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Abstract In this article, we develop a fully integrated and dynamic Bayesian approach to
forecast populations by age and sex. The approach embeds the Lee-Carter type models
for forecasting the age patterns, with associated measures of uncertainty, of fertility,
mortality, immigration, and emigration within a cohort projection model. The method-
ology may be adapted to handle different data types and sources of information. To
illustrate, we analyze time series data for the United Kingdom and forecast the compo-
nents of population change to the year 2024. We also compare the results obtained from
different forecast models for age-specific fertility, mortality, and migration. In doing so,
we demonstrate the flexibility and advantages of adopting the Bayesian approach for
population forecasting and highlight areas where this work could be extended.
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UnitedKingdom

Introduction

This work is guided by two aims. The first is to have a flexible platform for forecasting
populations. Most statistical offices in developed countries utilize data obtained from
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different sources, including administrative registers, surveys, and censuses with varying
levels of quality and measurement. Cohort component models have long been the
standard apparatus for producing projections, but wide differences remain in the
underlying assumptions, especially regarding the treatment of migration and the level
of detail provided. The forecasting approach we have developed is one that can be
adapted to include all demographic components of change by age and sex, and provides
measures of the accuracy of the forecasts.

As we move away from deterministic population projections to those that provide
measures of uncertainty, we believe it is important to integrate the various sources of
uncertainty into the modeling framework. The rationale for considering a Bayesian
approach is that it offers a natural probabilistic framework to predict future populations.
Variability in the data and uncertainties in the parameters and model choice can be
explicitly incorporated by using probability distributions, and the predictive distribu-
tions follow directly from the probabilistic model applied. The approach also allows the
inclusion of expert judgments, together with their uncertainty, in the model framework.

The second aim of this article is to provide a flexible and consistent method for
forecasting the age patterns of fertility, mortality, and migration that drive our forecast
results. A vast literature focuses on modeling demographic events (e.g., Bongaarts and
Bulatao 2000), but approaches for forecasting the age patterns are less abundant.
Methods for forecasting migration, in particular, represent a persistent weakness in
population forecast models (Bijak 2010).

Our population forecasting model is developed with these two aims in mind. We
focus on generalizing and extending the Lee-Carter model for forecasting mortality to
age-specific fertility and migration (Lee and Carter 1992), and integrating these into the
cohort projection mechanism. One of the contributions of the proposed approach is
forecasting age-specific emigration rates and immigration volumes, following the
suggestions of Rees (1986:148). Because the age patterns of immigration and emigra-
tion are more regular than those observed for net migration, they are better amenable to
modeling by using Lee-Carter models.

Background

Forecasting the Age Patterns of Fertility, Mortality, and Migration

There is a long history of modeling the age patterns of fertility, mortality, and migration
events (Booth 2006). This work has demonstrated the persistent and strong regularities
in the age patterns over time and across space (Preston et al. 2001:191–210; Rogers
1986; Rogers and Little 1994) driven by biological and social life course mechanisms
(Courgeau 1985). The age regularities exhibited in demographic patterns allow popu-
lation forecasters to simplify their underlying assumptions and models. Indeed, some
forecasts focus on indicator variables, such as the total fertility rate (TFR), life
expectancy, or net migration rate, which are then converted into an assumed age
distribution (see, e.g., Raftery et al. 2012; Wilson and Bell 2007).

The main approaches for modeling the age patterns of demographic components
include the imposition of empirical tables obtained from other countries and historical
settings (Coale and Demeny 1966), parametric model schedules (Coale and McNeil
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1972; Coale and Trussell 1974; Heligman and Pollard 1980; Knudsen et al. 1993;
Rogers 1986; Rogers and Castro 1981; Rogers et al. 1978), relational models (Brass
1974), functional models (De Beer 2011; Hyndman and Booth 2008; Hyndman and
Ullah 2007; Lee and Carter 1992), and hierarchical Bayesian models (Czado et al.
2005; Girosi and King 2008). Of these, the most successful and widely used for
forecasting future patterns and uncertainty have been the relational and functional
models—particularly, the Lee-Carter model for mortality (Booth and Tickle 2008).

Relational and functional models include standards or time-invariant patterns,
which are then perturbed based on a set of parameters. Because the shapes of age-
specific fertility, mortality, and migration largely remain the same over time, these
approaches provide a powerful tool for forecasting. In the Lee-Carter case, single-
or five-year age groups are altered on the basis of time series equations. The main
critique of the original Lee-Carter approach is that it can produce implausible
forecasts for particular age groups (see Girosi and King 2008:38–42). As a
consequence, several extensions have been developed to accommodate cohort
effects, correlation between sexes, and smoothing (Booth and Tickle 2008; Lee
2000), as well as to forecast fertility rates (Lee 1993).

Bayesian Population Forecasting

The need to incorporate probabilistic uncertainty into population estimates and fore-
casts is well known. Probabilistic forecasts have the advantage over variant style
projections in that they specify the chances or probability that a particular future
population value will be within any given range (Ahlburg and Land 1992; Alho and
Spencer 1985, 2005; Bongaarts and Bulatao 2000; Keilman 1990; Lee and Tuljapurkar
1994; Lutz 1996). With variant projections, on the other hand, the user has no idea how
likely future population values are, but only that they are plausible scenarios
representing the “most likely” and the “extreme” high and low possibilities.
However, despite the known advantages of probabilistic forecasts, they have yet to
be widely adopted by statistical agencies (Lutz and Goldstein 2004). The reason is that
there are many types of uncertainties to consider, and including them in projections is
not always straightforward.

According to Alho (1999), probabilistic population forecasting within the Bayesian
framework has a tradition dating back over 60 years to the seminal works of Leo
Törnqvist and colleagues (Hyppölä et al. 1949). However, it was not until the 1980s
that probabilistic methods began entering mainstream demography. These included
time series extrapolations, expert-based forecasting, and past error propagation (for a
detailed overview of different approaches, see Bijak 2010). Examples of Bayesian
models for population forecasting were practically non-existent until the past few years,
with the notable exception of Daponte et al. (1997). Recent advances in fast
computation and numerical methods have enabled a more widespread use of the
Bayesian approach in many fields of application, including population forecasting. At
a global level, Raftery et al. (2012) proposed a generic model for all countries of the
world, based on aggregate indicators (TFRs and life expectancies) and model life
tables. At the opposite end of the data spectrum, Bryant and Graham (2013) suggested
a comprehensive Bayesian approach to reconcile different data sources for New
Zealand, a country with very good availability of population statistics.
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Bryant and Graham’s (2013) approach uses an accounting framework for
estimating New Zealand’s current population disaggregated by regions, age, sex
and time. It combines various data sources, including vital events registers,
censuses, and school and electoral rolls. The model constrains the true values
of the demographic components by the population accounting equation. Also,
age, time, sex and regional patterns are specified by main effect and two-way
interaction terms within a Poisson-gamma model, similar to non-Bayesian
approaches of Smith et al. (2010) and Raymer et al. (2011b).

Concurrently, Wheldon et al. (2013) undertook Bayesian estimation and
projection of populations to reconstruct past population data. Their approach
is based on modeling the three population components—fertility, mortality, and
net migration—and accounts for the varying quality of the population figures
available from the censuses. Census data are treated as biased estimates of the
true unknown population count. Their approach does not provide a systematic
modeling of the age profiles and does not account for changing behaviors over
time. The information about the model parameters is fed into the model in the
form of the informative prior distributions. The component forecasts are
inserted in the cohort-component model similar to the one described in the
upcoming subsection on the population projection model.

Methodology

In this section, we first introduce the forecasting model proposed by Lee and Carter
(1992) and then describe how it can be extended and applied within a Bayesian
framework. The Lee-Carter model was originally designed to forecast age-specific
mortality rates with the following specification:

logμx;t ¼ αx þ βxκt þ ξx;t; ð1Þ
where the logarithm of the age and time-specific mortality rate μx,t is
decomposed into an overall age profile, αx, averaged over the entire period
under consideration, and age-specific changes in mortality βx. The subscripts x
and t denote age and time, respectively. The βx parameter describes how fast
the rates decline over time in response to changes in the time-specific effect κt.
The error term ξx,t is assumed to be normally distributed with a mean of 0 and
a constant variance. To forecast mortality rates into the future, a simple random
walk with drift model for κt was proposed:

κt ¼ ϕþ κt−1 þ εt: ð2Þ
To ensure identifiability of the model parameters, constraints are imposed such
that a sum of βx over age is 1 and a sum of κt over time is 0 (Lee and Carter
1992:661). Lee (1993) subsequently proposed a similar model to forecast age-
specific fertility for the United States. In that model, several constraints were
introduced to represent the prior information on fertility.

In this article, we extend and adapt the Lee-Carter model to create a general
framework for forecasting mortality, fertility, emigration and immigration. In this
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framework, we first assume that count data on a given population component Yx,t
g,k

follow a Poisson distribution:

Yg;k
x;t ePoisson μg;k

x;t R
g;k
x;t

� �
; ð3Þ

where g ∈ {D,B,E,I} denotes a component of population change: D represents
deaths (mortality), B is births (fertility), E is emigration, I is immigration, sex k =
F denotes females, and k = M stands for males. Parameter μx,t

g,k denotes a ratio of
counts of demographic event scaled to the size of the population exposed to risk
of these events, Rx,t

g,k. As in the original Lee-Carter model, t and x denote time and
age, respectively. For mortality and emigration, the population at risk is the same;
for fertility, it consists of women of reproductive age. For immigration, we forecast
the counts rather than rates; hence, we assume that Rx,t

I,k = 1 for all x, t, and k.
Czado et al. (2005) developed the extension of the Lee-Carter model to incorporate
Poisson variability of death counts within the Bayesian framework.

Second, we assume that the logarithm of the rate follows a normal distribution:

logμg;k
x;t e N αg;k

x þ βg;k
x κg;kt þ γg;kt−x; τ

g;k
� �

; ð4Þ

where αx
g,k, βx

g,k, and κt
g,k represent the same parameters as in the Lee-Carter model, and

γt− x
g,k denotes a cohort effect. The cohort effect, introduced by Renshaw and Haberman

(2006) for mortality, is incorporated in our framework for the sake of generality, but it
may be omitted if not required. Throughout this article, N(μ,τ) denotes a normal
distribution with a mean of μ and precision (inverse variance) τ. The normal distribu-
tion assumed for rates is an extension of the Czado et al. (2005) model. It allows
capturing the overdispersion that is not explained by the variability resulting from the
Poisson sampling of count data.

Third, for the time-specific effects, κt
g,k, we require a time series model,

which facilitates the forecasting. This model can be univariate, such as random
walk with drift in the original Lee-Carter specification, for each component and
each sex; alternatively, the model can be multivariate (e.g., vector
autoregression (VAR)), which allows exploring correlations between sexes and
components. A time series model is also utilized for a cohort effect, γt − x

g,k . In
our application, we use a univariate model. However, more general multivariate
frameworks can be used.

To ensure identification of the parameters αx
g,k, βx

g,k, κt
g,k, and γt− x

g,k , the following
constraints are imposed:

Xz

x ¼ 0

βg;k
x ¼ 1; κg;k1 ¼ 0; γg;k1 ¼ 0; ð5Þ

where z denotes the oldest age group. These constraints suffice to identify the bilinear
model in Eq. (4) as long as there is a clear differentiation in the βx—that is, as long as
they are not all equal to 1 / z, in which case the model reduces to the linear age-period-
cohort (APC) model. The problem of identification of the period and cohort effects in
the APC model has long been discussed in the literature (see Luo 2013, with a
comment by Fienberg 2013).

Bayesian Population Forecasting 1039

D
ow

nloaded from
 http://read.dukeupress.edu/dem

ography/article-pdf/52/3/1035/877607/1035w
isniow

ski.pdf by guest on 04 January 2023



To learn about the model parameters, and specifically about the forecasts of the
population components, we use Bayesian inference. Bayes theorem states that the
posterior distribution of the model parameters (e.g., forecasts of the age-specific
mortality rates) is proportional to the product of the likelihood for the data and the
prior distribution. In our approach, Bayesian inference integrates uncertainty from the
demographic event (count) data expressed by the Poisson likelihood with weakly
informative prior distributions that give preference to the historical data.
Subsequently, all four components of population change are combined within the
cohort component projection model.

In the following subsections, we present specific adaptations of the preceding
framework to forecast mortality, fertility, and migration. We adopt a convention of
proposing a very simple model for the data (such as the original Lee-Carter model)
with a more general one. Because our extensions of the Lee-Carter model lead to a
relatively complex specification of the probabilistic model, the closed forms of the
posterior distributions are difficult to obtain analytically. Hence, we sample from
the posterior distributions by using the Markov chain Monte Carlo (MCMC)
algorithms implemented in the OpenBUGS software (Lunn et al. 2009). The example
code used for the simulations for fertility is available in Online Resource 1 (section A.3).
The other codes are available from the corresponding author upon request.

Forecasting Mortality

To forecast the mortality of males and females, we consider the Bayesian version of the
original Lee-Carter model, denoted as M1, and a general extension of this model,
denoted by M2. The Lee-Carter model M1 is specified as in Eqs. (1) and (2), and the
age-specific mortality rates are calculated as μx,t

D,k=Yx,t
D,k / Rx,t

D,k. Model M2 for death
counts Yx,t

D,k follows Eqs. (3) and (4).
In M1, the time-specific parameters κt

k (we drop the superscriptD for each parameter
for clarity of notation) follow univariate random walk with drift models, as in the
original Lee-Carter specification. In M2, κt

k for both sexes follow a bivariate vector
autoregressive VAR(1) process with drift:

κF
t

κMt

� �
eMNV 2

ϕ01

ϕ02

� �
þ ϕ11 ϕ12

ϕ21 ϕ22

� �
κF
t−1

κMt−1

� �
;Tκ

� �
; ð6Þ

where MVN2 denotes a two-dimensional multivariate normal distribution, with the
precision matrix Tκ; ϕij, i, j = 1, 2 are the parameters of the VAR(1) model, with
ϕ0j, j = 1, 2 being drift terms. The instantaneous and lagged correlations assumed for
males and females reflect the assumption of parallel improvements in health conditions
over time. 1 Finally, the cohort effect γt − x

k for each sex k follows a univariate
autoregressive process AR(1) with parameters ψ0

k and ψ1
k:

γkt−x e N ψk
0 þ ψk

1γ
k
t−x−1; τ

k
γ

� �
: ð7Þ

1 Li and Lee (2005) proposed an alternative approach to include correlations between sexes; they added a
commonality factor to Eq. (1).
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Forecasting Fertility

For forecasting age-specific fertility rates, we apply a simple version of the Lee (1993)
model, here called F1. The extended model, denoted by F2, includes a cohort effect
(see also Cheng and Lin 2010; Lee 1993, 2000). The population at risk represents all
women of reproductive age.

The time component in F1 follows an ARMA (1,1) process (again we suppress the
superscripts B and k because the model relates only to females):

κt e N ϕ0 þ ϕ1 κt−1 − ϕ0ð Þ þ ϕ2ξt−1; τκð Þ; ð8Þ
where ξt = κt−ϕ0−ϕ1(κt−1−ϕ0)−ϕ2ξt−1.

In Model F2, we use a simple univariate autoregressive process AR(1) for the time
component κt and for γt−x:

κt ∼ N ϕ0 þ ϕ1κt−1; τκð Þ ;
γt−x ∼ N ψ0 þ ψ1γt−x−1; τγ

� 	
:

ð9Þ

Forecasting Immigration Counts and Emigration Rates

To forecast immigration counts and emigration rates, we introduce two models: (1) a
univariate model, denoted by IE1, which assumes no correlation between emigration
and immigration of males and females; and (2) a multivariate model, denoted by IE2, in
which we assume correlation between the time parameters κt for both sexes and both
directions of migration. In both models, we incorporate smoothing, built in into the
prior distributions for the age-specific model parameters αx and βx. Unlike mortality
and fertility, there is no clear rationale for including a cohort effect parameter in
forecasting immigration and emigration. Also, because immigration does not have an
easily defined population at risk, we model the counts, which is a common practice in
population projections (McDonald and Kippen 2002; Rees 1986).

In IE1, we assume a random walk without drift for emigration rates and immigration
counts for both sexes:

κg;kt e N κg;kt−1; τ
g;k
κ

� �
: ð10Þ

This simple model leads to forecasts with a constant expectation (as the last observa-
tion) and increasing uncertainty.

For IE2, we assume instantaneous correlation in the time parameters for emigration
and immigration for both sexes:

κt e MVN 4 ϕ0 þϕ1log tð Þ þϕ2t þ ∘ϕ3κt−1;Tκ½ �; ð11Þ

where κt = (κt
E,F, κt

E,M, κt
I,F, κt

I,M)′, ϕi = (ϕi1, . . . ,ϕi4)′, Tκ is a precision matrix, (∘)
denotes element-wise multiplication, and the prime notation (′) denotes transposition.
We simplify the model by having the time parameters, κt, depend only on their own
lagged values and not on the direction of the flow. This model includes a drift termϕ0,
an autoregressive parameter ϕ3, a logarithmic trend with parameter ϕ1, and a linear
trend with parameter ϕ2.
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Prior Distributions

In the absence of any prior information, we suggest using weakly informative distri-
butions that will allow the data to drive the estimation. For the general forecasting
model, we propose a set of priors, the hyperparameters of which may differ in particular
applications. For both sexes k, the specifications of the prior distributions for the model
parameters are as follows:

αk
x e N 0; 0:01ð Þ f or all x ;

βk
1:z−1 e MVNz−1 1 = z; τkβΨ

k
β

� �
; βk

z ¼ 1−
Xz−1
i¼1

βk
x
;

τkβ e Γ 0:001; 0:001ð Þ;
ϕi j ∼ N 0; 1ð Þ; for all i and j;

ψk
i ∼ N 0; 1ð Þ; i ¼ 0; 1;

σk ∼ U 0; 100ð Þ; τk ¼ σk
� 	−2

; σk
γ ∼ > U 0; 100ð Þ; τkγ ¼ σk

γ

� �−2
;

Tκ ∼ Wishart lIl; lð Þ;

ð12Þ

where Γ(a,b) denotes the gamma distribution with a mean of a / b and variance a / b2;U
denotes uniform distribution; andΨβ

k is a precision matrix for a conditional distribution
of βx, given that they sum to 1 (details are presented in Online Resource 1, section A.2).
The preceding prior distributions imply weak information a priori about the model
parameters. For the age-specific parameters αx and βx, we avoid specifications based on
the data (i.e., the empirical Bayes approach) suggested by Czado et al. (2005). For the
precision parameters τk and τγ

k, we follow Gelman’s (2006) suggestions of avoiding
conjugate gamma distributions, and we use uniform priors for standard deviations over a
large range. TheWishart distribution is a standard prior distribution for precision matrix
in the multivariate time series model and is easy to implement in the OpenBUGS
software. The subscript l denotes the number of series in the model: males and females
for mortality (i.e., l = 2) or male and female migration in both directions (i.e., l = 4). In
the univariate model (e.g., for fertility or for a single sex), we replace the Wishart prior
with a uniform prior for the standard deviation; that is, σκ ~ U(0,100),τκ=(σκ)

−2.
For low-quality data, smoothing of the age profile may be required. In this case, we

propose a smoothing technique that is embedded in the specification of the prior
distributions for parameters αx and βx. Smoothing prevents the artificial age patterns
resulting from the sample data from being propagated in the forecasts. Our smoothing
method is based on the spatial autoregressive processes (see, e.g., Besag 1986).

Prior densities for smoothing the age-specific parameters αx are constructed in the
following way, with the sex and population component superscripts omitted for clarity.
For the youngest and oldest age groups, we assume that the mean of the prior
distribution depends on the second-youngest and second-oldest group, respectively:

α0 e N α1;
1

2
τα

� �
; αz e N αz−1;

1

2
τα

� �
: ð13Þ
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For the remaining age groups, we assume that their means depend on the average of the
two neighboring age groups x – 1 and x + 1:

αx e N
1

2
αx−1 þ 1

2
αxþ1; τα

� �
; x ∉ 0; zf g: ð14Þ

The preceding construction of the conditional precisions for each age group ensures
that the unconditional precision is constant for all age groups. Finally, we assume a
priori that τα=100, which is based on our assessment of results obtained with various
values for this parameter and from visual inspections of the model fits. It implies a
moderate degree of smoothing for αx.

For βx, we assume the same pattern of smoothing as for αx, but we derive a
distribution conditional on ∑βx=1. The resulting multivariate normal distribution is

β1:z−1 ∼ MVNz−1 1=z; τβΨβ
� 	

; βz ¼ 1−
Xz−1
x¼1

βg;k
x

; τβeΓ 0:00001; 0:00001ð Þ: ð15Þ

This prior distribution is similar to the one in Eq. (12). However, the matrix
Ψβ here is derived analogously to Eqs. (13) and (14) by assuming that all
elements of βx follow an autoregressive process that in the limit tends to a
random walk, but also conditional on ∑βx=1 (for more details see Online
Resource 1, section A.2). The smoothing parameter τβ can be sex-specific
and direction-of-flow-specific, or one parameter can be used for all four flows,
which allows borrowing of strength. The gamma distribution assumed for this
parameter is characterized by a very heavy tail; thus, it allows this parameter to
explore regions of large values that lead to “smoother” age profiles. Because
the smoothing parameter has a vague prior distribution, the whole smoothing
procedure is driven by the data rather than by subjective judgment. However,
the results exhibit sensitivity to the specification of the prior for the smoothing
parameter. Other prior distributions, such as truncated t or Cauchy, can be used.
The degree of smoothing may also be controlled by fixing τβ at some value,
which can be found by a grid search, for example.

Population Projection Model

The results of forecasting the four components of population change—that is, samples
from the posterior distributions of mortality, fertility, and emigration rates, as well as
immigration counts—are subsequently combined into a cohort component projection
model (see Preston et al. 2001:117–137; Rogers 1995). The projection model is
specified as

(16)
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where Pt
k=(P0,t

k ,…,Pz,t
k )′ is vector of midyear population sizes by age and sex k and

It
k=(μ0,t

I,k,…,μz,t
I,k)′ is a vector of forecasted immigration counts. Further, bt

k=(0,…,b14,t
k ,

…,b45,t
k ,…,0) is vector of birth rates,

skt ¼

sk0;t 0 0 ⋯ 0

0 sk1;t 0 ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ skz−2;t 0 0

0 0 ⋯ 0 skz−1;t skz;t

2
666664

3
777775

is a matrix of survivorship rates, and a = 1 / 2.05 is the assumed proportion of female
births in the population. Finally, 0 = (0, . . . , 0) is a vector of length z, andO is a matrix
of zeros of size (z – 1 × z). The survivorship rates come from the mortality and
emigration models (Rogers 1995:104–107):

skx;t ¼
1 − 0:5 μD;k

x;t þ μE;k
x;t

� �
1þ 0:5 μD;k

xþ1;t þ μE;k
xþ1;t

� �; for x ≠ z; ð17Þ

skz;t ¼
1 − 0:5 μD;k

z;t þ μE;k
z;t

� �
1þ 0:5 μD;k

z;t þ μE;k
z;t

� �: ð18Þ

They include the standard transformation of the mortality and emigration rates, both of
which result in the decrease of the population, into the survival rates. For the last year of
age x = z, we assume the standard formula following Rogers (1995:107). Finally, the
birth rates are constructed by using the fertility rates obtained from our model for
forecasting fertility and survivorship of infants from the mortality forecasting model:

bkx;t ¼
1

1þ 0:5μD;k
0;t

1

2
μB;F
x;t þ sFx;tμ

B;F
xþ1;t

� �
: ð19Þ

Model Validation and Selection

The models for the population components that underlie the population forecast are
selected from the models proposed in the previous sections. The selection process is
based on (1) visual evaluation of goodness of fit of the model to the data and the
forecasts, (2) ex-post evaluation of the in-sample forecasts of the population compo-
nents based on the 1975–2000 truncated data set and, where appropriate, (3) the
deviance information criterion (DIC) as a formal criterion for model selection
(Spiegelhalter et al. 2002).

The DIC is a tool for assessing the goodness-of-fit of a model to the data,
which enables selecting the best performing model. It is often considered a
generalization of the Akaike information criterion (AIC) for comparing complex
Bayesian hierarchical models. It utilizes a deviance of the likelihood evaluated at
the mean of the posterior distribution of the likelihood as the goodness-of-fit
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measure, corrected with the “effective number of parameters” in a model (for
definitions and formal derivation, see Spiegelhalter et al. 2002). The requirement
for using the DIC is that the posterior distribution is approximately multivariate
normal. Selecting the best performing model is similar for the AIC—namely, the
lower the value of the criterion, the better fit of the model.

Illustration: The Case of the United Kingdom

Data

In this section, we illustrate our forecasting method with the data for the United
Kingdom (UK). These data represent a case in which the counts of all population
components by single year of age and sex are available but their quality is varying.
Because the data on vital events are recorded by the registers, they are considered to be
precise and of relatively good quality. Immigration and emigration counts are, however,
produced by using the International Passenger Survey (IPS) and include both sampling
and nonsampling errors, especially in the age profiles by single year of age.

The data used to produce our forecasts represent the period 1975–2009. The data on
mortality rates were obtained from the Human Mortality Database (n.d.). The emigra-
tion and immigration counts were obtained from the Office for National Statistics. The
data on births were obtained from the Office for National Statistics (England and
Wales), Northern Ireland Statistics Research Agency, and National Records of
Scotland. The UK midyear population estimate for 2009, used as a baseline for
predictions, was also obtained from the Office for National Statistics. Logarithms of
single year mortality rates for females and males from 1975 to 2009 are presented in the
upper row of Fig. 1. We observe that (1) mortality at all ages, and for both sexes, have
been decreasing over time; (2) females have lower mortality than males; and (3) males
exhibit considerably higher mortality in the young adult years.

Fertility rates by age of mother are presented in the bottom row of Fig. 1. Over
time, we observe a shift from a peak level of fertility at ages 23–26 in 1970 toward
one at ages 29–33 years in 2009. The reasons for this shift are related to fertility
postponement and a subsequent recuperation. Because of the relatively small counts
for very young and very old ages, the data on births were aggregated into age groups
under 15 years and 45 years and older. To compute fertility rates, the same female
population at risk that was used to calculate the age-specific mortality was applied,
except for the age groups under 15 and 45 and older, for which the population at risk
was aggregated for ages 12–14 years and 45–50 years, respectively. Further, in our
illustration, an implicit assumption was made about fertility—namely, that the rates
for boundary ages (i.e., under 15 years and 45 years and older) are applied to the
population aged 14 years and 45 years, respectively. However, because these rates are
very small, the overall effect is negligible.

The total flows of immigration and emigration from 1975 to 2009 are presented in
the top row of Fig. 2. We observe similar trends in male and female migration over
time. The immigration levels increased rapidly from the 1990s through around 2005.
For emigration, the increase is less noticeable and appears to be more volatile, which
may be caused by random sample variation in the underlying data source, the
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International Passenger Survey. Larger irregularities appear when the data are disag-
gregated by single year of age, as illustrated for immigration and emigration in the
middle and bottom rows, respectively, of Fig. 2 (see also Raymer et al. 2011a).

Results

In this section, we present the results of forecasting the population components with the
models described in the previous section. For each component, we discuss the model’s
goodness-of-fit to the data and forecasts of the future patterns, and select the underlying
model to be used for the population forecast.

Forecasts of Mortality

In the first row of Fig. 3, we present the fit of the models M1 and M2 to the 2009 data.
It can be observed that the fit of the model M2 with the cohort component reflects the
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data better than M1, which is especially clear when comparing the fits for life
expectancy (third and fourth rows). In particular, M2 is able to reproduce the mortality
volatility of the cohort born during the influenza pandemic in 1918–1919. Mortality
projected with M1 is lower than that projected with M2 for age groups 0–15 and 35–70,
and the age pattern is more uncertain, as depicted in the second row of Fig. 3. For life
expectancy (third row), the fit to the data is more uncertain under M1 than M2; in the
case of predictions, however, uncertainty is larger under M2. Also, M1 leads to lower
predicted life expectancy than M2.

Recent literature has pointed to the importance of the cohort effect in measuring and
predicting period mortality rates and the resulting life expectancies (Luy 2010; Luy and
Wegner 2009). In particular, cohort effects are likely to stem from the long-lasting
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effects of early-life events and circumstances on mortality, rather than being a result of
whole life trajectories experienced by particular cohorts, as demonstrated in a series of
longitudinal studies (e.g., Bengtsson and Mineau 2009; for a general overview and a
critical discussion, see also Murphy 2010). An alternative argument for the inclusion of
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Fig. 3 Model fit for mortality by age to 2009 data for females (top row), forecasts for 2024 (second row),
model fit and forecasts of life expectancy based on the full data set (third row), and 1975–2000 truncated data
set (fourth row)
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the cohort effect in the model is lifelong processes that might affect mortality, such as
smoking (e.g., Doll et al. 2004).

To support our rationale for selecting model M2, we analyze the in-sample forecasts
from both models based on the 1975–2000 truncated data set. Model M1 (the original
Lee-Carter model) yields forecasts that slightly underpredict the observed life expec-
tancy, which is presented in the bottom plot of Fig. 3. For M2, the posterior distribution
is much wider than the results obtained with the full data set. Here, the median
predictions seem to be slightly lower than the observed life expectancy, but the
observed values are inside the predictive intervals because of larger uncertainty. A
comparison of the ex-post forecasts reveals that 59 % of the observed mortality rates for
years 2001–2009 fall into the 80 % predictive intervals in the M1 model. For the 95 %
predictive interval, 82 % of the observations fall into it. The M2 model performs better;
the percentages of the observed mortality rates falling into 80 % and 95 % predictive
intervals are 75 % and 89 %, respectively. Because we model mortality rates in M1 and
death counts in M2, the DIC cannot be used here to compare both models.

Our life expectancy forecasts can be compared with the official ones prepared by the
Office for National Statistics (2011). For 2024, the official predictions of 85.3 for
females and 81.6 for males fall inside the 80 % predictive intervals. Median life
expectancies are 83.9 and 80.0 under M1, and 85.1 and 80.6 under M2. Hence, the
model with cohort effect (M2) leads to slightly lower predictions of life expectancy
compared with the official ones, but higher predictions compared with M1.

Forecasts of Fertility

The age-specific forecasts for fertility are presented in Fig. 4. In the first row, we
observe the fit of the models F1 and F2 to the 2009 data. The model with the cohort
effect (F2) provides a better fit with lower uncertainty. Also, the 2024 forecast (second
row) appears more plausible than the forecast based on the F1 model, which produces
an unrealistic median fertility rate of 0.3 for females aged 33–35 years.

The resulting TFRs are presented in the third row of Fig. 4. It is clear from the plots
that F2 fits the data better than F1. Moreover, the projected TFR from F1 shows an
explosive pattern that we consider unrealistic, with an explosive predicted TFR. Hence,
we believe that the pattern of gradual diminishing of the recently increasing TFR
produced by F2 better reflects our expectations about future fertility in the UK.

The in-sample forecasts of the fertility rates confirm our rationale for choosing F2 as
the foundation of the population forecast. Again, F2 appears to fit the data better (see
the fourth row of Fig. 4). The resulting forecasts of TFR under F2 seem to be more
uncertain than those of F1. However, F1 misses the decline in early 2000s. These
results are confirmed by the ex-post analysis of the fertility rates. For F1, 58 % of
observed fertility rates fall into the 80 % predictive interval, and 75% fall into the 95 %
predictive intervals; for F2, the percentage of data falling into respective predictive
intervals are 62 % and 74 %. The official forecast of the TFR used by the Office for
National Statistics (2011) is 1.84, and it falls inside the 80 % predictive interval of our
2014 forecast under F2. Our median TFR forecast for 2024 is 1.12.

The DIC cannot be used to compare F1 and F2 because different types of data are
used in the models. Nevertheless, the ex-post analysis of the in-sample forecasts, as
well as the visual assessment of the results, clearly point to the model with the cohort
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effect included. This rationale is supported by the vast demographic literature on the
quantum and tempo effects in fertility (Bongaarts and Feeney 1998). In particular, we
refer to the recent postponement and subsequent recuperation of fertility in many
developed countries, where the cohort effects are the most profound (see, e.g.,
Sobotka et al. 2011). In our results, slightly declining but still uncertain fertility rates
may indicate a possibility of yet another period of postponement.
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Fig. 4 Model fit for fertility by age to 2009 data (top row), forecasts for 2024 (second row), model fit and
forecasts of TFR based on the full data set (third row), and 1975–2000 truncated data set (fourth row)
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Forecasts of Emigration and Immigration

To forecast emigration rates and immigration counts for the UK we need to reflect on
the quality of the survey data on migration and their implications for modeling. To
overcome the irregularities described in the earlier Data section, we modified the
models described in the section Forecasting Immigration Counts and Emigration
Rates to account for rounding to the nearest thousand and included smoothing in the
model. Detailed equations are presented in Online Resource 1 (section A.1).

The results of forecasting emigration rates and immigration counts for fe-
males are summarized in Figs. 5 and 6, respectively (the similar patterns for
males are not shown because of space constraints). In the first row, we present
the IE1 and IE2 forecasts for 2009. We observe that both models fit the data
reasonably well. As expected, the univariate random walk model in IE1 leads to
stable forecasts over time, with increasing uncertainty for both emigration rates
and immigration counts. The drift term and log-linear trend incorporated in the
IE2 lead to ever-increasing immigration and emigration.

The DIC leads to choosing the IE2 model over IE1 in the case of the full sample
predictions: the DIC is 25,484 for IE1 and 25,480 for IE2. In the case of the truncated
data set, however, the DIC prefers the IE1 with random walk (18,928 vs. 18,930). This
is supported by the visual inspection of the in-sample predictions of mean emigration
rates and total immigration counts (fourth rows of Figs. 5 and 6, respectively). This
result is not surprising because the patterns in the migration data changed substantially
after the year 2000. Hence, different models may be more suitable for both data sets. In
terms of predictive coverage, there is almost no difference between IE1 and IE2. Under
IE1, 37 % of observed migration fall into the 80 % predictive interval, and 48 % fall
into the 95 % predictive interval; for IE2, the percentages of data falling into respective
predictive intervals are 37 % and 47 %. The rather small percentages of the observed
values falling into the predictive intervals ought not to be surprising due to the
irregularities observed in the data.

Population Forecasts

A final step in forecasting population is combining the population components within
the cohort component projection model. As an illustration, we select models M2 for
mortality, F2 for fertility, and IE2 for migration.

The age composition of the predicted UK population in 2024 is presented in the first
row of Fig. 7. Forecasts of the total population for females and males are presented in
the second row. We observe that the age profile of the 2024 population is shaped mostly
by future migration and, to a lesser extent, fertility. The largest uncertainty concerns the
youngest population, as well as the population aged 20–45, for both males and females.
These findings are in line with Keyfitz’s (1981) observation on the plausible limits of
population forecasting, which were set to about 20 years ahead. We also expect that the
number of the elderly persons will be larger in 2024 but the population aged 20–45 will
be most numerous.

Our forecast can be compared with the official deterministic projections for 2024
prepared by the Office for National Statistics (2011). The dashed line in Fig. 7
represents the principal projection, whereas the dotted lines are low and high population
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scenarios. The main drivers of differences between these projections are assumptions
about fertility and migration. We observe that the population aged 20–35 is substan-
tially smaller in all scenarios of the Office for National Statistics projections compared
with our forecast. This results from the assumption that net migration stays constant at
the levels observed in recent years: at the level of 200,000, 140,000, and 260,000
persons annually in the principal, low, and high scenarios, respectively (Office for

0.00

0.02

0.04

0.06

0.08

Model IE1, 2009 fit

Age

R
at

e

0 6 15 24 33 42 51 60 69 78 87

0.00

0.02

0.04

0.06

0.08

Model IE2, 2009 fit

Age

0 6 15 24 33 42 51 60 69 78 87

0.00

0.02

0.04

0.06

0.08

Model IE1, 2024 forecast

Age

R
at

e

0 6 15 24 33 42 51 60 69 78 87

0.00

0.02

0.04

0.06

0.08

Model IE2, 2024 forecast

Age

0 6 15 24 33 42 51 60 69 78 87

1980 1990 2000 2010 2020

0.000

0.005

0.010

0.015

Model IE1, full data set

R
at

e

1980 1990 2000 2010 2020

0.000

0.005

0.010

0.015

Model IE2, full data set

1980 1990 2000 2010

0.000

0.005

0.010

0.015

Model IE1, 1975−2000 data set

R
at

e

1980 1990 2000 2010

0.000

0.005

0.010

0.015

Model IE2, 1975−2000 data set

Fig. 5 Model fit for female emigration rates by age to 2009 data (first row), forecasts for 2024 (second row),
model fit and forecasts of overall mean emigration rate based on the full data set (third row), and 1975–2000
truncated data set (fourth row)
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National Statistics 2011). Moreover, our results suggest that the uncertainty about the
age profile of future population is considerably larger than it is reflected in the
deterministic projections based on scenarios.

As far as the total population size is concerned, the forecast indicates that there will
be only 49,000 fewer females than males in 2024, whereas the difference was more
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Fig. 6 Model fit for female immigration counts by age to 2009 data (first row), forecasts for 2024 (second
row), model fit and forecasts of total immigration based on the full data set (third row), and 1975–2000
truncated data set (fourth row)
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than 1 million in 2009 and was 1.5 million in favor of females in 1975. This is most
likely due to the larger proportion of male migration and a gradual closing of the life
expectancy gap between the sexes. The median size of the 2024 population is 70.8
million, which is around 9 million larger than the population size observed in 2009. In
the principal projection for 2024 prepared by the Office for National Statistics (2011),
the predicted total population is 69.0 million (i.e., 1.8 million lower), whereas the low
and high scenarios are 66.4 and 71.1 million, respectively. However, only high scenario
falls into our 80 % predictive interval for the total population. Also, the population
predicted by the Office for National Statistics seems to be growing more slowly than in
our forecast. This results from the aforementioned more-conservative prediction of
international net migration.
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Fig. 7 2024 forecasts of males and females in the United Kingdom: Age profiles (first row) and totals (second
row). Dashed lines are the 2010-based ONS principal projections with dotted lines representing the high and
low scenarios
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As a further validation step in population forecasting, we present an in-
sample population forecast in Fig. 8, based on the data truncated in year 2000.
In general, the data can be truncated at various points to make the validation
procedure more robust. The predictive intervals for the age profiles in 2009
match the reported figures reasonably well. Differences are observed for early
childhood ages, for which the model underpredicts the fertility increases in the
first decade of the 2000s, and for the young adult ages, caused by the
underprediction of migration (especially for females). The EU enlargement
in May 2004 resulted in a faster increase than anticipated by the historical
data for both emigration and immigration levels, which explains a large part
of the underprediction.
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truncated data set: Age profile (first row) and totals (second row)
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Discussion

In this article, we have demonstrated that extension of the Lee-Carter model can
serve as a general platform for estimating age schedules of the four demographic
components of population. We then combined these components into a single
forecast by means of a cohort-component projection model. We also explored the
correlation of each of the components in time, as well as between sexes and
components (for emigration and immigration), which is embedded in our exten-
sion of the Lee-Carter method. For emigration and immigration, we provided a
tool for smoothing irregularities in the data. This tool, however, can be easily
extended to fertility or mortality. Finally, we have illustrated the use of the
forecasting model on the UK’s data.

This research makes two contributions to the literature. The first is the devel-
opment of a new approach for integrating demographic components to provide
stochastic population forecasts by age and sex. The Bayesian approach that we
adopted accounts for the uncertainties embedded in births, deaths, and emigration
and immigration, as well as across age and sexes. We show that the same general
framework of the Lee-Carter approach for modeling age and sex patterns of
mortality and fertility can be coherently applied to model corresponding patterns
of migration. Irregularities in the data, such as those observed for the UK, can also
be accounted for within the model.

The second contribution is the application of the approach to a situation of relatively
good yet imperfect data availability. In this way, we position our work between the
generic global approach with far fewer data requirements, which has been proposed by
Raftery et al. (2012), and a specific multiple-data situation discussed by Bryant and
Graham (2013). Where possible, population forecasting should follow a bottom-up
approach, in which the age-specific rates of the demographic components are utilized.
The rates describe the underlying processes more comprehensively than summary
aggregates, such as TFRs or life expectancies, in the top-down approach.

Further research should explore other models for forecasting age patterns of demograph-
ic components, such as the functional models developed by Hyndman and Booth (2008).
Analogously, various specifications for the time component models (such as ARIMA or
VAR models of higher order) should be investigated. Next, the underlying models of
components for the population forecast can be selected by using various techniques, of
which Bayesian model averaging (Raftery et al. 1997) seems to be most appealing. In this
way, the model uncertainty would be accounted for coherently. Finally, the uncertainty of
the baseline population size used for projections could be incorporated into the projection.
We believe this work provides a strong foundation for such extensions.
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