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Most real-world networks are incompletely observed. Algorithms
that can accurately predict which links are missing can dramat-
ically speed up network data collection and improve network
model validation. Many algorithms now exist for predicting miss-
ing links, given a partially observed network, but it has remained
unknown whether a single best predictor exists, how link pre-
dictability varies across methods and networks from different
domains, and how close to optimality current methods are. We
answer these questions by systematically evaluating 203 individ-
ual link predictor algorithms, representing three popular families
of methods, applied to a large corpus of 550 structurally diverse
networks from six scientific domains. We first show that individ-
ual algorithms exhibit a broad diversity of prediction errors, such
that no one predictor or family is best, or worst, across all real-
istic inputs. We then exploit this diversity using network-based
metalearning to construct a series of “stacked” models that com-
bine predictors into a single algorithm. Applied to a broad range
of synthetic networks, for which we may analytically calculate
optimal performance, these stacked models achieve optimal or
nearly optimal levels of accuracy. Applied to real-world networks,
stacked models are superior, but their accuracy varies strongly
by domain, suggesting that link prediction may be fundamen-
tally easier in social networks than in biological or technologi-
cal networks. These results indicate that the state of the art for
link prediction comes from combining individual algorithms, which
can achieve nearly optimal predictions. We close with a brief dis-
cussion of limitations and opportunities for further improvements.

link prediction | stacking | networks | metalearning | near optimality

Networks provide a powerful abstraction for representing the
structure of complex social, biological, and technological

systems. However, data on most real-world networks are incom-
plete. For instance, social connections among people may be
sampled, intentionally hidden, or simply unobservable (1, 2);
interactions among genes, cells, or species must be observed or
inferred by expensive experiments (3, 4); and connections medi-
ated by a particular technology omit all off-platform interactions
(2, 5). The presence of such “missing links” can, depending on
the research question, dramatically alter scientific conclusions
when analyzing a network’s structure or modeling its dynamics.

Methods that accurately predict which observed pairs of
unconnected nodes should, in fact, be connected have broad util-
ity. For instance, they can improve the accuracy of predictions of
future network structure and minimize the use of scarce experi-
mental or network measurement resources (6, 7). Moreover, the
task of link prediction itself has become a standard for evaluat-
ing and comparing models of network structure (8, 9), playing a
role in networks that is similar to that of cross-validation in tra-
ditional statistical learning (10, 11). Hence, by helping to select
more accurate network models (8), methods for link prediction
can shed light on the organizing principles of complex systems of
all kinds.

However, predicting missing links is a statistically hard prob-
lem. Most real-world networks are relatively sparse, and the

number of unconnected pairs in an observed network—each a
potential missing link—grows quadratically, like O(n2) for a net-
work with n nodes when the number of connected pairs or edges
m grows linearly, like O(n). The probability of correctly choos-
ing by chance a missing link is thus only O(1/n)—an impracti-
cally small chance even for moderate-sized systems (12). Despite
this baseline difficulty, a plethora of link prediction methods
exists (3, 13, 14), embodied by the three main families we study
here: 1) topological methods (15, 16), which utilize network mea-
sures like node degrees, the number of common neighbors, and
the length of a shortest path; 2) model-based methods (8, 12,
17), such as the stochastic block model, its variants, and other
models of community structure; and 3) embedding methods (18,
19), which project a network into a latent space and predict links
based on the induced proximity of its nodes.

A striking feature of this array of methods is that all appear
to work relatively well (8, 15, 18). However, systematic compar-
isons are lacking, particularly of methods drawn from different
families, and most empirical evaluations are based on relatively
small numbers of networks. As a result, the general accuracy of
different methods remains unclear, and we do not know whether
different methods, or families, are capturing the same underlying
signatures of “missingness.” For instance, is there a single best
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method or family for all circumstances? If not, then how does
missing link predictability vary across methods and scientific
domains (e.g., in social vs. biological networks) or across net-
work scales? Additionally, how close to optimality are current
methods?

Here, we answer these questions using a large corpus of 550
structurally and scientifically diverse real-world networks and
203 missing link predictors drawn from three large methodolog-
ical families. To begin, we present broad empirical evidence that
individual methods for link prediction exploit different underly-
ing signals of missingness. This finding implicates the practical
relevance of the No Free Lunch theorem (20, 21) for link pre-
diction in general, by showing empirically that no known method
performs best or worst across realistic inputs.

To exploit this empirical diversity of errors, we then adopt the
metalearning approach (22–24) of model stacking (25), which
we adapt here to the setting of network (relational) data. We
then argue that these stacked models yield nearly optimal predic-
tions of missing links in sparse, realistic networks, based on three
lines of evidence: 1) evaluations on synthetic data with known
structure and optimal performance, 2) tests using real-world net-
works across scientific domains and network scales, and 3) tests
of sufficiency and saturation using subsets of methods.

Across these tests, we find that model stacking is nearly
always the best method on average on held-out links and that
nearly optimal performance can be constructed using model-
based methods, topological methods, or a mixture of the two.
These stacked models achieve their high performance by com-
bining individual predictors into an effective Bayesian model of
the general structural diversity of real-world networks, and their
performance improves with network size. Finally, we find that
missing links are generally easiest to predict in social networks,
where most methods perform well, and hardest in biological
and technological networks. We conclude by discussing limita-
tions and opportunities for further improvement of these results.
To facilitate these future directions of work, we make available
code for training a stacked model using topological predic-
tors on an arbitrary network and the large corpus of networks
used here.

Methods and Materials
As a general setting, we imagine an unobserved simple network G with a
set of E pairwise connections among a set of V nodes, with sizes m and n,
respectively. Of these, a subset E′⊂ E of connections is observed, chosen by
some function f . Our task is to accurately guess, based only on the pattern
of observed edges E′, which unconnected pairs X = V ×V − E′ are in fact
among the missing links Y = E− E′. A link prediction method defines a score
function over these unconnected pairs i, j∈X so that better-scoring pairs are
more likely to be missing links (15). In a supervised setting, the particular
function that combines input predictors to produce a score is learned from
the data. We evaluate the accuracy of such predictions using the standard
area under the curve (AUC) statistic, which provides an easily interpretable
and context-agnostic measure of a method’s ability to distinguish a missing
link i, j∈Y (a true positive) from a nonedge X−Y (a true negative) (12) and
facilitates comparison with other link prediction methods in the literature.
We also report precision and recall metrics at a threshold that maximizes the
F measure for each network.

The most common approach to predict missing links constructs a score
function from network statistics of each unconnected node pair (15). We
study 42 of these topological predictors, which include predictions based
on node degrees, common neighbors, random walks, and node and edge
centralities, among others (SI Appendix, Table S1). Models of large-scale
network structure are also commonly used for link prediction. We study
11 of these model-based methods (8), which either estimate a parametric
probability Pr(i→ j | θ) that a node pair is connected (12), given a decom-
position of a network into communities, or predict a link as missing if it
would improve a measure of community structure (15) (SI Appendix, Table
S2). Close proximity of an unconnected pair, after embedding a network’s
nodes into a latent space (19), is a third common approach to link predic-
tion. We study 150 of these embedding-based predictors, derived from two
popular graph embedding algorithms and six notions of distance or similar-

ity in the latent space. In total, we consider 203 features of node pairs, some
of which are the output of existing link prediction algorithms, while others
are numerical features derived from the network structure. For our pur-
poses, each is considered a missing link “predictor.” A lengthier description
of these 203 methods, and the three methodological families they repre-
sent, is given in SI Appendix, section A. For brevity, we use abbreviations to
identify individual methods in the main text. A complete listing of methods
and their abbreviations is given in SI Appendix, section A.

Metalearning is a powerful class of ensemble methods with machine
learning that can learn from data how to combine individual predictors into
a single, more accurate algorithm (23, 26). In particular, stacked general-
ization (25) combines predictors by learning a supervised model of input
characteristics and the corresponding errors made by individual predictors.
Model stacking thus enriches the space of hypotheses by treating a set of
predictors as a panel of experts and then learning the kinds of questions
each is most expert at answering. From a Bayesian perspective, stacking
combines models so as to asymptotically minimize posterior loss (27, 28).
Bayesian model averaging (29) is another common ensemble method, which
operates more as a model selection technique than as a model combina-
tion method (30–32), and is particularly useful when model predictions are
probabilistic. Model averaging has previously been used for link prediction,
by sampling an ensemble of hierarchical random graphs (12) or stochastic
block models (17). In contrast, model stacking’s ability to flexibly combine
arbitrary component predictors to learn stacked weights that asymptoti-
cally minimize a posterior expected loss makes it an attractive approach to
investigate the broad variety of link prediction algorithms considered here.
Moreover, stacked models can be strictly more accurate than their compo-
nent predictors (25), making them appropriate for hard problems like link
prediction (33), but only if those predictors make distinct errors and are suf-
ficiently diverse in the signals they exploit (27). To apply model stacking to
link prediction, we first adapt its form to the setting of network (relational)
data (SI Appendix, section A).

We evaluate individual prediction methods, and their stacked general-
izations, using two types of network data. The first is a set of synthetic
networks with known structure that varies along three dimensions: 1) the
degree distribution’s variability, being low (Poisson), medium (Weibull),
or high (power law); 2) the number of “communities” or modules k∈
{1, 2, 4, 16, 32}; and 3) the fuzziness of the corresponding community
boundaries ε, being low, medium, or high. These synthetic networks thus
range from homogeneous to heterogeneous random graphs, from no mod-
ules to many modules, and from weakly to strongly modular structure (SI
Appendix, section B and Table S3). Moreover, because the data-generating
process for these networks is known, we exactly calculate the optimal accu-
racy that any link prediction method could achieve, as a reference point (SI
Appendix, section B).

The second is a large and structurally diverse corpus of 550 real-world net-
works, which is a slight expansion of the popular CommunityFitNet corpus
(8). It includes social (23%), biological (32%), economic (23%), technologi-
cal (12%), information (3%), and transportation (7%) networks, and these
networks span three orders of magnitude in size (SI Appendix, section C
and Fig. S1). It is by far the largest and most diverse empirical link predic-
tion benchmark, which enables the comparison of methods across scientific
domains.

Finally, our evaluations assume a missingness function f that samples
edges uniformly at random from E so that each edge (i, j)∈ E is observed
with probability α. This choice presents a hard test, as f is independent
of both observed edges and metadata. Other models of f (e.g., in which
missingness correlates with edge or node characteristics) may better cap-
ture particular scientific settings and are left for future work. Our results
thus provide a general, application-agnostic assessment of link predictabil-
ity and method performance. In cases of supervised learning, we train a
method using fivefold cross-validation by choosing as positive examples a
subset of edges E′′⊂ E′ according to the same missingness model f , along
with all observed nonedges V ×V − E′ as negative examples (SI Appendix,
section D). Unless other is specified, results reflect a choice of α= 0.8
(i.e., 20% of edges are unobserved [holdout set]); other values produce
qualitatively similar results.

Results
Prediction Error Diversity. If all link predictors exploit a common
underlying signal of missingness, then one or a few predictors
will consistently perform best across realistic inputs. Optimal
link prediction could then be obtained by further leveraging
this universal signal. In contrast, if different predictors exploit

23394 | www.pnas.org/cgi/doi/10.1073/pnas.1914950117 Ghasemian et al.
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distinct signals, they will exhibit a diversity of errors in the form
of heterogenous performance across inputs. In this case, there
will be no best or worst method overall, and optimal link predic-
tions can only be obtained by combining multiple methods. This
dichotomy also holds at the level of predictor families, one of
which could be best overall (e.g., topological methods), even if
no one family member is best.

To distinguish these possibilities, we characterize the empir-
ical distribution of errors by training a random forest classifier
over the 203 link predictors applied to each of the 550 real-world
networks (SI Appendix, section E). In this setting, the character
of a predictor’s errors is captured by its learned Gini importance
(mean decrease in impurity) (11) within the random forest: the
higher the Gini importance, the more generally useful the pre-
dictor is for correctly identifying missing links on that network.
We then aggregate these importances across networks within a
domain using a rank-weighted cross-entropy Monte Carlo (34)
algorithm. If all methods exploit a common missingness signal
(one method to rule them all), the same few predictors or predic-
tor family will be assigned consistently greater importance across
networks and domains. However, if there are multiple distinct
signals (a diversity of errors), the learned importances will be
highly heterogeneous across inputs, and no predictor or family
will be best.

Across networks and domains, we find wide variation in indi-
vidual and family-wise predictor importances, such that no indi-
vidual method and no family of methods are best, or worst, on all
networks. On individual networks, importances tend to be highly
skewed, such that a relatively small subset of predictors accounts
for the majority of prediction accuracy (SI Appendix, Fig. S2 and
Table S4). However, the precise composition of this subset varies
widely across both networks and families (SI Appendix, Figs. S3
and S4 and Tables S4 and S5), implying a broad diversity of errors
and multiple distinct signals of missingness. At the same time,
not all predictors perform well on realistic inputs (e.g., a subset
of topological methods generally receives low importances), and
most embedding-based predictors are typically mediocre. Nev-
ertheless, each family contains some members that are ranked
among the most important predictors for many, but not all,
networks.

Across domains, predictor importances cluster in interesting
ways, such that some individual and some families of predic-
tors perform better on specific domains. For instance, examining
the 10 most important predictors by domain (28 unique predic-
tors; Fig. 1), we find that topological predictors, such as common
neighbors or localized random walks, as well as distance-based
embedding predictors, such as a Euclidean distance, perform
well on social networks but less well on networks from other
domains. In contrast, model-based methods perform relatively
well across domains but often perform less well on social net-
works than do topological measures and some embedding-based
methods. Together, these results indicate that predictor meth-
ods exhibit a broad diversity of errors, which tend correlate
somewhat with scientific domain.

This performance heterogeneity implicates the practical rele-
vance for link prediction of the No Free Lunch theorem (20),
which proves that across all possible inputs, every machine learn-
ing method has the same average performance, and hence,
accuracy must be assessed on a per input set basis. The
observed diversity of errors indicates that none of the 203
individual predictors are a universally best method for the
subset of all inputs that are realistic. However, that diver-
sity also implies that a nearly optimal link prediction method
for realistic inputs could be constructed by combining individ-
ual methods so that the best individual method is applied for
each given input. Such a metalearning algorithm cannot cir-
cumvent the No Free Lunch theorem (SI Appendix, Figs. S10
and S11), but it can achieve optimal performance on real-
istic inputs by effectively redistributing its worse than aver-
age performance onto unrealistic inputs, which are unlikely
to be encountered in practice. In the following sections, we
develop and investigate the near-optimal performance of such an
algorithm.

Stacking on Networks with Known Structure. Model “stacking” is
a metalearning approach that learns to apply the best individ-
ual predictor according to the input’s characteristics (25). Here,
we assess the accuracy of model stacking both within and across
families of prediction methods, which adds seven more predic-
tion algorithms to our evaluation set.

Fig. 1. The Gini importances for predicting missing links in networks within each of six scientific domains, for the 28 most important predictors, grouped by
family, under a random forest classifier trained over all 203 predictors. Across domains, predictors exhibit widely different levels of importance, indicating a
diversity of errors, such that no predictor is best overall. Here, topological predictors include shortest-path betweenness centrality (SPBC), common neighbors
(CNs), Leicht–Holme–Newman index (LHN), personalized page rank (PPR), shortest path (SP), the mean neighbor entries within a low rank approximation
(mLRA), Jaccard coefficient (JC), and the Adamic–Adar index (AA); embedding predictors include the L2 distance between embedded vectors under emb-
DW (L2d-emb-DW) and the dot product (emb-vgae-dp) of embedded vectors under emb-vgae; and model-based predictors include Infomap (Infomap),
stochastic block models with (MDL (DC-SBM), B-NR (DC-SBM)) and without degree corrections (MDL (SBM), B-NR (SBM)) and modularity (Q). (A complete list
of abbreviations is given in SI Appendix, section A.)

Ghasemian et al. PNAS | September 22, 2020 | vol. 117 | no. 38 | 23395
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Because the optimality of an algorithm’s predictions can only
be assessed when the underlying data-generating process is
known, we first characterize the accuracy of model stacking using
synthetic networks with known structure, for which we calculate

an exact upper bound on link prediction accuracy (SI Appendix,
section B). To provide a broad range of realistic variation in
these tests, we use a structured random graph model, in which
we systematically vary its degree distribution’s variance, the

A

B

Fig. 2. (A) On synthetic networks, the mean link prediction performance (AUC) of selected individual predictors and all stacked algorithms across three
forms of structural variability: degree distribution variability, from (Left) low (Poisson) to (Right) high (power law); fuzziness of community boundaries,
ranging from (Top) low to (Bottom) high (ε= mout/min, the ratio of edges between the clusters to edges inside the clusters); and (from left to right within
each subpanel) the number of communities k. Across settings, the dashed lines represent the theoretical maximum performance achievable by any link
prediction algorithm (SI Appendix, section B). In each instance, stacked models perform optimally or nearly optimally and generally perform better when
networks exhibit heavier-tailed degree distributions and more communities with distinct boundaries. SI Appendix, Table S11 lists the top five topological
predictors for each synthetic network setting, which vary considerably. (B) On real-world networks, the mean link prediction performance for the same
predictors over all domains and by individual domain. Both overall and within domains, stacked models exhibit superior performance, particularly the across-
family versions, and they achieve nearly perfect accuracy on social networks. Performance varies considerably across individual domains, with biological and
technological networks exhibiting the lowest link predictability. More complete results for individual topological and model-based predictors are given in
SI Appendix, Figs. S8 and S9. For ease of interpretability, each panel’s results are partitioned into three columns, showing (�) the performance range for
selected individual predictors in each family (in the legend), (†) the results for within-family stacking, and (♥) the results for across-family stacking.

23396 | www.pnas.org/cgi/doi/10.1073/pnas.1914950117 Ghasemian et al.
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number of communities k , and the fuzziness of those community
boundaries ε.

Across these structural variables, the upper limit on link pre-
dictability varies considerably (Fig. 2A), from no better than
chance in a simple random graph (k = 1; Poisson) to nearly per-
fect in networks with many distinct communities and a power-law
degree distribution. Predictability is lower (no methods can do
well) with fewer communities (low k) or with more fuzzy bound-
aries (high ε) but higher with increasing variance in the degree
distribution (Weibull or power law) or with dense clusters (low
ε). Most methods, whether stacked or not, perform relatively
well when predictability is low. However, as potential predictabil-
ity increases, methods exhibit considerable dispersion in their
accuracy, particularly among topological and embedding-based
methods.

Regardless of the synthetic network’s structure, we find that
stacking methods are typically among the most accurate predic-
tion algorithms, and they often achieve optimal or nearly optimal
accuracy (Fig. 2A). For instance, the practical performance of
the best stacked models is significantly closer to optimality than
is the best on average individual predictor (all model-based or
all topol., model, & embed., ∆AUC = 0.04 vs. MDL (DC-SBM),
∆AUC = 0.07; paired t test, P < 10−4; SI Appendix, Tables S8
and S9), and they are far better than the average nonstacked
topological and model-based methods (〈∆AUC〉= 0.22). We
further note that here, the good performance of the MDL (DC-
SBM) individual predictor is expected, as the synthetic networks
are generated using a DC-SBM model (SI Appendix, section H
and Table S10).

Stacking on Real-World Networks. To characterize the real-world
accuracy of model stacking, we apply these methods and the indi-
vidual predictors to our corpus of 550 real-world networks. We

Table 1. Link prediction performance (mean ± SD) on holdout
test set, measured by AUC, precision, and recall, for algorithms
applied to the 550 structurally diverse networks in our corpus

Algorithm AUC Precision Recall

Q 0.7± 0.15 0.06± 0.12 0.25± 0.28
Q-MR 0.67± 0.15 0.08± 0.13 0.31± 0.31
Q-MP 0.65± 0.14 0.04± 0.09 0.22± 0.25
B-NR (SBM) 0.81± 0.13 0.16± 0.25 0.23± 0.22
B-NR (DC-SBM) 0.71± 0.19 0.19± 0.23 0.21± 0.21
cICL-HKK 0.8± 0.13 0.24± 0.32 0.25± 0.25
B-HKK 0.78± 0.13 0.12± 0.22 0.21± 0.23
Infomap 0.74± 0.14 0.11± 0.14 0.29± 0.25
MDL (SBM) 0.81± 0.15 0.21± 0.29 0.24± 0.24
MDL (DC-SBM) 0.85± 0.11 0.13± 0.17 0.21± 0.18
S-NB 0.72± 0.18 0.32± 0.35 0.26± 0.24

Mean model-based 0.75± 0.16 0.15± 0.24 0.24± 0.25
Mean indiv. topol. 0.61± 0.14 0.09± 0.2 0.23± 0.27
Mean indiv. topol. & model 0.64± 0.15 0.1± 0.21 0.23± 0.27

emb-DW 0.63± 0.23 0.11± 0.17 0.3± 0.29
emb-vgae 0.69± 0.19 0.15± 0.21 0.25± 0.23

All topol. 0.88± 0.1 0.31± 0.33 0.35± 0.29
All model-based 0.87± 0.1 0.25± 0.28 0.29± 0.22
All embed. 0.79± 0.14 0.18± 0.23 0.27± 0.23
All topol. & model 0.89± 0.09 0.31± 0.34 0.34± 0.28
All topol. & embed. 0.87± 0.11 0.27± 0.31 0.33± 0.25
All model & embed. 0.87± 0.11 0.23± 0.26 0.3± 0.23
All topol., model, & embed. 0.89± 0.1 0.28± 0.31 0.34± 0.26

A complete list of abbreviations is given in SI Appendix, section A.

analyze the results within and across scientific domains and as a
function of network size.

Across all networks and within individual domains, model
stacking produces the most accurate predictions of missing links
(Fig. 2B and Table 1), while some individual predictors also
perform relatively well, particularly model-based ones. Applied
to all networks, the average performances of the best stacked
models are slightly but significantly better than the average per-
formance of the best individual method (all topol. & model,
〈AUC〉= 0.89± 0.09, and all topol., model & embed., 〈AUC〉=
0.89± 0.1 vs. MDL (DC-SBM), 〈AUC〉= 0.85± 0.11; t test, P <
10−12) and far better than the average performance of individual
topological or model-based predictors (〈AUC〉= 0.64; Table 1
and SI Appendix, Table S6).

Stacking also achieves substantially better precision in its pre-
dictions (Table 1), which can be a desirable property in practice.
In this particular experiment, the supervised learning step opti-
mized the standard F measure over the holdout test set (SI
Appendix, section A). Learning an optimal threshold via cross-
validation produces nearly identical performance on our test
corpus, and optimizing the AUC itself produces similar results
but with slightly higher AUC scores (SI Appendix, Table S19).

Among the stacked models, the highest accuracy on real-world
networks is achieved by stacking model-based and topologi-
cal predictor families. Adding embedding-based predictors does
not significantly improve accuracy, suggesting that the network
embeddings do not capture more structural information than is
represented by the model-based and topological families. This
behavior aligns with our results on synthetic networks above,
where the performances of stacking all predictors and stack-
ing only model-based and topological predictors were nearly
identical (SI Appendix, Table S8).

Applied to individual scientific domains, we find consider-
able variation in missing link predictability, which we take to
be approximated by the most accurate stacked model (Fig. 2B).
In particular, most predictors, both stacked and individual (SI
Appendix, Figs. S8 and S9), perform well on social networks,
and on these networks, model stacking achieves nearly per-
fect link prediction (up to AUC = 0.98± 0.06; SI Appendix,
Table S13). In contrast, this upper limit is substantially lower
in nonsocial domains, being lowest for technological networks
(AUC = 0.82± 0.09; SI Appendix, Table S16), while marginally
higher for biological, information, and transportation networks
(AUC = 0.86; SI Appendix, Tables S14, S17, and S18) and much
higher for economic networks (AUC = 0.92± 0.05; SI Appendix,
Table S15).

Stacked models also exhibit superior link prediction perfor-
mance across real-world networks of different scales (number
of edges m; Fig. 3) and tend to become more accurate as net-
work size increases, where link prediction is inherently harder.
We note, however, that on small networks (m < 100), a simple
majority vote among model-based predictors slightly outper-
forms all stacking methods, while performing substantially worse
than the best stacked model on larger networks (m > 200).
Embedding-based methods perform poorly at most scales, but
worst on smaller networks, suggesting a tendency to overfit (SI
Appendix, Figs. S10 and S11). We note that stacking within that
family does produce higher accuracies on larger networks but
still lower than other stacked models.

These stacked models can also be extended to include
other ensemble methods as individual predictors. For instance,
Bayesian model averaging can be straightforwardly applied to
several of the model-based predictors (29), including most vari-
ants of the stochastic block model (17). Applying this approach
to the MDL (DC-SBM) individual predictor (9), we find that
the averaged version tends to perform better, on average, than
the unaveraged version (Fig. 3), although not on every net-
work. However, we also find that including both the averaged
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Fig. 3. Mean link prediction performance (AUC) as a function of network
size (number of edges m) for stacked models and select individual predic-
tors, applied to 550 real-world networks, smoothed using a sliding window.
Overall, stacking topological predictors, model-based predictors, or both
yield superior performance but especially on larger networks where link
prediction is inherently more difficult. (A complete list of abbreviations is
given in SI Appendix, section A.)

and unaveraged versions in the topological and model-based
stacked model further improves its overall link prediction accu-
racy (Fig. 3; SI Appendix, section H, Fig. S18, and Table S24
have more details). This behavior indicates that the averaged ver-
sion itself makes some errors that are distinct from those of the
unaveraged version, and stacking is able to learn to exploit both.

Sufficiency and Optimality. In practice, the optimality of a meta-
learning method can only be established indirectly, over a
set of considered predictors applied to a sufficiently diverse
range of empirical tests cases (20). We assess this indirect evi-
dence for stacked link prediction models through two numerical
experiments.

In the first, we consider how performance varies as a function
of the number of predictors stacked, either within or across fam-
ilies. Evidence for optimality here appears as an early saturation,
in which performance achieves its maximum prior to the inclu-
sion of all available individual predictors. This behavior would
indicate that a subset of predictors is sufficient to capture the
same information as the total set. To test for this early-saturation
signature, we first train a random forest classifier on all predic-
tors in each of our stacked models and calculate each predictor’s
within-model Gini importance. For each stacked model, we then
build a new sequence of submodels in which we stack only the k
most important predictors at a time and assess its performance
on the test corpus.

In each of the stacked models, performance exhibits a classic
saturation pattern: it increases quickly as the 10 most important
predictors are included and then stabilizes by around 30 predic-
tors (Fig. 4 and SI Appendix, Fig. S5). Performance then degrades
slightly beyond 30 to 50 included predictors, suggesting a slight
degree of overfitting in the full models. Notably, each within- and
across-family model exhibits a similar saturation curve, except
for the embedding-only model, which saturates early and at a
lower level than other stacked models. This similar behavior
suggests that these families of predictors are capturing similar

missingness signals, despite their different underlying represen-
tations of the network structure. As in other experiments, the
best saturation behavior is achieved by stacking model-based and
topological predictors.

In the second, we evaluate whether individual predictors rep-
resent “weak” learners in the sense that their link prediction
performance is better than random. In general, we find that
nearly all of the predictors satisfy this condition (SI Appendix,
Figs. S6 and S7), implying that they can be combined accord-
ing to the Adaboost theorem to construct an optimal algorithm
(35). Replacing the random forest algorithm within our stack-
ing approach with a standard boosting algorithm also produces
nearly identical performance on our test corpus (SI Appendix,
Tables S20–S23). The similar performance between the two
methods suggests that relatively little additional performance
is likely possible using other metalearning approaches over the
same set of predictors.

Discussion
Developing more accurate methods for predicting missing links
in networks would help reduce the use of scarce resources in col-
lecting network data and would provide more powerful tools for
evaluating and comparing network models of complex systems.
The literature on such methods gives an unmistakable impres-
sion that most published algorithms produce reasonably accurate
predictions. However, relatively few of these studies present sys-
tematic comparisons across different families of methods, and
they typically draw their test cases from a narrow set of empiri-
cal networks (e.g., social networks). As a result, it has remained
unknown whether a single best predictor or family of predictors
exists, how link predictability itself varies across different meth-
ods and scientific domains, or how close to optimality current
methods may be.

Our broad analysis of individual link prediction algorithms,
representing three large and popular families of such meth-
ods, applied to a large corpus of structurally diverse networks
shows definitively that common predictors in fact exhibit a broad
diversity of errors across realistic inputs (Fig. 1 and SI Appendix,
Fig. S2). Moreover, this diversity is such that no one predictor,
and no family of predictors, is overall best, or worst, in practice

Fig. 4. Mean link prediction performance (AUC) as a function of the
number of stacked features, for within- and across-family stacked models,
applied to 550 real-world networks. The shaded regions show the SD, and
the early-saturation behavior (at between 10 and 50 predictors) indicates
that a small subset of predictors is sufficient to capture the same information
as the total set.
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(SI Appendix, Figs. S3, S10, and S11 and Table S4). The com-
mon practice of evaluating link prediction algorithms using a
relatively narrow range of test cases is thus problematic. The
far broader range of empirical networks and algorithms consid-
ered here shows that, generally speaking, good performance on
a few test cases does not generalize across inputs. The empiri-
cal diversity of errors we find implicates the practical relevance
of the No Free Lunch theorem (20) for predicting missing links
in complex networks and suggests that optimal performance on
realistic inputs may only be achieved by combining methods (e.g.,
via metalearning) to construct an ensemble whose domain of
best performance matches the particular structural diversity of
real-world networks.

Model stacking is a popular metalearning approach, and our
results indicate that, after adapted to a network setting, it can
produce highly accurate predictions of missing links by combin-
ing either topological predictors alone, model-based predictors
alone, or both. Applied to structurally diverse synthetic net-
works, for which we may calculate optimal performance, stack-
ing achieves optimal or near-optimal accuracy, and accuracy
is generally closer to perfect when networks exhibit a highly
variable degree distribution and/or many, structurally distinct
communities (Fig. 2A).

Similarly, applied to empirical networks, stacking produces
more accurate predictions across inputs than any individual pre-
dictor (Fig. 2B and Table 1), and these predictions appear to
be nearly optimal (i.e., we find little evidence that further accu-
racy can be achieved using this set of predictors; Fig. 4), even
with alternative metalearning approaches. Of course, it remains
possible that accuracy could be further improved by incorporat-
ing specific new predictors or new families within the stacked
models, if they provide better prediction coverage of some input
networks than the present set of predictors. For instance, in an
experiment suggested by a reviewer, we find that incorporat-
ing a predictor based on Bayesian model averaging the MDL
(DC-SBM) improves the stacked model’s overall link prediction
performance on empirical networks (Fig. 3 and SI Appendix).

Beyond its strong predictive utility for missing links, model
stacking also provides a useful framework for understanding why
predictors make different errors on different inputs. Although
a full investigation and interpretation of these differences are
beyond the scope of the investigation here, our findings do pro-
vide suggestive preliminary results. For instance, we find that 1)
stacking a small number of topological predictors, including per-
sonalized page rank, degree product, and shortest path count,
can yield equivalent performance to a more sophisticated and
flexible predictor like MDL (DC-SBM) (SI Appendix, Fig. S13);
2) topological predictors that model social processes like triadic
closure and homophily (e.g., local clustering, Jaccard coefficient,
and degree assortativity) are particularly effective in social net-
works, the context for which they were designed, but perform
worse in other contexts (e.g., biological networks) (SI Appendix,
section G); 3) linear regression can be applied over specific
topological features to generate more interpretable hypotheses
about the structure of networks (SI Appendix, Fig. S17); and 4)
performance can depend on network size, such that individual
predictors can outperform stacked models on smaller networks,
where data for learning a stacked model are in short supply (SI
Appendix, Figs. S14–S16).

Across networks drawn from different scientific domains (e.g.,
social vs. biological networks), we find substantial variation
in link predictor performance, both for individual predictors
and for stacked models. This heterogeneity suggests that the
basic task of link prediction may be fundamentally harder in
some domains of networks than others. Most algorithms pro-
duce highly accurate predictions in social networks, which are
stereotypically rich in triangles (local clustering), exhibit broad

degree distributions, and are composed of assortative commu-
nities, suggesting that link prediction in social networks may
simply be easier (36) than in nonsocial network settings. In fact,
stacked models achieve nearly perfect accuracy at distinguish-
ing true positives (missing links) from true negatives (nonedges)
in social networks (Fig. 2B and SI Appendix, Table S13). An
alternative interpretation of this difference is that the existing
families of predictors exhibit some degree of selective inference
(i.e., they work well on social networks because social network
data are the most common inspiration and application for link
prediction methods). Our results make it clear that developing
more accurate individual predictors for nonsocial networks (e.g.,
biological and informational networks) is an important direc-
tion of future work. Progress along these lines will help clarify
whether link prediction is fundamentally harder in nonsocial
domains and why.

Across our analyses, embedding-based methods, which are
instances of representation learning on networks, generally
perform more poorly than do either topological or model-
based predictors. This behavior is similar to recent results
in statistical forecasting, which found that neural network
and other machine learning methods perform less well by
themselves than when combined with other, conventional
statistical methods (37, 38). A useful direction of future
work on link prediction would specifically investigate tuning
embedding-based methods to perform better on the task of link
prediction.

Recent theoretical work on model stacking for nonrelational
data provides a strong justification for using stacking to com-
bine models when the goal is out-of-sample prediction (27,
28). Moreover, these results suggest that in the practical set-
ting in which the true data-generating model is unknown, model
stacking learns an effective Bayes-optimal model of the input dis-
tribution. Extending these results to relational data would shed
further light on the optimality of model stacking for link predic-
tion and help us assess how close to optimality is their observed
performance here.

Nevertheless, our findings suggest that stacking achieves
nearly optimal performance across a wide variety of realistic
inputs. It is likely that efforts to develop new individual link
prediction algorithms will continue, and these efforts will be
especially beneficial in specific application domains (e.g., predict-
ing missing links in genetic regulatory networks or in food webs).
Evaluations of new predictors, however, should be carried out
in the context of metalearning, in order to assess whether they
improve the overall prediction coverage embodied by the state-
of-the-art stacked models applied to realistic inputs. Similarly,
these evaluations should be conducted on a large and structurally
diverse corpus of empirical networks, like the one considered
here. More narrow evaluations are unlikely to produce reliable
estimates of predictor generalization. Fortunately, stacked mod-
els can easily be extended to incorporate any new predictors as
they are developed, providing an incremental path toward fully
optimal predictions.

Data Availability. Network data and code for replication and reuse
have been deposited in GitHub (https://github.com/Aghasemian/
OptimalLinkPrediction).
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