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This paper looks at the difficulty in mapping covert networks. Analyzing networks after 
an event is fairly easy for prosecution purposes. Mapping covert networks to prevent 
criminal activity is much more difficult. We examine the network surrounding the tragic 
events of September 11th, 2001. Through public data we are able to map a portion of the 
network centered around the 19 dead hijackers. This map gives us some insight into the 
terrorist organization, yet it is incomplete. Suggestions for further work and research are 
offered. 

INTRODUCTION AND BACKGROUND 

We were all shocked by the tragic events of September 11, 2001. In the non-stop stream of news and 
analysis one phrase was constantly repeated and used in many contexts - "terrorist network." 
Everyone talked about this concept, and described it as amorphous, invisible, resilient, dispersed and 
other terms that made it difficult to visualize what this structure really looks like. I set out to map this 
network of terrorist cells that had so affected all of our lives. 

I would be mapping a 'project team' - much like the legal, overt groups I had mapped in countless 
consulting assignments. Both overt and covert project teams have tasks to complete, information to 
share, funding to obtain and administer, schedules to meet, work to coordinate, and objectives to 
accomplish. How a normal project team does all of that is easy to map and measure using several set 
of ties - task, resource, strategy and expertise links. I was surprised at the difficulty of this particular 
effort - both in data definition and discovery. 

My data sources were publicly released information reported in major newspapers such as the New 
York Times, the Wall Street Journal, the Washington Post, and the Los Angeles Times. As I 
monitored the investigation, it was apparent that the investigators would not be releasing all 
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pertinent network/relationship information and actually may be releasing misinformation to fool the 
enemy. I soon realized that the data was not going to be as complete and accurate as I had grown 
accustomed to in mapping and measuring organizational networks. 

For guidance I turned to previous work by social network theorists who had studied covert, secret, or 
illegal networks. I found three excellent papers that formed a working foundation for the knowledge 
I would use to pursue this project. Malcolm Sparrow (Sparrow 1991) has an excellent overview of the 
application of social network analysis to criminal activity. Sparrow describes three problems of 
criminal network analysis that I soon encountered. 

1. Incompleteness - the inevitability of missing nodes and links that the investigators will not 
uncover. 

2. Fuzzy boundaries - the difficulty in deciding who to include and who not to include. 

3. Dynamic - these networks are not static, they are always changing. Instead of looking at the 
presence or absence of a tie between two individuals, Sparrow suggests looking at the waxing 
and waning strength of a tie depending upon the time and the task at hand. 

Wayne Baker and Robert Faulkner (Baker and Faulkner 1993) suggest looking at archival data to derive 
relationship data. The data they used to analyze illegal price-fixing networks were mostly court docu-
ments and sworn testimony. This data included accounts of observed interpersonal relationships from 
various witnesses. The hijackers of September 11th were not directly observed by others in great detail. 

Bonnie Erickson (Erickson 1981) reveals the importance of trusted prior contacts for the effective 
functioning of a secret society. The 19 hijackers appeared to have come from a network that had 
formed while they were completing terrorist training in Afghanistan. Many were school chums from 
many years ago, some had lived together for years, and others were related by kinship ties. Deep 
trusted ties, that were not easily visible to outsiders, wove this terror network together. 

Data Gathering 

Within one week of the attack, information from the investigation started to become public. We soon 
knew there were 19 hijackers, which planes they were on, and which nation's passports they had used 
to get into the country. As more information about the hijackers' past was uncovered I decided to map 
links of three strengths (and corresponding thicknesses). The tie strength would largely be governed 
by the amount of time together by a pair of terrorists. Those living together or attending the same 
school or the same classes/training would have the strongest ties. Those travelling together and partici-
patingin meetings togetherwould have ties ofmoderate strength and medium thickness. Finally, those 
who were recorded as having a financial transaction together, or an occasional meeting, and no other 
ties, I sorted into the dormant tie category- they would rarelyinteract. These relationships were shown 
with the thinnest links in the network. 

I started my mapping project upon seeing the matrix in Figure 1 on the web site of the Sydney Morning 
Herald (AU) (Sydney Morning Herald, 2001). This was the first attempt I had seen to visually organize 
the data that was gradually becoming available two weeks after the tragedy. 

Soon after the matrix in Figure 1 was published, the Washington Post released a more detailed matrix 
of how the hijackers had spent their time in the USA and with whom (Washington Post, 2001). The 
most detailed document of the hijackers relationships and activity was released in December 2001 in 
the Indictment of Zacarias Moussaoui (Department ofJustice, 2001). 
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AND HOW THEY WERE CONNECTED 
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Figure 1. Early Hijacker Matrix 

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to 
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added 
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search 
for the terrorists' names using the Google search engine'. Although I would find information about 
each of the 19 hijackers, rarely would I find information from the search engine that was not reported 
by the major newspapers I was tracking. Finding information that was not duplicated in one of the 
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit. 
These stories, originally reported with great fanfare, were proven false within one week. This made me 
even more cautious about which sources I used to add a link or a node to the network. 

By the middle of October enough data was available to start seeing patterns in the hijacker network. 
Initially, I examined the prior trusted contacts (Erickson, 1981) - those ties formed through living and 
learning together. The network appeared in the shape of a serpent (Figure 2) - how appropriate, I 
thought. 

' http://www.google.com 
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Yet, work has to be done, plans have to be executed. 
How does a covert network accomplish its goals? 
Through the judicious use of transitory short-cuts 
(Watts, 1999) in the network. Meetings are held that 
connect distant parts of the network to coordinate 
tasks and report progress. After the coordination is 
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I was amazed at how sparse the network was and how 
distant many of the hijackers on the same team were 
from each other. Many pairs of team members where 
beyond the horizon of observability (Friedkin, 1983) 
from each other - many on the same flight were more 
than 2 steps away from each other. Keeping cell mem-
bers distant from each other, and from other cells, 
minimizes damage to the network if a cell member is 
captured or otherwise compromised. Usama bin 
Laden even described this strategy on his infamous 
video tape which was found in a hastily deserted house 
in Afghanistan. In the transcript (Department of 
Defense, 2001) bin Laden mentions: 

Those who were trained to fly didn't know the others. 
One group of people did not know the other group. 

The metrics for the network in Figure 2 are shown 
below and in Table 1. We see a very long mean path 
length, 4.75, for a network of less than 20 nodes. 
From this metric and bin Laden's comments above we 
see that covert networks trade efficiency for secrecy. 
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accomplished, the cross-ties go dormant until the need for their activity arises again. One well-docu-
mented meeting of the hijacker network took place in Las Vegas. The ties from this and other 
documented meetings are shown in gold in Figure 3. 

Table 1. Without shortcuts Table 2. With shortcuts 

Name 
Cluster- 

ing Coef- 
ficient 

Mean 
Path 

Length 

Short-
cuts Name 

Cluster- 
ing Coef- 

ficient 

Mean 
Path 

Length 

Short-
cuts 

Satam Suqami 1.00 5.22 0.00 Satam Suqami 1.00 3.94 0.00 
Wail Alshehri 1.00 5.22 0.00 Wail Alshehri 1.00 3.94 0.00 
Majed Moqed 0.00 4.67 0.00 Ahmed Alghamdi 0.00 3.22 0.00 
Waleed Alshehri 0.33 4.33 0.33 Waleed Alshehri 0.33 3.06 0.33 
Salem Alhazmi* 0.00 3.89 0.00 Majed Moqed 0.00 3.00 0.00 
Khalid Al-Mihdhar 1.00 3.78 0.00 .Mohand Alshehri* 0.00 2.78 1.00 
Hani Hanjour 0.33 3.72 0.00 Khalid Al-Mihdhar 1.00 2.61 0.00 
Abdul Aziz Al-Omari* 0.33 3.61 0.33 Ahmed Alnami 1.00 2.56 0.00 
Ahmed Alghamdi 0.00 3.50 0.00 Fayez Ahmed 0.00 2.56 1.00 
Ahmed Alnami 1.00 3.17 0.00 Ahmed Al Haznawi 0.33 2.50 0.33 
Mohamed Atta 0.67 3.17 0.00 Saeed Alghamdi* 0.67 2.44 0.00 
Marwan Al-Shehhi 0.33 3.06 0.25 AbdulAziz Al-Omari* 0.33 2.33 0.33 
Fayez Ahmed 0.00 2.94 1.00 Hamza Alghamdi 0.27 2.28 0.17 
Nawaf Alhazmi 0.27 2.94 0.00 Salem Alhazmi* 0.33 2.28 0.33 
Ziad Jarrah 0.33 2.83 0.33 Ziad Jarrah 0.40 2.17 0.20 
Mohand Alshehri* 0.00 2.78 1.00 Marwan Al-Shehhi 0.33 2.06 0.17 
Saeed Alghamdi* 0.67 2.72 0.00 Hani Hanjour 0.33 2.06 0.00 
Ahmed Al Haznawi 0.33 2.67 0.33 Mohamed Atta 0.50 1.94 0.00 
Hamza Alghamdi 0.27 2.56 0.17 Nawaf Alhazmi 0.24 1.94 0.14 

Overall 0.41 4.75 0.19 Overall 0.42 2.79 0.18 

* suspected to have false identification 

Six (6) shortcuts were added to the network temporarily in order to collaborate and coordinate. These 
shortcuts dropped the mean path length in the network by over 40% thus improving the information 
flow in the network. There is a constant struggle between keeping the network hidden and actively 
using it to accomplish objectives (Baker and Faulkner, 1993). 

The 19 hijackers did not work alone. They had accomplices who did not get on the planes. These co-
conspirators were conduits for money and also provided needed skills and knowledge. Figure 4 shows 
the hijackers and their immediate network neighbourhood - their identified direct contacts. 

After one month of investigation it was 'common knowledge' that Mohamed Atta was the ring leader 
of this conspiracy. Again, bin Laden verified this in the video tape (Department of Defense, 2001). 
Looking at the diagram he has the most connections. In Table 3 we see that Atta scores the highest on 
Degrees, and Closeness but not Betweenness centrality (Freeman 1979). These metrics do not neces-
sarily confirm his leader status. We are obviously missing nodes and ties in this network. Centrality 
measures are very sensitive to minor changes in nodes and links. A discovery of a new conspirator 
along with new ties, or the uncovering of a tie amongst existing nodes can alter who comes out on top 
in the Freeman centralities. Recent converts to social network analysis are thrilled about what these 
metrics may show (Stewart 2001), experienced players urge caution. 

2  Email correspondence with Ron Burt, Wayne Baker, Barry Wellman, Peter Klerks 
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Ziad Jarrah 0.33 2.83 0.33 ZiadJarrah 0.40 2.17 0.20 
Mohand Alshehri" 0.00 2.78 1.00 Marwan AI-Shehhi 0.33 2.06 0.17 
Saeed AIghamdi* 0.67 2.72 0.00 Hani Hanjour 0.33 2.06 0.00 
Ahmed AI Haznawi 0.33 2.67 0.33 Mohamed Atta 0.50 1.94 0.00 
Hamza Alghamdi 0.27 2.56 0.17 N awaf Alhazmi 0.24 1.94 0.14 

Overall 0.41 4.75 0.19 Overall 0.42 2.79 0.18 

,.. suspected to have false identification 

Six (6) shortcuts were added to the network temporarily in order to collaborate and coordinate. These 
shortcuts dropped the mean path length in the network by over 40% thus improving the information 
flow in the network. There is a constant struggle between keeping the network hidden and actively 
using it to accomplish objectives (Baker and Faulkner, 1993). 

The 19 hijackers did not work alone. They had accomplices who did not get on the planes. These co-
conspirators were conduits for money and also provided needed skills and knowledge. Figure4 shows 
the hijackers and their immediate network neighbourhood - their identified direct contacts. 

After one month of investigation it was' common knowledge'that Mohamed Atta was the ring leader 
of this conspiracy. Again, bin Laden verified this in the video tape (Department of Defense, 2001). 
Looking atthe diagram he has the most connections. In Table 3 we see that Atta scores the highest on 
Degrees, and Closeness but not Betweenness centrality (Freeman 1979). These metrics do not neces­
sarily confirm his leader status. We are obviously missing nodes and ties in this network. Centrality 
measures are very sensitive to minor changes in nodes and links. A discovery of a new conspirator 
along with new ties, or the uncovering of a tie amongst existing nodes can alter who comes out on top 
in the Freeman centralities. Recent converts to social network analysis are thrilled about what these 
metrics may show (Stewart 2001), experienced players urge caution2

• 

2 Email correspondence with Ron Burt, Wayne Baker, Barry Wellman, Peter Klerks 
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Table 3. Hijackers' Network Neighborhood 

Group Size 
Potential Ties 
Actual Ties 
Density 
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1332 
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Degrees Betweenness Closeness 

0.417 Mohamed Atta 0.334 Nawaf Alhazmi 0.571 Mohamed Atta 
0.389 Marwan Al-Shehhi 0.318 Mohamed Atta 0.537 Nawaf Alhazmi 
0.278 Hani Hanjour 0.227 Hani Hanjour 0.507 Hani Hanjour 
0.278 Nawaf Alhazmi 0.158 Marwan Al-Shehhi 0.500 Marwan Al-Shehhi 
0.278 Ziad Jarrah 0.116 Saeed Alghamdi* 0.480 Ziad Jarrah 
0.222 Ramzi Bin al-Shibh 0.081 Hamza Alghamdi 0.429 Mustafa al-Hisawi 
0.194 Said Bahaji 0.080 Waleed Alshehri 0.429 Salem Alhazmi* 
0.167 Hamza Alghamdi 0.076 Ziad Jarrah 0.424 Lotfi Raissi 
0.167 Saeed Alghamdi* 0.064 Mustafa al-Hisawi 0.424 Saeed Alghamdi* 
0.139 Lotfi Raissi 0.049 Abdul Aziz Al-Omari* 0.419 Abdul Aziz Al-Omari* 
0.139 Zakariya Essabar 0.033 Satam Suqami 0.414 Hamza Alghamdi 
0.111 Agus Budiman 0.031 Fayez Ahmed 0.414 Ramzi Bin al-Shibh 
0.111 Khalid Al-Mihdhar 0.030 Ahmed Al Haznawi 0.409 Said Bahaji 
0.111 Mounir El Motassadeq 0.026 Nabil al-Marabh 0.404 Ahmed Al Haznawi 
0.111 Mustafa al-Hisawi 0.016 Raed Hijazi 0.400 Zakariya Essabar 
0.111 Nabil al-Marabh 0.015 Lotfi Raissi 0.396 Agus Budiman 
0.111 Rayed Abdullah 0.012 Mohand Alshehri* 0.396 Khalid Al-Mihdhar 
0.111 Satam Suqami 0.011 Khalid Al-Mihdhar 0.391 Ahmed Alnami 
0.111 Waleed Alshehri 0.010 Ramzi Bin al-Shibh 0.391 Mounir El Motassadeq 
0.083 Abdul Aziz Al-Omari* 0.007 Salem Alhazmi* 0.387 Fayez Ahmed 
0.083 Abdussattar Shaikh 0.004 Ahmed Alghamdi 0.387 Mamoun Darkazanli 
0.083 Ahmed Al Haznawi 0.004 Said Bahaji 0.371 Zacarias Moussaoui 
0.083 Ahmed Alnami 0.002 Rayed Abdullah 0.367 Ahmed Khalil Al-Ani 
0.083 Fayez Ahmed 0.000 Abdussattar Shaikh 0.360 Abdussattar Shaikh 
0.083 Mamoun Darkazanli 0.000 Agus Budiman 0.360 Osama Awadallah 
0.083 Osama Awadallah 0.000 Ahmed Alnami 0.353 Mohamed Abdi 
0.083 Raed Hijazi 0.000 Ahmed Khalil Al-Ani 0.350 Rayed Abdullah 
0.083 Salem Alhazmi* 0.000 Bandar Alhazmi 0.343 Bandar Alhazmi 
0.056 Ahmed Alghamdi 0.000 Faisal Al Salmi 0.343 Faisal Al Salmi 
0.056 Bandar Alhazmi 0.000 Majed Moqed 0.343 Mohand Alshehri* 
0.056 Faisal Al Salmi 0.000 Mamoun Darkazanli 0.340 Majed Moqed 
0.056 Mohand Alshehri* 0.000 Mohamed Abdi 0.340 Waleed Alshehri 
0.056 Wail Alshehri 0.000 Mounir El Motassadeq 0.330 Nabil al-Marabh 
0.056 Zacarias Moussaoui 0.000 Osama Awadallah 0.327 Raed Hijazi 
0.028 Ahmed Khalil Al-Ani 0.000 Wail Alshehri 0.319 Ahmed Alghamdi 
0.028 Majed Moqed 0.000 Zacarias Moussaoui 0.298 Satam Suqami 
0.028 Mohamed Abdi 0.000 Zakariya Essabar 0.271 Wail Alshehri 

0.128 MEAN 0.046 MEAN 0.393 MEAN 
0.306 CENTRALIZATION 0.296 CENTRALIZATION 0.372 CENTRALIZATION 

* suspected to have false identification 
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Prevention or Prosecution? 

Currently, social network analysis is applied more to the prosecution, not the prevention, of criminal 
activities. SNA has a long history of application to evidence mapping in both fraud and criminal 
conspiracy cases. Once investigators have a suspect they can start to build an ego network by looking 
at various sources of relational information. These sources are many and provide a quickly focusing 
picture of illegal activity. These sources include (DIA, 2000): 

Credit files, bank accounts and the related transactions 

Telephone calling records 

Electronic mail, instant messaging, chat rooms, and web site visits 

Court records 

Business, payroll and tax records 

Real estate and rental records 

Vehicle sale and registration records 

As was evident with the September 11th hijackers, once the investigators knew who to look at, they 
quickly found the connections amongst the hijackers and also discovered several ofthe hijackers' alters. 
We must be careful of 'guilt by association'. Being an alter of a terrorist does not prove guilt - but it 
does invite investigation. 

The big question remains - why wasn't this attack predicted and prevented? Everyone expects the 
intelligence community to uncover these covert plots and stop them before they are executed. 
Occasionally plots are uncovered and criminal networks are disrupted. But this is very difficult to do. 
How do you discover a network that focuses on secrecy and stealth? 

Covert networks often don't behave like normal social networks (Baker and Faulkner, 1993). Con-
spirators don't form many new ties outside of the network and often minimize the activation of existing 
ties inside the network. Strong ties, which were frequently formed years ago in school and training 
camps, keep the cells interconnected. Yet, unlike normal social networks, these strong ties remain 
mostly dormant and therefore hidden. They are only activated when absolutely necessary. Weak ties 
were almost non-existent between members of the hijacker network and outside contacts. It was often 
reported that the hijackers kept to themselves. They would rarely interact with outsiders, and then 
often one of them would speak for the whole group. A minimum ofweak ties reduces the visibility into 
the network, and chance of leaks out of the network. 

In a normal social network, strong ties reveal the cluster of network players - it is easy to see who is in 
the group and who is not. In a covert network, because of their low frequency of activation, strong ties 
may appear to be weak ties. The less active the network, the more difficult it is to discover. Yet, the 
covert network has a goal to accomplish. Network members must balance the need for secrecy and 
stealth with the need for frequent and intense task-based communication (Baker and Faulkner 1993). 
The covert network must be active at times. It is during these periods of activity that they may be most 
vulnerable to discovery. 

The hijacker's network had a hidden strength - massive redundancy through trusted prior contacts. 
The ties forged in school, through kinship, and training/fighting in Afghanistan made this network 
very resilient. These ties were solidly in place as the hijackers made their way to America. While in 
America, these strong ties were rarely active - used only for planning and coordination. In effect these 
underlying strong ties were mostly invisible during their stay in America. It was only after the tragic 
event, that intelligence from Germany and other countries, revealed this dense under-layer of this 
violent network. The dense connections of the 'Hamburg cell' are obvious in Figure 4. 
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Figure 4. Hijacker's Network Neighborhood 

This dense under-layer of prior trusted relationships made the hijacker network both stealth and 
resilient. Although we don't know all of the internal ties of the hijackers' network it appears that many 
of the ties were concentrated around the pilots. This is a risky move for a covert network. Concen-
trating both unique skills and connectivity in the same nodes makes the network easier to disrupt — 
once it is discovered. Peter Klerks (Klerks 2001) makes an excellent argument for targeting those nodes 
in the network that have unique skills. By removing those necessary skills from the project, we can 
inflict maximum damage to the project mission and goals. It is possible that those with unique skills 
would also have unique ties within the network. Because of their unique human capital and their high 
social capital the pilots were the richest targets for removal from the network. Unfortunately they were 
not discovered in time. 
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This dense under-layer of prior trusted relationships made the hijacker network both stealth and 
resilient. Although we don't know all of the internal ties of the hijackers' network it appears that many 
of the ties were concentrated around the pilots. This is a risky move for a covert network. Concen­
trating both unique skills and connectivity in the same nodes makes the network easier to disrupt -
once it is discovered. Peter Klerks (Klerks2001) makes an excellent argument for targeting those nodes 
in the network that have unique skills. By removing those necessary skills from the project, we can 
inflict maximum damage to the project mission and goals. It is possible that those with unique skills 
would also have unique ties within the network. Because of their unique human capital and their high 
social capital the pilots were the richest targets for removal from the network. Unfortunately they were 
not discovered in time. 
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Conclusion 

To draw an accurate picture of a covert network, we need to identify task and trust ties between the 
conspirators. The same four relationships we map in business organizations would tell us much about 
illegal organizations. This data is occasionally difficult to unearth with cooperating clients. With covert 
criminals, the task is enormous, and may be impossible to complete. Table 4 below lists multiple 
project networks and possible data sources about covert collaborators. 

Table 4. Networks to Map 

Relationship / Network Data Sources 

1. Trust Prior contacts in family, neighborhood, school, military, club 
or organization. Public and court records. Data may only be 
available in suspect's native country. 

2. Task Logs and records of phone calls, electronic mail, chat rooms, 
instant messages, web site visits. Travel records. 
Human intelligence - observation of meetings and attendance 
at common events. 

3. Money & Resources Bank account and money transfer records. Pattern and loca-
tion of credit card use. Prior court records. 
Human intelligence - observation of visits to alternate bank-
ing resources such as Hawala. 

4. Strategy & Goals Web sites. Videos and encrypted disks delivered by courier. 
Travel records. 
Human intelligence - observation of meetings and attendance 
at common events 

Of course, the common network researcher will not have access to many of these sources. The re-
searcher's best sources may be public court proceedings which contain much of this data (Baker and 
Faulkner, 1993), (Department of Justice, 2001). 

The best solution for network disruption may be to discover possible suspects and then, via snowball 
sampling, map their ego networks - see whom else they lead to, and where they overlap. To find these 
suspects it appears that the best method is for diverse intelligence agencies to aggregate their infor-
mation - their individual pieces to the puzzle - into a larger emergent map. By sharing information 
and knowledge, a more complete picture of possible danger can be drawn. In my data search I came 
across many news accounts where one agency, or country, had data that another would have found 
very useful. To win this fight against terrorism it appears that the good guys have to build a better 
information and knowledge sharing network than the bad guys (Ronfeldt and Arquilla, 2001). 
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