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Avalanche Collapse of Interdependent Networks
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We reveal the nature of the avalanche collapse of the giant viable component in multiplex net-
works under perturbations such as random damage. Specifically, we identify latent critical clusters
associated with the avalanches of damage. Divergence of their mean size signals the approach to the
hybrid phase transition from one side, while there are no critical precursors on the other side. We
find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean
degree of at least one of the interdependent networks does not diverge.
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Many complex systems, both natural [1], and man-
made [2, 3], can be represented as multiplex or interde-
pendent networks. Multiple dependencies make a sys-
tem more fragile: damage to one element can lead to
avalanches of failures throughout the system [4, 5]. Re-
cent theoretical investigation of two [6] or more [7] net-
works in which vertices in each network mutually depend
on vertices in other networks has shown that indeed small
initial failures can cascade back and forth through the
networks, leading to a discontinuous collapse of the whole
system. It was shown in [8] that there is a simple map-
ping between the model used in [6] in which a vertex in
one network has a mutual dependence on exactly one ver-
tex in the other network, and a multiplex network with
one kind of vertex but two kinds of edges. The mapping
is achieved by simply merging the mutually dependent
vertices from the two networks.
In this Letter we describe the nature of such transi-

tions. We consider a set of vertices connected by m dif-
ferent types of edges (dependencies). The connections
are essential to the function of each site, so that a vertex
is only viable if it maintains connections of every type to
other viable vertices. A viable cluster is defined as fol-
lows: For every kind of edge, and for any two vertices i
and j within a viable cluster, there must be a path from i
to j following only edges of that kind. A graph containing
two finite viable clusters is illustrated in Fig. 1. We wish
to find when there is a giant cluster of viable vertices.
Note that any giant viable cluster is a subgraph of the
giant connected component of each of the m networks.

→

FIG. 1: A small network with two kinds of edges (left). Ap-
plying the algorithm described in the text non-viable vertices
are removed leaving two viable clusters (right).

Various parameters can be used to control the crit-

ical behavior of this system: the mean degrees of the
networks, amount of random damage and so on. Small
perturbations to the system can propagate, leading to
avalanches of further damage. In uncorrelated, random
networks we find a discontinuous hybrid transition in the
collapse of the giant viable cluster, similar to that seen in
the k-core or bootstrap percolation [9, 10]. Avalanches of
removals of vertices from the giant viable cluster increase
in size approaching the critical point, signaling the im-
pending collapse of the giant viable cluster. At the crit-
ical point the mean avalanche size diverges. Below the
transition, on the other hand, there is no precursor for
the appearance of the giant viable cluster. The transi-
tion is thus asymmetric. It is hybrid in nature, having a
discontinuity like a first-order transition, but exhibiting
critical behavior, only above the transition, like a second-
order transition. A complete understanding of the transi-
tion cannot therefore be had without first understanding
this critical behavior. We have discovered critical clus-
ters which collapse in avalanches of diverging size as the
transition is approached. These critical clusters are thus
responsible for both the critical scaling and the discon-
tinuity observed in the size of the giant viable cluster.
The critical clusters have a novel character as, unlike the
corona clusters of the k-core for example [9], Avalanches
propagate in a directed way through critical clusters. The
critical clusters may have important practical applica-
tions, helping to identify vulnerabilities to targeted at-
tack, as well as informing efforts to guard against such
attack. Surprisingly, when the degree distributions are
asymptotically power-law P (q) ∝ q−γ the critical point
pc (taking undamaged fraction of vertices p as the control
parameter) remains at a finite value even when the expo-
nents γ of the degree distributions are below 3, remaining
finite until both exponents reach 2. This is in stark con-
trast to ordinary percolation, in which the threshold falls
to zero as soon as γ reaches 3. Furthermore, the nature
of the transition doesn’t change. Although the height of
the discontinuity becomes extremely small near γ = 2, it
remains finite near this limit (see Fig. 2).
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FIG. 2: Size of the giant viable cluster S as a function of the
fraction p of vertices remaining undamaged for two symmetric
powerlaw distributed networks with, from right to left, γ =
2.8 , 2.5, and 2.1. The height of the jump becomes very small
as γ approaches 2, but is not zero, as seen in the inset, which
is S vs p on a logarithmic vertical scale for γ = 2.1.

Algorithm.—We consider a multiplex network, with
vertices i = 1, 2, ..., N connected by m kinds of ver-
tices labeled s = a, b, .... The joint degree distribution
is P (qa, qb, ...). Viable clusters in any multiplex network
may be identified by the following algorithm.
(i) Choose a test vertex i at random from the network.
(ii) For each kind of edge s, compile a list of vertices that
can be reached from i by following only edges of type s.
(iii) The intersection of these m lists forms a new candi-
date set for the viable cluster containing i.
(iv) Repeat steps (ii) and (iii) but traversing only the
current candidate set. When the candidate set reaches
an equilibrium, it is either a viable cluster, or contains
only vertex i.
(v) To find further viable clusters, remove the viable clus-
ter of i from the network (cutting any edges) and repeat
steps (i)-(iv) on the remaining network beginning from a
new test vertex.

Repeated application of this procedure will identify ev-
ery viable cluster in the network. The application of this
procedure to a finite graph is illustrated in Fig. 1.

(a) (b)
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FIG. 3: Viable and critical viable vertices for two interde-
pendent networks. (a) A vertex is in the giant viable cluster
if it has connections to giant viable subtrees (represented by
infinity symbols) of both kinds. (b) A critical viable vertex of
type a has exactly 1 connection to a giant sub-tree of type a.

Basic Equations.—Let us consider the case of sparse
uncorrelated networks, which are locally tree-like in the
infinite size limit N → ∞. In such a network there are no
finite clusters. In order to find the giant viable cluster,
let us define Xs, with s ∈ {a, b, ...}, to be the probability

= + + + ...

FIG. 4: Diagrammatic representation of Eq. (1) in a sys-
tem of two interdependent networks a and b. The probability
Xa, represented by a shaded infinity symbol can be written
recursively as a sum of second-neighbor probabilities. Open
infinity symbols represent the equivalent probability Xb for
network b, which obeys a similar recursive equation.

that, on following an arbitrarily chosen edge of type s, we
encounter the root of an infinite sub-tree formed solely
from type s edges, whose vertices are also each connected
to at least on infinite subtree of every other type. We call
this a type s infinite subtree. The vector {Xa, Xb, ...}
plays the role of the order parameter. A vertex is then in
the giant viable cluster if it has at least one edge of every
type s leading to an infinite type s sub-tree (probability
Xs), as shown in Fig. 3(a). Using the locally tree-like
property of the networks, we can write self consistency
equations for the probabilities Xs:

Xs = Ψs(Xa, Xb, ...) ≡
∑

qa,qb,...

qs
〈qs〉

P (qa, qb, ...)
[

1−(1−Xs)
qs−1

]

∏

l 6=s

[

1−(1−Xl)
ql
]

(1)

for each s ∈ {a, b, ...}. This is illustrated in Fig. 4. The
term (qs/〈qs〉)P (qa, qb, ...) gives the probability that on
following an arbitrary edge of type s, we find a vertex
with degrees qa, qb, ..., while [1− (1−Xa)

qa ] is the proba-
bility that this vertex has at least one edge of type a 6= s
leading to the root of an infinite sub-tree of type a edges
(i.e. probability Xa). This becomes [1 − (1−Xs)

qs−1]
when a = s. Solving these equations enables us to cal-
culate all the quantities of interest. In particular, the
relative size of the giant viable cluster is given by

S =
∑

qa,qb,...

P (qa, qb, ...)
∏

s=a,b,...

[

1− (1−Xs)
qs
]

, (2)

which is illustrated in Fig. 3(a).
A hybrid transition appears at the point where

Ψs(Xa, Xb, ...) first meets Xs at a non-zero value, for all
s. This occurs when

det[J− I] = 0 (3)

where I is the unit matrix and J is the Jacobian matrix
Jab = ∂Ψb/∂Xa. Expanding Ψs about the critical point,
at which Eqs. (1) and (3) are both satisfied, we find the
scaling of Xs and hence S, the size of the giant viable
cluster. For example, to consider random damage, we
introduce a factor of p to Eqs. (1) and (2). The control
variable p is the fraction of vertices remaining undam-
aged. Then

S − Sc ∝ Xs −X(c)
s ∝ (p− pc)

1/2. (4)
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A similar result is found for other control parameters.

Avalanches.—To examine the hybrid transition we fo-
cus on the case of two types of edges. Consider a viable
vertex that has exactly one edge of type a leading to a
type a infinite subtree, and at least one edge of type b
leading type b infinite subtrees. We call this a critical
vertex of type a. It is illustrated in Fig. 3(b). Each crit-
ical vertex has one special edge on which it depends to
remain viable; critical vertices of type a will drop out of
the viable cluster if they lose their single link to a type
a infinite subtree. We mark these special edges with an
arrow leading to the critical vertex. An avalanche can
only transmit in the direction of the arrows. A vertex
may have outgoing edges of this kind, so that removal
of this vertex from the giant viable cluster also requires
the removal of the critical vertices which depend on it.
For example, in Fig. 5, removal of the vertex labeled 1
removes the essential edge of the critical vertex 2 which
thus becomes non-viable. Removed critical viable ver-
tices may in turn have outgoing critical edges, so that the
removal of a single vertex can result in an avalanche of
removals of critical vertices from the giant viable cluster.
In Fig. 5, removal of 2 causes the removal of further crit-
ical vertices 3 and 4, and the removal of 4 then requires
the removal of 5. Thus critical vertices form critical clus-
ters. At the head of each critical cluster is a ‘keystone
vertex’ (e.g. vertex 1 in the figure) whose removal would
result in the removal of the entire cluster. Graphically,
upon removal of a vertex, we remove all vertices found by
following the arrowed edges. As we approach the critical
point (from above), the mean size of the critical clusters
diverges. The avalanches cause a discontinuity in the size
of the giant viable cluster, which collapses to zero.

2

1

3

4

5

v

v
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FIG. 5: A critical cluster. Removal of any of the shown
viable vertices will result in the removal of all downstream
critical viable vertices. Removal of the vertex labeled 1 will
result in all of the shown vertices being removed (becoming
non-viable), while removal of vertex 4 results only in vertex 5
also being removed.

There are three possibilities when following an arbi-
trarily chosen edge of a given type: i) with probability
Xs we encounter a type s infinite subtree ii) with prob-
ability Rs we encounter a vertex which has a connection
to an infinite subtree of the opposite type, but none of
the same type. Such a vertex is part of the giant viable
cluster if the parent vertex was; or iii) with probability
1−Xs−Rs, we encounter a vertex which has no connec-
tions to infinite subtrees of either kind. The probability

Ra obeys

Ra =
∑

qa

∑

qb

qa
〈qa〉

P (qa, qb)(1−Xa)
qa−1 [1−(1−Xb)

qb ]

(5)
and similarly for Rb. We use generating functions to
examine the sizes of critical clusters. We first define the
function Fa(x, y) as

Fa(x, y) =
∑

qa

∑

qb

qa
〈qa〉

P (qa, qb)x
qa−1

qb
∑

r=1

(

qb
r

)

Xr
b y

qb−r

(6)

and similarly for Fb(x, y), by exchanging all subscripts a
and b. The generating function for the size of a critical
cluster reached upon following an arbitrary type a edge
which does not lead to an infinite type a subtree can be
defined in terms of these functions by

Ha(u, v) = 1−Xa −Ra + uFa[Ha(u, v), Hb(u, v)] (7)

and similarly for Hb(u, v). This recursive equation can
be understood by noting that Ha(0, v) = 1−Xa −Ra is
the probability that an arbitrarily chosen edge leads to a
‘dead-end’, i.e. a vertex outside the viable cluster. Here u
and v are auxiliary variables. Following through a critical
cluster, a factor u appears for each arrowed edge of type
a, and v for each arrowed edge of type b. For example, the
critical cluster illustrated in Fig. 5 contributes a factor
u2v2. The mean number of critical vertices reached upon
following an edge of type a, i.e. the mean size of the
resulting avalanche if this edge is removed, is given by
∂uHa(1, 1) + ∂vHa(1, 1). Unbounded avalanches emerge
at the point where ∂uHa(1, 1) [or ∂vHb(1, 1)] diverges.
Taking derivatives of Eq. (7), and using that Ha(1, 1) =
1−Xa and Fa(1−Xa, 1−Xb) = Ra, and that, from Eqs.
(1) and (6), ∂xFa(1−Xa, 1−Xb) = ∂aΨa(Xa, Xb) and
∂yFa(1−Xa, 1−Xb) = (〈qa〉/〈qb〉)∂aΨb(Xa, Xb), gives

∂uHa(1, 1) =
Ra[1− ∂bΨb(Xa, Xb)]

det[J− I]
. (8)

From Eq. (3) we see immediately that this diverges at
the critical point, meaning that the mean avalanche size
diverges exactly at the point of the hybrid transition (i.e.
there is only one critical point).
Scale-free Networks.—In ordinary percolation, and

even the k-core and heterogeneous k-core, networks with
degree distributions that are asymptotically powerlaws
P (q) ∼ q−γ may exhibit qualitatively different transi-
tions, especially when γ < 3. To investigate such effects
in the giant viable cluster, we consider powerlaw degree
distributions with fixed minimum degree q0 = 1 (then
〈q〉 ≈ (γ − 1)q0/(γ − 2)), so that P (qs) = ζ(γs)q

−γs

where s takes the values a or b. As a control parame-
ter we apply random damage to the system as a whole so
that vertices survive with probability p. First consider



4

the case where either γa or γb, or both, is greater than 3.
The giant viable cluster is necessarily a subgraph of the
overlap between the giant-components of each graph. We
know from ordinary percolation that for γ > 3, the giant
component appears at a finite value of p [11]. It follows
that the giant viable cluster, also, cannot appear from
p = 0; there must be a finite threshold pc, (with a hybrid
transition) as for other networks such as Erdős-Rényi.
This is true even if one of the networks has γs < 3.
The more interesting case is when both degree expo-

nents γs are less than three, when the percolation thresh-
old is zero for each network when considered separately.
Let us write γa = 2+δa and γb = 2+δb, and examine the
behavior for small δa and δb. We proceed by assuming
that in this situation, for p near pc, Eqs. (1) have a so-
lution with small Xa and Xb ≪ 1. Writing only leading
orders of Xa and Xb, and δa and δb, we find that

Ψa(Xa, Xb) = p
π2

6 δb
Xδa

a

(

Xb −X1+δb
b

)

(9)

and similarly for Ψb(Xa, Xb). The location of the critical
point is found from Eq. (3) which becomes

δa + δb = p
π2

6
Xδa

a Xδb
b

(

Xa

Xb
+

Xb

Xa

)

. (10)

Solving Eqs. (9) and (10) and using Eq. (2) allows us
to calculate Xs and S at pc. We find in general that the
hybrid transition persists as long as δa and δb are not
zero, though the height of the discontinuity at the hy-
brid transition becomes extremely small for δ small. In
experiments or simulations, this could be misinterpreted
as evidence of a continuous phase transition. We here
describe two representative cases. First, where δa ≪ δb,
that is, γa tends to 2 while γb stays a little larger than 2.
We find that the location of the discontinuous transition
is pc ≈ 1.19δb, and the size of the giant viable cluster
at the critical point is Sc = Ae−B/δb with A ≈ 3.36
and B ≈ 2.89. We see that a hybrid transition occurs,
albeit with an extremely small discontinuity, at a non-
zero threshold pc as long as at least one of δa and δb is
not equal to zero. To examine the case that both tend
to zero, we consider the symmetric case δa = δb ≡ δ.
Then Xa = Xb ≡ X , and the discontinuity is found
by requiring Ψ′(X) = 1 [from Eq. (3)]. We find that
Xc = (1/2)1/δ, pc = 24δ/π2, and, Sc = 41−1/δ. The lo-
cation of the hybrid transition tends to p = 0 as δ → 0,
and the size of the ‘jump’ becomes very small even for
nonzero δ, but vanishes completely as δ → 0. In Fig. 2 we
plot the size of the giant viable cluster in this symmetric
case for three values of γ. For values not close to 2, the
transition looks similar to that observed in, say, Erdős-
Rényi graphs. As γ approaches 2, however, we see that
the height of the discontinuity becomes extremely small.
Nevertheless, the square root scaling and non-zero crit-
ical point are retained. Expanding Ψ(X) about Xc we

find that

X −Xc

Xc
=

12

π2 δ pc

(

p− pc
pc

)1/2

(11)

which holds so long as p− pc ≪ δ3. That is, the scaling
is square-root in a narrow region of width O(δ3) above
the hybrid transition. This region disappears as δ → 0.

Summary.—We have given an algorithm for identify-
ing the viable clusters in any multiplex network. Un-
der increasing damage, the giant viable cluster col-
lapses in a discontinuous hybrid transition, in contrast to
the smooth continuous transition found in simplex net-
works. We have shown that this transition is signaled
by avalanches whose mean size diverges as the collapse
approaches. To understand this critical behavior, which
occurs only above the transition, we successfully iden-
tified clusters of critical vertices. These clusters deter-
mine the structure and statistics of avalanches of dam-
age. Avalanches sweep through the critical clusters in
a directed fashion, and it is the diverging size of these
clusters which accounts for the criticality. This directed
nature stands in contrast to, for example, the corona
clusters found in the k-core problem [12]. Each critical
cluster depends upon a keystone vertex whose removal
completely destroys the critical cluster. These keystone
vertices are good candidates for targeted attack or im-
munization against such attacks.
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