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Clustering drives assortativity and community structure in ensembles of networks
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Clustering, assortativity, and communities are key features of complex networks. We probe dependencies
between these features and find that ensembles of networks with high clustering display both high assortativity by
degree and prominent community structure, while ensembles with high assortativity show much less enhancement
of the clustering or community structure. Further, clustering can amplify a small homophilic bias for trait
assortativity in network ensembles. This marked asymmetry suggests that transitivity could play a larger role
than homophily in determining the structure of many complex networks.
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I. INTRODUCTION

Networks provide convenient representations for diverse
phenomena across physical, biological, social, technological,
and informational domains [1–4]. Just as it is meaningful to
“explain” features of real networks with simple generative
mechanisms, it is also instructive to ask what features to
expect given no other information about a network save that
it has a certain set of properties. Such approaches are based
on the principle of maximum entropy [5], which finds wide
applicability in many fields of science.

Network properties can be markedly interdependent [6–10].
We focus on three key features of undirected networks:
(1) the clustering coefficient, C, which reflects the tendency
of the network to form triangles (transitivity) [11,12]; (2) the
assortativity, r , which reflects the tendency of similar nodes
to connect to one another (homophily) [13]; and (3) the
modularity, Q, which reflects the tendency of nodes to form
tightly interconnected communities [14]. In order to clarify
the interdependancies between these quantities in the simplest
possible setting, we study them using a maximum entropy
approach.

We show that otherwise unbiased ensembles of networks
constrained by a transitive bias to be strongly clustered also
become highly assortative by degree (hereafter assortative)
and modular. In other words, a transitive bias induces an
effective bias toward assortativity and modularity. In contrast,
ensembles constrained by a homophilic bias to be highly
assortative show only weak clustering or modularity. Hence, at
the ensemble level a fundamental asymmetry exists between
transitivity and homophily. This asymmetry holds unless the
distribution of the number of links attached to each node (the
node’s degree) is extremely broad. Furthermore, a transitive
bias can amplify the effect of a homophilic bias toward trait
(i.e., race, age, education, etc.) assortativity [15] in network
ensembles.

High values for clustering, assortativity, and modularity
are often observed in real-world social networks, while
nonsocial networks typically have low values [16]. Although
extensive social science literature posits homophily to be
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a dominant force in social network formation (since social
networks are highly assortative) [15,17], our results show
that a bias for transitive relationships (also called “triadic
closure” in the sociology literature [18]) is sufficient to
obtain this homophilic effect in network ensembles. Our
work is complementary but distinct from that of Newman
and Park, which produces the assortativity and clustering
generally considered to be characteristic of social networks
by introducing modularity [16]. Our work also complements
that of Serrano and Boguñá [8–10], which provides techniques
for generating networks with desired degree distributions and
degree-dependent clustering coefficients. Like us, Serrano
and Boguñá find a relationship between assortativity and
clustering, showing that degree-degree correlations set an
upper limit to clustering [8,9]. Unlike Serrano and Boguñá,
we work in a maximum entropy ensemble where the global
clustering coefficient and assortativity can be independently
controlled; thus we are able to identify the “typical” level
of assortativity (resp. clustering) for a given transitive (resp.
homophilic) bias.

II. EMPIRICAL NETWORKS

To begin, we note the distinct empirical correlation between
C and r in real networks illustrated in Fig. 1. Social networks
are (generally) located in the high-C, high-r corner, with
nonsocial networks (generally) in the low-C, low-r one.
Although such correlations do not, by themselves, imply
causality, the pattern suggests an interdependence between
the two features that is not limited or reducible to the oft-cited
dichotomy between nonsocial and social networks [16]. For
instance, consider two networks in Fig. 1: TAP is a high-
C, high-r protein-protein interaction network, generated by
tandem affinity purification experiments [32]; Y2H is a weakly
clustered, disassortative protein-protein interaction network,
generated using yeast two hybridization [33]. The difference in
clustering can be explained by a key difference in experimental
methodology: TAP pulls out bound complexes and assigns
links to every pair of proteins in the complex (making the
network highly transitive), while Y2H tests each pair of
proteins individually for direct binding. Transitivity has a
natural origin in the construction of the TAP network, so it
is more likely that the observed assortativity is a byproduct
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FIG. 1. The relationship between the clustering coefficient, C,
and the assortativity, r . The correlation coefficient between r and C

for all points is 0.79. Gray points represent social networks, black
points represent other types of networks. Social networks: astro phys
(scientific collaboration) [19]; condensed matter (scientific collabo-
ration) [19]; Cyworld (online social) [20]; dolphins (friendship) [21];
email (communication) [22]; HEP (scientific collaboration) [19]; jazz
(musical collaboration) [23]; MySpace (online social) [20]; network
science (scientific collaboration) [24]; nioki (online social) [25]; orkut
(online social) [20]; PGP (communication network) [26]; pussokram
(online dating) [25]. Nonsocial networks: C. elegans (neural) [27];
E. coli (metabolic) [28]; internet (router level) [29]; power (con-
nections between power stations) [11]; TAP (yeast protein-protein
binding) [30]; word adjacency (in English text) [24]; Y2H (yeast
protein-protein binding) [31].

of an interdependence between transitivity and assortativity
rather than an explicit tendency of proteins toward degree
homophily.

Since network properties often depend conspicuously on
the degree sequence (the number of links attached to each
node [34]), we consider ensembles of networks constrained
to have the same fixed degree sequence (FDS). Three real
world networks are studied in detail: a collaboration network
of high-energy physicists (HEP) [19]; a collaboration network
of network scientists (NetSci) [24]; and an encrypted commu-
nication network (PGP) [26]. We also examine a randomly
generated Erdős-Rényi network (ER) [35]. Basic network
parameters are given in Table I.

TABLE I. Important values for the networks studied: N is the
number of nodes in the network, L is the number of links in
the network, r is the assortativity by degree of the network, C is
the clustering coefficient of the network, and Q is the modularity
of the network.

Name N L r C Q Ref.

ER 19680 41000 −1.3e-5 0.00021 0.246 [35]
HEP 7610 15751 0.29 0.33 0.40 [19]
NetSci 1461 2742 0.46 0.70 0.47 [24]
PGP 10680 24316 0.24 0.38 0.41 [26]

III. REWIRING PROCUDURE
AND NETWORK MEASURES

We use a rewiring procedure [36,37] to sample uniformly
from each ensemble. At each step of the procedure two links
are chosen at random and their endpoints are exchanged, unless
this would create a double link, in which case the step is
skipped. This move set preserves the degree of each node
but otherwise randomizes connections. To sample maximum
entropy ensembles with specific features, we use a network
Hamiltonian H (G) [38–41] to define an exponential ensemble
by assigning a sampling weight P (G) ∝ e−H (G) to each graph
G. Here we consider ensembles where H (G) depends on C, r,
and/or trait assortativity, defined below. Denoting the number
of triangles in G by n�, the degree of node i by ki , and the
number of nodes by N , the clustering coefficient is defined as

C = 3n�

1
2

∑N
i=1(ki − 1)ki

. (1)

Assortativity by degree is defined as the Pearson correlation
coefficient between the degrees of nodes joined by a link [13]:

r = L
∑L

i=1 jiki − [ ∑L
i=1 ji

]2

L
∑L

i=1 j 2
i − [ ∑L

i=1 ji

]2 , (2)

where L is the number of links in the network and ji and ki

are the degrees of nodes at each end of link i.
Trait assortativity, rd , measures the tendency for nodes to

connect to others with the same discrete trait (e.g., race, gender,
etc.) [13]. Following Newman, we define rd ∝ ∑

δ eδδ , where
eδδ is the fraction of links in the network from a node of type
δ to another node of type δ.

To get ensembles with specific values of C or r we use the
following Hamiltonians:

HC ′ = β|C ′ − Ct |, Hr ′ = β|r ′ − rt |, (3)

where C ′ is the current clustering coefficient and Ct is the target
value, and similarly for r ′ and rt . The parameter β controls the
strength of bias toward the target. It is a transitive bias in HC ′

and a homophilic bias in Hr ′ .
We employ simulated annealing based on a standard

Metropolis-Hastings procedure with a rewiring move set
[42,43]. One pair of links in the network G is switched to
produce a new candidate network G′. A valid move is accepted
with probability

p = eH (G)−H (G′), p � 1, (4)

and rejected with probability 1 − p. If p > 1 the move is
accepted. Initially, the network is rewired 2 × 105 times at β =
0 to randomize links and avoid strong hysteresis [41]. Then β

is increased slowly, rewiring 5 × 104 times after each increase
until C (or r) hits Ct (or rt ). The first network with C = Ct

(r = rt ) is a single sample from the ensemble of networks
with a fixed degree sequence and C = Ct (r = rt ). The whole
process then repeats, starting with the β = 0 quench.

We also study the influence of transitivity on the trait
assortativity, rd . For this we add a homophilic bias βd for links
between nodes with the same trait, giving us the Hamiltonian:

Hd = β|C − Ct | + βd

∑

δ

eδδ. (5)
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Choosing different values of Ct and βd allows one to explore
how the transitive bias impacts trait assortativity at the
ensemble level.

We are also interested in the influence of r and C on
modularity. Many methods for extracting community structure
exist [44,45]. For simplicity, we use the one proposed by
Newman and Girvan [14]: Given a partition of the network,
eij is the fraction of all edges connecting a node in community
i to one in community j , and ai = ∑

j eij is the fraction of
all links within community i. The modularity of the network
given partition P is defined as

QP =
∑

i

(
eii − a2

i

)
. (6)

We use an agglomerative method [46] to approximate the
best partition and largest QP , which we denote Q. While
this method has well-known limitations [47], we only need a
rough estimate of the modularity to illustrate our point.

Finally, we note that our general strategy could be easily
extended to other network structures. For example, in bipartite
networks (e.g., sexual contact networks) the standard definition
of clustering as given by Eq. (1) is generally no longer
sufficient and cycles of length four must be considered [48].
However, the number of such cycles can be controlled using
an appropriate Hamiltonian just like the clustering in Eq. (3).

IV. RESULTS

We examine ensembles constrained to have a particular
value of r (resp. C) and measure the value for the other feature
C (resp. r) averaged over 100 samples from the ensemble.
Results are shown in Fig. 2. The grey symbols show the values
for ensembles with constrained r , while the black symbols
show the values for ensembles with constrained C. Increasing
transitivity to increase C has a strong influence on r in all cases,
whereas increasing homophily to increase r has relatively
little impact on C. The asymmetry is strongest for narrow
degree distributions (e.g., the ER network), and becomes less
pronounced as the degree distribution broadens.

The asymmetric relationship between r and C can be
understood as follows. For nodes to participate in as many
transitive relationships as possible, their neighbors must be of
similar degree. Hence increasing clustering also increases r ,
i.e., a transitive bias induces an apparent homophilic bias. By
contrast, although increasing r leads to links between nodes
of similar degree, these relationships need not be transitive.
For narrow degree distributions, one could divide all nodes
of degree k into two groups and only permit links between
the two groups. Assortativity would be maximized without
introducing any clustering. For networks with very broad
degree distributions (like PGP), only a few nodes of high
degree exist, but they have a large effect on r . Hence for
ensembles constrained to have a large r , the highest degree
nodes are under strong pressure to link, thus creating transitive
relationships between their many neighbors. Note that most
social networks do not have broad degree distributions. In
such cases homophily has only a weak influence on C at the
ensemble level.

Figure 2 also indicates the C and r values for the real-world
networks (dashed lines). Ensembles of networks constrained
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FIG. 2. Controlling assortativity (grey symbols) vs controlling
clustering coefficient (black symbols) for various network degree
sequences. C is on the x axis, r on the y axis. Each point represents
the average value of 100 samples drawn from an ensemble with the
specified r or C value. The dashed lines show the values of r and C

for the original network. Note the asymmetry between the effect of
C on r compared to r on C. Error bars are much smaller than the
marker size.

to have the same C as the real network exhibit far greater r .
Hence, social networks are actually disassortative relative to
the ensemble of networks with the same clustering coefficient
and degree sequence [49], an insight only possible using a
maximum entropy ensemble approach. Indeed, the most likely
way to create many triangles is to densely interconnect the
higher degree nodes so triangles clump together (as discussed
in Ref. [41]; see also the distinction between weak and strong
clustering introduced in Refs. [9,10]). Real social networks
seem to spread clustering more evenly across the network, thus
lowering r . For example, in scientific collaboration networks
supervisory relationships may decrease the assortativity by
creating links between lower degree students and higher degree
professors.
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FIG. 3. (Color online) Modularity Q for various ensembles of
networks with different target values for C (top row) or r (bottom
row). Clustering has a much larger impact on modularity than
assortativity does. Error bars are much smaller than the marker size.
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We also measured the influence of r and C on modularity.
The top (resp. bottom) panel in Fig. 3 shows the average Q

in ensembles with constrained C (resp. r). Clustering (and
hence transitivity) has a more pronounced effect on modularity
than does assortativity (and hence homophily). The modularity
achieved for the highly clustered ensembles approximates the
actual modularity for the real networks (HEP, NetSci, and PGP;
see Table I), unlike assortative ensembles without a transitive
bias.

Finally, we consider the effect of transitivity on trait
assortativity, rd . For each of the degree sequences, we create
ensembles of networks with different target C values and
varying homophilic biases βd . Since the actual data sets do
not contain trait values, we assign each node one of three
possible traits at random with equal probability. For ER, HEP,
and NetSci we observe that ensembles with larger C enhance
rd relative to ensembles with the same homophilic bias but no

clustering (C = 0); see Fig. 4. This is especially clear for the
narrowest (ER) degree sequence. For the PGP network, which
has a broad degree distribution, clustering appears to compete
with the homophilic bias (e.g., the curves cross), leading to
a more complicated scenario. The interdependence between
clustering and trait assortativity thus appears to depend on
the degree sequence, but for narrow degree sequences the
positive relationship holds and transitivity enhances the effect
of a homophilic bias. We also note that increasing the trait
assortativity of an otherwise unconstrained ensemble had no
impact on C, r , or Q (data not shown).

V. CONCLUSIONS

On the basis of these results for (maximum entropy) en-
sembles of networks, we conjecture that the widely discussed
dichotomy between assortative social networks and disassorta-
tive nonsocial networks could be a result of a deeper dichotomy
between networks with and without transitive relationships. As
shown here, transitivity typically leads to assortativity at an
ensemble level; hence networks with transitive relationships
(like many social networks) will also tend to be assortative.
This proposal can explain the high assortativity of TAP, and
is consistent with another observation in Fig. 1: several online
social networks show low clustering and low assortativity [50].
If assortative mixing by degree in social networks is the result
of homophily, this anomaly is hard to explain: Why should
popular people stop seeking each other out simply because the
network is online? But if assortativity is driven by transitivity,
the “anomaly” disappears: in the absence of spatially mediated
interactions online, a smaller tendency may exist to introduce
mutual friends.

However, we cannot make strong claims about causality,
nor have we ruled out the scenario in Ref. [16]. Indeed, the
causal factors driving network evolution could be complex,
multifaceted, and idiosyncratic. Nevertheless, our results on
the asymmetric dependencies between clustering, assortativ-
ity, and modularity at the ensemble level provide an additional
warning about inferring causality from naive observations of
network structure.
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[10] M. A. Serrano and M. Boguñá, Phys. Rev. E 74, 056115 (2006).
[11] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[12] M. E. J. Newman, Phys. Rev. E 68, 026121 (2003).
[13] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
[14] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

(2004).
[15] G. Kossinets and D. Watts, Am. J. Sociol. 115, 405 (2009).

[16] M. E. J. Newman and J. Park, Phys. Rev. E 68, 036122
(2003).

[17] M. McPherson, L. Smith-Lovin, and J. Cook, Annu. Rev. Sociol.
27, 415 (2001).

[18] A. Rapoport, Bull. Math. Biophys. 15, 523 (1953).
[19] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[20] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong,

Proceedings of the 16th international conference on World Wide
Web (Organization ACM, 2007).

[21] D. Lusseau et al., Behav. Ecol. Sociobiol. 54, 396 (2003).
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