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The most widely used techniques for community detection in networks, including methods based on
modularity, statistical inference, and information theoretic arguments, all work by optimizing objective functions
that measure the quality of network partitions. There is a good case to be made, however, that one should not
look solely at the single optimal community structure under such an objective function but rather at a selection
of high-scoring structures. If one does this, one typically finds that the resulting structures show considerable
variation, which could be taken as evidence that these community detection methods are unreliable, since they
do not appear to give consistent answers. Here we argue that, upon closer inspection, the structures found are in
fact consistent in a certain way. Specifically, we show that they can all be assembled from a set of underlying
“building blocks,” groups of network nodes that are usually found together in the same community. Different
community structures correspond to different arrangements of blocks, but the blocks themselves are largely
invariant. We propose an information theoretic method for discovering the building blocks in specific networks
and demonstrate it with several example applications. We conclude that traditional community detection does in
fact give a significant amount of insight into network structure.
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I. INTRODUCTION

Many networks, from social and information networks to
biological networks and the Internet, are found to divide into
distinct groups of nodes, referred to variously as modules,
clusters, or communities [1,2]. Community detection—the
process of identifying such groups in unlabeled network
data—is widely used as an analytical tool for exploring the
large-scale structure of complex networks. Many algorithms
for community detection have been proposed, but the most
widely used ones all share one feature in common: they
operate by optimizing some kind of objective function that
measures the quality of candidate divisions of a network
into communities. Perhaps the most widely used method is
modularity maximization, as embodied, for instance, in the
spectral modularity and Louvain algorithms, which work by
optimizing the heuristic objective function known as modu-
larity [3–5]. Inference methods, such as methods based on
the stochastic block model, work by optimizing the likelihood
of the observed network under an appropriate network model
[6–8]. The widely used InfoMap method works by maximiz-
ing the entropy of a random walk on the network [9].

However, as pointed out by a number of authors [10–12],
simply reporting the single best division of a network, as de-
fined by an objective function, misses much of the insight that
is to be gained from community analysis. In many networks,
perhaps most, there are multiple divisions of the nodes that
achieve high objective-function scores and in principle any
of these could be the “correct” division of the network. It is
a crucial question whether these competing divisions are, in
some sense, similar to one another or whether, conversely,

they are substantially different. If all (or most) high-scoring
divisions are similar, then we may hypothesize that the com-
munity analysis is revealing some genuine underlying truth
about the network: Even if we do not know which of several
candidate divisions is the correct one, we may still be able to
draw insight from them if the candidates all tell essentially the
same story. On the other hand, if the high-scoring divisions are
quite different from one another, then it is harder to argue that
they are meaningful.

As an example, it is known that even completely random
networks, such as Erdős-Rényi-style random graphs, have di-
visions with high modularity scores [10,13], yet such random
networks have no community structure by any reasonable
definition. Massen and Doye [11] generated a selection of
high-modularity divisions of random graphs by Monte Carlo
sampling and found that competing divisions of the same
graph had little common structure, suggesting that they are
probably not meaningful—a reasonable conclusion in the case
of a random graph. Subsequent theoretical work has bolstered
this viewpoint using ideas borrowed from the physics of
glassy systems. If we consider the modularity as an energy
function for a thermal model, then the random graph can be
shown to undergo a transition with decreasing temperature
to a replica symmetry broken state where there are many
competing modularity maxima that correspond to essentially
unrelated divisions [13–16].

In many real-world networks, by contrast, as well as certain
model networks such as the stochastic block model, it is be-
lieved that there is clear and meaningful community structure,
which we would like to be able to extract and analyze with
our algorithms. In these cases we would hope that, to the
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FIG. 1. Two divisions of the same set of network building blocks.
The five building blocks are denoted by the shapes and colors of the
nodes and the community divisions are denoted by the shaded areas.
Each community division can be thought of as a different way of
assembling the building blocks into communities.

extent that there are competing divisions with high scores,
those divisions would be largely similar to one another, at least
in their gross features. Thus, the existence of true community
structure would be associated with the observation that high-
scoring divisions are similar and its absence with the obser-
vation that they are different. Equivalently, true community
structure would correspond to replica symmetry and lack of it
to replica symmetry breaking.

Unfortunately, though this picture seems intuitive and rea-
sonable, it has been found not to apply in many real-world
situations. For example, Good et al. [17] generated Monte
Carlo samples of high-modularity divisions for a range of
networks, including both models and real-world examples,
and found in all cases that even though the networks in
question were believed to possess strong community structure
there were nonetheless a large number of high-scoring divi-
sions that appeared to be quite different. This raises serious
questions about whether our community detection algorithms
are returning meaningful results.

In this paper, we revisit this question and argue that in fact
the high-scoring divisions of many networks are similar, but
in a more subtle sense. Specifically, we show that while it is
true that the communities discovered by these algorithms vary
substantially between high-scoring divisions, the variation is
of a limited and specific type. We show that for both real
and model networks it is possible to find an elemental set
of “building blocks,” groups of nodes such that most high-
scoring community divisions are formed by combining these
blocks in one way or another, while the blocks themselves
are essentially indivisible—see Fig. 1 for a sketch. Thus, most
high-scoring community divisions are similar in the sense of
being built from the same set of building blocks.

To put this another way, if we know the blocks then it
takes very little additional information to specify how they are
joined together and hence specify the complete community
structure. We use this observation to create an information-
theoretic algorithm for determining the building blocks and
demonstrate its use on a range of example networks. Though
our results are numerical only and hence do not constitute
a proof, we find that the algorithm gives convincing and
plausible results when applied to synthetic networks with
known blocks, synthetic networks known to have no blocks,
and real-world networks. We conclude that community struc-
ture analyses do in fact convey consistent and believable
information about the large-scale structure of networks, when
interpreted in an appropriate manner.

II. SAMPLING NETWORK DIVISIONS

Like the previous studies discussed above, our investiga-
tion starts with the generation of a random sample of network
divisions that score highly according to an appropriate objec-
tive function. Previous studies sampled divisions according to
modularity, but this approach is arguably somewhat ad hoc:
There is no rigorous principle that tells us the relative sam-
pling weight one should give to divisions with different modu-
larity. Massen and Doye and others [11,16–18] have employed
a Boltzmann distribution, which is convenient for numerical
simulation but does not have a formal justification in this
context. In our work, we use an alternative approach that has
become popular in recent years, that of sampling from the
posterior distribution of an appropriate generative model. The
model we use, which is standard in calculations of this kind,
is the degree-corrected stochastic block model [8], a random
graph model in which the probabilities of edges depend on the
communities they belong to. Inverting the probability relation
using Bayes’ rule allows us to calculate the probability of a
particular community division given an observed network and
it is from this distribution that we sample. Specifically, the
approach is as follows. (This part of the paper follows the
outline of our previous presentation in Ref. [19]—see that
paper for additional details.)

The degree-corrected stochastic block is a random gener-
ative model of a community-structured network. When used
to generate networks (rather than for community detection), it
works as follows. Initially, each of n nodes is assigned to one
of k groups, and then a Poisson-distributed number of edges is
added between each node pair such that the expected number
of edges between nodes i and j is θiθ jωgig j , or half this many
when i = j, where θi and ωrs are parameters that we choose
and gi is the community to which node i belongs. This leaves
θi and ωrs arbitrary to within multiplicative constants, which
are fixed by normalizing the θi such that their mean is 1 in
each community. Thus,

1

nr

n∑
i=1

θiδr,gi = 1, (1)

where δi j is the Kronecker δ and nr = ∑
i δr,gi is the number

of nodes in group r.
Note that in this model the number of edges between

each node pair is Poisson distributed, meaning there can in
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principle be multiple edges between the same nodes. In some
respects, this is unrealistic—most real-world networks have
only single edges between nodes—but for the common case of
sparse networks the probability of multiple edges is small and
can usually be neglected, and the Poisson model has technical
advantages that have made it the accepted formulation for
community detection applications.

Now consider a specific undirected network with structure
described by its adjacency matrix A having elements Ai j = 1
if there is an edge between nodes i and j and 0 otherwise.
The probability, or likelihood, that this network is generated
by the degree-corrected stochastic block model defined above
is

P(A|θ, ω, g, k) =
∏
i< j

(θiθ jωgig j )
Ai j e−θiθ jωgig j

×
∏

i

(
1

2
θ2

i ωgigi

)Aii/2

e−θ2
i ωgigi /2

=
∏

i

θ
di
i

∏
r<s

ωmrs
rs e−nr nsωrs

∏
r

ωmrr
rr e−n2

r ωrr/2,

(2)

where we have used Eq. (1) in the second equality, di =∑
j Ai j is the degree of node i, and

mrs =
{∑

i j Ai jδgi,rδg j ,s when r �= s,

1
2

∑
i j Ai jδgi,rδg j ,r when r = s,

(3)

which is the number of edges between groups r and s. We have
also neglected an overall multiplying factor in Eq. (2) which is
independent of the parameters θ , ω, and g, and will therefore
have no effect on our calculations.

The values of the parameters θ and ω are not of interest in
the present case, so we integrate them out using maximum-
entropy priors as described in Ref. [19], to get

P(A|g, k) =
∏

r

nκr
r

(nr − 1)!

(nr + κr − 1)!

∏
r<s

mrs!

(pnrns + 1)mrs+1

×
∏

r

mrr!(
1
2 pn2

r + 1
)mrr+1 , (4)

where

κr =
∑

i

diδr,gi (5)

and we have discarded a further multiplying constant. Now
we apply Bayes’ rule to get

P(g, k|A) = P(A|g, k)P(g, k)

P(A)
. (6)

The denominator P(A) is a simple normalizing constant that
plays the role of a partition function and, like other constants,
will not be important for our calculations. For the prior prob-
ability P(g, k), we again follow our previous work, making
the choice P(g, k) = n−k

∏
r nr!, which is derived from a

simple “restaurant process” [19]. With this choice, and again

neglecting overall constants, we have

P(g, k|A) = n−k
∏

r

nκr
r

nr!(nr − 1)!

(nr + κr − 1)!

∏
r<s

mrs!

(pnrns + 1)mrs+1

×
∏

r

mrr!(
1
2 pn2

r + 1
)mrr+1 . (7)

We now generate community divisions (g, k) from this dis-
tribution using Metropolis-Hastings Monte Carlo sampling.
Our sampling algorithm, which makes specific use of the
structure of the prior on g and k to enhance sampling speed, is
described in detail in Ref. [19]. The implementation, which is
written in the C programming language, performs about 1 mil-
lion Monte Carlo steps per second on a typical desktop com-
puter, allowing our calculations to scale to networks of tens or
hundreds of thousands of nodes with relative ease, although
we will have no need of such large networks in this paper.

It is worth mentioning that the methods employed in this
paper to study the building blocks of community structure
are agnostic about the particular scheme we use for sampling
community divisions. While we favor the algorithm described
here for its principled statistical foundations, other methods
such as modularity-based sampling could be employed as
well. One could also make other choices of the prior P(g, k)
on the community divisions, such as the hierarchical prior
of Peixoto [20], which allows for different probabilities for
structures at different scales. The simple prior we use is
representative of typical applications of community detection
in the literature, making it a good choice for the examples
we give, but others could easily be applied. Indeed, there is
some overlap between our calculations of building blocks and
Peixoto’s hierarchical method, which aims to find communi-
ties at all scales simultaneously. In some cases, the smaller
communities found in his work may be similar to the blocks
we find, although given the differing nature and goals of our
approaches it seems certain there will be differences as well.

III. RESULTS

Our goal is to use the algorithm described above to gener-
ate a random sample of high-probability community divisions
and then compare the structure of those divisions to try to
determine what features they have in common. As described
in the introduction, we find that in most cases they can be
represented as the union of a collection of elemental and
largely indivisible blocks of nodes that appear to represent the
fundamental “atoms” of community structure in the network.

A. An example model network

To illustrate our approach, we take as a first example a
simple model network proposed by Good et al. [17] precisely
as an illustration of the issues discussed in the introduction.
This network, which is shown in Fig. 2 and is similar to the
“connected caveman” model of Watts [21], is composed of
a number of cliques (i.e., completely connected subgraphs)
joined together in a ring. In the example shown in the figure,
there are 20 cliques of five nodes each.

We now apply our Monte Carlo sampling algorithm to
this network. Figure 2 shows the highest probability division
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FIG. 2. The model network network of Good et al. [17] with
nodes colored to indicate the highest probability division found over
20 runs of 107 steps of the Monte Carlo algorithm described in
Sec. II.

found over 20 runs of the algorithm. The division is perhaps
not the one we would at first guess—it is not the division into
the 20 cliques themselves. Instead, as the figure shows, the
algorithm has divided the network into five groups of varying
size. The cliques themselves are still intact—none of them has
been split between communities—but some cliques have been
joined together to make larger communities of 10, 20, or even
25 nodes.

As we will see, this result is typical. There are natural
blocks of nodes in many networks that want to be in the
same community—the cliques in this case. (A somewhat
similar idea has been highlighted by Chakraborty et al. [22],
who noted the existence of subsets of nodes in networks
that were often assigned to the same community.) However,
these blocks are, in most cases, not themselves communities.

The communities are assembled by putting blocks together.
Moreover, it is easy to see in this case that there are many
ways of putting the blocks together that are as good as the one
shown in Fig. 2, or approximately so. For instance, since the
network has a discrete rotational symmetry around the ring,
there are trivially 20 rotational variants of the division shown
that have the exact same probability but which join the blocks
in different ways. The result is that if one samples many high-
scoring divisions of the network one will see the same blocks
repeatedly but not necessarily the same communities. Indeed,
the communities can change dramatically from one state of
the sampling algorithm to another: Large pieces can shear off
and form their own community, or join another. If one were
to compare different community divisions, therefore, particu-
larly using elementary numerical measures of similarity such
as the Rand index, one might conclude that there was wide
variation between divisions and little consistency—and hence
that the algorithm was not giving useful information about
network structure. This, however, would be a mistake. Once
we understand the nature of the building blocks from which
the communities are assembled, we see that the structures
sampled by the algorithm are in a sense highly similar and
consistent.

One way to make these observations more quantitative is
illustrated in Fig. 3. In Fig. 3(a), we demonstrate that the
individual cliques in the network are rarely split between
communities. The plot shows a histogram of the probability
that each pair of nodes in the network find themselves in the
same community, averaged over a large number of divisions of
the network sampled using the Monte Carlo algorithm. (Such
probabilities have been studied in the past—see, for example,
Ref. [23].) The histogram is colored according to the distance
between cliques, where distance 0 means node pairs in the
same clique, distance 1 means adjacent cliques, and so forth.
As we can see, nodes in the same clique have probability close
to 1 of being in the same community, but nodes at all other
distances have substantially lower probability.

In Fig. 3(b), we show another representation of the same
probability measurements, a density plot of the pairwise
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FIG. 3. (a) The distribution of the probabilities P(gi = gj ) that two nodes i and j are found to be in the same community. We show separate
histograms for node pairs in the same clique (“distance 0”), adjacent cliques (“distance 1”), and so forth. (b) A density plot of the same set of
probabilities. The ground-truth cliques in the network are clearly visible as the dark squares along the diagonal.

052306-4



CONSISTENCY OF COMMUNITY STRUCTURE IN COMPLEX … PHYSICAL REVIEW E 101, 052306 (2020)

1340000 1360000 1380000 1400000 1420000

Time

660

640

620

Lo
g 

lik
el

ih
oo

d

B
C D E

(a)

(b)

(d)

(c)

(e)

FIG. 4. Results from a single run of our Monte Carlo community detection algorithm on the social network of fictional characters from
the novel Les Misérables [24]. In panel (a), we show the log-likelihood of states visited as a function of time for a portion of the run. Selected
peaks in the likelihood are labeled B to E and the community assignments at these peaks are shown in the lower four panels. Inset in each of
these four panels is a legend showing how the communities discovered by the algorithm correspond to the building blocks shown in Fig. 6.
These mappings reproduce the community structures well but not perfectly—a few nodes are placed in the wrong community and we have
highlighted these nodes in each panel.

probabilities. This plot clearly picks out the individual build-
ing blocks of the network as the dark squares along the
diagonal of the figure. If we did not already know what
the blocks were for this network, we could deduce them by
examining this figure.

B. Social network

Let us now apply the same ideas to a more complex
example. In Fig. 4, we show the results of applying the
algorithm of Sec. II to a standard and widely studied network
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(a) (b)

FIG. 5. Comparison of the four divisions of the Les Misérables social network pictured in Fig. 4. In panel (a), the nodes are colored in
pie-chart fashion to indicate which community they belong to in each division. In panel (b), we assign new group labels so that only nodes that
belonged to the same group in all four assignments are grouped together. This gives us a simple estimate of the identity of the building blocks
that make up the community divisions.

from the community detection literature, the social network
of fictional characters in the novel Les Misérables by Victor
Hugo [24], which provides a good illustration of the phe-
nomena discussed above. As an initial test of the method,
we perform a single run of our algorithm for over a million
Monte Carlo steps and then select four high-probability states
from the latter portion of the run, as shown in Fig. 4(a). The
first state has the highest probability of the four, but the others
are also competitive. Figures 4(b)–4(e) show the community
divisions found in each of the four cases.

As we can see from the figure, the four divisions have much
in common, but there are also substantial differences between
them. From one panel to the next, groups of nodes break
off from communities and join others in a manner similar to
that of the previous section. To get a clearer picture of these
changes, we show in Fig. 5 two different comparisons of the
four divisions. In Fig. 5(a), we show the network with nodes
colored in pie-chart fashion to indicate which communities
they belong to in each of the four divisions. In Fig. 5(b), we
perform a simple reconstruction of the building blocks of the
network by assigning a different color to each set of nodes
that are found together in the same community in all four
divisions. Each of the four divisions is composed of combina-
tions of these elemental groups, and yet these groups are not
themselves communities. Consider, for example, the group
of nodes in Fig. 5(b) that are colored yellow with horizontal
stripes. This group does not form a stand-alone community
in any of the four divisions pictured in Figs. 4(b)–4(e), yet
whatever group they fall in they are always found together.

This approach for reconstructing the building blocks is,
however, somewhat ad hoc. Ideally, we would prefer a more
rigorous method. We describe such a method in the next
section.

C. Choosing optimal building blocks

How can we make the notion of building blocks for com-
munity structure more rigorous? One approach is to think in

terms of information content. A good set of building blocks
is one that describes most of the structure in most commonly
occurring community divisions, meaning that given the build-
ing blocks only a small amount of additional information is
needed to define a division. For instance, we could describe a
community division by first specifying to which community
each block belongs and then specifying a (small, we hope) set
of corrections to the resulting division for any nodes that we
put in the wrong community.

Information theory tells us that in general the amount
of information needed to specify the community structure
given the blocks is equal to the conditional entropy of the
former given the latter and we may consider a particular set
of building blocks to be “good” if the conditional entropy
is small when averaged over the distribution of community
divisions, Eq. (7), or (more practically) a suitable set of
divisions sampled using Monte Carlo. As we will see, it is
indeed possible to find such building blocks.

In practice it is conventional to use not the conditional
entropy for comparing network divisions but the mutual infor-
mation, which is a simple linear transform of the conditional
entropy that inverts the information scale so that divisions
are maximally similar for maximum mutual information. In
our calculations, we make use of the “reduced mutual infor-
mation” of Ref. [25], which includes a correction term that
allows for accurate computation of the amount of information
even in cases where, as here, the number of blocks may
be very different from the number of communities. (Other
information measures, such as the “variation of information”
[26], might also work in this context, but we favor the reduced
mutual information since it is tailored directly to answering
the specific question at hand here.) The details are as follows.

Consider a network of n nodes and a specific community
division of that network with k communities, and suppose that
we have q building blocks. Let gi represent the community
to which node i belongs as previously, and let hi represent
the building block. We define a contingency table, which is
the matrix of elements cgh equal to the number of nodes that
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belong to community g and block h. Then, the reduced mutual
information is given by

M = 1

n
log

n!
∏

gh cgh!∏
g ag!

∏
h bh!

− 1

n
log �, (8)

where ag = ∑
h cgh and bh = ∑

g cgh are the row and col-
umn sums of the contingency table and � is the number of
distinct possible contingency tables that have these row and
column sums. Roughly speaking, the second term—the term
in log �—represents the amount of information needed to
determine which community each block belongs to and the
first term represents the amount of information needed to
subsequently specify the full community structure once the
blocks have been assigned. The optimal choice of building
blocks is the one that maximizes (8) when averaged over
community structures, in other words, the one that contains
maximal information about those structures on average.

In the limit where we have only a single building block,
we have bh = n and cgh = ag, so the first term in (8) is equal
to log 1, and vanishes. At the same time, there is only one
possible contingency table, so � = 1 and the second term
vanishes also. Thus, we have M = 0 in this limit. At the other
extreme, where every node is its own building block, we have
cgh = 0 or 1 for all g, h, and bh = 1. Hence, the first term in (8)
is equal to log(n!/

∏
g ag!). At the same time, the number of

contingency tables is equal the number of ways one can assign
the n one-node blocks to communities of the given sizes ag,
which is given by the multinomial coefficient � = n!/

∏
g ag!.

Hence, in this case, the two terms in (8) are exactly equal to
one another and again we have M = 0. For all other choices
of blocks, we expect M to take a value larger than zero, so
somewhere in between the two limits must lie the optimal
choice of building blocks.

Our goal is to maximize the Monte Carlo average of Eq. (8)
over possible choices of the blocks. Exhaustive maximization
is impractical in most cases because the number of choices
is exponentially large in the size of the network, so instead
we use an approximate greedy algorithm, which in practice
seems to work well. The algorithm starts with every node in
a block on its own, giving M = 0, then joins together the two
blocks that most increase (or least decrease) the value of M.
We repeat this process, joining blocks in pairs until all blocks
have been joined into one and the value of M is once again
zero. The intermediate state that we pass through with the
largest value of M is then taken to be our block division for
the network.

Figure 6 shows the results of this approach applied to our
social network example. The main plot shows the value of
the reduced mutual information as a function of the number
of blocks over the course of the calculation. The plot has the
expected form, with the value increasing to a maximum and
then falling off again. The maximum value occurs for the case
of eight blocks and the corresponding block structure is shown
inset.

This choice of blocks does appear to be a good one.
Referring back to Figs. 4(b)–4(e), we show a key that gives
the mapping from blocks to communities for each of the
structures depicted. In each case, it is possible to describe the
entire community structure by saying to which community
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FIG. 6. Main figure: The reduced mutual information, which de-
scribes the average information about communities that is contained
in the building blocks, for various different numbers of blocks,
averaged over 10 000 sampled community structures for the Les
Misérables network. As expected, the value is small for the case of
very many blocks or very few, but there is an intermediate maximum,
in this case at eight blocks, where the blocks contain the most
complete description of the average community structure. Inset: The
structure of the eight blocks at the mutual information peak.

each block belongs, except for a small number of nodes, at
most seven in any case (shown in bold), that do not fit the
pattern. Thus, while our community detection algorithm does
indeed return a range of different divisions for this network, it
is at the same time correct to say that those divisions all reflect
essentially the same underlying structure in the network, since
it is possible to express them as combinations of the same set
of basic building blocks.

We note in passing an interesting feature of the blocks
shown in Fig. 6(b): Some of them are not connected, meaning
they consist of two or more parts with no edges between
parts. This arises because our community detection algorithm
is capable of finding disassortative structure in the network as
well as assortative structure. That is, it finds not only groups
with a higher-than-expected number of edges, but also groups
with a lower-than-expected number. Some of the groups found
in this case fall into the latter category and this is then reflected
in the building blocks too.

D. Random networks

One possible objection to the approach taken here is that
the method we describe might give a similar division into
blocks for any network, whether the communities found are
significant or not. How can we know that the algorithm is
returning meaningful blocks? To shed light on this question,
we can apply the same analysis approach to randomly gener-
ated networks, for which we expect there to be no meaningful
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FIG. 7. Building blocks for the network of Fig. 2, found by max-
imizing the reduced mutual information as described in Sec. III C. In
this case, the building blocks correspond exactly to the cliques within
the network, as we would expect.

blocks, despite the fact that (as discussed in the introduction)
there are typically many high modularity partitions of the
network [10,13]. Because these partitions are uncorrelated
[11,13] we would expect there to be no informational advan-
tage to describing them as a collection of blocks.

To test this hypothesis, we apply our method to a large
set of randomly generated networks, consisting of Erdős-
Rényi style random graphs with mean degree 10 and random
3-regular graphs, with n = 2000 in each case. We sample
partitions using the Monte Carlo method of Refs. [11,16–18]
and then compute the optimal blocks for each network by
maximizing the reduced mutual information as before. In each
case, we find that the reduced mutual information decreases
monotonically as the number of blocks increases, and hence
that, in effect, there are no blocks in these networks: The
optimal choice of blocks is always to put all nodes in one
block together. This lends credence to the idea that when we
find a nontrivial block structure, the blocks—and hence the
community divisions from which they are inferred—are in
fact meaningful and contain significant information about the
network.

E. Further examples

Let us return to our first example, the “ring of cliques”
network shown in Fig. 2. Our claim in Sec. III A was that the
building blocks of this network were the cliques themselves,
even though the communities found by the community detec-
tion algorithm are mostly larger than a single clique. If this
were true, and if the method of the previous sections is indeed
able to find the building blocks of a network, then when that
method is applied to this network it should find the cliques.
And indeed it does. Figure 7 shows the optimal choice of
building blocks for this network constructed using the greedy
algorithm of the previous section and, as the figure shows,
they correspond exactly to the 20 cliques in the network.
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FIG. 8. Main figure: The reduced mutual information of Eq. (8)
for a social network of friendships among high-school students,
averaged over 10 000 sampled community structures. The mutual
information has its maximum value when there are nine building
blocks. Inset: The structure of the blocks at the mutual information
peak.

(We find equivalent results for networks with other numbers
of cliques as well.)

A more complex and realistic example is shown in Fig. 8.
This network comes from the National Longitudinal Study
of Adolescent to Adult Health (the “Add Health study”),
a nationwide U.S. social network study of friendship and
dating behavior among middle- and high-school students (ap-
proximately ages 12 to 18 years). The network pictured is
a friendship network of self-identified friendships between
students in one school out of the many that participated in the
study. (The school was picked primarily for its smaller size,
which makes it easier to visualize the results.) The main panel
of Fig. 8 shows again the reduced mutual information as a
function of number of blocks and for this network we see that
the maximum value is reached for nine blocks. In the inset
in the figure, we show the corresponding set of blocks in the
network, which in this case are all relatively compact sets of
nodes.

IV. CONCLUSIONS

In this paper, we have examined community structure
in complex networks using a Monte Carlo algorithm that
samples high-likelihood structures. We find, as a number of
previous authors have also, that the typical network possesses
good community divisions with a wide range of different
structures. We also observe, however, that the competing
structures are all related to one another in a relatively simple
manner; namely, they are all built from a small set of “building
blocks,” groups of nodes that typically appear together in
the same community. The building blocks are not them-
selves communities in most cases, but complete community
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structures are formed by joining blocks together in various
combinations.

This suggests that the amount of information needed to
specify the community structure should be small once the
building blocks are known, and we use this fact to create
an algorithm that can determine the blocks for any given
network. Starting from a large sample of plausible commu-
nity structures generated by our Monte Carlo algorithm, we
compute (a variant of) the mutual information between a
proposed set of blocks and the community structure, averaged
over all samples. The optimal choice of blocks is the one
that maximizes this average. We find the maximum using an
approximate greedy algorithm and we are able in this way to
accurately recover the known blocks in a previously proposed
class of test networks. We also give example applications to
real-world social networks.

The lesson behind these findings is that, while the exis-
tence of large sets of competitive and apparently disparate
community structures in real and model networks appears at
first to be a bad sign for community detection algorithms,
the situation is actually more promising than it seems. The
observed structures are, in essence, all variants of the same
basic template, and the complete set of community divisions
in fact provides significant information about the large-scale
structure of the network.
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