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Many network systems are composed of interdependent but distinct types of interactions, which cannot be
fully understood in isolation. These different types of interactions are often represented as layers, attributes on
the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive
scientific understanding, these representations offer substantial challenges. Namely, it is an open problem how to
precisely characterize the large or mesoscale structure of network systems in relation to these additional aspects.
Furthermore, the direct incorporation of these features invariably increases the effective dimension of the network
description, and hence aggravates the problem of overfitting, i.e., the use of overly complex characterizations
that mistake purely random fluctuations for actual structure. In this work, we propose a robust and principled
method to tackle these problems, by constructing generative models of modular network structure, incorporating
layered, attributed and time-varying properties, as well as a nonparametric Bayesian methodology to infer the
parameters from data and select the most appropriate model according to statistical evidence. We show that the
method is capable of revealing hidden structure in layered, edge-valued, and time-varying networks, and that
the most appropriate level of granularity with respect to the additional dimensions can be reliably identified. We
illustrate our approach on a variety of empirical systems, including a social network of physicians, the voting
correlations of deputies in the Brazilian national congress, the global airport network, and a proximity network
of high-school students.
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I. INTRODUCTION

The network abstraction has been successfully used as a
powerful framework behind the modeling of a great variety of
biological, technological, and social systems [1]. Traditionally,
most network models proposed in these contexts consist
of a set of elements possessing a single type of pairwise
interaction (e.g., epidemic contact, transport route, metabolic
reaction, etc.). More recently, it has becoming increasingly
clear that single types of interaction do not occur in isolation,
and that a complete system encompasses several layers of
interactions [2–4], and very often change in time [5]. Many
examples have shown that the interplay between different
types of interactions can dramatically change the outcome
of paradigmatic processes such as percolation [6], epi-
demic spreading [7–9], diffusion [10,11], opinion formation
[12–14], evolutionary games [15–17], and synchroniza-
tion [3,18], among others. The realization that different types
of interaction need to be incorporated into network models
also changes the way data need to be analyzed. In particular,
the large or mesoscale structure of network systems may be
intertwined with the layered or temporal structure, in such a
way that cannot be visible if this information is omitted. The
conventional approach of representing mesoscale structures is
to separate the nodes into groups (or modules, “communities”)
that have a similar role in the network topology [19]. Some
methods have been proposed to identify such groups in both
layered [4,20–22] and time-varying [20,21,23–28] networks.
However, these methods do not address two very central ques-
tions: (1) Is the layered or temporal structure indeed important
for the description of the network and, if so, to what degree of
granularity? (2) How does one distinguish between multiple
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descriptions of the same network, and in particular separate
actual structure from stochastic fluctuations? In this work,
we tackle both of these questions by formulating generative
models of layered networks, obtained by generalizing several
variants of the stochastic block model [29–32], incorporating
features such as hierarchical structure [33,34], overlapping
groups [35–37], and degree correction [38], in addition
to different types of layered structure. We show how the
unsuspecting incorporation of many layers that happen to be
uncorrelated with the mesoscale structure can, in fact, hinder
the detection task and obscure structure that would be visible
by ignoring the layer division in the usual fashion. Since most
methods proposed so far take any available layer information
for granted and attempt to model it in absolute detail, this issue
represents a severe limitation of these methods in capturing
the structure of layered networks in a reliable manner. We
show how this problem can be solved by performing model
selection under a general nonparametric Bayesian framework,
which can also be used to select between different model
flavors (e.g., with overlapping groups or degree correction).
We demonstrate that the proposed methodology can also be
used to infer mesoscale structure in networks with real-valued
correlates on the edges (such as weights, distances, etc.), while
reliably distinguishing structure from noise, as well as change
points in time-varying networks [39].

This work extends recent developments on layered [40–45],
edge-valued [46–49], and temporal [50–54] generative pro-
cesses, not only by incorporating many important topological
patterns simultaneously (i.e., hierarchical structure, degree
correction, and overlapping groups), but also by tying all
of these types of models into a nonparametric Bayesian
framework that permits model selection and avoids overfitting.
The framework presented allows one not only to select among
all different model classes, but also their appropriate order, i.e.,
the number of groups, layer bins, and hierarchical structure.
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This is done in a principled fashion, based on statistical
evidence and the principle of parsimony and without the
specification of ad hoc parameters. Furthermore, since it is
based on the computation of posterior probabilities, it can be
extended to other probabilistic models.

This paper is divided as follows. In Sec. II, we formulate
generative models for layered structure, including a very
diverse set of possible topological patterns, and in Sec. III,
we describe a Bayesian model selection procedure to choose
between them based on statistical evidence. In Sec. IV, we
tackle the problem of deciding whether or not the layered
structure is informative of the network structure. In Sec. V, we
show how the layered models can be adapted to networks with
real-valued edge covariates, and in Sec. VI, to networks that
change in time, for which the division into layers corresponds
to a detection of change points. We finalize in Sec. VII with a
conclusion.

II. GENERATIVE MODELS OF LAYERED NETWORKS

We consider graphs that have a layered structure [2,3], so
that the adjacency matrix in layer l ∈ [1,C] can be written
as Al

ij (with values in the range [0,1] for a simple graph, or
in N for a multigraph), corresponding to the presence of an
edge between vertices i and j in layer l. We will consider both
directed and undirected graphs (i.e., Al

ij being asymmetric
and symmetric, respectively), although we will focus on the
undirected case in most of the derivations, since the directed
cases are mostly straightforward modifications (which are
summarized in Appendix B). Here we assume that the vertices
are globally indexed and, in principle, can receive edges in
all layers. The collapsed graph corresponds to the merging of
all edges in a single layer, with a resulting adjacency matrix
Aij = ∑

l A
l
ij . In the following, we will denote a specific

layered graph as {Gl} (with Gl = {Al
ij } being an individual

layer) and its corresponding collapsed graph as Gc = {Aij }.
In this work, we will consider two alternative ways of

generating a given layered graph {Gl} (see Fig. 1). The first

FIG. 1. (Color online) Two processes capable of generating lay-
ered networks. Left: The collapsed graph is generated first and,
conditioned on it, the edges are distributed among the layers. Right:
The layers are formed independently from each other.

approach interprets the layers as edge covariates [46]: First the
collapsed graph Gc is generated and then the layer membership
of each edge is a random variable sampled from a distribution
conditioned on the adjacent vertices. In the second approach,
the graphs Gl at each layer l are generated independently
from each other. (Henceforth we call these alternatives simply
“edge covariates” and “independent layers,” respectively).
These different generative processes do not exhaust the realm
of possible multilayer models. Instead, the objective here
is to consider the most basic possibilities that allow us to
incorporate different types of properties into the generated
networks, and enable the formulation of a nonparametric
model selection framework to decide if either one is more
appropriate than the other depending on the statistical evidence
available in the data, as discussed in detail below.

In the following, we define two versions of the stochastic
block model (SBM) family, corresponding to the alternatives
outlined above.

A. SBM with edge covariates

We generate first a collapsed graph from the traditional
SBM ensemble, where N nodes are divided into B groups,
via the membership vector {bi} ∈ [1,B]N , and the number
of edges randomly placed between groups r and s is given
by the edge counts ers (or twice the number if r = s, for
convenience of notation). After the graph is generated, for
each set of edges incident on groups r and s, we distribute the
layer memberships randomly, conditioned only on the total
number of edges of each type l between the two groups, ml

rs .
Any particular distribution of covariates among edges incident
on groups r and s is generated with the same probability, which
in the case of simple undirected graphs is given by∏

l m
l
rs!

mrs!
, (1)

where mrs = ∑
l m

l
rs = (1 − δrs/2)ers . For the multigraph

case, see Appendix A. If we use the shorthand {θ} =
{{el

rs},{bi}} for the model parameters, the total likelihood of
observing the layered graph is

P ({Gl}|{θ}) = P (Gc|{θ})
∏
r�s

∏
l m

l
rs!

mrs!
, (2)

where P (Gc|{θ}) = e−St is the likelihood of the collapsed
stochastic block model, where St is the microcanonical
entropy [55]. For instance, for simple undirected graphs that
are sparse (i.e., with ers � nrns), we have [55]

St ≈ E − 1

2

∑
rs

ers ln
ers

nrns

. (3)

Here we are free to replace the traditional SBM by any other
flavor, which amounts simply to a different likelihood in the
first term of Eq. (2). The traditional SBM considered above
imposes that all nodes belonging to the same group will receive
the same number of edges on average, with little variation. An
important alternative to this is the degree-corrected stochastic
block model (DCSBM) [38], which includes as additional
model parameters the degree sequence of the network, {ki}.
As argued in Ref. [38] and supported by an empirical
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model selection analysis in Ref. [37], this version is often
a better model for many (collapsed) networks that feature
significant degree variability. However, in this version with
edge covariates, only the degrees of the collapsed graph are
constrained, and thus the edges incident on a specific node
will be distributed randomly among the layers independently
of its degree. Hence, for networks generated in this manner,
nodes with a large collapsed degree will also tend to possess
uniformly larger degrees in all layers when compared to other
nodes of the same group with a lower collapsed degree. In
other words, this model does not allow for degree variability
across layers.

The complete likelihood of this model can be obtained
in an entirely analogous fashion, simply by augmenting the
parameter set in Eq. (2) to include the collapsed degree
sequence, i.e., {θ} = {{el

rs},{bi},{ki}}, and using the likelihood
of the degree-corrected model [55].

Other useful variations are SBMs with mixed memberships
(e.g., [35–37]), in which nodes are allowed to belong to more
than one group. Here we use the formulation of Ref. [37],
where we need to replace the node partitions above by
overlapping partitions, {�bi}, where �bi determines the mixture
of node i, with br

i ∈ {0,1} specifying whether node i belongs
to group r , so that {θ} = {{�bi},{ers}}. Likewise, for the degree-
corrected version, we need to specify the (collapsed) labeled
degree sequence {�ki}, where kr

i is the degree of node i of
type r , leading to {θ} = {{�bi},{ers},{�ki}}. In both cases, we
simply replace the likelihood in Eq. (2) by the ones described
in Ref. [37].

B. SBM with independent layers

Alternatively, we may generate each layer as an independent
SBM, constrained only by the fact that the group memberships
of the nodes are the same across all layers (although this can
be relaxed in the overlapping version, as discussed below).
Furthermore, we allow nodes to belong only to a subset of the
layers, by including a N × C layer membership matrix {zil},
where each binary entry zil ∈ [0,1] determines whether node
i belongs to layer l. If a node does not belong to a given layer,
it is forbidden to receive edges of that type.

Using the shorthand {{θ}l} = {{el
rs}} and {φ} = {bi}, the

likelihood of the resulting layered block model is simply

P ({Gl}|{{θ}l},{φ},{zil}) =
∏

l

P (Gl|{θ}l ,{φ}), (4)

with P (Gl|{θ}l ,{φ}) being the likelihood of the traditional
stochastic block model as before, where Gl is the subgraph
containing only the edges of layer l and the nodes specified by
{zil}.

Like with the edge covariates model, here we are also free
to replace the traditional SBM by any other flavor, which
amounts simply to different likelihoods in the product of
Eq. (4). However, different from the SBM with edge covariates,
if we wish to include degree correction, we need to specify
the layer-specific degree sequence {kl

i}, where kl
i = ∑

j Al
ij is

the degree of node i in layer l, so that {{θ}l} = {{el
rs},{kl

i}}.
Therefore, unlike the previous case, this model allows for
degree variability across different layers, i.e., a node with a

large degree in one layer may possess very low degree in
another. Note that given the layer-specific degree sequence,
we do not need to distinguish between nodes that belong or do
not belong to a layer, since a node with a layer-specific degree
equal to zero will inherently not receive any edge in that layer.
Therefore, the parameters {kl

i} replace the parameters {zij },
which are removed from Eq. (4) in this case.

We again may wish to use mixed-membership models in
each layer, by using overlapping partitions as parameters,
i.e., {φ} = {�bi}. For the degree-corrected version, we need
to specify the labeled degree sequence at each layer, {�ki}l ,
where kr

i l
is the degree of node i of type r in layer l,

i.e., {{θ}l} = {{el
rs},{�ki}l}. We may view the labeled degree

sequence inside each layer as a weighted membership to each
group. Since these “weights” may change across the layers
(even becoming zero), this corresponds to a generalization
that allows the memberships to change arbitrarily between
the layers (despite the fact that the overall, unweighted
group mixtures {�bi} are constant across the layers). This is
a particularly useful property for temporal networks, which
allows group membership to change in time, as discussed in
more detail in Sec. VI.

C. Equivalence between models

The “independent layers” and “edge covariates” models
are equivalent in some situations and different in others. In
particular, in the non-degree-corrected case described above,
if all nodes belong to all layers, both models generate the
same networks asymptotically with the same probability. This
can be seen by employing Stirling’s approximation ln el

rs! ≈
el
rs ln el

rs − el
rs in Eq. (2), which makes it identical to Eq. (4).

Hence, as long as the edge counts in each layer are sufficiently
large, these models are fully equivalent. However, if nodes
belong only to a specific subset of the layers, these models are
not equivalent. In this case, only the model with independent
layers will take the heterogeneous layer memberships into
account, and hence it should be preferred. Since we assume
that the layer memberships are known a priori, there is no
reason to employ the edge covariates non-degree-corrected
model, since the independent layers model will always provide
an equal or better description asymptotically.1

The situation is different for the degree-corrected models.
Strictly, both model versions are not equivalent, since the
layered version allows for degree variability across layers,
whereas the covariate version does not. Hence, there are
networks generated by the layered model that cannot be
generated (or only with a vanishing probability) by the edge
covariates model. The opposite, however, is not true: A
layered network generated by the covariate version can always
be sampled with the independent layers version given an
appropriate parameter choice.

Since the SBM with the independent layers version always
encapsulates the edge covariate version, one might be tempted
to prefer it systematically. However, one needs to realize

1This may change if the layers are not entirely known and need to
be determined, as in the case with real-valued covariates in Sec. V.
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that the layered version requires more parameters than the
covariates version, either via the layer membership matrix {zil}
or the layer-specific degree sequence {kl

i }. Similar comparisons
can be made between specific flavors of both models (e.g.,
with overlapping groups or degree correction). Because of
the increased number of degrees of freedom in the model
specification, we risk overfitting the data by always choosing
the most constrained model. We discuss exactly how this
choice between models should be done in the next section.

III. SELECTING THE MOST APPROPRIATE MODEL

The proper way to select between alternatives is to perform
model selection based on statistical significance, and opt for
the more complicated model only if there is sufficient evidence
available in the data to compensate for the larger number of
parameters. Formulated in a Bayesian setting, as proposed
in Ref. [37], this selection procedure amounts to finding the
model that maximizes the posterior likelihood,

P ({θ}|{Gl}) = P ({Gl}|{θ})P ({θ})
P ({Gl}) , (5)

where {θ} is a shorthand for the entire set of model pa-
rameters (e.g., for the non-degree-corrected SBM with edge
covariates, we have {θ} = {{bi},{el

rs}}), P ({θ}) is the prior
probability on the parameters, and P ({Gl}) is a normalization
constant. Since in our context we are dealing with discrete
parameters, we can write P ({θ}) = e−L({θ}), where L({θ})
is the microcanonical entropy of the parameter ensemble.
Therefore, we have that − ln P ({θ}|{Gl}) = � + ln P ({Gl}),
with � = S({Gl}) + L({θ}) being the description length of
the data [56–58]. Hence this approach amounts to finding
the model that most compresses the observed data, i.e., the
one with the minimum description length, since to maximize
P ({θ}|{Gl}) is equivalent to minimizing � [34,37,59].

Here we observe that since the prior probabilities are
nonparametric, the whole procedure also becomes parameter
free, and hence no ad hoc choices are required a priori.
In particular for the SBM variants considered in this work,
the partition of the nodes, degree of overlap, the number of
groups, and the hierarchical structure are obtained in entirely
nonparametric fashion.

A. Choice of priors

In order to compute P ({θ}), we need to describe generative
processes for the parameters themselves. This means that for
the model variants above, we need to specify a generative
process for the partition into B groups {bi}, the layer
membership matrix {zil}, the collapsed (or layer-specific)
degree-sequence {ki} (or {kl

i}), and the layered edge counts
{el

rs}. (In the overlapping case, we need to do the same for the
overlapping partition and labeled degree sequences, which we
show in Appendix C.)

Choosing prior probabilities is a subtle issue, since it
depends on a priori assumptions about the data, which
usually depend on context, and often require domain-specific
knowledge. In general situations, a prudent approach is to
choose uninformative priors, which do not bias the estimation.
Here we will take the systematic approach of choosing a nested

sequence of priors and hyperpriors, so that an uninformative
prior is chosen only at the topmost level [34,37]. This approach
is intended to minimize the sensitivity of the choice of priors,
and accordingly provide a shorter description length in the
majority of cases.

To generate the partition into groups, we use the process
described in detail in Refs. [34,37], which corresponds to a
multilevel Bayesian process, where the distribution of group
sizes {nr} (where nr is the number of nodes in group r) is first
uniformly sampled from the set of all allowed possibilities,
and the partition is distributed uniformly, conditioned of the
observed size distribution, yielding a description length Lp =
− ln P ({bi}) given by

Lp = ln

((
B

N

))
+ ln N ! −

∑
r

ln nr !, (6)

where (( n

m
)) = (n + m − 1

m ) is the total number of m combinations
with repetitions from a set of size n.

For the independent layers model without degree correc-
tion, we need to specify the node memberships to each layer.
For this, we use the process described in detail in Ref. [37] to
generate overlapping partitions. We represent each line in the
{zil} matrix as a mixture vector �zi with C binary entries. We
formulate a multilevel Bayesian process, where the distribution
of mixture sizes {nd} (where di = ∑

l z
l
i is the mixture size of

node i, and nd is the number of nodes with di = d) is generated
from all possibilities with uniform probability, and the local
values of di are sampled from this distribution. The mixture
distribution {n�z} (where n�z is the number of nodes belonging
to mixture �z) is also sampled from the set of possible choices
with uniform probability, conditioned on the local mixture
sizes {di}, and finally the individual mixtures {�zi} themselves
are sampled from this distribution. This yields a description
length Lz = − ln P ({�zi}) given by [37]

Lz = ln

((
C

N

))
+

∑
d

ln

(((
C

d

)
nd

))
+ ln N ! −

∑
�z

ln n�z!.

(7)

The collapsed degree sequence can be generated with a
similar Bayesian process, described also in Ref. [37], which
yields a description length Lκ = − ln P ({ki}) given by

Lκ =
∑

r

min
(
L(1)

r ,L(2)
r

)
, (8)

with

L(1)
r = ln

((
nr

er

))
, (9)

L(2)
r = ln �r + ln nr ! −

∑
k

ln nr
k!, (10)

and ln �r ≈ 2
√

ζ (2)er .
For layered networks, we need a generative process for

the layer-specific degree sequence, {kl
i}. Although one could,

in principle, construct nonparametric distributions that incor-
porate arbitrary correlations among the degree sequences of
all layers, the dimension of such distributions is likely to
exceed the evidence available in typical data as the number
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of layers increases. Therefore, here we take the simpler route
and assume independent distributions at each layer, so that the
description length L	 = − ln P ({kl

i}) becomes simply

L	 =
∑

l

Lκ ({ki}l), (11)

where {ki}l should be understood as the collapsed degree
sequence of the graph containing only the edges belonging
to layer l.

Finally, to generate the edge counts {el
rs}, we note that they

can be viewed as the adjacency matrix of a layered multigraph
with B nodes [59]. Therefore, we may use the stochastic
block model itself to generate it, either with independent
layers or edge covariates. Since these models have their
own edge count parameters, this forms a nested sequence
of SBMs, encapsulating the multilevel hierarchical structure
of the network in a fully nonparametric fashion, yielding a
description length as described in Ref. [34],

Le =
L∑

h=1

Sm

({
el
rs

}h
,{nr}h

) +
L−1∑
h=1

Lh
p, (12)

where Sm({el
rs}h,{nr}h) is the appropriate entropy of the

layered SBM in hierarchical level h, and Lh
p is the description

length of the corresponding node partition.
At the top of the hierarchy, we have the remaining

parameters {El}, denoting the number of edges in each layers.
For completeness, they can be easily generated by including

a uniform prior P ({El}) = (( L

E
))

−1
; however, this only adds an

overall constant to the description length, which is not relevant
to any comparisons made in this paper.

To summarize, using the shorthand {θ} for the entire set of
parameters, we have for each given model (i.e., edge covariates
and independent layers, with any optional combination of
degree correction and group overlap) an overall description
length

� = S({θ}) +
∑

θ

Lθ , (13)

where S({θ}) is the appropriate SBM entropy and Lθ is the
description length of a specific parameter ensemble, chosen
from Eqs. (6) to (11) [and Eqs. (C1) to (C2)], as appropriate.

B. Confidence levels

As described above, selecting the model with the smallest
description length � is the appropriate manner of balancing
model complexity and goodness of fit. However, often we
desire a more refined approach where the alternative model
can be accepted or rejected with a degree of confidence, in a
nonparametric fashion. This can be achieved, as proposed in
Ref. [37], by inspecting the posterior odds ratio [60],


 = P ({θ}a|{Gl},Ha)P (Ha)

P ({θ}b|{Gl},Hb)P (Hb)
(14)

= exp(−��)
P (Ha)

P (Hb)
, (15)

where P ({θ}|{Gl},H) is the posterior according to hypothesis
H (i.e., a specific model class), P (H) is any prior belief

for hypothesis H, and �� = �a − �b is the difference in
description length between both hypotheses. For 
 < 1, we
have that Ha is rejected over Hb with a confidence that
increases as 
 decreases. Often the values of 
 are divided in
subjective intervals of evidence strength [61], as a convention
with 
 = 1/100 being considered the plausibility threshold,
below which Ha is decisively rejected in favor of Hb, and
with 
 ∈ [1/3,1] being considered only a negligible difference
between both models. In the case where there is no preference
for either model, P (Ha) = P (Hb), the value of 
 is called
the Bayes factor [61], which has the same interpretation. In
the following, we will always assume P (Ha) = P (Hb), and
impose 
 � 1, by always putting the preferred hypothesis in
the denominator of Eq. (14).

C. Inference algorithm

The description length of a given flavor of the SBM given
by Eq. (13) is an objective function that needs to be minimized
with some appropriate algorithm. The only known algorithm
that is guaranteed to find the global minimum is the exhaustive
computation of the description length for every possible
hierarchical partition of the network, which is unfeasible in
any practical scenario with networks with more than a few
nodes and edges. Therefore, we must resort to approximate
methods. Here we employ the multilevel Markov chain Monte
Carlo (MCMC) algorithm described in Ref. [62], together with
the hierarchical generalization presented in Ref. [34] and the
extension to overlapping groups presented in Ref. [37]. The
advantage of these algorithms is their good typical running
times and their capacity to overcome metastable states by
performing agglomerative moves.2 The division of the network
into layers does not alter these algorithms in any significant
way, other than a straightforward bookkeeping of the layer
membership of each edge. In particular, by using appropriate
sparse data structures that do not change in size if the number
of layers is increased, the division into layers does not alter
significantly the typical running times of the algorithms, which
remain O(N ln2 N ) in their greedy versions, independent of the
number of groups B and layers C, and hence are applicable to
reasonably large networks. An efficient C++ implementation
of these algorithms is freely available as part of the graph-tool
Python library [65] at http://graph-tool.skewed.de.

IV. WHEN ARE LAYERS INFORMATIVE?

Layers are informative of the network structure if their
incorporation into the model yields a more detailed description
of the data, when compared to a model that is only based
on the collapsed structure of the network. An illustration
of an informative layered structure is shown in Fig. 2. In
this example, an artificial network composed of two layers
is constructed. The collapsed graph corresponds to a fully
random network; however, the division of the edges into

2We note that, in principle, other algorithms such as belief
propagation [63] and spectral clustering [64] could be used as well,
provided they are suitably adapted to the nonparametric likelihoods
considered here.
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FIG. 2. (Color online) Artificial network example containing an
informative layered structure. (a) The collapsed graph possesses no
discernible structure, i.e., it corresponds to a fully random graph.
(b) When the division of edges into two layers [gray and red (light
gray)] is taken into account, a four-group structure is revealed.

layers is such that four fully assortative groups exist in one
of the layers. Clearly, the layered division yields structural
information that is not discernible in the collapsed graph. This
implies that, in more general cases, omitting such information
on the edges could potentially significantly obscure structure
present in the data [2,3].

However, it is important to realize that the opposite is also
true: If the edge distribution into layers is uncorrelated with
the group divisions, it can also obscure structural information
which would otherwise be revealed if the layer information
were to be ignored. This happens because increasing the
number of layers in the model also increases its effective
dimension. If the total size and density of the network remains
constant as the number of layers increases (and hence the
effective dimension of the model), the available data become
increasingly sparse, which reduces the inference precision,
since it becomes increasingly difficult to distinguish signal
from noise. An example of this is shown in Fig. 3, corre-
sponding to a collapsed B = 2 assortative SBM with equal-
sized groups and edge counts given by ers = 2E[δrsc/B +
(1 − δrs)(1 − c)/B(B − 1)]], with c ∈ [0,1] being a mixing
parameter, where the edges are distributed randomly in C

layers. As C increases, both model variants (edge covariates
and independent layers) display increasing degradation when
inference is performed, with the detectability transition [66]
shifting to higher values of c. For the SBM with independent
layers, the transition shifts to c∗ → 1 as C → E, and in this
limit no information at all on the graph structure can be
inferred. The version with edge covariates displays a relatively
superior performance, with the transition remaining at c∗ < 1
for C → E, since it is conditioned on the collapsed graph.
Nevertheless, even in this case, the degradation caused by
increasing C is very noticeable.

Because of this problem, it is important to consider if we
indeed need the layered structure to describe the large-scale
structure of a network, or if it needs to be coarse grained
or even discarded. This can be done by considering a null
model where the edges are distributed among the layers in
a manner that is entirely independent of the group structure,
and is parametrized only by the total number of edges in each
layer, {El}. Let us use the shorthand {θ} for the possible set

FIG. 3. (Color online) An excessive number of layers can ob-
scure network structure. Top: A collapsed two-group structure is
generated and the edges are randomly distributed in C layers. Middle
and bottom: As the number of edges per layer E/C diminishes,
the structure inside each layer becomes increasingly sparse and the
overall quality of the inference worsens. The middle panel shows
the normalized mutual information (NMI) between the planted and
inferred partitions, using the SBM with independent layers, for a
network of N = 104 nodes and average degree 〈k〉 = 2E/N = 14
as a function of the mixing parameter c, as described in the text.
The bottom panel is the same as the middle one, but using the
SBM with edge covariates. In both cases, the vertical lines mark
the detectability transition point for the collapsed SBM, c∗ = 1/B +
(B − 1)/(B

√〈k〉) [66].

of parameters of a collapsed SBM. This null model has a
likelihood given simply by

P ({Gl}|{θ},{El}) = P (Gc|{θ})
∏

l El!

E!
, (16)

where the first term is the likelihood of the collapsed SBM
and the second accounts for the random distribution of edges
across the layers (the above equation is valid only for simple
graphs; for multigraphs, see Appendix A). The full posterior
and its corresponding description length are computed just as
before, by including the priors for {ers}, {bi}, {�b}, {ki}, and
{�ki}. We can then compare the description length of this null
model with any of the other layered variants, and decide if
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FIG. 4. (Color online) Two generative models for a layered
social network of physicians [67]. (a) Inferred DCSBM for the
collapsed network, with the edges assumed to be randomly distributed
among the layers. (b) Inferred DCSBM with edge covariates, where
each layer corresponds to one type of acquaintance. Below each
figure is shown the posterior odds ratio 
, relative to preferred
model (a). The circular layout with edge bundling [68] represents
the inferred node hierarchy (indicated also by the red nodes and
edges), as explained in the text (see also Ref. [34]).

there is enough evidence to justify the incorporation of layers
that are correlated with the group structure.

As a concrete example, here we consider an empirical
social network of N = 241 physicians, collected during a
survey [67]. Participants were asked which other physicians
they would contact in hypothetical situations. The questions
asked were as follows: (1) When you need information or
advice about questions of therapy, where do you usually turn?
(2) And who are the three or four physicians with whom you
most often find yourself discussing cases or therapy in the
course of an ordinary week—last week for instance? (3) Would
you tell me the first names of your three friends whom you see
most often socially? The answers to each question represent
edges in one specific layer of a directed network. If one applies
the DCSBM to the collapsed graph (which provides the best fit
among the alternatives), it yields a division into B = 9 groups,
as shown in the left panel of Fig. 4, including also a division
into three disconnected components (corresponding to differ-
ent cities). Between the layered SBM versions, the model with
edge covariates turns out to be a better fit to the data (i.e., yields
a lower description length) and divides the network into B = 8
groups, as shown in the left panel of Fig. 4. When inspecting
the edge counts visually, one does not notice any significant
difference between the patterns in each layer. Indeed, when
comparing the description lengths between the null model with
random layers above and the SBM with edge covariates, we
find that the latter is strongly rejected with a posterior odds
ratio 
 ≈ 10−51. Therefore, there is no noticeable evidence in
the data to support any correlation of layer divisions with the
large-scale structure present in the graph. This suggests that
the important descriptors of this social network are mainly
the overall acquaintances among physicians, not their precise
types (at least as measured by the survey questions).

We now turn to another example, where informative layered
structure can be detected. We consider the vote correlation
network of federal deputies in the Brazilian national congress.
Based on public data containing the votes of all deputies in

all chamber sessions across many years,3 we obtained the
correlation matrix between all deputies. We constructed a
network by connecting an edge from a deputy to other 10
deputies with which that deputy is most correlated in the
considered period.4 We then separated the network in two
layers, corresponding to two consecutive four-year terms,
1999–2002 and 2003–2006. Deputies not present during the
whole period were removed from the network, yielding a
network with N = 224 nodes and E = 7247 edges in total.
When fitting the DCSBM for the collapsed network (which is
again the best model), we obtain the B = 11 partition shown
in the left panel of Fig. 5. It shows a hierarchical division that
is largely consistent with party and coalition lines, as well as
positions in the political spectrum (with a noticeable deviation
being a group of left-wing parties composed of PDT, PSB, and
PCdoB that are grouped together with center-right parties PTB
and PMDB). When incorporating the layers, the best model
fit is obtained by the DCSBM with independent layers, which
yields a B = 11 division mostly compatible with (but not fully
identical to) the collapsed network, although with a different
hierarchical structure, as can be seen in the right panel of Fig. 5.
However, the layered representation of this network reveals a
major coalition change between the two terms, consistent with
the shift of power that occurred with the election of a new pres-
ident belonging to the previous main opposition party: In the
1999–2002 term, we see a clear division into a government and
opposition groups (as captured in the topmost level of the hier-
archy), with most edges existing between groups of the same
camp, corresponding to a right-wing/center government led by
the PSDB, PMDB, PFL, DEM, and PP parties, and a left-wing
opposition composed mostly of PT, PDT, PSB, and PCdoB. Af-
ter 2002, we observe a shifted coalition landscape, with a left-
wing/center government predominantly formed by PT, PMDB,
PDT, PSB, and PCdoB, and an opposition led by PSDB,
PFL, DEM, and PP. Because of this noticeable change in the
large-scale network structure—that is completely erased in the
collapsed network—the null model with random layers ends
up being forcefully rejected with 
 ≈ 10−111, meaning that the
layered structure is very informative on the network structure.

In the above examples, we made a comparison between the
layered model and a null model with fully random layers. In
some scenarios, we might be interested in a more nuanced
approach, where the layers are coarse grained with a more
appropriate level of granularity. This can be done by merging
some of the layers into bins, such that inside each bin the layer
membership of the edges is distributed regardless of the group
structure. Let � specify a set of layers that were merged in one
specific bin, and {θ}{�} be a shorthand for the possible set of
parameters of a layered SBM {G�} (with independent layers or
edge covariates) where each bin � corresponds to an individual
layer. The likelihood of this model conditioned on a specific
bin set {�} is given by

P ({Gl}|{θ}{�},{�}) = P ({G�}|{θ}{�})
∏

�

∏
l∈� El!

E�!
, (17)

3Available at http://www.camara.gov.br/.
4We experimented with other threshold values and obtained similar

results.
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FIG. 5. (Color online) Network of vote correlations among federal deputies of the Brazilian national congress during two consecutive
four-year terms, 1999–2002 and 2003–2006. (a) DCSBM fit for the collapsed network obtained by merging both terms, corresponding to a null
model where the edges are randomly distributed between the layers. The group labels correspond to the predominant parties inside each group,
determined after the inference had been performed (the size of the label indicates the proportion of each party inside the group). (b) DCSBM
with independent layers for the network divided into two terms. In both cases is shown the posterior odds ratio 
 relative to the best model [in
this case (b)]. The layout is the same as in Fig. 4.

where E� = ∑
l∈� El is the number of edges in bin � (the above

equation is valid only for simple graphs; see Appendix A for
the more general case with parallel edges). When considering
the full posterior, we need to include the priors for {θ}{�} as
before, but also for the binning {�} itself. If the layers can be
grouped arbitrarily, we have

P ({�}) =
∏

� n�!

C!

((
M

C

))−1

, (18)

where n� is the number of layers in bin � and M is the total
number of layer bins. If the layers are inherently ordered, and
thus can only be contiguously binned, this becomes instead
simply

P ({�}) =
((

M

C

))−1

. (19)

If we make M = 1, we recover the original null model
above. Algorithmically, one can find the appropriate bins in
a variety of ways. A simple approach is to use agglomerative
hierarchical clustering, i.e., by putting at first each layer in
its own bin, and subsequently merging bins according to the
reduction of the overall description length. We explore this
idea further in Sec. V, when dealing with real-valued edge
covariates.

Layers as evidence for overlaps

There is an important correspondence between layered
networks and overlapping structures of collapsed networks.
Namely, the inference of overlapping structures in collapsed
graphs can, to some extent, be interpreted as the inference
of latent layers [40] to which the edges belong, where
each (connected) group pair (r,s) would correspond to a
different layer. Because of this correspondence, any a priori

knowledge of the division into layers can fundamentally
alter the interpretation of the data in situations where a
nonoverlapping model would otherwise be considered a better
fit for the collapsed network [37].

This is better understood by considering the following
generative process as an example: A network is generated
with C layers, where in each layer E/C edges are randomly
placed between the nodes that belong to that layer. The layer
membership mixtures are parameterized as n�z ∝ ∏

l μ
zl , up to

a normalization constant, and with μ ∈ [0,1] controlling the
degree of layer overlap: For μ → 0, we obtain asymptotically
nonoverlapping layers with nl = N/B nodes at each layer l,
and for μ = 1 all mixtures �z have the same size. This process
corresponds to a layered SBM with only one group, B = 1,
and the aforementioned layer structure. If we consider only
the collapsed graph, with the layer information removed, the
corresponding topology can be generated in two alternative
ways: (1) An overlapping SBM with B = C groups and
mixtures �bi = �zi , and edge counts ers = 2Eδrs/B. (2) A
nonoverlapping SBM with each individual mixture as its own
group, indexed by r�b = ∑B

s=1 bs2s−1 ∈ [1,2C − 1], resulting
in a total of B = 2C − 1 groups, and edge counts given by

er�b1
r�b2

=
∑
rs

br
1b

s
2

ers

nrns

nr�b1
nr�b2

. (20)

The description length of the collapsed graph generated with
the layered model is

�c = 2E − E ln
2EC

N2
+ Lz({n�z(μ)}), (21)

which is, in fact, identical to the overlapping SBM, correspond-
ing to C → B and n�z(μ) → n�b(μ) in the above equation. The
nonoverlapping model, on the other hand, has a description
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FIG. 6. (Color online) Top left: Description length per edge
�/E for the collapsed planted partition model described in the
text as a function of the overlap parameter μ, with N = 103,
〈k〉 = 2E/N = 10, and B = 4 (illustrated in the lower left panel).
The two curves show the description length of the planted overlapping
model, and the equivalent nonoverlapping model with 2B − 1 groups
(illustrated in the lower middle panel). For values of μ below the
intersection point only, the original overlapping model is preferred
over the nonoverlapping one. Top right: The same as in the top left,
but with layer information included. The third curve corresponds to a
B = 1 model with C = 4 independent layers (illustrated in the lower
right panel), whereas the first two curves correspond to the same
collapsed models as in the left panel, but with a random distribution
of edges in the C = 4 layers. The model with independent layers is
preferred over the alternatives in the entire parameter range.

length given by

�′
c = 2E − 1

2

∑
�b1 �b2

er�b1
r�b2

ln
er�b1

r�b2

nr�b1
nr�b2

+ Lp

({
nr�b (μ)

})
, (22)

where Lp({nr�b(μ)}) corresponds to a nonoverlapping partition
of individual mixtures. As discussed in Ref. [37], we may
have �′

t < �t if the number of nodes at the intersections
is sufficiently large. Therefore, the nonoverlapping model
may indeed be considered the most parsimonious of the
three in that case, which is arguably nonintuitive, since the
overlapping SBM seems closer to the original model. However,
the situation changes when the observed data includes the layer
information on the edges. In this case, we must include the
random division of the edges into layers in the two collapsed
models, by adding, according to Eq. (16), the following term
to the description length:

ln E! −
∑

l

ln El! = ln E! − C ln E/C!. (23)

Because of this difference, the layered model with B = 1
becomes always the preferred choice (see Fig. 6). Therefore,
when edge information is available, it can significantly change
which model is preferred, and tip the scale towards the
overlapping description. However, we emphasize that this
extra information does nothing regarding the decision between
both collapsed models; it only supports the acceptance of the
third layered variant.

It is important to consider the above comparison together
with the results of Ref. [37], which showed that the overlapping
variants of the SBM are seldom the best fit for the majority
of empirical networks used for that work, which contained
no layer information. As the example above shows, this
assessment may change (at least in principle) if any division
among the edges can be assumed a priori. Therefore, for a
fair assessment of the best generative process, it is imperative
to leverage all available information, in particular the division
into layers, or the existence of edge covariates.

V. EDGES WITH REAL-VALUED CORRELATES

The models discussed so far are capable of generating
data with discrete values associated with the existing edges.
However, in many important situations, the values associated
with edges are real values, corresponding to weights, distances,
capacities, etc. Here we show how the previous models can
be straightforwardly adapted to these cases as well, using a
discretization approach. As before, we simply assume that the
graph is divided into C discrete layers; however, we ascribe
to each layer l a real value xl , randomly sampled from a
probability density function (PDF) ρ(x), such that all edges
in the same layer possess the same edge correlate. In the case
that all edges have a different correlate, we will have C = E

layers. As in Sec. IV, we assume that the layers themselves
are grouped into bins {�}, with {θ}{�} being a shorthand for the
possible set of parameters of a layered SBM (with independent
layers or edge covariates) {G�} where each bin � corresponds
to an individual layer. The whole PDF of the data generated in
this manner becomes

P ({Gx}|{θ}{�},{�}) = P ({Gl}|{θ}{�},{�})
∏

l

ρ(xl), (24)

where the first term is given by Eq. (17). The advantage of
this approach is that the overall correlate PDF ρ(xl) amounts
to constant multiplicative factor in the likelihood, independent
of our choice of bins, and therefore cannot influence either
the maximum likelihood estimate or the maximum of the
posterior distribution, and therefore for these purposes we
can avoid specifying it altogether. This contrasts with another
generalization of the SBM for real-valued covariates proposed
in Ref. [49], which requires the exact form of the correlate
distribution to be specified prior to inference (on the other
hand, the approach presented here is based on the discretization
of the correlates into bins, whereas in Ref. [49] no binning is
necessary).

In order to choose the best number of layers, we maximize
the posterior P (θ{�},{�}|{Gx}), which involves the priors of
the SBM parameters, as well as for the bins {�}, as given
by Eq. (19). Therefore, both the number and the boundary
positions of the bins can be determined in a nonparametric
manner, based only on the data.

As an example, we consider the global airport network as
collected by openflights.org. This is a directed multigraph,
where the N = 3253 nodes are airports and the E = 67 154
edges represent existing flights. Since the position of the
airports is known, we can characterize the edges by their
geodesic distance, which we treat as a covariate. In applying
the DCSBM with independent layers, using the method
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FIG. 7. (Color online) Global airport network of openflights.org. Top left: Distribution of edge distances. The bins labeled from (a) to (e)
correspond to the best division of the edges into layers according to the method described in the text. Top right: Spatial distribution of airports.
The colors correspond to the division of the network into groups, according to the best fit of the DCSBM model with independent layers (the
same color coding is used in the remaining panels). Bottom: Individual layers of the DCSBM fit, corresponding to the bins in the top panel.
The layout is the same as in Fig. 4.

outlined above to find the optimal binning of the distances, we
find a division into B = 34 groups, and M = 5 distance bins,
as shown in Fig. 7. When inspecting the spatial distribution
of airports, we observe that the obtained groups correspond
to fairly contiguous geographical regions (see Fig. 7, top
right). The distribution of edges across the layers reveal
a hierarchical organization strongly correlated with flight
distance: The first layer captures local “intragroups” with
relatively short distance, whereas the upper layers capture
increasingly “intergroups” flights with longer distances. The
nodes with large degree tend to be those that belong to multiple
layers, i.e., major airport hubs that service both short- and
long-distance flights.

VI. TIME-VARYING NETWORKS

Temporal networks can be viewed as a special case of
networks with real-valued edge correlates representing their
existence at a specific time, xi = ti , and hence we can use
the same approach as in the previous section.5 By using the
different model versions presented in this work, different types
of temporal patterns can be captured. In all cases, by separating
the network into time-bins, it is assumed that inside each bin
the edges are placed between the groups in a random fashion,
conditioned only on the group membership of the receiving
nodes. When using the SBM with edge covariates, the nodes
are assumed to belong to all time layers, and as such can
receive edges at all times, depending only on the activity of

5Other formulations of temporal networks are possible. For in-
stance, one could attribute to each edge a tuple �xi = (tb

i ,t e
i ), containing

a creation and deletion time, respectively. The approach presented
here can be adapted to such a multivariate case in a straightforward
manner, by using multidimensional bins.

the entire group at any give time. On the other hand, the
version with independent layers allows for a individualized
placement of the nodes into the layers (independently of
their group membership) such that their activity may be
separately regulated. The activity inside each layer can be
even more fine-tuned in the degree-corrected model with
independent layers, since the degree of each node at each
time window is separately specified. In all these examples,
the group memberships are forced to be stable in time. This
can be changed by using an overlapping SBM [37], where
the group memberships (which are in this case attributes of
the half-edges of the graphs) can change arbitrarily in time. As
before, given some empirical observation, the most appropriate
model choice is the one with the minimum description length.

The discretization approach presented here is similar in
spirit to the detection of “change points” in networks [39].
Since it is assumed that inside each time window the edges
are placed in a manner that is independent of their time
relative to one another, the most appropriate time binning
is the one that partitions the time series in such a way that
inside each time window, the large-scale network structure
does not change significantly. The interface between two
bins can therefore be interpreted as change points where
the large-scale structure has changed in a measurable and
statistically significant way.

Here we show an application of this method to a time-
resolved proximity network between N = 126 high-school
students, recorded over a period of four days in 2011 [69], of
which we isolated only the first day to simplify the analysis. In
this experiment, volunteering students wore proximity sensors
during school hours, which recorded an edge and its time if
two students were below a distance threshold for a prespecified
amount of time. If we apply the DCSBM with independent
layers to this data set (again providing a better fit), the best
partition is found for B = 33 groups, and the whole time series
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FIG. 8. (Color online) Proximity network between high-school students [69] (retrieved from http://sociopatterns.org). Top: Network activity
(i.e., probability density of an edge being present) as a function of time, over a period of one day. The bins labeled from (a) to (j) correspond
to the best division of the edges into layers according to the method described in the text. Bottom: Individual layers of the DCSBM fit,
corresponding to the bins in the top panel. The layout is the same as in Fig. 4.

is divided into M = 10 periods, as can be seen in Fig. 8. The hi-
erarchical partition is in accordance with the existence of three
classes, as can be seen in the first levels of the hierarchy. Each
period marks a region in time where a distinct large-scale struc-
ture is observed. These periods alternate between those with
high activities and those with a relative quiescence, presum-
ably representing breaks (with many edges between classes
and a perceived synchrony between the PC and PC∗ classes)
and class periods (with few edges between classes), respec-
tively, although this information is not available in the data set.

In the above example, the best fit was obtained for a
nonoverlapping SBM, implying that the group memberships
remain stable in time. However, in some situations, movements
between groups can be inferred. As an example, we return
to the network of vote correlations of the Brazilian national
congress. Differently from before, now we inspect a single
four-year term from 2007 to 2010 and we separate each year
into one layer, yielding a network with N = 475 nodes and
E = 9053 edges in total. In this case, a best fit is obtained
for an overlapping DCSBM with independent layers and
B = 12 groups, as seen in Fig. 9. The hierarchical division
clearly separates between a center-left government coalition
(the largest topmost branch) and the right-wing opposition
(the smallest topmost branch). In the government branch, we
observe the existence of many “peripheral” deputies, which
are not strongly correlated with each other and instead are
aligned with smaller groups of more connected nodes, which

are divided mostly along party lines. This property is weakened
in the later years of the term, as more edges are observed
between peripheral deputies. The overlapping structure found
is correlated strongly with the layered divisions, such that by
observing only one layer in isolation, no overlaps are present.
Therefore, a fraction of the deputies seems to completely
change their alignment patterns in successive years, as shown
in the bottom of Fig. 9. The flow between groups is mostly
confined to either the government or opposition groups, with
the majority of the activity occurring inside the government
faction. Although some deputies did change their party
affiliation during this period, the observed flows seem mostly
uncorrelated with this, and instead appear to show a more
fine-grained alignment between deputies that is not uniquely
defined by their party membership.

VII. CONCLUSION

We presented a framework for the nonparametric inference
of mesoscale structures in layered, edge-valued, and time-
varying networks, based on a variety of modifications of the
stochastic block model, incorporating features such as hier-
archical structure, degree correction, and overlapping groups.
These models were formulated in a Bayesian setting that allows
the identification of the most appropriate model variant based
on statistical evidence, corresponding to a principled balance
between model complexity and quality of fit.
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FIG. 9. (Color online) Network of vote correlations among fed-
eral deputies of the Brazilian national congress in the four-year term
from 2007 to 2010. The top panel shows the B = 12 division obtained
by fitting an overlapping DCSBM with independent layers, with all
layers collapsed into one figure. The group labels correspond to the
predominant parties inside each group. The individual layers can be
seen in the middle panel. The bottom panel shows the flows of deputies
between each group after each year. The edge thickness corresponds
to the amount of deputies, with the largest flow corresponding to 10
deputies, and the smallest 1 deputy.

We have identified an important pitfall when analyzing
network data with layered structure, where the inclusion of
many layers that are uncorrelated with the mesoscale structure
can obstruct its identification. This problem cannot be ne-
glected if the number of layers becomes large, as in the case of
temporal or edge-value networks where the layers correspond
to arbitrary bins of the edge covariates. We expect this problem
to also affect nonstatistical methods based on modified
modularity maximization [4,20,21,26,28], as well as flow
compression [22] and non-negative tensor factorization [27].
In our setting, we have shown how this can be completely
avoided by comparing the inferred model with a null model
that assumes that the layers are uncorrelated, or with a coarse-
grained version that condenses uncorrelated layers into bins.

We also showed how this framework can be extended
in a straightforward manner to networks with real-valued
attributes on the edges, and temporal networks. The proposed
methodology is capable of identifying specific scales—both
of the edge values and in time—where the mesoscale structure
does not change significantly, enabling the identification of the
most appropriate coarse graining of the network in discrete
layers, as well as the detection of “change points” of the
network structure.

The unsupervised inference of the most parsimonious
layered model, as well as the appropriate granularity of the
layers, based solely on statistical evidence and requiring no
ad hoc parameters, provides a principled and robust method
to analyze multilayer, temporal, and edge-valued network
data. This approach is likely to be directly useful in a
variety of tasks, such as the nonparametric modeling of
correlation networks [21], the prediction of missing valued
edges [47,48], the identification of relevant time scales in
temporal networks [70] and its relation to dynamical processes
taking place on them [71,72], among many others.
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APPENDIX A: MULTIGRAPHS

For multigraphs, we need to consider that parallel edges
that belong to the same layer are indistinguishable. Hence the
likelihoods of Eq. (2) must be corrected to read

P ({Gl}|{θ})

= P (Gc|{θ})
∏
r�s

∏
l m

l
rs!

mrs!

∏
i>j Aij !∏
i>j,l A

l
ij !

∏
i Aii/2!∏
i,l A

l
ii/2!

. (A1)

The last term does not depend on the SBM parameters.
Therefore, when doing inference, the difference amounts to
a multiplicative constant, which does not alter the position of
the most likely network partition and thus could, in principle,
be discarded. However, this difference is important when
comparing models with a different number of layers, as will
be done below.

For the independent layers model, it suffices to use the
appropriate multigraph likelihood in each layer, as is given in
Refs. [37,55].

Likewise, when considering the null model of Sec. IV,
the existence of parallel edges must also be accounted for.
Therefore Eq. (16) must be modified to read

P ({Gl}|{θ},{El})

= P (Gc|θ ) ×
∏

l El!

E!

∏
i>j Aij !∏
i>j,l A

l
ij !

∏
i Aii/2!∏
i,l A

l
ii/2!

. (A2)
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In the case of binned layers, it must be analogously modified
to read

P ({Gl}|θ{�},{�})

= P ({G�}|θ{�})
∏

�

∏
l∈� El!

E�!

×
∏
i>j

∏
�

A�
ij !∏

l∈� Al
ij !

∏
i

∏
�

A�
ii/2!∏

l∈� Al
ii/2!

. (A3)

APPENDIX B: DIRECTED GRAPHS

Directed graphs represent straightforward modifications
of the models presented in the main text. For the collapsed
likelihoods and priors, we refer the reader to Refs. [37,55].

For the model with edge covariates and the possibility of
multiple edges, the total likelihood of Eq. (2) becomes simply

P ({Gl}|{θ}) = P (Gc|{θ})
∏
rs

∏
l m

l
rs!

mrs!

∏
ij Aij !∏
ij,l A

l
ij !

. (B1)

And again, for the independent layers model, it suffices to use
the appropriate directed likelihood in each layer, as is given in
Refs. [37,55].

Likewise, when considering the null model of Sec. IV, for
directed graphs (with possible multiple edges), Eq. (16) must
be modified to read

P ({Gl}|{θ},{El}) = P (Gc|θ )

∏
l El!

E!

∏
ij Aij !∏
ij,l A

l
ij !

, (B2)

and in the case of binned layers,

P ({Gl}|θ{�},{�})

= P ({G�}|θ{�})
∏

�

∏
l∈� El!

E�!

∏
ij

∏
�

A�
ij !∏

l∈� Al
ij !

. (B3)

APPENDIX C: MODEL SELECTION FOR
OVERLAPPING GROUPS

In the case of the SBM with overlapping groups, we need to
specify a generative process for the overlapping partition into
B groups {�bi}, and the collapsed (or layer-specific) labeled
degree sequence {�ki} (or {�kl

i}).
To generate the overlapping partition into groups, we use

the hierarchical process described in detail in Ref. [37],
already described in the main text adapted to the generation
of the layer-membership matrix {zil}, which yields Lp =
− ln P ({�bi}) given by

Lp = ln

((
D

N

))
+

∑
d

ln

(((
B

d

)
nd

))
+ ln N ! −

∑
�b

ln n�b!,

(C1)

where D � B is the maximum mixture size d. The case
without group overlaps amounts to D = 1, reducing it to
Eq. (6).

The collapsed overlapping degree sequence can be gen-
erated with a similar Bayesian process, described also in
Ref. [37], which yields a description length Lκ = − ln P ({�ki})
given by

Lκ =
∑

r

ln

((
mr

er

))
+

∑
�b

min
(
L(1)

�b ,L(2)
�b

)
, (C2)

with

L(1)
�b =

∑
r

ln

((
n�b
er

�b

))
, (C3)

L(2)
�b =

∑
r∈�b

ln �r
�b + ln n�b! −

∑
�k

ln n
�b
�k!, (C4)

where ln �r
�b ≈ 2

√
ζ (2)er

�b. For the case without overlaps, this

reduces to Eq. (8). The edge-specific overlapping degree
sequence is obtained according to Eq. (11).
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[2] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P.
Gleeson, Yamir Moreno, and Mason A. Porter, Multilayer
networks, J. Complex Networks 2, 203 (2014).

[3] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J.
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Mikko Kivelä, Yamir Moreno, Mason A. Porter, Sergio Gómez,
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