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Abstract

We theoretically analyze the model selection consistency of least absolute shrinkage and
selection operator (Lasso) for high-dimensional Ising models. For random regular (RR)
graphs of size p with regular node degree d and uniform couplings θ0, it is rigorously
proved that Lasso without post-thresholding is model selection consistent in the whole
paramagnetic phase with the same order of sample complexity n = Ω(d3 log p) as that of
`1-regularized logistic regression (`1-LogR). This result is consistent with the conjecture in
Meng, Obuchi, and Kabashima 2021 [MOK21] using the non-rigorous replica method from
statistical physics and thus complements it with a rigorous proof. For general tree-like graphs,
it is demonstrated that the same result as RR graphs can be obtained under mild assumptions
of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof
of the model selection consistency of Lasso with post-thresholding for general tree-like graphs
in the paramagnetic phase without further assumptions on the dependency and incoherence
conditions. Experimental results agree well with our theoretical analysis.

1 Introduction

Ising model [Isi25] is one renowned binary undirected graphical models (also known as Markov
random fields (MRFs)) [WJ08, KF09, MM09] with wide applications in various scientific disciplines
such as social networking [ML12], gene network analysis [MCK+12, KTSDN20], and protein
interactions [MPL+11, LZ21], just to name a few. Given an undirected graph G = (V,E),
where V = {1, ..., p} is a collection of nodes associated with the binary spins X = (Xi)

p
i=1 and

E = {(r, t) |θ∗rt 6= 0} is a collection of undirected edges that specify the pairwise interactions
θ∗ = (θ∗rt)r 6=t, the joint probability distribution of an Ising model has the following form

Pθ∗ (x) =
1

Z (θ∗)
exp

{∑
r 6=t

θ∗rtxrxt
}
, (1)

where Z (θ∗) =
∑

x exp
{∑

r 6=t θ
∗
rtxrxt

}
is the partition function. In general, there are also

external fields but here they are assumed to be zero for simplicity. Importantly, the conditional
independence between X = (Xi)

p
i=1 can be well captured by the associated graph G [WJ08, KF09]
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and hence one fundamental problem, namely Ising model selection, is to recover the underlying
graph structure (edge set E) of G from a collection of n i.i.d. samples Xn :=

{
x(1), . . . , x(n)

}
,

where x(i) ∈ {−1,+1}p represents the i-th sample. To address this fundamental problem, a
variety of methods have been proposed over the past several decades in various fields [Tan98,
KR98, RT12, WLR07, HT09, RWL+10, DRT14, Bre15, VMLC16, LVMC18]. Notably, under the
framework of the pseudo-likelihood (PL) [Bes75], both `1-regularized logistic regression (`1-LogR)
[RWL+10] and `1-regularized interaction screening estimator (RISE) [VMLC16, LVMC18] are
the two most popular methods in reconstructing the graph structure and the number of samples
required is even near-optimal with respect to (w.r.t.) previously established information-theoretic
lower-bound [SW12].

In this paper, we consider the well-known least absolute shrinkage and selection operator
(Lasso) [Tib96] for Ising model selection. At first sight, one might even doubt its suitability for
this problem since apparently the Ising snapshots are binary data generated in a nonlinear manner
while Lasso is (presumably) used for continuous data with linear regression. In fact, the idea
of using linear regression for binary data is not as outrageous (or naive) as one might imagine
[Bri82, DW18, EBD19], and perhaps surprisingly, sometimes linear regression even outperforms
logistic regression as demonstrated in [Gom21]. Indeed, if our goal is to make predictions of
new outcomes, say binary classification, then linear regression might not be a good choice since
it is easily prone to out-of-bound forecasts1. However, when it comes to other goals such as
estimating variables or causal effects [Gom21], the answer becomes highly nontrivial. For Ising
model selection, the goal is not about making predictions of new binary outcomes, but rather
inferring the graph structure and thus deciphering the underlying conditional independence
between different variables. Hence, given the popularity of Lasso, it is of both practical and
theoretical significance to study the (mis-specified) Lasso’s model selection consistency for the
nonlinear Ising models, i.e., under what conditions Lasso can (or cannot) successfully recover the
true structure of Ising model. While several early studies [BM09, LVMC18, MOK20, MOK21]
have implied Lasso’s potential consistency for Ising model selection, a rigorous theoretical analysis
has still largely remained unresolved.

1.1 Our Contributions

We theoretically analyze the model selection consistency of Lasso, both with and without post-
thresholding, for Ising models in the high-dimensional (n � p) regime, where the number of
vertices p = p (n) may also scale as a function of the sample size n. The paramagnetic phase of
Ising models is considered where the coupling strength is relatively small so that the expectation of
the magnetization m := 1

p

∑p
i=1 xi is zero [Nis01, MM09]. Our main contributions are summarized

as follows.
(a) For random regular (RR) graphs with regular node degree d and uniform active couplings

θ∗r,t = θ0,∀(r, t) ∈ E, in the paramagnetic phase, i.e., (d − 1) tanh θ0 < 1, we prove that Lasso
without post-thresholding is model selection consistent for Ising models, and remarkably, the
required sample complexity has the same scaling order as that of `1-LogR. (Theorem 1)

(b) For general tree-like graphs, under mild assumptions of the dependency condition and
incoherence condition, it is proved that Lasso without post-thresholding is still model selection
consistent for Ising models with the same order of sample complexity as that of `1-LogR. (Theorem
2)

(c) For general tree-like graphs, we not only obtain an upper bound of the reconstructed
square error of Lasso, but also prove that, with some proper post-thresholding, Lasso is model

1In fact, even for classification, linear regression is widely used, e.g., ridge classification [DW18], which can be
significantly faster than logistic regression with a high number of classes [Sl].
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selection consistent with the same order of sample complexity as that of `1-LogR and RISE
without any further assumptions on the dependency and incoherence conditions. (Theorems 3
and 4)

Remark 1: It is worth strengthening that in this paper we focus on Lasso both with and
without post-theresholding.

Remark 2: Given the wide popularity and efficiency of Lasso, our analysis not only provides
a theoretical backing for its practical use, but also deepens our understanding of learning Ising
models using Lasso. Previously, it has long been believed that the success of Lasso for Ising model
selection (approximately) happens only when θ∗r,t → 0, ∀(r, t) ∈ E so that the square loss of Lasso
is similar to the logistic loss of `1-LogR [LVMC18]. However, we identify and prove that Lasso
actually behaves similarly as `1-LogR and RISE in the whole paramagnetic phase (as opposed to
the limit regime θ∗r,t → 0, ∀(r, t) ∈ E). We hope that our study could inspire further research on
alternative simple and efficient methods for Ising model selection.

1.2 Related Works

In [BM09], the authors pointed out a potential relevance of the incoherence condition of Lasso
[ZY06] to `1-LogR by expanding the logistic loss around the true interactions θ∗. However, on the
one hand, it is restricted to the case when the `1 regularization parameter approaches zero. On the
other hand, the resultant quadratic loss is actually different from that of Lasso. Later, [LVMC18]
observed that at high temperatures when the magnitude of interactions approaches zero, i.e.,
θ∗r,t → 0, ∀(r, t) ∈ E, both the logistic and interaction screening objective (ISO) losses can be
approximated as a square loss using a second-order Taylor expansion around zero (as opposed to θ∗

in [ZY06]). However, their results are severely limited to the regime θ∗r,t → 0,∀(r, t) ∈ E. In other
words, [LVMC18] attributed the potential success of Lasso to its similarity with `1-LogR/RISE
in the regime θ∗r,t → 0,∀(r, t) ∈ E. Moreover, without considering the `1 regularization term,
[LVMC18] only compared the analytical solution with that of the naive mean-field method
[Tan98, KR98, RT12]. A rigorous theoretical analysis of the consistency of Lasso for Ising model
selection is still lacking.

To the best of our knowledge, the first explicit analysis of Lasso for Ising model selection
is given in [MOK21] using statistical physics methods, building on previous studies [BRO17,
AKOX20, MOK20]. In particular, [MOK21] demonstrated that Lasso has the same order of
sample complexity as `1-LogR for random regular (RR) graphs in the paramagnetic phase [MM09].
Furthermore, [MOK21] provided an accurate estimate of the typical sample complexity as well
as a precise prediction of the non-asymptotic learning performance. However, there are several
limitations in [MOK21]. First, since the replica method [OS01, Nis01, MM09] they use is a
non-rigorous method from statistical mechanics, a rigorous mathematical proof has remained
lacking. Second, the results in [MOK21] are restricted to the special class of RR graphs. In
addition, since their analysis relies on the self averaging property [Nis01, MM09], the results in
[MOK21] are meaningful in terms of the “typical case” [EVdB01] rather than the worst case.
Moreover, [MOK21] did not analyze the case of Lasso with post-thresholding.

Regarding the study of Lasso for nonlinear (not necessarily binary) targets, the past few years
have seen an active line of research in the field of signal processing with a special focus on the
single-index model [Bri82, PV16, TAH15, ZGR16, Gen16]. These studies are related to ours but
with several important differences. First, in our study, the covariates are generated from an Ising
model rather than a Gaussian distribution. Second, we focus on model selection consistency of
Lasso while most previous studies considered estimation consistency except [ZGR16]. However,
[ZGR16] only considered the classical asymptotic regime while we are interested in the high-
dimensional setting where n� p. Another closely related work is [EBD19], which studied the
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relationship between the true minimizer of the population risk of a generalized linear model and
the ordinary least square coefficient. Nevertheless, they only focused on the classic n� p case.
Moreover, even in the classic case, [EBD19] did not provide a rigorous analysis of the model
selection consistency of Lasso with the empirical risk.

1.3 Notations

For each vertex r ∈ V , the neighborhood set is denoted as N (r) := {t ∈ V | (r, t) ∈ E}, the signed
neighborhood set is defined as N± (r) := {sign (θ∗rt) t|t ∈ N (r)}, and the corresponding node
degree is denoted as dr := |N (r)|. The maximum node degree of the whole graph G is denoted
as d := max

r∈V
dr. We use Gp,d to denote the ensemble of graphs G with p vertices and maximum

(not necessarily bounded) node degree d ≥ 3. The minimum and maximum magnitudes of the
interactions θ∗rt for (r, t) ∈ E are respectively denoted as

θ∗min := min
(r,t)∈E

|θ∗rt| , θ∗max := max
(r,t)∈E

|θ∗rt| . (2)

Eθ∗ {·} denotes expectation w.r.t. the joint distribution Pθ∗ (x) (1). 9A9∞ = maxj
∑

k |Ajk| is
the `∞ matrix norm of a matrix A. Λmin (A) and Λmax (A) denote the minimum and maximum
eigenvalue of A, respectively.

2 Problem Setup

The problem of Ising model selection can be generally described as follows: given a collection of
n i.i.d. samples Xn :=

{
x(1), . . . , x(n)

}
from an Ising model defined on a graph G = (V,E), the

goal is to reconstruct the graph structure of G. In this paper we focus on Ising models defined on
general locally tree-like graphs, i.e., the local neighborhood of a uniformly random vertex of the
graph converges in distribution to a random rooted tree [DM10]. In particular, we also pay a
special attention to the popular random regular (RR) graphs, one typical class of locally tree-like
graphs with regular node degree dr = d and uniform couplings θ∗r,t = θ0, ∀(r, t) ∈ E.

As in [RWL+10], we consider the slightly stronger criterion of signed edge recovery, and
investigate the sufficient conditions on the sparsistency property.

Definition 1. (signed edge) The signed edge set E∗ of one Ising model with interactions θ∗ is
defined as E∗ := {sign (θ∗rt)} where sign (·) is an element-wise operation that maps every positive
entry to 1, negative entry to -1, and zero entry to zero.

Definition 2. (sparsistency property) Suppose that Ên is an estimator of the signed edge E∗

given Xn, then it is called (signed) model selection consistent in the sense that

P
(
Ên = E∗

)
→ 1 as n→ +∞, (3)

which is known as the sparsistency property [RWL+10].

Our goal is to investigate the sparsistency property of Lasso [Tib96] for high-dimensional
Ising models on locally tree-like graphs. Since recovering the edge set E∗ of any graph
G = (V,E) is equivalent to reconstructing the associated signed neighborhood set N± (r) :=
{sign (θ∗rt) t|t ∈ N (r)} for each vertex r ∈ V [RWL+10], one can equivalently investigate the
scaling condition on (n, p, d) which ensures that the estimated signed neighborhood N̂± (r) agrees
with the true neighborhood, i.e.,

{
N̂± (r) = N± (r) ,∀r ∈ V

}
, with high probability.
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Specifically, the estimate of the sub-vector θ∗\r := {θ∗rt|t ∈ V \ r} ∈ Rp−1, ∀r ∈ V is obtained
via Lasso as follows

θ̂\r = arg min
θ\r

{
`
(
θ\r;Xn

)
+ λ(n,p,d)

∥∥θ\r∥∥1} , (4)

where `
(
θ\r;Xn

)
denotes the square loss function

`
(
θ\r;Xn

)
:=

1

2n

n∑
i=1

(
x(i)r −

∑
u∈V \r

θrux
(i)
u

)2
, (5)

and λ(n,p,d) > 0 is the regularization parameter. For simplicity, instead of λ(n,p,d), λn will be used
hereafter.

Subsequently, one can obtain an estimate N̂± (r) of N± (r) from the Lasso results θ̂\r in (4).
Here we focus on two different settings: without post-theresholding and with post-thresholding.
Without post-theresholding, one can simply estimate N̂± (r) using the sign information as
[RWL+10]

N̂± (r) :=
{
sign

(
θ̂rt

)
t|t ∈ V \ r, θ̂rt 6= 0

}
. (6)

Alternatively, one introduces a threshold ξ > 0 and then perform post-thresholding on θ̂\r
[ELL+13, DRT14, LVMC18], leading to

N̂± (r) :=
{
sign

(
θ̂rt

)
1
(∣∣∣θ̂rt∣∣∣ > ξ

)
t|t ∈ V \ r, θ̂rt 6= 0

}
, (7)

where 1 (·) is an indicator function that equals to 1 if the event is true and 0 otherwise.

3 Main results

3.1 Preliminary Results

Before stating the main results, we first present two different results of Lasso compared with `1-
LogR regarding the expected first and second derivative of the loss function, i.e., Eθ∗{∇`

(
θ\r;X

n
1

)
}

and Eθ∗{∇2`
(
θ\r;X

n
1

)
}.

Lemma 1. For general tree-like graphs in the paramagnetic phase, the solution to Eθ∗{∇`
(
θ\r;X

n
1

)
} =

0, denoted as θ̃∗\r =
{
θ̃∗rt

}
t∈V \r

∈ Rp−1, can be obtained as

θ̃∗rt =


tanh(θ∗rt)/(1−tanh2(θ∗rt))

1−dr+
∑
u∈N (r)

1
1−tanh2(θ∗ru)

if (r, t) ∈ E

0 otherwise.
(8)

where dr is the node degree of r. In particular, for RR graph with uniform coupling strength
θ∗rt = θ0,∀ (r, t) ∈ E and constant node degree dr = d, there is

θ̃∗rt =

{
tanh(θ0)

1+(d−1) tanh2(θ0)
if (r, t) ∈ E

0 otherwise.
(9)

Proof. See Appendix A.
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Lemma 1 indicates that, the solution θ̃∗\r is a rescaled value of the true parameter θ∗\r and

thus shares the same sign structure, i.e., sign
(
θ̃∗\r

)
= sign

(
θ∗\r

)
. The minimum magnitude of θ̃∗rt

for (r, t) ∈ E in (8) is denoted as
θ̃∗min := min

(r,t)∈E
θ̃∗rt. (10)

For the second derivative or Hessian matrix, in the case of Lasso, it corresponds exactly to the
covariance matrix, i.e.,

Q∗r := Eθ∗{∇2`
(
θ\r;X

n
1

)
} = Eθ∗{X\rXT

\r}, ∀r ∈ V. (11)

As opposed to [RWL+10], the additional variance function term of `1-LogR (eq. (12) in [RWL+10],
denoted as η(X; θ∗)) does not exist in Q∗r ( 11), which makes Lasso different from `1-LogR,
including its behavior and the corresponding proof. For notational simplicity, Q∗r will be written
as Q∗ hereafter. Denote S := {(r, t) | t ∈ N (r)} as the subset of indices associated with edges
of r and Sc as its complement. The dr × dr sub-matrix of Q∗ indexed by S is denoted as Q∗SS .
Other sub-matrices like Q∗ScS are defined in the same way.

3.2 Lasso without Post-thresholding

For Lasso without post-thresholding, i.e., the signed edge set N̂± (r) , ∀r ∈ V is obtained as (6),
we have

Theorem 1. (RR graphs) Consider a collection of n i.i.d. samples Xn :=
{
x(1), . . . , x(n)

}
drawn

from an Ising model on a RR graph G = (V,E) ∈ Gp,d with regular node degree d and uniform
couplings θ∗r,t = θ0,∀(r, t) ∈ E. Suppose that the Ising model is in the paramagnetic phase, i.e.,
(d − 1) tanh θ0 < 1, then there exist constants L, c independent of (n, p, d), so that the Lasso
estimator (4) with the regularization parameter λn ≤ tanh(θ0)(1−tanh2 (θ0))

6
√
d(1+(d−1) tanh2(θ0))

reconstructs the signed

edge set by (6) perfectly with probability at least

P
(
Ên = E∗

)
≥ 1− 2 exp

(
−cλ2nn

)
(12)

as long as n ≥ max
{
Ld3, 64(1+tanh (θ0))2

(1−tanh (θ0))2λ2n

}
log p.

Remark 3: Theorem 1 indicates that the probability that the Lasso estimator (4) successfully
recovers the true signed edge set decays exponentially as a function of λ2nn, which is the same
as `1-LogR [RWL+10]. If λn is chosen such that λ2nn→∞ as n→∞, Lasso is model selection
consistent, i.e., P

(
Ên = E∗

)
→ 1 as n→∞. In the high-dimensional case, one reasonable choice

of λn that satisfies both Theorem 1 and λ2nn → ∞ is λn = κ
√

log p
n , where κ ≥ 8(1+tanh θ0)

1−tanh θ0 . In

this case, i.e., λn = κ
√

log p
n , from Theorem 1, it is obtained that the number of samples required

for model selection consistency needs to satisfy n ≥ max
{
Ld3, 36κ2(1+(d−1) tanh (θ0))2

tanh2 (θ0))(1−tanh2 (θ0))2
d
}

log p.
For general locally tree-like graphs, under some mild assumptions similar to `1-LogR [RWL+10],

namely the dependency condition and incoherence condition, we can still obtain similar results as
RR graphs in Theorem 1.

Condition 1 (C1): dependency condition. The sub-matrix Q∗SS has bounded eigenvalue, i.e.,
there exists a constant Cmin > 0 such that

Λmin (Q∗SS) ≥ Cmin. (13)

Condition 2 (C2): incoherence condition. There exists an α ∈ (0, 1] such that

9Q∗ScS (Q∗SS)−1 9∞ ≤ 1− α. (14)

6



Theorem 2. (tree-like graphs) Consider general tree-like graphs G = (V,E) ∈ Gp,d in the param-
agnetic phase. Suppose that conditions (C1) and (C2) are satisfied by the population covariance

matrix Q∗. If the regularization parameter λn is selected to satisfy λn ≥ 4
√
c+1(2−α)
α

√
log p
n for

some constant c > 0, then there exists a constant L independent of (n, p, d) such that if

n ≥ Ld3 log p, (15)

then with probability at least 1− 2 exp (−c log p)→ 1 as p→∞, the following properties hold:
(a) For each node r ∈ V , the Lasso estimator (4) has a unique solution, and thus uniquely

specifies a signed neighborhood N̂± (r) with (6).
(b) For each node r ∈ V , the estimated signed neighborhood vector N̂± (r) with (6) correctly

excludes all edges not in the true neighborhood. Moreover, it correctly includes all edges if the
minimum magnitude of the rescaled parameter satisfies θ̃∗min ≥

6λn
√
d

Cmin
.

Remark 4: Theorem 2 indicates that the probability that Lasso recovers the true signed edge
set P

(
Ên = E∗

)
→ 1 exponentially as a function of log p. Hence, for tree-like Ising models in

the paramagnetic phase, under conditions (C1) and (C2), in the high-dimensional setting (for
p→∞), Lasso is model selection consistent with n = Ω(d3 log p) samples, which is the same as
`1-LogR [RWL+10].

In contrast to RR graphs in Theorem 1, for general tree-like graphs, two additional assumptions
(C1) and (C2) are imposed for the success of Lasso without post-thresholding. However, it is
worth noting that `1-LogR without post-thresholding also suffers from the same limitation as
shown in [RWL+10], which is due to the fundamental difficulty in verifying (C1) and (C2) for
general graphs.

3.3 Lasso with Post-thresholding

For Lasso with post-thresholding, i.e., the signed neighborhood set N̂± (r) ,∀r ∈ V is obtained as
(7), we obtain the following results.

Theorem 3. (Square error, tree-like graphs) Consider an Ising model defined on tree-like graphs
G = (V,E) ∈ Gp,d. ∀r ∈ V and for any ε1 > 0, in the paramagnetic phase, the square error of

the Lasso estimator (4) with regularization parameter λn = 4

√
log 3p

ε1
n is bounded with probability

at least 1− ε1 by ∥∥∥θ̂\r − θ̃∗\r∥∥∥
2
≤ 26
√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1

n
(16)

when n ≥ 214d2 (d+ 1)2 e4θ
∗
maxd log 3p2

ε1
.

Theorem 4. (Structure learning, tree-like graphs) Consider an Ising model defined on tree-like
graphs G = (V,E) ∈ Gp,d. In the paramagnetic phase, for any ε2 > 0, the Lasso estimator (4)

with regularization parameter λn = 4

√
log 3p2

ε2
n reconstructs the sign edge set by (7) perfectly with

probability
P
(
Ê = E∗

)
≥ 1− ε2, (17)

as long as

n ≥ max

{
d,
(
θ̃∗min

)−2}
214d (d+ 1)2 e4θ

∗
maxd log

3p3

ε2
. (18)
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Remark 5: Results in Theorems 3 and 4 hold for general tree-like graphs without any
further assumptions of (C1) and (C2). In particular, Theorem 4 indicates that Lasso with
post-thresholding is model selection consistent under similar conditions as the RISE [VMLC16]
and `1-LogR with post-thresholding [LVMC18]. Note that similarly as RISE and `1-LogR
[VMLC16, LVMC18], the obtained bound in (18) is a rather loose bound, especially in the
paramagnetic phase, e.g., while it suggests an exponential growth w.r.t. θ∗max, it is in fact not the
case in the paramagnetic phase (see Figure 4 in [LVMC18]).

4 Proof of the main results

Here we provide a sketch of the proofs for the main results. For details, please refer to Appendices
D and E.

4.1 Sketch of the proof for Theorems 1 and 2

For the proof of Lasso without post-thresholding, we use the primal-dual witness proof framework
[RWL+10], which was originally proposed in [Wai09]. The main idea of the primal-dual witness
method is to explicitly construct an optimal primal-dual pair which satisfies the sub-gradient
optimality conditions associated with the Lasso estimator (4). Subsequently, it is proved that
under the stated assumptions on (n, p, d), the optimal primal-dual pair can be constructed such
that they act as a witness, i.e., a certificate that guarantees that the neighborhood-based Lasso
estimator (4) together with (6) correctly recovers the signed edge set of the graph G ∈ Gp,d.

Generally speaking, the proof of Theorems 1 and 2 consists of two stages. At the first stage,

we consider a “fixed design” case assuming that the sample Hessian Qn := 1
n

∑n
i=1 x

(i)
\r

(
x
(i)
\r

)T
,

satisfies both conditions (C1) and (C2). Afterwards, at the second stage, using some large-
deviation analysis we provide guarantees under which both conditions (C1) and (C2) hold for the
sample Hessian Qn with high probability. Finally, we obtain Theorems 1 and 2 combining results
of the two stages. Notably, for RR graphs, there is one remarkable property, as shown in Lemma
2:

Lemma 2. For Ising models defined on RR graphs G = (V,E) ∈ Gp,d with regular node degree d
and uniform couplings θ∗r,t = θ0, ∀(r, t) ∈ E. In the paramagnetic phase, both conditions (C1) and
(C2) hold for Q∗, where Cmin = 1− tanh2 θ0 and α = 1− tanh θ0.

Proof. See Appendix B.

As a result, in Theorem 1, there is no need for assumptions (C1) and (C2) in the case of RR
graphs.

The important results at the first stage are shown in Proposition 1 and Proposition 2, which
correspond to the RR graphs and general tree-like graphs, respectively.

Proposition 1. (fixed design, RR graphs) Consider an Ising model on a RR graph G = (V,E) ∈
Gp,d with regular node degree d and uniform couplings θ∗r,t = θ0,∀(r, t) ∈ E. Suppose that the
Ising model is in the paramagnetic phase, and that the sample Hessian Qn satisfies (C1) and

(C2). If the regularization parameter λn satisfies λn ≥ 8(2−α)
α

√
log p
n , then with probability at least

1− 2 exp
(
−cλ2nn

)
→ 1, the following properties hold:

(a) For each node r ∈ V , the Lasso estimator (4) has a unique solution, and thus uniquely
specifies a signed neighborhood N̂± (r).

8



(b) For each node r ∈ V , the estimated signed neighborhood vector N̂± (r) using the Lasso
estimator (4) correctly excludes all edges not in the true neighborhood. Moreover, it correctly
includes all edges if θ̃∗min ≥

6λn
√
d

Cmin
.

Proof. See Appendix D.1.

Proposition 2. (fixed design, tree-like graphs) Consider an Ising model defined on a tree-like
graph G = (V,E) ∈ Gp,d with parameter vector θ∗ and associated signed edge set E∗. Suppose that
the Ising model is in the paramagnetic phase, and the sample Hessian Qn satisfies (C1) and (C2)

and the regularization parameter λn satisfies λn ≥ 4
√
c+1(2−α)
α

√
log p
n for some constant c > 0.

Under these conditions, if
n ≥ (c+ 1)d2 log p, (19)

then with probability at least 1− 2 exp (−c log p)→ 1 as p→∞, the following properties hold:
(a) For each node r ∈ V , the Lasso estimator (4) has a unique solution, and thus uniquely

specifies a signed neighborhood N̂± (r).
(b) For each node r ∈ V , the estimated signed neighborhood vector N̂± (r) correctly excludes

all edges not in the true neighborhood. Moreover, it correctly includes all edges if θ̃∗min ≥
6λn
√
d

Cmin
,

where θ̃∗min is the minimum magnitude of the rescaled parameter θ̃∗ defined in (8).

Proof. See Appendix D.2.

Note that in the above two Propositions of the“fixed design” case, in contrast to the “fixed
design” results of `1-LogR in [RWL+10], there is no requirement of an additional scaling condition
of n ≥ Ld2 log p. This is due to the fundamental difference between the square loss of Lasso
and the logistic loss of `1-LogR. Specifically for `1-LogR, n ≥ Ld2 log p is needed to ensure the
`2-consistency of the primal sub-vector and to bound the remainder term, while it is not the case
for Lasso with square loss, as shown in Lemma 5. However, this only holds under the assumption
that the sample Hessian satisfies conditions (C1) and (C2). To ensure that these conditions are
satisfied by the sample Hessian, an additional requirement of n ≥ Ld3 log p is still needed, as
shown in the final results in Theorem 1 and Theorem 2.

Some key results: The key results for the proofs of Lasso without post-thresholding are
given as follows.

Lemma 3. Denote Wn = −∇`
(
θ̃∗\r;X

n
1

)
. The s-th element of Wn, denoted as Wn

s , can be
written as follows

Wn
s =

1

n

n∑
i=1

Z(i)
s , ∀s ∈ V \ r, (20)

Z(i)
s := x(i)s (x(i)r −

∑
t∈V \r

θ̃∗rtx
(i)
t ). (21)

Then, Eθ∗
(
Z

(i)
s

)
= 0, Var

(
Z

(i)
s

)
≤ 1. Furthermore:

(a) For RR graphs, there is
∣∣∣Z(i)

s

∣∣∣ ≤ 2;

(b) For general tree-like graphs, there is
∣∣∣Z(i)

s

∣∣∣ ≤ d.
Proof. See Appendix C.1.

The behavior of ‖Wn‖∞ is shown in Lemma 4.
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Lemma 4. RegardingWn = −∇`
(
θ̃∗\r;Xn

)
in Lemma 3: (a) For RR graphs, if λn ≥ 8(2−α)

α

√
log p
n ,

then

P
(2− α

λn
‖Wn‖∞ ≥

α

2

)
≤ 2 exp

(
− α2λ2nn

32(2− α)2
+ log p

)
, (22)

(b) For general tree-like graphs, if n ≥ (c+ 1) d2 log p for some constant c > 0 and λn ≥ 4
√
c+1(2−α)
α

√
log p
n ,

then
P
(2− α

λn
‖Wn‖∞ ≥

α

2

)
≤ 2 exp (−c log p) . (23)

Proof. See Appendix C.2.

Lemma 5. If ‖Wn‖∞ ≤
λn
2 , then there is∥∥∥θ̂S − θ̃∗S∥∥∥

2
≤ 3

Cmin
λn
√
d. (24)

Proof. See Appendix C.3.

4.2 Sketch of the proof for Theorems 3 and 4

In proving Theorems 3 and 4, we resort to the restricted strong convexity framework in [NRW+12].
First, consider the proof of Theorem 3 which provides an estimation error bound (16) of

Lasso. Similarly as RISE and `1-LogR [VMLC16, NRW+12, LVMC18], to obtain a handle on the
(rescaled) square error of Lasso, two sufficient conditions (C3) and (C4) are enforced as follows:

Condition 3 (C3): The `1 regularization parameter λn strongly enforces regularization if it
is greater than any partial derivatives of the loss function `

(
θ\r;X

n
1

)
evaluated at θ̃∗\r defined in

(8), i.e.,
λn ≥ 2

∥∥∥∇`(θ̃∗\r;Xn1)∥∥∥∞ . (25)

Condition (C3) guarantees that if the vector of the rescaled couplings θ̃∗\r has at most d non-zero
elements, then the estimation difference θ̂\r − θ̃∗\r lies within the set

K :=
{
4 ∈ Rp−1 | ‖4‖1 ≤ 4

√
d ‖4‖2

}
. (26)

Condition 4 (C4): The square loss of Lasso is restricted strongly convex w.r.t. set K (26)
on a ball of radius R centered at θ\r = θ̃∗\r if for all 4θ\r ∈ K such that

∥∥∥4θ\r

∥∥∥
2
≤ R, there

exists a constant κ > 0 such that the remainder of the first-order Taylor expansion of the loss
function satisfies

δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
≥ κ

∥∥∥4θ\r

∥∥∥2
2
. (27)

where 4θ\r ∈ Rp−1 is an arbitrary vector and the remainder can be calculated as

δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
=

1

2
4T
θ\r
Qn4θ\r . (28)

The key point is that, the estimation error
∥∥θ̂\r− θ̃∗\r∥∥2 of Lasso can be controlled if conditions

(C3) and (C4) are satisfied, as shown in Proposition 3:

Proposition 3. (Theorem 1, [NRW+12]) If the Lasso estimator (4) satisfies both (C3) and (C4)
with R ≥ 3

√
dλnκ , then the square error is bounded by∥∥∥θ̂\r − θ̃∗\r∥∥∥

2
≤ 3
√
d
λn
κ
. (29)
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As a result, the proof of Theorem 3 is done through Proposition 3 by evaluating the two
conditions (C3) and (C4).

Regarding the proof of Theorem 4, it is simply an application of Theorem 3 by choosing a
specific value of the estimation error. Specifically, with the definition of θ̃∗min in (8) as the minimum
rescaled coupling for a general graph, suppose that the estimated error

∥∥θ̂\r − θ̃∗\r∥∥2 is controlled
to be smaller than θ̃∗min/2, then one can readily recover the structure of the neighborhood of
node r by setting the edges whose absolute estimated couplings are less than θ̃∗min/2 to be absent
[LVMC18]. Subsequently, repeating this procedure over all the p vertices, we are guaranteed
through the union bound that exact reconstruction of the full edge set E∗ can be obtained with
some predefined probability.

Some key results: The key results for the proofs of Lasso with post-thresholding are given
as follows. Specifically, Lemma 7 and Lemma 8 are used to prove Lemma 9, which is then
combined with Lemma 6 to evaluate the conditions (C3) and (C4) via Proposition 3, leading to
the proof of Theorem 3.

Lemma 6. For any ε3 > 0, if n ≥ d2 log 2p
ε3

, then probability at least 1− ε3

‖Wn‖∞ ≤ 2

√
log 2p

ε3

n
. (30)

Proof. See Appendix C.4.

The randomness of δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
can be controlled by Qn, which concentrates towards

its mean independently of 4θ\r , as shown in following lemma

Lemma 7. Let ε > 0, ε4 > 0 and n ≥ 2
ε2

log p2

ε4
, then with probability greater than 1 − ε4, we

have for all s, t ∈ V \ r
|Qnst −Q∗st| ≤ ε,

where Qnst = 1
n

∑n
i=1 x

(i)
t x

(i)
t and Q∗st = Eθ∗

(
x
(i)
s x

(i)
t

)
, s, t ∈ V \ r.

Proof. See Appendix C.5.

Lemma 8 states that the smallest eigenvalue of Q∗ is bounded below from zero independent
of p.

Lemma 8. (Lemma 7 in [VMLC16]) For Ising model with graph G ∈ Gp,d with maximum coupling
strength θ∗max. Then for all 4θ\r ∈ Rp−1, we have

4T
θ\r
Q∗4θ\r ≥

e−2θ
∗
maxd

d+ 1

∥∥∥4θ\r

∥∥∥2
2
.

Given the above results, the restricted strong convexity of the square loss (5) for Ising model
problems is stated as follows.

Lemma 9. For Ising model with graph G ∈ Gp,d with maximum coupling strength θ∗max, ∀ε4 > 0,
when n > 211d2 (d+ 1)2 e4θ

∗
maxd log p2

ε4
, the square loss (5) of Lasso satisfies, with probability at

least 1− ε4, the restricted strong convexity condition

δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
≥ e−2θ

∗
maxd

4 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2

(31)

for all 4θ\r ∈ Rp−1 such that
∥∥∥4θ\r

∥∥∥
1
≤ 4
√
d
∥∥∥4θ\r

∥∥∥
2
.

Proof. See Appendix C.6.

11



Figure 1: Success probability versus the control parameter β for Ising models. Left: RR graph
with d = 3 and mixed interactions θ∗rt = ±0.4 for all (r, t) ∈ E, β = n

10d log p ; Right: 4-nearest
neighbor grid graph with d = 4 and positive interactions θ∗rt = 0.2 for all (r, t) ∈ E, β = n

15d log p .

Figure 2: Success probability versus the control parameter β = n
10d log p for Ising models on

star-shaped graphs for attractive interactions θ∗rt = 1.2√
d
for all (r, t) ∈ E. Left: linear growth in

degrees, i.e., d = d0.1pe; Right: logarithmic growth in degrees, i.e., d = dlog pe.

5 Experimental Results

In this section we conduct simulations to verify our theoretical findings that, simply speaking,
Lasso performs similarly as `1-LogR on typical tree-like graphs in the paramagnetic phase. Two
different structures of tree-like graphs are evaluated, namely RR graphs and star-shaped graphs.
In addition, to have a look at the performance of Lasso for graphs with many loops, we also
evaluate the square lattice (grid) graphs with periodic boundary condition. It is worth noting
that the RR and star-shaped graphs represent graphs with bounded node degree (the maximum
node degree d is a fixed constant) and unbounded node degree (the maximum node degree d
grows as the size of p), respectively.

The experimental procedures are as follows. First, a graph G = (V,E) ∈ Gp,d is generated
and the Ising model is defined on it. Then, the spin snapshots are obtained using Monte-Carlo
sampling, yielding the dataset Xn1 . The regularization parameter is set to be a constant factor of√

log p
n . For any graph, we performed simulations using neighborhood-based Lasso (4) ∀r ∈ V

and then the associated signed neighborhood N̂± (r) is estimated as (6). Similar to [RWL+10],
the sample size n scaling is set to be proportional to d log p. For comparison, the results of the
`1-LogR estimator [RWL+10] are also shown. The results are averaged over 200 trials in all cases.

The results of RR graph and grid graph are shown in Figure 1. In both cases, even for grid
graph with many loops, using the Lasso estimator, all curves for different model sizes p line
up with each other well, demonstrating that for a graph with fixed degree d, the ratio n/ log p
controls the success or failure of the Ising model selection. Importantly, the behavior of Lasso is
about the same as `1-LogR.

Figure 2 shows results for star-shaped graph whose maximum degree d is unbounded and
grows as the dimension p grows. Two kinds of star-shaped graphs are considered by designating
one node as the hub and connecting it to d < (p − 1) of its neighbors. Specifically, for linear
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sparsity, it is assumed that d = d0.1pe while for logarithmic sparsity, we assume d = dlog pe.
We use positive interactions and set the active interactions to be θ∗rt = 1.2√

d
for all (r, t) ∈ E as

[RWL+10]. As depicted in Figure 2, Lasso behaves similarly as `1-LogR in both cases, which is
consistent with our theoretical analysis.

6 Conclusion

We have theoretically analyzed the model selection consistency of Lasso, both with and without
post-thresholding, for the problem of high-dimensional Ising model selection with a focus on the
paramagnetic phase. Specifically, in the case without post-thresholding, we prove that Lasso is
model selection consistent with the same order of sample complexity as that of `1-LogR for RR
graphs. For general tree-like graphs, similar result is obtained under mild assumptions of the
dependency condition and incoherence condition. Moreover, in the case with post-thresholding,
for general tree-like graphs, we not only obtain an upper bound of the reconstructed square error
of Lasso, but also prove the consistency of Lasso with post-thresholding with the same order of
sample complexity as that of `1-LogR and RISE without any assumptions on the dependency
condition and incoherence condition. Experimental results are consistent with the theoretical
analysis.

There are several interesting future directions for current study. First, since our focus in this
paper is the paramagnetic phase, one important future work is to extend the current analysis to
high-dimensional Ising models defined on general graphs beyond the paramagnetic phase, e.g.,
ferromagnetic phase, to see whether it still can, similarly as `1-LogR and RISE, successfully
recover the graph structure of Ising models with the same order of the number of samples. Another
future work is to investigate the performance of Lasso for high-dimensional Ising model selection
in the non-i.i.d. case [DLVM21]. The study of other alternative simple and efficient methods for
Ising model selection is also an interesting topic for future investigation.
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A Proof of Lemma 1

Proof. The gradient of the square loss `
(
θ\r;X

n
1

)
in (5) w.r.t. θ\r reads

∇`
(
θ\r;X

n
1

)
=

1

n

n∑
i=1

x
(i)
\r

x(i)r − ∑
t∈V \r

θrtx
(i)
t

 . (32)

After taking expectation of gradient ∇`
(
θ\r;X

n
1

)
over the distribution Pθ∗ (x) and setting it to

be zero, we obtain Eθ∗
(
∇`
(
θ\r;X

n
1

))
= 0 in matrix form:

Q∗rθ\r = b, (33)

where Q∗r = Eθ∗
(
X\rX

T
r

)
is the covariance matrix of X\r and b = Eθ∗

(
X\rXr

)
. The solution to

(33), denoted as θ̃∗\r, can be analytically obtained as θ̃∗\r = (Q∗r)
−1 b. Next, we construct the full

covariance matrix C = Eθ∗
(
XXT

)
of all spins X as follows

C =

[
1 bT

b Q∗r

]
, (34)

where Xr is indexed as the first variable in C without loss of generality. From the block matrix
inversion lemma, the inverse covariance matrix can be computed as

C−1 =

 F−111 −F−111

(
θ̃∗\r

)T
−θ̃∗\rF

−1
11 F−122

 , (35)

where

F11 = 1− bT (Q∗r)
−1 b, (36)

F22 = Q∗r − bbT . (37)

On the other hand, for general tree-like graphs in the paramagnetic phase, the inverse covariance
matrix C−1 can be computed from the Hessian of the Gibbs free energy [RT12, NB12, AKOX20].
Specifically, each element of the covariance matrix C = {Crt}r,t∈V can be expressed as

Crt = Eθ∗(xrxt)− Eθ∗(xr)Eθ∗(xt) =
∂2 logZ(σ)

∂σr∂σt
, (38)

where Z(σ) =
∑

x Pθ∗ (x) e
∑
s∈V σsxs with σ = {σs}s∈V and the assessment is carried out at σ = 0.

In addition, for technical convenience we introduce the Gibbs free energy as

A (m) = max
σ

{
σTm− logZ (σ)

}
. (39)

The definition of (39) indicates that following two relations hold:

∂mr

∂σt
=
∂2 logZ(σ)

∂σr∂σt
= Crt, (40)

∂σr
∂mt

= [C−1]rt =
∂2A(m)

∂mr∂mt
, (41)
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where the evaluations are performed at σ = 0 and m = arg minmA(m) (= 0 under the paramag-
netic assumption). Consequently, the inverse covariance matrix of a tree-like graph G ∈ Gp,d can
be computed as [RT12, NB12, AKOX20]

[
C−1

]
rt

=

 ∑
u∈N (r)

1

1− tanh2 (θ∗ru)
− dr + 1

 δrt

− tanh (θ∗rt)

1− tanh2 (θ∗rt)
(1− δrt) . (42)

The two representations of C−1 in (35) and (42) are equivalent so that the corresponding
elements should equal to each other. Thus, the following identities hold

F−111 =
∑

u∈N (r)
1

1−tanh2(θ∗ru)
− dr + 1,

θ̃∗\rF
−1
11 =

tanh
(
θ∗\r

)
1−tanh2

(
θ∗\r

) , (43)

where tanh (·) is applied element-wise. From (43), we obtain (8), which is a rescaled version of
the true interactions. In particular, for RR graphs with constant coupling θ∗rt = θ0, ∀ (r, t) ∈ E
and dr = d, substituting the results one can obtain

θ̃∗rt =

{
tanh(θ0)

1+(d−1) tanh2(θ0)
if (r, t) ∈ E;

0 otherwise.
(44)

which completes the proof.

B Proof of Lemma 2

The corresponding belief propagation (BP) equation on a RR graph can be written as follows
[MM09]

mr→t = tanh

 ∑
k∈N (r)\t

tanh−1 (tanh (θ0)mk→r)

 . (45)

where mr→t is the message from node r to node t. The spontaneous magnetization for the node
r ∈ V is assessed as

mr = tanh

 ∑
t∈N (r)

tanh−1 (tanh (θ0)mt→r)

 . (46)

Due to the uniformity of RR graphs, these equations are reduced to

mc = tanh
(
(d− 1) tanh−1 (tanh (θ0)mc)

)
, (47)

m = tanh
(
d tanh−1 (tanh (θ0)mc)

)
, (48)

where we set mr→t := mc and mr := m for all directed edges r → t and all nodes r ∈ V .
Suppose that x = (xr)

p
r=1 is subject to a Hamiltonian H (x) = −

∑
s 6=t θ

∗
rtxrxt. For this, we

define the Helmholtz free energy as

F (ξ) = − ln

(∑
x

exp

(
−H (x) +

p∑
r=1

ξrxr

))
. (49)
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Using F (ξ), one can evaluate the expectation as

mr := Eθ∗ {xr} = − ∂F (ξ)

∂ξr

∣∣∣∣
ξ=0

=

∑
x xr exp (−H (x))∑
x exp (−H (x))

. (50)

In addition, the covariance of xr and xt can be computed as

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} =
∂Eθ∗ {xr}

∂ξt

∣∣∣∣
ξ=0

=

∑
x xrxt exp (−H (x))∑

x exp (−H (x))

−
∑

x xr exp (−H (x))∑
x exp (−H (x))

·
∑

x xt exp (−H (x))∑
x exp (−H (x))

, (51)

where the last equation is termed the linear response relation [Nis01].
Suppose that node r is placed at the distance of l from node t. A remarkable property of

tree-like graphs, including typical RR graphs, is that a unique path is defined between two
arbitrary nodes. This indicates that the linear response relation (51) can be evaluated by the
chain rule of partial derivative using messages of belief propagation as

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} =
∂mr

∂ξt

∣∣∣∣
ξ=0

= (1−m2)

(
tanh (θ0) (1−m2

c)

1− tanh2 (θ0)m2
c

)l
. (52)

In the the paramagnetic phase where m = 0 and mc = 0, we have

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} = tanhl (θ0) . (53)

Let us examine the dependency condition (C1). Since the distances between any two different
nodes in S := {(r, t) | t ∈ N (r)} are 2, all the off-diagonal elements in sub-matrix Q∗SS equal to
tanh2 θ0 and all the diagonal elements equal to 1, i.e.,

Q∗SS =

1 tanh2 θ0 tanh2 θ0 · · · tanh2 θ0

tanh2 θ0 1 tanh2 θ0
... tanh2 θ0

tanh2 θ0 tanh2 θ0
. . . tanh2 θ0

...
... · · · tanh2 θ0 1 tanh2 θ0

tanh2 θ0 tanh2 θ0 · · · tanh2 θ0 1


d×d

. (54)

It can be analytically computed that Q∗SS has two different eigenvalues: one is 1 + (d− 1) tanh2 θ0
and the other is 1− tanh2 θ0 with multiplicity (d−1). Consequently, Q∗SS has bounded eigenvalue
and we explicitly obtain the result of Cmin as

Λmin (Q∗SS) = 1− tanh2 θ0 := Cmin. (55)

Then, we prove that the incoherence condition (C2) also satisfies. From (54), the inverse matrix
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(Q∗SS)−1 can be analytically computed as

(Q∗SS)−1 =



a b b · · · b

b a b
... b

b b
. . . b

...
... · · · b a b
b b · · · b a


d×d

, (56)

where

a =
1 + (d− 2) tanh2 θ0(

1− tanh2 θ0
) (

1 + (d− 1) tanh2 θ0
) , (57)

b = − tanh2 θ0(
1− tanh2 θ0

) (
1 + (d− 1) tanh2 θ0

) . (58)

Then, by definition of 9Q∗ScS (Q∗SS)−1 9∞, it is achieved for r ∈ Sc where r belongs to the nearest
neighbors of the nodes in S. Specifically, in that case, the elements in the row in Q∗ScS associated
with node r ∈ Sc can only take two different values: one element is tanh θ0 and the other (d− 1)
elements are tanh3 θ0. Then, from (56), after some algebra, it can be calculated that

9Q∗ScS (Q∗SS)−1 9∞ = tanh θ0 := 1− α, (59)

where we obtain an analytical result α := 1− tanh θ0 ∈ (0, 1], which completes the proof.

C Proofs of the key results

C.1 Proof of Lemma 3

Proof. The result that Eθ∗
(
Z

(i)
s

)
= 0 can be readily obtained by the definition of θ̃∗\r in Lemma

1. Thus, to prove Var
(
Z

(i)
s

)
≤ 1, it suffices to prove Eθ∗

((
Z

(i)
s

)2)
≤ 1 in the paramagnetic

phase.
We introduce an auxiliary function

f1
(
θ\r
)

= Eθ∗

x(i)r − ∑
t∈V \r

θtx
(i)
t

2

. (60)

Thus we have Eθ∗
((

Z
(i)
s

)2)
= f1

(
θ̃∗\r

)
. The gradient vector can be computed as ∇f1

(
θ\r
)

=

2Eθ∗
(
∇`
(
θ\r;Xn

))
. Since Eθ∗

(
∇`
(
θ̃∗\r;Xn

))
= 0 as shown in Lemma 1, we have ∇f1

(
θ̃∗\r

)
= 0.

Moreover, since ∇2f1
(
θ\r
)

= 2Eθ∗
(
X\rX

T
\r

)
� 0, we can conclude that f1

(
θ\r
)
reaches its

minimum at θ\r = θ̃∗\r. As a result, we have

Eθ∗
((

Z(i)
s

)2)
=f1

(
θ\r = θ̃∗\r

)
≤f1

(
θ\r = 0

)
=Eθ∗

(
x(i)r

)2
=1, (61)
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where in the last line the fact that x(i)r ∈ {−1,+1} , ∀r ∈ V is used. Therefore, we obtain
Var

(
Z

(i)
s

)
≤ 1.

Moreover, the absolute value
∣∣∣Z(i)

s

∣∣∣ is bounded. Specifically, (a) for RR graphs, in the
paramagnetic phase, we have

∣∣∣Z(i)
s

∣∣∣ =

∣∣∣∣∣∣x(i)s (x(i)r −
∑
t∈V \r

θ̃∗rtx
(i)
t )

∣∣∣∣∣∣
≤ 1 +

∑
t∈V \r

|θ̃∗rt|

= 1 +
d tanh (θ0)

1 + (d− 1) tanh2 (θ0)

≤ 2. (62)

(b) for general tee-like graphs, recalling the result (8), we have ∑
u∈N (r)

1

1− tanh2 (θ∗ru)
− dr + 1

 ∑
t∈V \r

∣∣∣θ̃∗rt∣∣∣
=
∑

t∈N (r)

|tanh (θ∗rt)|
1− tanh2 (θ∗rt)

=
∑

t∈N (r)

|tanh (θ∗rt)|+ 1− tanh2 (θ∗rt) + tanh2 (θ∗rt)− 1

1− tanh2 (θ∗rt)

=− dr +
∑

t∈N (r)

|tanh (θ∗rt)|+ 1− tanh2 (θ∗rt)

1− tanh2 (θ∗rt)
, (63)

To proceed, consider an auxiliary function f2 (x) = x+ 1− x2, 0 ≤ x ≤ 1. Then it can be proved
that 1 ≤ f2 (x) ≤ 5

4 , so that from (63), we have

∑
t∈V \r

∣∣∣θ̃∗rt∣∣∣ ≤ −dr + 5
4

∑
u∈N (r)

1
1−tanh2(θ∗ru)∑

u∈N (r)
1

1−tanh2(θ∗ru)
− dr + 1

. (64)

It can be easily checked that
∑

u∈N (r)
1

1−tanh2(θ∗ru)
∈ [dr,∞). We introduce another auxiliary

function

f3 (x) =
−dr + 5

4x

x− dr + 1
, x ∈ [dr,∞). (65)

The first-order derivative of f3 (x) can be easily computed as

f
′
3 (x) =

5− dr
4 (x− dr + 1)2

. (66)

As a result, f ′3 (x) > 0 when dr < 5 and f ′3 (x) < 0 when dr > 5. Consequently,

max
x∈[dr,∞)

f3 (x) =

{
5
4 dr ≤ 5
dr
4 dr > 5

(67)
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Finally, combining the above results together yields∣∣∣Z(i)
s

∣∣∣ ≤ max

{
9

4
,
4 + dr

4

}
< dr,∀dr ≥ 3. (68)

By definition, there is dr ≤ d so that
∣∣∣Z(i)

s

∣∣∣ ≤ d, which completes the proof.

C.2 Proof of Lemma 4

Proof. Frist, we prove the case (a). In this case, According to Lemma 3, Eθ∗
(
Z

(i)
s

)
= 0 and∣∣∣Z(i)

s

∣∣∣ ≤ 2, so that by the Azuma Hoeffding inequality [Ver18], for ∀η > 0, we have

P (|Wn
s | > η) ≤ 2 exp

(
−η

2n

8

)
. (69)

Setting η = αλn
2(2−α) , we obtain

P
(

2− α
λn

|Wn
s | >

α

2

)
≤ 2 exp

(
− α2λ2nn

32(2− α)2

)
. (70)

Then, by using a union bound we have

P
(

2− α
λn

‖Wn‖∞ ≥
α

2

)
≤ 2 exp

(
− α2λ2nn

32(2− α)2
+ log p

)
, (71)

which completes the proof of (a).
In the case (b) for general graphs, the proof is slightly complicated. According to Lemma 3,

applying the Bernstein’s inequality [Ver18], ∀η > 0 we have

P (|Wn
s | > η) ≤ 2 exp

(
−

1
2η

2n

1 + 1
3dη

)
. (72)

Similar to [VMLC16], inverting the following relation

ξ =
1
2η

2n

1 + 1
3dη

, (73)

and substituting the result in (72) yields

P
(
|Wn

s | >
1

3

(
u+

√
u2 + 18

u

d

))
≤ 2 exp (−ξ) , (74)

where u = ξ
nd. Suppose that n ≥ ξd2, then u2 = ξ2

n2d
2 ≤ ξ

n while u
d = ξ

n . Consequently, we have

1

3

(
u+

√
u2 + 18

u

d

)
≤ 1

3

(√
ξ

n
+

√
ξ

n
+ 18

ξ

n

)
(75)

≤ 1

3

(√
ξ

n
+

√
ξ

n

√
25

)
(76)

= 2

√
ξ

n
, (77)
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where a relaxed result is obtained. Subsequently, we obtain an expression which is independent
of d:

P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (−ξ) . (78)

Setting ξ = (c+ 1) log p, then if λn ≥ 4(2−α)
√
c+1

α

√
log p
n , we have αλn

2(2−α) ≥ 2
√

ξ
n so that

P
(

2− α
λn

|Wn
s | >

α

2

)
≤ P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (− (c+ 1) log p) . (79)

Then, by using a union bound we have

P
(

2− α
λn

‖Wn‖∞ ≥
α

2

)
≤ 2 exp (−c log p) . (80)

As a result, when n ≥ (c+ 1) d2 log p, as long as λn ≥ 4
√
c+1(2−α)
α

√
log p
n , it is guaranteed that

P
(
2−α
λn
‖Wn‖∞ ≥

α
2

)
→ 0 at rate exp (−c log p) for some constant c > 0, which completes the

proof.

C.3 Proof of Lemma 5

Proof. Using the method in [RBL+08], here the proof follows [RWL+10] but with essential
modifications. First, define a function Rd → R as follows [RBL+08]

G (uS) :=`
(
θ̃∗S + uS ;Xn

)
− `

(
θ̃∗S ;Xn

)
+ λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
. (81)

Note that G is a convex function w.r.t. uS . Then ûS = θ̂S − θ̃∗S minimizes G according to the
definition in (4). Moreover, it is easily seen that G (0) = 0 so that G (ûS) ≤ 0. As described in
[RWL+10], if we can show that there exists some radius B > 0 and any uS ∈ Rd with ‖uS‖2 = B
satisfies G(uS) > 0, then we can claim that ‖ûS‖2 ≤ B since otherwise one can always, by
appropriately choosing t ∈ (0, 1], find a convex combination tûS + (1− t) 0 which lies on the
boundary of the ball with radius B and thus G (tûS + (1− t) 0) ≤ 0, leading to contradiction.
Consequently, it suffices to establish the strict positivity of G on the boundary of a ball with
radius B = Mλn

√
d, where M > 0 is one parameter to choose later.

Specifically, let uS ∈ Rd be an arbitrary vector with ‖uS‖2 = B. Expanding the quadratic
form `

(
θ̃∗S + uS ;Xn

)
, we have

G (uS) =− (Wn
S )T uS + uTSQ

n
SSuS

+ λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
, (82)

where Wn
S is the sub-vector of Wn = −∇`

(
θ̃∗;Xn

)
, and QnSS is the sub-matrix of the sample

matrix Qn. The expression (82) is simpler than the counterpart in [RWL+10] which is obtained
from the Taylor series expansion of the non-quadratic loss function and thus its quadratic term is
dependent on θ. To proceed, we investigate the bounds of the three terms in the right hand side
(RHS) of (82), respectively.
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Since ‖uS‖1 ≤
√
d ‖uS‖2 and ‖Wn

S ‖∞ ≤
λn
2 , the first term is bounded as∣∣∣− (Wn

S )T uS

∣∣∣ ≤ ‖Wn
S ‖∞ ‖uS‖1 ≤ ‖W

n
S ‖∞

√
d ‖uS‖2

≤
(
λn
√
d
)2 M

2
. (83)

The third term is bounded as

λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
≥ −λn ‖uS‖1 ≥ −λn

√
d ‖uS‖2

= −M
(
λn
√
d
)2
. (84)

The remaining middle Hessian term in RHS of (82) is, different from [RWL+10], quite simple
due to the square loss function:

uTSQ
n
SuS ≥ ‖uS‖

2
2 Λmin (QnSS)

≥ CminM
2
(
λn
√
d
)2
, (85)

where the last inequality comes from the dependency condition Λmin (Q∗SS) ≥ Cmin in (13). In
contrast to [RWL+10], there is no need to control the additional spectral norm.

Combining the three bounds (83) - (85) together with (82), we obtain that

G (uS) ≥
(
λn
√
d
)2{
−M

2
+ CminM

2 −M
}
. (86)

It can be easily verified from (86) that G (uS) is strictly positive when we choose M = 3
Cmin

.

Consequently, as long as ‖Wn‖∞ ≤
λn
2 , we are guaranteed that ‖ûS‖2 ≤Mλn

√
d = 3λn

√
d

Cmin
, which

completes the proof.

C.4 Proof of Lemma 6

Proof. According to Lemma 3, applying the Bernstein’s inequality, ∀η > 0 we have

P (|Wn
s | > η) ≤ 2 exp

(
−

1
2η

2n

1 + 1
3dη

)
. (87)

Similar to [VMLC16], inverting the following relation

ξ =
1
2η

2n

1 + 1
3dη

(88)

and substituting the result in (87) yields

P
(
|Wn

s | >
1

3

(
u+

√
u2 + 18

u

d

))
≤ 2 exp (−ξ) . (89)
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where u = ξ
nd. Suppose that n ≥ ξd2, then u2 = ξ2

n2d
2 ≤ ξ

n while u
d = ξ

n . Consequently, we have

1

3

(
u+

√
u2 + 18

u

d

)
≤ 1

3

(√
ξ

n
+

√
ξ

n
+ 18

ξ

n

)
(90)

≤ 1

3

(√
ξ

n
+

√
ξ

n

√
25

)
(91)

= 2

√
ξ

n
. (92)

where a relaxed result is obtained. Subsequently, we obtain an expression which is independent
of d

P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (−ξ) . (93)

Then, by using a union bound we have

P

(
‖Wn‖∞ > 2

√
ξ

n

)
≤ 2 exp (−ξ + log p) . (94)

Setting ξ = log 2p
ε3
, then if n ≥ d2 log 2p

ε3
, we have

P

‖Wn‖∞ > 2

√
log 2p

ε3

n

 ≤ 2 exp

(
− log

2p

ε3
+ log p

)
(95)

= ε3, (96)

which completes the proof.

C.5 Proof of Lemma 7

Proof. Since x(i)r x
(i)
t is bounded by

∣∣∣x(i)r x(i)t ∣∣∣ ≤ 1. Therefore, using the Hoeffding inequality
[Hoe94], for any ε > 0, there is

P (|Qnst −Q∗st| > ε) ≤ 2 exp

(
−nε

2

2

)
. (97)

Then, due to the symmetry of Qnst, using a union bound we have

P (|Qnst −Q∗st| ≤ ε, ∀s, t ∈ V \ r) ≥ 1− p2 exp

(
−nε

2

2

)
, (98)

As a result, as long as n ≥ 2
ε2

log p2

ε4
, there is P (|Qnst −Q∗st| ≤ ε,∀s, t ∈ V \ r) ≥ 1 − ε4, which

completes the proof.
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C.6 Proof of Lemma 9

Proof. According (28) and Lemma 8, we have

δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
=

1

2
4T
θ\r
Qn4θ\r

=
1

2
4T
θ\r
Q∗4θ\r +

1

2
4T
θ\r

(Qn −Q∗)4θ\r

≥ e−2θ
∗
maxd

2 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2

+
1

2
4T
θ\r

(Qn −Q∗)4θ\r . (99)

Then, from Lemma 7, choosing ε = e−2θ∗maxd

32d(d+1) , then with probability at least 1− ε4, there is

4T
θ\r

(Qn −Q∗)4θ\r ≥ −
e−2θ

∗
maxd

32d (d+ 1)

∥∥∥4θ\r

∥∥∥2
1

≥ − e
−2θ∗maxd

2 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2
. (100)

as long as n ≥ 2
ε2

log p2

ε4
= 211d2 (d+ 1)2 e4θ

∗
maxd log p2

ε4
. As a result, there is

δ`
(
4θ\r , θ̃

∗
\r;X

n
1

)
≥ e−2θ

∗
maxd

2 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2
− e−2θ

∗
maxd

4 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2

=
e−2θ

∗
maxd

4 (d+ 1)

∥∥∥4θ\r

∥∥∥2
2
, (101)

which completes the proof.

D Proofs of Theorems 1 and 2

First, to prove the “fixed design” results in Proposition 1 and Proposition 2, for each vertex r ∈ V ,
an optimal primal-dual pair

(
θ̂\r, ẑr

)
is constructed, where θ̂\r ∈ Rp−1 is a primal solution and

ẑr ∈ Rp−1 is the associated sub-gradient vector. They satisfy the zero sub-gradient optimality
condition [Roc70] associated with Lasso (4):

∇`
(
θ̂\r;Xn

)
+ λnẑr = 0, (102)

where the sub-gradient vector ẑr satisfies{
ẑrt = sign

(
θ̂rt

)
, if θ̂rt 6= 0; (a)

|ẑrt| ≤ 1, otherwise. (b)
(103)

Then, the pair is a primal-dual optimal solution to (4) and its dual. Further, to ensure that such
an optimal primal-dual pair correctly specifies the signed neighorbood of node r, the sufficient
and necessary conditions are as follows{

sign (ẑrt) = sign (θ∗rt) , ∀ (r, t) ∈ S, (a)

θ̂ru = 0, ∀ (r, u) ∈ Sc := E \ S. (b)
(104)
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Note that while the regression in (4) corresponds to a convex problem, for p � n in the high-
dimensional regime, it is not necessarily strictly convex so that there might be multiple optimal
solutions. Fortunately, the following lemma in [RWL+10] provides sufficient conditions for shared
sparsity among optimal solutions as well as uniqueness of the optimal solution.

Lemma 10. (Lemma 1 in [RWL+10]). Suppose that there exists an optimal primal solution θ̂\r
with associated optimal dual vector ẑr such that ‖ẑSc‖∞ < 1. Then any optimal primal solution
θ̃ must have θ̃Sc = 0. Moreover, if the Hessian sub-matrix [∇2`

(
θ̂\r;Xn

)
]SS is strictly positive

definite, then θ̂\r is the unique optimal solution.

As a result, using the framework in [RWL+10], we can construct a primal-dual witness
(
θ̂\r, ẑ

)
for the Lasso estimator (4) as follows:

(a) First, set θ̂S as the minimizer of the partial penalized likelihood

θ̂S = arg min
θ\r=(θS ,0)∈Rp−1

{
`
(
θ\r;Xn

)
+ λn ‖θS‖1

}
, (105)

and then set ẑS = sign
(
θ̂S

)
.

(b) Second, set θ̂Sc = 0 so that condition (104) (b) holds.
(c) Third, obtain ẑSc from (102) by substituting the values of θ̂\r and ẑS .
(d) Finally, we need to show that the stated scalings of (n, p, d) imply that, with high

probability, the remaining conditions (103) and (104) (a) are satisfied.

D.1 Proof of Proposition 1

From Lemma 4 (a), if the regularization parameter λn satisfies λn ≥ 8(2−α)
α

√
log p
n , then with

probability greater than 1− 2 exp
(
−cλ2nn

)
there is

‖Wn‖∞ ≤
α

2− α
λn
2
≤ λn

2
, (106)

so that the condition in Lemma 5 is also satisfied. The zero-subgradient condition (102) can be
equivalently re-written as followsQnScS

(
θ̂S − θ̃∗S

)
= Wn

Sc − λnẑSc ,

QnSS

(
θ̂S − θ̃∗S

)
= Wn

S − λnẑS ,
(107)

where we have used the fact that θ̂Sc = 0 from the primal-dual construction, and also the result
θ̃∗Sc = 0 from Lemma 1. After some simple algebra, we obtain

Wn
Sc −QnScS (QnSS)−1Wn

S + λnQ
n
ScS (QnSS)−1 ẑS = λnẑSc . (108)
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For strict dual feasibility, from (108), we obtain

‖ẑSC‖∞ ≤ |||Q
∗
SCS (Q∗SS)−1 |||∞

[‖Wn
S ‖∞
λn

+ 1

]
+

∥∥Wn
SC

∥∥
∞

λn

≤ (1− α) + (2− α)
‖Wn‖∞
λn

≤ (1− α) + (2− α)
1

2− α
α

2

= 1− α

2
< 1, (109)

with probability converging to one. For correct sign recovery, it suffices to show that
∥∥∥θ̂S − θ̃∗S∥∥∥∞ ≤

θ̃∗min
2 . From Lemma 5 (since (106) holds), we have

2

θ∗min

∥∥∥θ̂S − θ̃∗S∥∥∥∞ ≤ 2

θ∗min

∥∥∥θ̂S − θ̃∗S∥∥∥
2
≤ 6

θ̃∗minCmin

λn
√
d. (110)

As a result, if θ̃∗min ≥
6λn
√
d

Cmin
, or λn ≤

θ̃∗minCmin

6
√
d

, the condition
∥∥∥θ̂S − θ̃∗S∥∥∥∞ ≤ θ̃∗min

2 holds. In the

paramagnetic phase, from Lemma 1, there is θ̃∗min = tanh(θ0)

1+(d−1) tanh2(θ0)
. Substituting these results

lead to Proposition 1.

D.2 Proof of Proposition 2

The proof of Proposition 2 is the same as that of Proposition 1 in Appendix D.1, except that
different conditions in Lemma 4 (b) are used, and that we need to impose the assumptions that
the population Hessian Q∗ satisfies both conditions (C1) and (C2) for the considered general
graphs.

D.3 Proof of Theorem 1

Now we are ready to prove the main results in Theorem 1. As shown in Lemma 2, for RR graphs
with uniform couplings, the population Hessian Q∗ for Lasso already satisfies both conditions
(C1) and (C2), so that assumptions of (C1) and (C2) can be dropped for RR graphs.

Next, using large deviation analysis as [RWL+10], we prove that the sample Hessian Qn of
Lasso satisfies the same properties as the population Hessian Q∗ with high probability with large
enough samples.

Lemma 11. Consider an Ising model on a RR graph G = (V,E) ∈ Gp,d with regular node degree
d and uniform couplings θ∗r,t = θ0,∀(r, t) ∈ E. Then, for any δ > 0, there are some positive
constants A,B,K

P (Λmin (QnSS) ≤ Cmin − δ) ≤ 2 exp
(
−Aδ

2n

d2
+B log d

)
, (111)

P
(
9QnScS (QnSS)−1 9∞ ≥ 1− α

2

)
≤ 2 exp

(
−K n

d3
+ log p

)
, (112)

where Cmin and α are Cmin = 1− tanh2 θ0 and α = 1− tanh θ0.
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Proof. The proof is the same as Lemma 5 and Lemma 6 in [RWL+10], with the only difference
that the variance function term does not exist, by substituting into the the results of Cmin and α
in the Lemma 2.

Lemma 11 demonstrates that the sample Hessian Qn satisfies both conditions (C1) and (C2)
with high probability as long as n ≥ Ld3 log p for some constant L. As the results of Proposition
1 builds on top of the assumption that the sample Hessian Qn satisfies (C1) and (C2), we readily
obtain that all results of Proposition 1 will hold for if we replace the requirement that the sample
Hessian Qn satisfies both conditions (C1) and (C2) by an extra scaling requirement n ≥ Ld3 log p
for some constant L independent of (n, p, d).

Consequently, by combining Lemma 2, Lemma 11, and Proposition 1 and substituting the
specific results of Cmin and α in Lemma 2, after some algebra, we readily obtain Theorem 1,
which completes the proof.

D.4 Proof of Theorem 2

The proof of Theorem 2 is the same as that of Theorem 1 in Appendix D.3, except that different
conditions in Lemma 4 (b) are used.

E Proofs of Theorems 3 and 4

E.1 Proofs of Theorem 3

This is done through Proposition 3 by evaluating the two conditions (C3) and (C4). First, let

ε3 = 2ε1
3 > 0 in Lemma 6. Then, by setting λn = 4

√
log 3p

ε1
n , if n ≥ d2 log 3p

ε1
, with probability

at least 1 − 2ε1
3 , we have ‖Wn‖∞ ≤ 2

√
log 3p

ε1
n = λn

2 so that condition (C3) satisfies as long as

n ≥ d2 log 3p
ε1
. Second, let ε4 = ε1

3 > 0 in Lemma 9. From Lemma 9, with probability at least

1 − ε1
3 , the restricted strong convexity condition is satisfied with the value κ = e−2θ∗maxd

4(d+1) when

n > 211d2 (d+ 1)2 e4θ
∗
maxd log 3p2

ε1
. Then, the relation R ≥ 3

√
dλnκ in Proposition 3 reads

R > 3
√
d4

√
log 3p

ε1

n

(
e−2θ

∗
maxd

4 (d+ 1)

)−1
. (113)

To find a value of R that satisfies (113), we can choose R = 2/
√
d. Then from (113), the number

of samples n needs to satisfy

n > 9 · 210d2 (d+ 1)2 e4θ
∗
maxd log

3p2

ε1
. (114)

As a result, when n ≥ 214d2 (d+ 1)2 e4θ
∗
maxd log 3p2

ε1
, the condition (C4) satisfies with probability

at least 1 − ε1
3 . Based on the union bound, both condition (C3) and condition (C4) will be

simultaneously satisfied with probability at least 1 − ε1, which completes the proof by using
Proposition 3.

E.2 Proofs of Theorem 4

First consider any fixed vertex r ∈ V , if the square error
∥∥∥θ̂\r − θ̃∗\r∥∥∥2 ≤ θ̃∗min

2 , then it is

guaranteed that the absolute difference of each element of θ̂\r and θ̃∗\r is less than θ̃∗min
2 so

30



that one can perfectly recover all its correct neighbors with a thresholding θ̃∗min
2 . According to

Theorem 3, with probability 1−ε1, when n ≥ 214d2 (d+ 1)2 e4θ
∗
maxd log 3p2

ε1
, there is

∥∥∥θ̂\r − θ̃∗\r∥∥∥2 ≤
26
√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1
n . Further, let 26

√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1
n ≤ θ̃∗min

2 , we obtain that

n ≥ 214
(
θ̃∗min

)−2
d (d+ 1)2 e4θ

∗
maxd log 3p

ε1
. Consequently, with at least probability 1− ε1 we have∥∥∥θ̂\r − θ̃∗\r∥∥∥2 ≤ θ̃∗min

2 and thus correct neighbors are recovered for any fixed r ∈ V whenever

n ≥ max

{
d,
(
θ̃∗min

)−2}
214d (d+ 1)2 e4θ

∗
maxd log

3p2

ε1
. (115)

Then, setting ε2 = pε1 and using the union bound for all vertices r ∈ V , we have

P

(∥∥∥θ̂\r − θ̃∗\r∥∥∥
2
>
θ̃∗min

2
,∃ r ∈ V

)
≤ pε1 = ε2, (116)

so that

P

(∥∥∥θ̂\r − θ̃∗\r∥∥∥
2
≤ θ̃∗min

2
,∀ r ∈ V

)
> 1− ε2, (117)

which completes the proof.
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