (Stein, 1999, Zhang, 2004). The interpretation of this non-

identifiability is that the data cannot differentiate between a process with a long range and a high

variance and data with a short range and a low variance.

While it may be tempting to resolve this non-identifiability by fixing κ, there is strong empirical

(Kaufman and Shaby, 2013) and theoretical (van der Vaart and van Zanten, 2009) evidence that the

models will fit the data better if the parameter is allowed to vary. This puts us in an uncomfortable

situation. If there is only a small signal, then the problems identified in the sex-ratio example will

occur. On the other hand, even if the signal is strong enough to avoid this trap, the prior will still

affect the shape of the posterior along the ridge defined by σ2
√
κ = const.

An immediate consequence of this non-identifiability is that a prior on κ affects the posterior

for σ. For example, if the prior on κ has a very light right tail, which penalizes short ranges, then

the resulting posterior for σ will have almost no support around small variances. Fuglstad et al.
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(2016) recommend specifying the prior on (κ, σ) using coordinates parameterizing motion parallel

and orthogonal to the the ridge. These more natural coordinates motivated by the structure of

the measurement allow us to specify a meaningful prior on the ridge and ensure the parameter

estimates are useful. For example, because we know that the observations are contained within

[0, 1] we can argue that we want to avoid the part of the ridge where the range is much longer than

the domain and the marginal variance is compensatingly large.

This Gaussian process example demonstrates that the non-identifiabilities, and near non-

identifiabilites, of complex models can lead to unexpected amounts of weight being given to certain

aspects of the prior. In the Gaussian process case this is fairly easy to resolve analytically, but in

more complex hierarchical models, we know of no general techniques to identify problem areas in

the parameter space. In these cases, common sense and even weak subject-matter understanding

can translate into useful information along the non-identified submanifold and thus become the

basis for effective weakly informative priors.

4. A prior is more than just a probability measure, so we need to start thinking

generatively

Acknowledging that complex models can be full of hidden pathologies that are difficult to explore

mathematically is an important first step toward motivating robust priors for modern statistical

models. In particular, this realization extinguishes the hope of something as mathematically clean

as reference or maximum entropy priors being useful in practice.

We have to go further, however, to provide a route toward useful priors and, specifically, an

understanding of why weakly informative priors work so well in practice. If we dig deeper into the

reasoning underlying successful weakly informative priors, like the half-t on the standard deviation

for logistic regression (Gelman et al., 2008), then we begin to see a unifying principle: those

neighborhoods of the parameter space disfavored by a weakly informative prior correspond to data

generating processes that would look strange.

4.1. When is a probability distribution a prior?

This leads to an important but under-appreciated aspect of Bayesian analysis. While every prior

distribution is a probability measure, not every probability measure is a prior. A probability

measure becomes a prior only in the context of a measurement, or, more mathematically, it becomes

a prior only in the context of a likelihood. Importantly, we can judge a prior by examining the

data generating processes it favors and disfavors.

A trivial example of this principle is that a probability measure with all of its mass on the

interval [−4,−1] could never be a prior for the standard deviation of a normal distribution as it

violates the fundamental non-negative nature of a standard deviation. There is no corresponding

data generating process. This is not to say that distributions that are not priors are only those that

are mathematically precluded. A probability measure assigning all of its mass to the single point

σ = 37, for example, is unlikely to represent any form of reasonable prior belief for this problem.

The idea that a probability measure can be precluded from being a prior distribution on the

grounds that it will not interact sensibly with the likelihood to generate a meaningful data gen-

erating mechanisms is also important in the context of hierarchical models. Consider a logistic

regression where the logit probability is distributed as logit(pi) ∼ N(0, σ2) and p(σ) is zero for

σ ≤ 3 and half-Cauchy for σ > 3. This distribution is not mathematically precluded and is not de-

generate, but when paired with the likelihood it yields inferences that concentrate at the extremes
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of pi = 0, 1. More formally, the prior ensures that the model is completely separated no matter the

data.

In this case, we argue that p(σ) is not really a prior as the induced data generating mechanisms

are inconsistent with the data typical of a logistic regression. What happens, however, if we actually

observe data that exhibit complete separation, or, more likely, complete separation in one of its

subgroups? In that case, we need to make sure that whatever prior we use induces data generating

processes consistent with this extreme case. This is a subtle point; a probability distribution that

serves as a prior for one problem may not serve as a prior for another problem.

4.2. Prior choice is especially important in high dimensions

A homunculus for the types of pathologies seen in complex models is a simple linear regression with

Gaussian observation errors with a known variance and a design matrix with p orthonormal columns

where we measure only a single datum (N = 1). A possible prior for the regression coefficients β

is independent Gaussians with mean zero and unit variance; for each βj this prior represents that

belief that the data are scaled in such a way that the underlying coefficients βj are mostly in the

range (−2, 2). The way these independent priors interact with the likelihood, however, can cause

problems when there are many coefficients.

With the above prior and likelihood, the posterior for β is a product of independent Gaussians

with unit variance and mean given by the least squares estimator of β. The problem is that standard

concentration of measure inequalities show that this posterior is not uniformly distributed in a unit

ball around the ordinary least squares estimator but rather is exponentially close in the number of

coefficients to a sphere of radius 1 centered at the estimate.

That the posterior is very certain that the truth lies somewhere near the unit sphere is entirely

due to the prior, which strongly informs that β lies somewhere near a unit sphere. If this is

consistent with your prior knowledge then an iid standard Gaussian prior on β is a genuine prior

distribution, but if it’s not then it’s just a probability measure in the wrong place at the wrong

time. This example demonstrates that it’s not enough to investigate your prior in a parameter-by-

parameter manner: it is the joint behavior that affects inferences and so it is the joint behavior

that must be considered.

As we move to more complex and high dimensional problems, subtle joint behaviors like con-

centration of measure become more ubiquitous and hence more critical to consider (Gelman, 1996).

Unfortunately, these behaviors can sneak by even seasoned modelers. You should never underesti-

mate your prior.

4.3. Sensitivity of the marginal likelihood to the prior

The guiding principle for prior specification we have emphasized here can be encapsulated in the

question, Could this prior generate the type of data we expect to see? This accords with the

Jaynesian idea that a prior should reflect the constraints on the system. Rather than looking

for hard constraints which are difficult to elicit for complex models, however, we instead focus

on ensuring that most of the prior mass is in parts of the parameter space that correspond to

reasonable data generating processes. At the very least we want to ensure that our priors don’t

lead to any unintended structure in the parameter space and hence in data generated using the full

probabilistic model, such as β’s fondness for spheres in the above example.

The idea of building priors that generate reasonable data may seem like an unusual idea, but

the concept in deeply baked into traditional Bayesian practice. In particular, if we are interested in
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model selection or model averaging, the traditional tool is the marginal likelihood or Bayes factors,

the ratio of marginal likelihoods when comparing two different models (Kass and Raftery, 1995).

If we denote our data as y and our parameter vector as θ, then the marginal likelihood is defined

as p(y) =
∫
Θ
p(y|θ)p(θ) dθ. More importantly for our considerations here, if we do not evaluate the

marginal likelihood at our data then it becomes a predictive distribution for the data supported by

the prior or the prior predictive distribution. as the predictive distribution.

From this perspective the marginal likelihood computes the probability of a given measurement

by first simulating some parameters θ ∼ p(θ) and then simulating a measurement from p(y | θ).
The use of Bayes factors to choose a model can be seen as an application of decision analysis based

on an implicit utility function of prior predictive performance, which by construction is optimal on

average if the model is true.

If your model is not generative, however, then it makes no sense to compute the marginal

likelihood as it no longer manifests this interpretation. If you’re not worried about building a

generative prior, for instance, then it would be easy to artificially deflate the marginal likelihood

by putting more mass on unrealistic parts of the parameter space. Viewed this way, the most

commonly stated problem with the Bayes factor, that it doesn’t make sense when using improper

prior, is perhaps the least concerning aspect of its application.

In many settings the inappropriateness of the marginal likelihood manifests as high sensitivity

to aspects of the prior distribution that do not affect posterior inferences and hence can be difficult

to identify. The problem is that the prior predictive utility function judges models by how well they

claim to do given their own assumptions and completely ignore the validity of those assumptions.

In particular, uniform prior distributions typically yield atrocious predictive performance. Given

the above considerations, however, this shouldn’t be surprising as the non-generative nature of the

uniform prior obstructs the predictive interpretation of the marginal likelihood. That the marginal

likelihood can at best be seen as some sort of set-wise limit of prior predictive distributions offers

little reassurance.

To some extent these problems disappear when models are assessed using posterior predictive

distributions rather than prior predictive distributions. Moving to posterior predictive utility func-

tions, which average over the data-informed posterior instead of the prior, is more robust from this

perspective. Not that it’s universally correct, just more robust if your goal is predictive perfor-

mance.

As with many things, the truth here is conditional. Applications of posterior predictive distri-

butions are robust to prior specification only when the details of the prior are washed out by the

likelihood. In the example of the previous section, as with many contemporary problems, this was

not true. In these cases we need to use more principled priors, such as weakly informative priors to

get a posterior distribution, and hence a marginal likelihood, that is sensible. In particular, model

selection through posterior predictive is relatively stable under weakly informative priors.

Posterior predictive selection is stable under weakly informative priors, but does this mean

that marginal likelihoods are stable? Unfortunately, the answer in general is no. The posterior

often does not well identify the prior: many priors will yield the same posterior given a common

likelihood. This means that recommendations for diffuse and even weakly informative priors are

not well suited to applications of marginal likelihoods. If you want to use marginal likelihoods then

you had better be willing to defend every detail of your prior, even those that might seem otherwise

irrelevant. For a parameter of unit scale with an informative likelihood and zero-mean prior, for

example, a change in the prior standard deviation from 100 to 1000 leads to an approximate drop

in a factor of 10 in the marginal likelihood, even while having no appreciable effect on the posterior

distribution and corresponding inferences.
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5. Generative priors need to be prediction focused

In the previous section, we argued that Bayesian model comparison is at least implicitly a state-

ment about how well a model predicts new measurements. These comparisons fall into two varieties:

prior predictive methods, i.e. marginal likelihoods, where you try to predict measurements using

the prior uninformed by any data, and posterior predictive methods where you try to predict new

measurements using a posterior informed from previous measurements. Of these options, poste-

rior predictive methods offer meaningful, robust model selection procedures, while prior predictive

methods can give meaningless results, especially for prior models that can’t be viewed generatively.

This suggests that as well as being generative, we should ensure our priors facilitate good pre-

dictions. These are not the same thing. A prior is generative if the prior predictive distribution

generates only data deemed consistent with our understanding of the problem. On the other hand,

a prior has good predictive performance if the posterior predictive distribution is consistent with

the true data generating process and can predict new data generated from similar experiments.

Importantly, a good predictive prior allows the corresponding model to generalize and avoid over-

fitting.

5.1. In the sea of complex models, the leviathan is overfitting

One of the common ways that complex models fail to produce good posterior predictive distributions

is when the model “overfits.” Although useful as a concept, the definition of overfitting is difficult

to pin down, in part because the concept is generally understood as a comparison between fits

to training and test data, but the bare-bones Bayesian formulation p(θ|y) ∝ p(θ)p(y|θ) makes no

mention of test data. So to even consider overfitting it is necessary to consider some partitionable

structure of data. Alternatively we can say that a complex model overfits when it contains a simpler

submodel that does a better job at predicting new measurements—but then this requires some idea

of workflow or network of models, as, again, there is no concept of “submodel” in the most basic

expression of Bayes’ theorem. To our knowledge, the penalized complexity prior framework of

Simpson et al. (2017) was the first place that the avoidance of overfitting was explicitly linked to

prior construction. Their big idea was that, for a complex model MΘ, the simpler model that

potentially generalizes better can be written as Mθ0 , where θ0 ∈ Θ0 ⊂ Θ is one of a finite set of

parameter vectors that describe simpler sub-models of MΘ.

With this structure in place, it’s possible to talk about the a priori probability that MΘ overfits,

that is the prior probability that θ is not in some small neighborhood of Θ0. That is, you can talk

about overfitting before you make a measurement by talking about how often draws from the

prior distribution give values sufficiently far away from Θ0. This allows you to check for potential

overfitting before a data analysis and then check for actual overfitting, using posterior predictive

checks, after the model has been fit to the data.

5.2. Overfitting leads to poor posterior predictive performance

Another way of understanding why priors that put sufficient mass around the simpler sub-models

can give better performance is by reconsidering Stein’s shrinkage estimator for the mean of a normal

distribution. If you see one data point y ∼ N(µ, σ2
IN ) where σ is known, µ is unknown, and N is

the dimension of the observation, then the best estimator of µ, in the sense that it’s equivariant and

minimax, is µ̂(y) = y. Stein’s example showed that this “best” estimator can always be improved in

the sense that we can find a new estimator µ̃(y) such that ‖µ− µ̃(y)‖ ≤ ‖µ− µ̂(y)‖ whenever N ≥ 3,

where the inequality is often strictly true. Stein’s trick was to notice that the point µ = 0 has the
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property that if y is sufficiently close to it, it’s better from an ℓ2 error point of view to estimate

|µ| ≪ y than to estimate µ = y. A now standard analysis shows that this is true if |y| ≤ √
mσ and

Stein’s estimator corresponds to a prior that puts a lot of a priori probability mass on this ball.

A big barrier to extending this idea into more practical situations is finding the equivalent

concept of a “ball of radius
√
mσ”. A moment thinking about the structure of the problems

suggests that the Euclidian nature of the ball is mostly an artifact of the problem, rather than a

generalizable quantity. It is an open question as to what shape these balls should have in general,

i.e. what shape should a neighborhood around Θ0 have, related to the fact that all of the tools

that we use to analyze these types of properties eventually require us to marginalize out the sort of

parameters that can only do in very simple cases such as when the problem is estimating the mean

of a multivariate normal distribution.

Simpson et al. (2017) made a heuristic argument that if the model is parameterized so that each

parameter controls a different aspect of the complex model then it’s sufficient to consider just the

local shape of the parameter space. They did this using a localized version of the Kullback-Leibler

divergence, which seems to work reasonably well in the cases that have been examined (Klein and

Kneib, 2016). There is some immediate work, however, that needs to be done to extend this to

more general classes of models.

5.3. Don’t forget your roots: predictive priors aren’t always generative

While this section has focused on outlining methods that build priors that give good predictive

properties, this still doesn’t absolve us of our obligation to ensure that the resulting prior is gener-

ative. Importantly, these can be competing aims.

Consider, for instance, the model y|µ ∼ N(µ, 1), µ|σ ∼ N(0, σ2), σ ∼ p(σ). The arguments of

Simpson et al. (2017), which are inspired greatly by Gelman (2006) and Gelman et al. (2008), argue

that p(σ) should have finite, non-zero density at σ = 0. On the other end, Polson and Scott (2012)

argue persuasively that, from an admissibility point of view, the prior on σ should have very heavy

tails, eventually advocating the half-Cauchy prior on σ advocated originally by Gelman (2006).

We argue that this prior is usually not generative. Around 1.2% of the time a half-Cauchy

prior with unit scale parameter will propose a standard deviation of more than 50, which seems

unrealistic if the initial parameters of the model are reasonably scaled. This is also born out in

numerical pathologies described by Piironen and Vehtari (2015).

We currently do not have a good recommendation on how heavy the tails of this parameter

should be. Experimentally, however, we know that if you’re confident of your scaling then a half-

normal on the standard deviation works well. If you’re less confident then an exponential is effective,

and if you’re even less confident then a half-Student-t with more than 3 degrees of freedom is useful.

And if you’re really struggling then the half-Cauchy is always there for you.

The practical guidance is to remember that you cannot have too many parameters with a

heavy tail in the model, lest the joint prior put too much probability mass onto a bad part of the

parameter space. Our rule of thumb is that the heavier the tail on one component of the model,

the less “ambitious” you can be with the rest of the model.

6. Discussion

The literature on the choice of Bayesian priors is mixed when it comes to the likelihood function.

On one hand, the mathematics of Bayesian inference and the very term “prior” suggest that the

model p(θ) should depend only on the space of θ and its context within the application, not on
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any hypothetical data that might come later. On the other hand, Jeffreys’ prior (Jeffreys, 1961,

Kass and Wasserman, 1996), long a popular default, is explicitly defined in terms of the likelihood

function, and other suggestions such as fractional or intrinsic Bayes factors (O’Hagan, 1995, Berger

and Pericchi, 1996) additionally depend on the concept of individual data points. For problems

with unbounded parameters, the utility of extremely diffuse and even uniform prior distributions

require conditions on the likelihood such that the posterior will be proper. This can lead to awkward

compromises where the prior is augmented a posteriori to account for certain data patterns such

as separation in logistic regression.

Improper priors are inimical to coherent Bayesian inference, but for many problems the structure

of parameter space is such that any prior that respects certain natural symmetry principles will be

improper. For a serious Bayesian this implies that these symmetry properties can be insufficient

or even entirely inappropriate. For example, it would not make sense to model the prior for the

probability of a girl birth as being translation-invariant on the logit probability scale. In settings

with strongly informative data and sparse prior information, such concerns can be safely ignored.

We view much of the recent history of Bayesian inference as a set of converging messages from

many directions—theoretical, computational, and applied—all pointing toward the benefits of in-

cluding real, subject-matter-specific, prior information in order to get more stable and accurate

inferences. This puts new and significant burdens on the developers and users of Bayesian meth-

ods, and an obligation for statisticians to develop default priors, or more generally procedures for

researchers to build bespoke priors, going beyond the traditional recommendations. At the same

time, those researchers need to recognize the importance of the prior and spend the time encoding

their expertise in probabilistic form.

In this paper we have argued that a prior can in general only be interpreted in the context of

the likelihood with which it will be paired. This pairing is best understood through the context of

prediction and the properties of the posterior predictive distribution which quantify how appropriate

a prior might be for a particular problem. This observation is critical to methodologists and

practitioners in guiding their efforts toward default and subject-matter-specific prior distributions

(Stan Development Team, 2017).
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