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In this paper, we extend the Hardy-Ramanujan-Rademacher formula for p(n), 
the number of partitions of n. In particular we provide such formulas for p(j, n). 
the number of partitions of j into at most n parts and for A(j, n, r), the number of 
partitions of j into at most n parts each <r. 0 1991 Academic Press, inc. 

1. INTRODUCTION 

In this paper we extend the celebrated Hardy-Ramanujan-Rademacher 
theorem to partitions with restrictions. The new idea is to introduce a 
differential operator into the formula. 

This work was initiated by the first author who wanted to find a practi- 
cal formula for computing A(j, n, r), the number of partitions of j into at 
most n parts each 6.r. A(j, n, r) has a very important application in 
statistics, the Wilcoxon rank sum test [7]. After months of computations 
using Fourier series, the saddle point method, and finally Fourier transfor- 
mations of distributions, he was led to the formula in this paper, but 
without a correct proof. During this time he beneiitted from discussion 
with Lars Hormander who also wrote a computer program to check the 
formula numerically. For this we are most grateful. 

During an IMA workshop in Minneapolis in March 1988 the authors 
met. After a few days the second author proved the formula by induction 
using Rademacher’s exact formula [ 10, p. 274, Eq. (120.10)] and a result 
by Hans Peterson [8]. There were, however, some doubts about the 
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convergence of a doubly infinite series. These have been avoided in the 
simplified proof given here. 

Finally we want to thank the organizers of the Applied Combinatorics 
workshop at The Institute for Mathematics and Its Applications, at the 
University of Minnesota. 

2. BACKGROUND FORMULAS 

To indicate how the formula was found, we first provide a heuristic 
approach to a result of Glaisher [3] from 1909, wherein the interplay 
between 5 and D = d/d< is crucial. 

THEOREM 1. Putting N=2j+ (n’+n)/2, we have 

(2.1) 

where D = d/dN, and p(j, n) is the number of partitions of j into at most n 
parts. 

Remark 1. Expanding the differential operator we obtain Glaisher’s 
formula 

5s: + 2s, 
’ 5760(n - 5)! 

(!)-‘- . ..I. 
2 

(2.2) 

where Sk = Cz= L vk. 

Remark 2. The expression (d/dN)f(N) is shorthand for ((d/dx)f(x)),=,. 
This notation was begun by Hardy and Ramanujan [S]. 

Heuristic Sketch. We have the generating function [2, pp. 3-41 

z p(j, n) ti= fi (1- t”).-I. (2.3) 
j=O ,’ = 1 

Putting t = eirp we have for Im(cp) > 0 
CL 

C p(j, n) eVV = f  

j=O 0 cp 
‘* ,-iW+ ‘)d*) “cl sin~~~,2), 

and we formally compute the Fourier coefficients 
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We put 5 =j+ (n* + n)/4 and use the notation and results of Hiirmander 
[6, pp. 160, 1671. Thence 

cc 
-n 71 5-l 

rp e 
-itv &,=_- since 5 > 0. 

-a, tn (n- l)!’ 

Approximating J’Ln by JEm and using 

f(9) g(P) =f( - 6) i(5)> 

where 

6=-i-$, 

we obtain 

PUT n) = 1 
( ii 

w2 
2(n - l)! y= r sin(ivd/2) ) 

C-l 

which is equivalent to the statement in the theorem. j 

Remark. We neglected the signularities in cp = 7112, cp = 1r/3, 2x13, etc. If 
these were considered we would obtain Sylvester’s 2nd, 3rd, etc. “waves” in 
the quasi-polynomial p(j, n). 

Next we state a result from [l] (see also [12]) for A(j, FZ, r) when j 
is close to nr/2. These values of j are the middle values since A( j, n, r) = 
A(nr-j,n, r) for j=O, 1, . . . . nr. Also since A(j, n, r) = A(n, j, r) we restrict 
our attention to j. 

THEOREM 2. Put p = n + r + 1 and v = dm( j - nr/2). Then 

4, n, r) ~(n~r)~e~uz~2{l-&-(~+~-$)(3-6u2+v4)]. (2.4) 

COROLLARY. Let c(n, r) be the number of SL(2, C)-invariants of degree 
r of a binary form of degree n. Then by Cayiey-Sylvester [ 11, p. 651 

c(n,r)=A(~,n,r)-A(~-I,n,r)!z-$=(n:r)(-$-)l-2. (2.5) 

We note that in [l, 121 better approximations are given. 
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3. THE MAIN RESULTS 

THEOREM 3. Let f(x) = CF= O aj.tJ he a polynomial. Define 

N-l 

S,(x)= j-j (l-x’) 
v=l 

and 

(3.1) 

z=z 
P.Y = 

,-W-ipnlq) 
> (3.2) 

where D = d/d< and 5 = Zj- l/12. Then 

a- = $ f I 1 
4= 1 (p,q)= 1 

q312w,, e-2jcpnil”‘f(z) S,(z) D2 cash 5 m, (3.3) 

where o,, is a certain 24qth root of unity [2, p. 71, Eq. (5.2.4)]. 

Proo$ By additivity it is enough to prove the theorem for the function 

f(z) = 21, 

where 3L E N. From Euler’s pentagonal number theorem [2, p. 111 we have 

S,(z)= 1 + 1 (-l)“(~~(~~-~)/~+z~(~~+‘)‘*) (modz-‘) (3.4) 
k(3k- lV2c j  

(considered in the formal power series ring C[zJ). 
Now let p*(j) denote the right hand side in the Hardy-Ramanujan- 

Rademacher formula [ 10, p. 274, Eq. (lZO.lO)], i.e., 

P*(j) = y f c q3/20,q e-2@ni~y D2 cash 3 &. (3.5) 
y= 1 cp,y,= 1 

Then for all j E Z 

P(j) 

i 

if j>O 

p*(j)= 1 if j=O (3.6) 
0 if jt0, 

where the last line is due to Hans Peterson [S] (see also Rademacher 
[9, p. 711). Let 

gN(z)=zj.+ f (~~)k{Z~+(k(3k-~IM2~+z~+(~~3k+~)/2)}, 
k=I 

where N is to be determined later. Then 
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4,/1 f 2 q3’20p,q e-2’p”i’qg,(z) D2 cash r m 
IL 

q=l (p,q)=l Y 

=p*(j-A)+ 5 (-l)k i ( 
p* j-l- 

k(3k- 1) 

k=l 
2 > 

k(3k + 
+p* (j-n- 2 

1) 

1 ifj=n = 
0 otherwise, 

provided we choose N such that 

j-A-- N3N-l)<0 
2 ’ 

(3.7) 

e.g., N B 1 + J2( j- 1)/3. 
The second equality follows from (3.6). Note that it is legitimate to sum 

over q first since we have only a finite sum over k and the sum on q is 
absolutely convergent. To show the first equality it is enough to show 

f-$ f C q3~2~p,qep2j~ni~~zJD2cosh~/@=p*(j-S). (3.8) 
q=l (p,q)=l 

But this follows immediately from Taylor’s formula 

eCZsSh(lf)=h(t-2s) 

and the definition of p*. 
To complete the proof we only have to note that 

gN(Z) = z+?,(z) (mod z*+‘) 

for all 1 k 0 if N is chosen as above. 1 

As our first application of Theorem 3, we take 

(3.9) 

where A( j, n, r) was defined in Section 1. 
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THEOREM 4. 

C q3/20p,q ep2jp*lfq [n: ‘1 sjcz) 
q= 1 (p.q,= I z 

x D* cash $ ,,I$?. (3.10) 

If we choose r 2 j, we obtain an asymptotic formula for p(n, j). 

THEOREM 5. 

P(.i n) = - 4 rij f C q3120p,q e -2jpnilq 
4=l (p,q)=l 

xv;lfl (1-z”)xD’cosh;@. 

4. COMPUTATION OF p(j,n) 

In this section we shall examine in detail how (3.11) can actually be used 
to compute effectively p(j, n). 

We note by [2, p. 191 

j-l 

Rj.n(x)= n (l-x’) 
LJ=n+l 

speo (1 -x”+‘+~) (modxj) 

l-1) x k k(k+1)/2+kn 

,=,(l-X)(1-x2).(1-xk) 
(mod x’) (4.1) 

provided we choose N so that N(N + 1)/2 + Nn > j - 1. 
Consequently for our differential operators (mod z’) 

R,,,(z) = 1 + 2 (- l)kzk(k+‘)/*+kn 
k=l 

lt( 
p=l 

1 +cothp(D-F)). (4.2) 

We now rewrite Theorem 5 in the form 

P(j, n) = 1 @,(j, n), 
q=l 

(4.3) 
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where 

aq(j,n)=y q312 1 w,,,e~2jpxi~qRj~,(z)D2~~~h~~. (4.4) 
(p,y,= 1 4 

Then we have 

-k(Zn+k+l)D 

x(l+cothD)...(l+cothkD) D’coshnm 
I 

4G 2 D3 D5 0’ 
=7 

D2-,-0’+*)D ‘;+$+a-90+945v . . . 
+,-(4n+W 

D3 4 
$+if+32+,+&+ . . 

-,-@n+12W’ &+$+f!.#+!!D’+ 
5 133 - __ 

192D+ 1152+ “’ 
cash rc ,/@. 

Here D2 gives the first term in the Hardy-Ramanujan formula. The advan- 
tage with the formula for @r is that 

eC’Dh(t) = h(t - v) 

by Taylor’s fromula. If k(2n +k + 1) > 2j- l/12 then sinh (resp. cash) is 
changed into sin (resp. cos) and we neglect these terms. 

L. Hiirmander has written a program in APL that computes @r. In prac- 
tice we replace cash n Jr/3 by f exp(rc a) and use the formula 

Dk cad= bkQk(z) eaA (kEH) 

with z = l/(a 3) and b = a/(2 3). The Qk are polynomials satisfying 
Qo=Q,=l and 

Q k+l=Qk-l-(2k-l)ZQk 

(also valid for negative k). The Qk are related to the modified Bessel 
functions Imk _ ,,2. 

We now turn to the higher order terms Gjq for q 2 2. It is easily shown 
that they are real (it follows from w,-,,, = o~,~). 
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q = 2. 
We have 

It follows 

Q2(jy n) 

= (-1)’ .~{~z+(-I)~[e~12.i’lD(~+~-%+~+ -) 

+e- (6n+12)0 

Here it can occur that the third term is larger than the second. 

q= 3. 
We obtain 

Q3(j,n)=$ D2-(A3(j-n-1)e-2”D-A3(j-n)e-‘2”+2)D) 
i 

D2 4D4 4D6 

3-9+9+ 
+ [A3(j-2n)(e-4"D+e-(4"+6'D) 

-A3(j-2n-2)e-(4”+2)D--3(j-2n-1)e-(4”+4)D] 

D’ 20 
x T-ijD4+FD6+ ... 

where 

A,(k)=2cos(F-;). 

q = 4. 

324 
Q4(j, HI=------ 7t2 

D2-[CA4(j-n-l)e-2”D--4(j-n)e-(2”+2)0] 

x !&04+-?-06+ . . 
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where 

Finally we take a numerical example to show the size of the different 
terms. 

EXAMPLE 9. Let j= 200 and n = 100. We compute 

Here sq is G4 with the first term deleted and the signs changed for the 
other terms. 

Then we have 

&I = 14524 23443.0133 

&= - 169.6790 

&= 3.33 10 

Cl+ - 0.4773 

&= -0.1900 

14524 23275.9980 

Now 

p(200)-p(200,100)=3972999029388-3971546606112=1452423276 

so the error is 0.0020. 
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