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Abstract. – The number partitioning problem can be interpreted physically in terms of a
thermally isolated noninteracting Bose gas trapped in a one-dimensional harmonic-oscillator
potential. We exploit this analogy to characterize, by means of a detour to the Bose gas within
the canonical ensemble, the probability distribution for finding a specified number of summands
in a randomly chosen partition of an integer n. It is shown that this distribution approaches
its asymptotics only for n > 1010.

Consider the decompositions of a natural number n into natural summands, without regard
to order. Let Φ(n,M) denote the number of such partitions which consist of M parts, and
Ω(n) =

∑n
M=1 Φ(n,M) the total number of partitions. For n = 4, for instance, we have

4 = 1 + 1 + 1 + 1
= 2 + 1 + 1
= 2 + 2 = 3 + 1, (1)

hence Φ(4, 4) = 1, Φ(4, 3) = 1, Φ(4, 2) = 2, Φ(4, 1) = 1, adding up to Ω(4) = 5. It is
known that Ω(n) grows exponentially with

√
n [1], so that the enumeration of the individual

partitions soon becomes impractical when n gets larger. It is then useful to focus on the
distribution

pmc(n,M) ≡ Φ(n,M)
Ω(n)

(0 ≤ M ≤ n), (2)

which gives the probability for finding M summands in a randomly chosen partition of n.
For moderately large n, this distribution can be computed numerically with the help of the
recursion relation

Φ(n,M) =
min{n−M,M}∑

k=1

Φ(n − M,k); (3)

fig. 1 depicts the results for n = 1000 and n = 5000.
The number partitioning problem [2–5] finds profound applications in various areas of

statistical physics, ranging from lattice animals [6, 7] over combinatorial optimization [8] to
c© EDP Sciences
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Fig. 1 – Exact “microcanonical” probability distribution (2) for finding M summands in a randomly
chosen partition of n, for n = 1000 (dashed line) and n = 5000 (full line).

Fermion-Boson transmutation [9]. Therefore, it is of substantial interest to characterize the
distribution (2) for asymptotically large n: Does it, for instance, become Gaussian?

In this letter we tackle this number-theoretical question within a physical framework.
There is a one-to-one correspondence between the individual partitions of an integer and the
individual microstates of a gas of ideal Bose particles stored in a one-dimensional harmonic-
oscillator potential with frequency ω0. If the total excitation energy E of the gas amounts to
n oscillator quanta, E = nh̄ω0, then each partition of n labels one possibility for distributing E
among the particles. For n = 4, the first line in eq. (1) indicates a microstate with four quanta
h̄ω0 bestowed on four different particles, the second line indicates another microstate where
one particle carries two quanta while two other particles account for the remaining ones, and
so forth. For any value of E, we assume that the number of particles be at least as large as the
number of quanta, so that no restriction (with respect to the number of summands) on the
partitions occurs. Hence, each excited Bose particle gives a nonzero summand in a partition
of E/(h̄ω0) = n, while the remaining ground-state particles correspond to additional zeroes.

Thus, the partitioning problem is mapped to microcanonical statistics: Given the total
energy (the number to be partitioned) of the thermally isolated gas, the task is to count
all accessible microstates. The physical model now suggests to consider first the simpler
canonical version of this problem, i.e., a gas of infinitely many, harmonically trapped ideal
bosons in thermal contact with a reservoir of temperature T [10]. Then the microcanonical
distribution (2) is replaced by its canonical counterpart

pcn(b,M) ≡
∑

n e−bn Φ(n,M)∑
n e−bn Ω(n)

, (4)

where b ≡ h̄ω0/(kBT ) quantifies the inverse temperature, made dimensionless with the quan-
tum h̄ω0 and Boltzmann’s constant kB. Within the canonical ensemble, the analysis starts
from the M -particle partition functions

ZM (b) =
∞∑

n=0

ω(n,M) exp[−Mb/2 − bn], (5)

where the weight ω(n,M) is the number of possibilities for distributing n quanta over up to
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M bosons. Since Φ(n,M) counts the number of possibilities for distributing the n quanta
over exactly M particles, we have

ω(n,M) − ω(n,M − 1) = Φ(n,M). (6)

Following textbook practice [11], we proceed from the canonical to the grand-canonical en-
semble by introducing the fugacity z, and defining the grand partition function

Ξ(b, z) ≡
∞∑

M=0

(zeb/2)MZM (b)

=
∞∑

M=0

zM
∞∑

n=0

ω(n,M) exp[−bn]

=
∞∏

ν=0

1
1 − z exp[−bν]

. (7)

If we now multiply this function (7) by (1 − z), so that the ground-state factor (ν = 0) is
removed, eq. (6) provides the necessary link to the desired quantities Φ(n,M):

Ξex(b, z) ≡ (1 − z) Ξ(β, z)

=
∞∑

M=0

zM
∞∑

n=0

Φ(n,M) exp[−bn]

=
∞∏

ν=1

1
1 − z exp[−bν]

. (8)

Thus, the grand partition function Ξex(b, z) of an ideal Bose gas with amputated ground
state generates the microcanonical weights Φ(n,M). According to probability theory [12], the
logarithm of Ξex(b, z) then generates the cumulants κ

(k)
cn (b) of the canonical distribution (4):

ln Ξex(b, z) =
∞∑

ν=0

κ
(ν)
cn (b)
ν!

(ln z)ν . (9)

The first cumulant κ
(1)
cn (b) is the expectation value of the number of excited particles at the

given temperature, the second cumulant κ
(2)
cn (b) its mean-square fluctuation; in general, κ

(k)
cn

is related to the k-th central moment of the underlying probability distribution [12]. In
particular, κ

(k)
cn = 0 for k ≥ 3 if that distribution is Gaussian.

It is crucial that these canonical cumulants can easily be calculated in the relevant tem-
perature regime kBT � h̄ω0, that is, for b � 1: Starting from the product representation (8),
one derives [13] the exact formula

κ(k)
cn (b) =

1
2πi

∫ τ+i∞

τ−i∞
dt b−t Γ(t) ζ(t) ζ(t + 1 − k), (10)

where Γ(t) denotes the gamma-function, and ζ(t) is Riemann’s zeta-function. This for-
mula (10) allows one to determine the asymptotic expansion of the cumulants from the residues
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of the integrand. Doing the math yields

κ(0)
cn (b) ∼ π2

6b
+

1
2

ln
b

2π
− b

24
, (11)

κ(1)
cn (b) ∼ 1

b

(
ln

1
b

+ γ

)
+

1
4
− b

144
+ O(b3), (12)

κ(2)
cn (b) ∼ π2

6b2
− 1

2b
+

1
24

, (13)

κ(3)
cn (b) ∼ 2ζ(3)

b3
− 1

12b
+

b

1440
+ O(b3), (14)

κ(4)
cn (b) ∼ π4

15b4
− 1

240
, (15)

where γ ≈ 0.57722 is Euler’s constant; all higher cumulants are obtained in the same manner.
For applications to the partitioning problem, however, we have to abandon the notion of

an externally imposed temperature, and to return to a thermally isolated gas. To this end,
we write the generating function (8) as

Ξex(b, z) =
∞∑

ν=0

e−bν Y (ν, z), (16)

where the series

Y (ν, z) =
∞∑

M=0

zMΦ(ν,M) (17)

is of central importance, since the microcanonical weights Φ(ν,M) directly figure as coeffi-
cients. Hence, its logarithm generates the cumulants κ

(k)
mc(n) of the microcanonical distribu-

tion (2). This function Y (n, z) describes an ideal Bose gas which exchanges particles, but
no energy with a reservoir, and thus coincides with the partition function for the recently
introduced Maxwell’s Demon ensemble [14]. Writing e−b ≡ x, we extract Y (n, z) from the
series (16) by means of a complex contour integral,

Y (n, z) =
1

2πi

∮
dx

Ξex(b(x), z)
xn+1

, (18)

where the path of integration encircles the origin of the complex x-plane counter-clockwise,
and evaluate this integral within the usual saddle point approximation [15]. The saddle point
b0(z) is determined by setting the logarithmic derivative of the integrand to zero, resulting in
the equation which links energy with temperature,

n + 1 = − ∂

∂b
ln Ξex(b, z)

∣∣∣∣
b0(z)

. (19)

Within the Gaussian approximation, one is then led to

ln Y (n, z) = ln Ξex(b0(z), z) + nb0(z) − 1
2

ln 2π − 1
2

ln
(
− ∂

∂b

)2

ln Ξex(b, z)
∣∣∣∣
b0(z)

, (20)

from which the desired microcanonical cumulants are obtained by further differentiation,

κ(k)
mc(n) =

(
z

d
dz

)k

ln Y (n, z)
∣∣∣∣
z=1

. (21)
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The calculations now are straightforward, but tedious, because of the z-dependence of the
saddle point. We omit the technical details [16] and state the result for k = 1: When the
thermally isolated gas carries the excitation energy E = nh̄ω0, with n � 1, the expectation
value of the number of excited Bose particles takes the form

κ(1)
mc(n) = κ(1)

cn (b1) − 1
2

D2κ
(1)
cn (b1)

D2κ
(0)
cn (b1)

+
Dκ

(1)
cn (b1)

D2κ
(0)
cn (b1)

[
1 +

1
2

D3κ
(0)
cn (b1)

D2κ
(0)
cn (b1)

]
, (22)

where κ
(0)
cn (b) = ln Ξex(b, 1), D denotes the derivative with respect to b, and b1 ≡ b0(1) has

to be taken as a function of n. This latter task is achieved by inverting the saddle point
equation (19) for z = 1, yielding

1
b1

=
√

6n

π
+

3
2π2

+ O(
n−1/2

)
. (23)

Hence, the canonical expectation value (12), expressed in terms of the scaled energy n, reads

κ(1)
cn (b1(n)) =

√
6n

π

[
ln

(√
6n

π

)
+ γ

]
+

3
2π2

[
ln

(√
6n

π

)
+ γ + 1 +

π2

6

]
+ O(

n−1/2
)
. (24)

The difference between the canonical and the microcanonical expectation value then follows
from eq. (22), utilizing the explicit expressions (11) and (12) of the canonical cumulants κ

(0)
cn

and κ
(1)
cn :

κ(1)
mc(n) − κ(1)

cn (b1(n)) =
3

2π2

[
ln

(√
6n

π

)
+ γ

]
+ O(

n−1/2
)
. (25)

Thus, we finally obtain the desired asymptotic formula for the expectation value of the number
of summands in a randomly chosen partition of a large integer n:

κ(1)
mc(n) =

√
6n

π

[
ln

(√
6n

π

)
+ γ

]
+

3
2π2

[
2 ln

(√
6n

π

)
+ 2γ + 1 +

π2

6

]
+ O(

n−1/2
)
. (26)

For example, for n = 1000 this expression (26) yields κ
(1)
mc(1000) = 94.8073 . . ., while the exact

value is 94.82177 . . ., so that the error is only about 0.015%.
The above calculation of the expectation value κ

(1)
mc(n) illustrates the general strategy for

computing an arbitrary microcanonical cumulant from eq. (21): Starting from the saddle
point approximation (20) to the generating function lnY (n, z), the k-th cumulant κ

(k)
mc(n) is

expressed in terms of derivatives of canonical cumulants κ
(�)
cn (b), with 0 ≤ 	 ≤ k, which, in

their turn, are obtained explicitly from the integral fromula (10). In the same manner, the
r.m.s. fluctuation of the number of summands is determined as

σ(n) =
(
κ(2)

mc(n)
)1/2 =

√
n − 3

√
6

2π3

[
ln

(√
6n

π

)
+ γ + 1

]2

+ O(
n−1/2

)
. (27)

Of particular interest are the coefficient γ1(n) of skewness, and the coefficient γ2(n) of excess
(or kurtosis) [12],

γ1(n) =
κ

(3)
mc(n)(

κ
(2)
mc(n)

)3/2
and γ2(n) =

κ
(4)
mc(n)(

κ
(2)
mc(n)

)2 ,
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Fig. 2 – (a) Skewness γ1(n) and (b) excess γ2(n) of the number partitioning distribution (2). The
solid lines indicate numerically computed, exact data; the short-dashed lines are the predictions of
the asymptotic formulae (28) and (29), respectively. The horizontal lines mark the limiting values.

which quantify the deviation of the number partitioning distribution (2) from a Gaussian;
in the Gaussian case, both γ1 and γ2 are equal to zero. Determining the third and fourth
cumulant as outlined above, we find

γ1(n) = 1.1395 +
1√
n

[
0.10128[ln(n)]2 − 0.37376 ln(n) − 1.7078

]
+

+
1
n

[
0.0075008[ln(n)]4 + 0.025681[ln(n)]3 +

+0.020024[ln(n)]2 − 0.23028 ln(n) − 0.56984
]
+ O(

n−3/2
)

(28)

and, again including terms of order O(n−1),

γ2(n) = 2.4 +
1√
n

[
0.28440[ln(n)]2 − 0.56714 ln(n) − 10.064

]
+

+
1
n

[
0.025276[ln(n)]4 + 0.022329[ln(n)]3 −

−0.33809[ln(n)]2 + 0.73538 ln(n) + 3.7863
]
+ O(

n−3/2
)
. (29)

Thus, γ1(n) and γ2(n) approach nonzero constants, so that the distribution (2) remains non-
Gaussian:

lim
n→∞ γ1(n) =

12
√

6 ζ(3)
π3

≈ 1.1395, lim
n→∞ γ2(n) =

12
5

.

However, due to the vexating logarithmic corrections in eqs. (28) and (29), this asymptotic
behaviour is still masked for merely moderately large n: fig. 2(a) depicts exact values of γ1(n),
computed numerically with the help of eq. (3), together with the prediction of the asymptotic
formula (28); fig. 2(b) shows the same comparison for γ2(n). It should be noted that the exact
evaluation of the recursion relation (3) requires a substantial amount of computer memory
and therefore becomes quite demanding when n is of the order of 105, say, while the limiting
values of skewness and excess are well approached only for n > 1010.

To conclude: While the number partitioning problem is essentially microcanonical in na-
ture, so that one associates “temperature” to natural numbers n on the basis of their entropy
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ln Ω(n), the equivalent problem of harmonically trapped ideal bosons is approached exactly
within the canonical ensemble, when temperature is imposed by an external heat bath. By
means of such a detour to the canonical ensemble, we have characterized the number parti-
tioning distribution in terms of its coefficients of skewness and excess. Central to our approach
is the fact that statistical mechanics concepts, such as the partition function, have an intrin-
sic number-theoretical meaning [2]. Even subtle differences between the two ensembles come
into play here, such as the usually neglected difference between microcanonical and canonical
expectation values; see eqs. (22) and (25). Our results show that the number partitioning
distribution adopts its asymptotic shape only for n > 1010, so that numerical simulations
which inherently rely on partitions might not reach the proper asymptotics. The analyti-
cal method we have employed for computing microcanonical cumulants can be generalized to
bosons stored in different types of traps, and thus allows one to study the statistical mechanics
of thermally isolated Bose gases.
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discussions.
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(1997) 1789.
[15] Dingle R. B., Asymptotic Expansions: Their Derivation and Interpretation (Academic Press,

New York and London) 1973.
[16] Weiss C., Block M., Holthaus M. and Schmieder G., preprint (2002).


