Mach Learn (2011) 82: 157-189
DOI 10.1007/s10994-010-5214-7

Detecting communities and their evolutions in dynamic
social networks—a Bayesian approach

Tianbao Yang - Yun Chi - Shenghuo Zhu -
Yihong Gong - Rong Jin

Received: 1 June 2009 / Accepted: 1 May 2010 / Published online: 25 September 2010
© The Author(s) 2010

Abstract Although a large body of work is devoted to finding communities in static so-
cial networks, only a few studies examined the dynamics of communities in evolving social
networks. In this paper, we propose a dynamic stochastic block model for finding commu-
nities and their evolution in a dynamic social network. The proposed model captures the
evolution of communities by explicitly modeling the transition of community memberships
for individual nodes in the network. Unlike many existing approaches for modeling social
networks that estimate parameters by their most likely values (i.e., point estimation), in this
study, we employ a Bayesian treatment for parameter estimation that computes the posterior
distributions for all the unknown parameters. This Bayesian treatment allows us to capture
the uncertainty in parameter values and therefore is more robust to data noise than point
estimation. In addition, an efficient algorithm is developed for Bayesian inference to handle
large sparse social networks. Extensive experimental studies based on both synthetic data
and real-life data demonstrate that our model achieves higher accuracy and reveals more
insights in the data than several state-of-the-art algorithms.

Editors: S.V.N. Vishwanathan, Samuel Kaski, Jennifer Neville, and Stefan Wrobel.

T. Yang (X)) - R. Jin

Department of Computer Science and Engineering Michigan State University, East Lansing, MI 48824,
USA

e-mail: yangtial @msu.edu

R. Jin
e-mail: rongjin@msu.edu

Y. Chi - S. Zhu - Y. Gong
NEC Laboratories America, 10080 N. Wolfe Rd, SW3-350, Cupertino, CA 95014, USA

Y. Chi
e-mail: ychi@sv.nec-labs.com

S. Zhu
e-mail: zsh@sv.nec-labs.com

Y. Gong
e-mail: ygong @sv.nec-labs.com

@ Springer

mailto:yangtia1@msu.edu
mailto:rongjin@msu.edu
mailto:ychi@sv.nec-labs.com
mailto:zsh@sv.nec-labs.com
mailto:ygong@sv.nec-labs.com

158 Mach Learn (2011) 82: 157-189

Keywords Social network - Community - Community evolution - Dynamic stochastic
block model - Bayesian inference - Gibbs sampling

1 Introduction

As online social networks such as Facebook! and MySpace? are gaining popularity rapidly,
social networks have become a ubiquitous part of many people’s daily lives. Therefore,
social network analysis is becoming a more and more important research field. One major
topic in social network analysis is the study of communities in social networks. For instance,
in Wikipedia,3 the online social network service is defined as “A social network service
focuses on building online communities of people who share interests and activities, or who
are interested in exploring the interests and activities of others”. Analyzing communities
in a social network, in addition to serving scientific purposes (e.g., in sociology and social
psychology), helps improve user experiences (e.g., through friend recommendation services)
and provides business value (e.g., in target advertisement and market segmentation analysis).

Communities have long been studied in various social networks. For example, in social
science an important research topic is to identify cohesive subgroups of individuals within
a social network where cohesive subgroups are defined as “subsets of actors among whom
there are relatively strong, direct, intense, frequent, or positive ties” (Wasserman and Faust
1994). As another example, communities also play an important role in Web analysis, where
a Web community is defined as “a set of sites that have more links to members of the com-
munity than to non-members” (Flake et al. 2000).

Social networks are usually represented by graphs where nodes represent individuals and
edges represent relationships and interactions among individuals. Based on this graph rep-
resentation, there exists a large body of work on analyzing communities in static social net-
works, ranging from well-established social network analysis (Wasserman and Faust 1994)
to recent successful applications such as Web community discovery (Flake et al. 2000).
However, these studies overlooked an important feature of communities—communities in
real life are usually dynamic. On a macroscopic level, community structures evolve over
time. For example, a political community whose members’ main interest is the presidential
election may become less active after the election takes place. On a microscopic level, indi-
viduals may change their community memberships, due to the shifts of their interests or due
to certain external events. In this respect, the above studies that analyze static communities
fail to capture the important dynamics in communities.

Recently, there has been a growing body of work on analyzing dynamic communities in
social networks. As we will discuss in detail in related work, some of these studies adopt a
two-step approach where first static analysis is applied to the snapshots of the social network
at different time steps, and then community evolution is introduced afterward to interpret the
change of communities over time. Because data in real world are often noisy, such a two-step
approach often results in unstable community structures and consequentially, unwarranted
community evolution. Some more recent studies attempted to unify the processes of com-
munity extraction and evolution extraction by using certain heuristics, such as regularizing
temporal smoothness. Although some encouraging results are reported, these studies lack

1 http://www.facebook.com
2http://www.myspace.com

3 http://www.wikipedia.org

@ Springer

http://www.facebook.com
http://www.myspace.com
http://www.wikipedia.org

Mach Learn (2011) 82: 157-189 159

rigorous generative models and therefore are usually ad hoc. Furthermore, none of these
studies explicitly model the transition or change of community memberships, which is the
key to the analysis of dynamic social network. In addition, most existing approaches con-
sider point estimation in their studies, i.e., they only estimate the most likely value for the
unknown parameters. Given the large scale of social networks and potential noise in data,
it is likely that the network data may not be sufficient to determine the exact value of para-
meters, and therefore it is important to develop methods beyond point estimation in order to
model and capture the uncertainty in parameter estimation.

In this paper, we present a probabilistic framework for analyzing dynamic communities
in social networks that explicitly addresses the above two problems. Instead of employing
an afterward effect or a regularization term, the proposed approach provides a unified frame-
work for modeling both communities and their evolution simultaneously; the dynamics of
communities is modeled explicitly by transition parameters that dictates the changes in com-
munity memberships over time; a Bayesian treatment of parameter estimation is employed
to avoid the shortcoming of point estimation by using the posterior distributions of parame-
ters for membership prediction. In short, we summarize the contributions of this work as
follows.

— We propose a dynamic stochastic block model for modeling communities and their evo-
lution in a unified probabilistic framework. Our framework has two versions, the online
inference version that progressively updates the probabilistic model over time, and the
offline inference version that learns the probabilistic model with network data obtained at
all time steps in a retrospective way. This is in contrast to most existing studies of social
network analysis that only focus on the online inference approaches. We illustrate the
advantage of the offline inference approach in our empirical study.

— We present a Bayesian treatment for parameter estimation in the proposed framework.
Unlike most existing approaches for social network analysis that only compute the most
likely values for the unknown parameters, the Bayesian treatment estimates the posterior
distributions for unknown parameters, which is utilized to predict community member-
ships as well as to derive important characteristics of communities, such as community
structures, community evolution, etc.

— We develop a very efficient algorithm for the proposed framework. Our algorithm is ex-
ecuted in an incremental fashion to minimize the computational cost. In addition, our
algorithm is designed to fully take advantage of the sparseness of data. We show that for
each iteration, our algorithm has a time complexity linear in the size of a social network
provided the network is sparse.

We conduct extensive experimental studies on both synthetic data and real data to investi-
gate the performance of our framework. We show that compared to state-of-the-art baseline
algorithms, our model is advantageous in (a) achieving better accuracy in community ex-
traction, (b) capturing community evolution more faithfully, and (c) revealing more insights
from the network data.

The rest of the paper is organized as follows. In Sect. 2 we discuss related work. In
Sect. 3, we present our dynamic stochastic block model for communities and their evolution.
In Sect. 4, we provide a point estimation approach to estimate the parameters in our model.
In Sect. 5, we propose a Bayesian inference method to learn the parameters in our dynamic
stochastic block model. In Sect. 6, we describe some details of our implementation and
provide a complexity analysis for our algorithm. In Sect. 7, we discuss several extensions to
our basic model. We present experimental studies in Sect. 8 and give conclusion and future
directions in Sect. 9.

@ Springer

160 Mach Learn (2011) 82: 157-189

2 Related work

Finding communities is an important research topic in social network analysis. For the task
of community discovery, many approaches such as clique-based, degree-based, and matrix-
perturbation-based, have been proposed. Wasserman and Faust (1994) gave a comprehen-
sive survey on these approaches. Community discovery is also related to some important
research issues in other fields. For example, in applied physics, communities are important
in analyzing modules in a physical system and various algorithms, such as (Newman and
Girvan 2004; Newman 2006), have been proposed to discover modular structures in physical
systems. As another example, in the machine learning field, finding communities is closely
related to graph-based clustering algorithms (Chung 1997), such as the normalized cut al-
gorithm proposed by Shi and Malik (2000), the modularity-based approaches proposed by
White and Smyth (2005) and by Chen et al. (2009), and the graph-factorization clustering
(GFC) algorithm proposed by Yu et al. (2005). However, all these approaches focus on ana-
lyzing static networks while our focus in this study is on analyzing dynamic social networks.
In the field of statistics, a well-studied probabilistic model is the stochastic block model
(SBM). This model was originally proposed by Holland and Leinhardt (1976) and was fur-
ther extended by others, e.g. (Fienberg et al. 1985; Ho et al. 2002; Shortreed et al. 2006;
Snijders 2002; Wasserman and Pattison 1996). The SBM model has been successfully
applied in various areas such as bioinformatics and social science (Airoldi et al. 2006;
Fienberg et al. 1985; Ho et al. 2002). Researchers have extended the stochastic block model
in different directions. For example, Airoldi et al. (2006) proposed a mixed-membership
stochastic block model, Kemp et al. (2004) proposed a model that allows an unbounded
number of clusters, and Hofman and Wiggins (2008) proposed a Bayesian approach based
on the stochastic block model to infer module assignments and to identify the optimal num-
ber of modules. Our new model is also an extension of the stochastic block model. However,
in comparison to the above approaches which focus on static social networks, our approach
explicitly models the change of community memberships over time and therefore can dis-
covery communities and their evolution simultaneously in dynamic social networks.
Recently, finding communities and their evolution in dynamic networks has gained more
and more attention. Kumar et al. (2003) studied the evolution of the blogosphere as a graph
in terms of the change of characteristics, (such as in-degree, out-degree, strongly connected
components), the change of communities, as well as the burstiness in blog community.
Leskovec et al. (2005) studied the patterns of growth for graphs in various fields and pro-
posed generators that produce graphs exhibiting the discovered patterns. Palla et al. (2007)
analyzed a co-authorship network and a mobile phone network, where both networks are
dynamic. They use the clique percolation method (CPM) to extract communities at each
timestep and then match communities in consecutive timesteps to analyze community evo-
Iution. They studied some interesting characteristics, such as community sizes, ages and
their correlation, community auto-correlation (relative overlap between the same commu-
nity at two timesteps #; and #, as a function of 7 =1, — f), etc. Toyoda and Kitsuregawa
(2003) studied the evolution of Web communities from a series of Web archives. They first
proposed algorithms for extracting communities in each timestep. And then they proposed
different types of community changes, such as emerge, dissolve, grow, and shrink, as well
as a set of metrics to quantify such changes for community evolution analysis. Spiliopoulou
et al. (2006) proposed a framework, MONIC, to model and monitor cluster transitions over
time. They defined a set of external transitions such as survive, split, disappear, to model
transactions among different clusters and a set of internal transitions, such as size and loca-
tion transitions to model changes within a community. Asur et al. (2007) introduced a fam-
ily of events on both communities and individuals to characterize evolution of communities.

@ Springer

Mach Learn (2011) 82: 157-189 161

They also defined a set of metrics to measure the stability, sociability, influence and popular-
ity for communities and individuals. Sun et al. (2007) proposed a parameter-free algorithm,
GraphScope, to mine time-evolving graphs where the Minimum Description Length (MDL)
principle is employed to extract communities and to detect community changes. Mei and
Zhai (2005) extracted latent themes from text and used the evolution graph of themes for
temporal text mining. In all these studies, however, community extraction and community
evolution are analyzed in two separated stages. That is, when communities are extracted at
a given timestep, historic community structure, which contains valuable information related
to current community structure, is not taken into account.

There are some recent studies on evolutionary embedding and clustering that are closely
related to our work. Sarkar and Moore (2005) proposed a dynamic method that embeds
nodes into latent spaces where the locations of the nodes at consecutive timesteps are reg-
ularized so that dramatic change is unlikely. Chakrabarti et al. (2006) proposed the first
evolutionary clustering methods where the cluster membership at time 7 is influenced by the
clusters at time ¢ — 1. As a result, the cluster membership for a node at time ¢ depends both
on its relationship with other nodes at time ¢ and on its cluster membership at time ¢ — 1.
Tantipathananandh et al. (2007) proposed an optimization-based approach for modeling dy-
namic community structure. Chi et al. (2007) proposed an evolutionary version of the spec-
tral clustering algorithm. They used graph cut as a metric for measuring community struc-
tures and community evolution. Lin et al. (2008, 2009a) extended the graph-factorization
clustering (GFC) and proposed the FacetNet algorithm for analyzing dynamic communities.
Ahmed and Xing (2008) extended temporal Dirichlet process mixture model for cluster-
ing problem for documents. In their model, the probabilities transiting between clusters are
considered independent, while we consider the transition follows certain distribution. Lin
et al. (2009b) extends (Lin et al. 2008) by modeling of content of documents. Tang et al.
(2008) used joint matrix factorization method to discover the community evolution. Kim
and Han (2009) proposed the particle-and-density based method to discover the evolution of
communities. Its overall quality is measured by the combination of the history quality with
the snapshot quality. A preliminary version of our work has been reported in Yang et al.
(2009). We will conduct performance studies to compare our algorithm with some of these
algorithms. Here we want to point out that compared to our new algorithm, none of these
existing approaches has a rigorous probabilistic interpretation and they all are restricted to
an online inference framework.

3 The dynamic stochastic block model
3.1 Notations

Before discussing the statistical models, we first introduce the notations that are used
throughout this paper. We represent by W® ¢ R**" the snapshot of a social network at
a given time step ¢ (or snapshot network), where n is the number of nodes in the network.
Each element w;; in W® is the weight assigned to the link between nodes i and j: it can be
the frequency of interactions (i.e., a natural number) or a binary number indicating the pres-
ence or absence of interactions between nodes i and j. For the time being, we focus on the
binary link, which will be extended to other types of links in Sect. 7. For a dynamic social
network, we use Wy = (W, W ... WD} to denote a collection of snapshot graphs for
a given social network over 7 discrete time steps. In our analysis and modeling, we first
assume nodes in the social network remain unchanged during all the time steps, followed by

@ Springer

162 Mach Learn (2011) 82: 157-189

the extension to dynamic social networks where nodes can be removed from and added to
networks.

Weuse z; € {1, ..., K}, where K is the total number of communities, to denote the com-
munity assignment of node i and we refer to z; as the community of node i. We furthermore
introduce z;; = [z; = k] to indicate if node i is in the kth community where [x] outputs one
if x is true and zero otherwise. Community assignments matrix Z = (zj; :i € {1,...,n},k €
{1,..., K}) includes the community assignments of all the nodes in a social network at a
given time step. Finally, we use Z; = {Z", ..., Z("} to denote the collection of community
assignments of all nodes over T time steps.

3.2 Stochastic block model (SBM)

We first briefly review the Stochastic Block Model (SBM). SBM is a well studied statis-
tical model that has been successfully used in social network analysis (Hofman and Wig-
gins 2008; Holland and Leinhardt 1976). In the SBM model, a network is generated in
the following way. First, each node is assigned to a community following a probability
m = {m,..., g} where m; is the probability for a node to be assigned to community .
Then, depending on the community assignments of nodes i and j (assuming that z;; =1
and z;; = 1), the link between i and j is generated following a Bernoulli distribution with
parameter Py. So the parameters of SBM are 7 € R, the prior distribution of the com-
munities, and P € RX*KX | the link generation probabilities. The diagonal element Py of
P is called the “within-community” link probability for community k and the off-diagonal
element Py, k # [is called “between-community” link probability between communities k
and /.

3.3 Dynamic stochastic block model (DSBM)

The traditional stochastic block model can only handle static networks. To extend it to han-
dling dynamic networks, we propose a Dynamic Stochastic Block Model (DSBM) for mod-
eling communities and their evolution in a unified probabilistic framework. Our DSBM is
defined as the following. Assuming the community matrix Z“~" for time step ¢ — 1 is avail-
able, we use a transition matrix A € R¥*X to model the community matrix Z® at time
step t. More specifically, for a node i, if node i was assigned to community & at time ¢ — 1
G.e., zg:l) = 1), then with probability A;; node i will remain in community k at time step ¢
and with probability A;; node i will change to another community / where k # [. We have
each row of A sums to 1, i.e., Zl Ay = 1. Given the community memberships in Z®, the
link between nodes will be then decided stochastically by probabilities P in the SBM model.

The generative process of the Dynamic Stochastic Block Model and the graphical rep-
resentation are shown in Table 1 and Fig. 1, respectively. Note that DSBM and SBM differ
in how the community assignments are determined. In our DSBM model, instead of follow-
ing a prior distribution 7, the community assignments at any time ¢ (¢ > 1) are determined
by those at time ¢ — 1 through transition matrix A, where A aims to capture the dynamic
evolution of communities.

3.4 Likelihood of the complete data
To express the data likelihood for the proposed DSBM model, we make two assumptions

about the data generation process. First, link weight w;; is generated independent of the
other nodes/links, provided the membership z; and z;. Second, the community assignment

@ Springer

Mach Learn (2011) 82: 157-189 163

Table 1 The generative process

of the Dynamic Stochastic Block ~ For time 1:
Model (DSBM) generate the Social Network followed by SBM
For each time ¢ > 1:
generate z()~ p(z([)\z(t b ,A)

For each pair (i, j) at time ¢:

()

generate w; ; ~ Bernoulli(- |P (,) (,))

Fig. 1 The graphical time step 1 time step t-1 time step t
representation of the Dynamic
Stochastic Block Model
(DSBM). For clarity, the figure
only shows the representation for
a pair of nodes i and j

(’) of node i at time step ¢ is independent of the other nodes/links, provided its community
a351gnment z(’ D at time 7 — 1. Using these assumptions, we write the likelihood of the
complete data for our DSBM model as follows

Pr(Wr, Zr|m, P, A)

T T
=[[prcw® 1z, PY[[Pr(z? 12", A) Pr(z) 1)
t=1 =2

where the emission probability Pr(W®|Z® P) and the transition probability
Pr(Z®|ZD, A) are

Pr(W(’)|Z(’) P)—l_[Pr(w(’) (l) (l) . P)
i~
(ONO

l“_[< ki (1_p“)1 wf;)) i1

i~j ki

and

n

Pr(z™ 20, A) =]Pr(" 12", A)
i=1
(r b, ®
=TI

i=1 k|1

respectively. Note that in the above equations, w = 1 if there exists a link between nodes

i and j at time ¢, O otherwise. In addition, z(,’()z('l) =1 only if at time ¢ node i belongs to

community k and node j belongs to community /. Similarly, z; (t Y ([) = 1 only if node i

belongs to community k at time ¢ — 1, and belongs to communlty l at tlme t, where k may

@ Springer

164 Mach Learn (2011) 82: 157-189

be equal to /. Furthermore, in our model self-loops are not considered and so in the above
equations, i ~ j means over all i’s and j’s such that i # j. So the above equations are a
compact representation of our DSBM model.

Finally, term Pr(ZV|7) is the probability of community assignments at the first time
step and is expressed as

Pr(Z(l)) = ﬁ]_[rr,;’(’i)

i=l k

4 Point estimation

For point estimation, we can use EM algorithm to get the maximum values of the parameters
7, P, A and the approximate posterior distribution for the community assignments Zr. We
take the variational EM algorithm. To run the variational EM algorithm, we assume the pos-
terior distribution for Z7 can be factorized as ¢(Zr) =[], [T/~ ¢(z"). In the variational
E-step, we obtain the posterior distribution q(zl@), and in the variational M-step, we ob-
tain the maximum values for the parameters 7, A, P. It can be shown that in the variational
E-step, the posterior distribution q(zf’)) is computed as

t=1:

1nq(z<‘>)—Zz“> Inm+ Y > El2) 1w In Py + (1 — w)In(1 — Py))
J#E

+ Zz(l) Z E[z(z)] In Ay + const,

tel2, T —1]:
Ing(z") = ZZ(’) Z ZE[Z}’](WS‘) InPy+(1— w};))ln(l — Pu))
i#
+ Zz“) (E[z(t“)] In Ag + Elzf)"1In Ay) +const,

t="T:

Ing(z) =Y "z [Y Elflw In Py + (1 —wij)In(l = Py))

k Ve

3 S B i A con

In can seen that the approximate posterior distribution for g (zl@) is multinomial distribution

of q(z(')) =1L y,(’) W . In the M-step, we maximize the log-likelihood over the parameters
7, P, A. The results are

Z E[Z(l)] _ Z yl(l)
Dok E[Z(l)] Dok i Vik '

T =

@ Springer

Mach Learn (2011) 82: 157-189 165

Y EEIEED + EEYIEE D w!

Py =—=
tT:I Zz'v](E[(t)]E[Z(f)]_,’_E[Z(t)] [(t)])
_ ZIT:I Zi~j(yz(kt)y/(lt) + yt(lr)yjk))w([)
T @), (1) (1)
Zt:l Z[Nj(ylkt y/lZ + yll[y]k)
(1) 1)
Ay = L X Bl MEED) YL Y v

YLy E[z“ ” EZ)T YL

After running the variational EM algorithm, the final community assignments are obtained
by

Z7 =maxlIng(Zr) 2)
Zr

resulting zl@* = arg maxy)/i(kt).

5 Bayesian inference

In order to predict memberships of nodes in a given dynamic social network, a straightfor-
ward approach is to first estimate the most likely values for parameters 7, P, and A from
the historical data, and then to infer the community memberships in the future using the es-
timated parameters. This is usually called point estimation in statistics, and is notorious for
its instability when data is noisy. We address the limitation of point estimation by Bayesian
inference (Bishop 2006). Instead of using the most likely values for the model parameters,
we utilize the distribution of model parameters when computing the prediction.

5.1 Conjugate prior for Bayesian inference

We first introduce the prior distributions for model parameters 7, P, and A.
The conjugate prior for 7 is the Dirichlet distribution

F(Zk]/k) yie—1
P = =" | | 3
r(T) .)) T 3)

where I'(-) is the Gamma function. For the P matrix, we first assume it to be symmetric and
therefore reduce the number of parameters to @

The conjugate prior for each parameter Py, for [> k is a Beta distribution, and therefore
the prior distribution for P is

1—[(o + Br) pei—1

PO = 1 Fgrgn

(1 — Pyt 4)

k,I>k

Finally, the conjugate prior for each row A is a Dirichlet distribution and the prior distri-
bution for A is

F(Zl I"Lkl) i —1
Pr(A) = _ A . 5
rA) Unmmomk’ ©)

@ Springer

166 Mach Learn (2011) 82: 157-189

5.2 Joint probability of the complete data

To make our presentation concise, we introduce the following notations.

n =Y, ©
i

n n
(r1:12) __ =1 ()
Nesi = Z ik %l)
=t +1 i=1
n n

(t1:12) (t—1)
nP ="y Y, ®)

t=t+1 i=1

(t1:12) __ (t) (t) (t) ()
N = = ZZ(sz 2+ 2y i) ®

1=ty i~j

A(x 1)
12 Zzw(t) L(;{)Z(t) l(;)zylz) (10)

=ty i~j

Here are some descriptions of the above notations. n,(f) represents the size, measured by
the number of community members, of community k at time ¢. n,(:‘jf) represents the total
number of transitions from community k& to community / between time #; (exclusive) and
t, (inclusive). nk1) represents the sum of the sizes of community k over time #; (exclu-
sive) and 1, (inclusive). n('l ") are the total number of pairs of nodes i and j, over time #;
(inclusive) and #, (mcluswe) where i 7& j i belongs to community k and j belongs to com-
munity /, or the other way around. n(12) i5 defined similarly to n k,‘ ") except that n(t‘) g
a weighted sum, weighed by the element w in WO,

Using these notations, and with the prior distributions of the model parameters, Theo-
rem 1 gives the closed form expression for the joint probability of the complete data that is
marginalized over the distribution of model parameters.

Theorem 1 With the priors of parameters 8 = {m, P, A} defined in (3)—(5) together with

the notations given in (6)—(10), the joint probability of observed links and unobserved com-
munity assignments is proportional to

PI'(WT, ZT) = /PT(WT, ZT|0)Pr(0)d9

H]F(nk 1+Mkl)
X I‘(n(])—}—y) ;
oot o1 1080

A(L:T I:T A(I:T
X l_[B (n,(d)+ak1,n,(d) —n,((l)—i—,Bk,)
kI>k

A(l T) P (IT) _ A7)
k k
<[1» (P e, ")

where B(-) is the Beta function.

@ Springer

Mach Learn (2011) 82: 157-189 167

The proof of the theorem is provided in the appendix. In this Bayesian inference framework,
to obtain the community assignment of each node at each time step, we need to compute the
posterior probability Pr(Z7|Wr).

Next, we introduce two versions of the inference framework—an offline inference ap-
proach and an online inference approach.

5.3 Offline inference

In our offline inference, it is assumed that the link data of all time steps are accessible
and therefore, the community assignments of all nodes in all time steps can be decided
simultaneously by maximizing the posterior probability, i.e.,

Z; = argmax Pr(Zr|Wr) = argmax PrOVr, Zr) (11)

Zr Zr

where PrOVr, Zr) is given in Theorem 1. Note that in offline inference, the community
membership of each node at every time step ¢ is decided by the link data of all time steps
in a retrospective way, even the link data of time steps later than 7. In other words, we try
to fit the community membership of each node at time ¢ to the entire available data from
time 1 to time 7 . Given this observation, we expect offline inference to deliver more reliable
estimation of community memberships than the online learning that is discussed in the next
subsection.

5.4 Online inference

In our online inference, the community memberships are learned incrementally over time.
Assume we have decided the community membership Z“~" at time step ¢ — 1, and observed
the links W at time 7. We decide the community assignments at time ¢ by maximizing the
posterior probability of community assignments at time ¢ given Z¢~" and W®, i.e.,

Z*0 = argmax Pr(Z®|w®, z¢-D),
z®)

Hence, to decide Z®, the key is to efficiently compute Pr(Z@|W®, Z¢~D) except for time
step 1 in which we need to compute Pr(Z®V|W®). The following theorem, whose proof is
given the appendix, provides closed form solutions for the two probabilities. It is important
to note that both probabilities are computed by averaging over the distribution of the model
parameters.

Theorem 2 With the priors of parameters 0 = {m, P, A} given in (3)-(5), the posterior
probability of unobserved community assignments given the observed links and the commu-

@ Springer

168 Mach Learn (2011) 82: 157-189

nity assignments at previous time step is proportional to

Pr(ZOIW D) o [T +)

k
~(1 1 ~(1
x l_[B ("l(cl) + o,y — iy +/3k1>
k,>k

ﬁ(l) n(l) —ﬁ(l)
XHB %‘f‘akk, %-Fﬂkk ,
k
1 12)
[t (
Pr(ZO|W®, 26Dy o l_[1—[((:lfiti + M)
k / C(n,_,. +Zlﬂk1)

<[]» (ﬁ/(ctz) +a,n — i) + :Bkl)
k, >k

Xl_[B 7+akk7T+ﬂkk .
k

In online inference, it is assumed that data arrives sequentially and historic community as-
signments are not updated upon the arrival of new data. Therefore, the online inference
algorithm is done progressively and can be implemented more efficiently than the offline
inference algorithm.

6 Inference algorithm

In general it is an intractable problem to optimize the posterior probabilities in the offline and
online inference algorithms introduced in the previous section. As a consequence, we appeal
to the Gibbs sampling method (Geman and Geman 1984; Griffiths and Steyvers 2004) for
the solutions. In Gibbs sampling, we need to compute the conditional probability of the
community assignment of each node conditioned on the community assignments of other
nodes. We will first describe the algorithm and then analyze the time complexity of the
proposed algorithm.

6.1 Gibbs sampling algorithm

For offline inference, we need to compute the conditional probability Pr(zf’) |Z7 40> Wr),
via Pr(Zr|\Wr), where Zr - are the community assignments of all nodes at all
time steps except node i at time step 7. This can be computed by marginalizing z;”
in (11). Similarly, for online learning, we need to compute the conditional probabil-
ity Pr(zf[)IZ[.(’,) , WO, 70Dy where Z,.(’,) is the collection of community assignments
of all nodes, except node i, at time step t. This can be computed by marginalizing
Pr(Z®|W®, Z0=D) The following algorithms describe a simulated annealing version of
our inference algorithm.

Algorithm 1 Probabilistic simulated annealing algorithm

1. Randomly initialize the community assignment for each node at time step t (online infer-
ence) or at all time steps (offline learning); select the temperature sequence {T\, ..., Ty}
and the iteration number sequence {Ny, ..., Ny}.

@ Springer

Mach Learn (2011) 82: 157-189 169

2. Foreach iterationm =1, ..., M, run N,, iterations of Gibbs sampling with target distri-
butions exp{log Pr(Z;|Wr)/ T,u} (offline case) or exp{logPr(Z®O|\W® ZU=Dy/T, 1 (on-
line case).

Algorithm 2 Gibbs sampling algorithm

1. Compute the following statistics with the
initial assignments:

1
ny

(1:T) A(1:T)) ~(@)
My 5y OT Ty, Ty

(1:T) (1:T) (=11 (1—1i1)
N sy, o0y sy,

2. For each iteration m; = 1: N,,, and for each node i = 1 : n at each time t

— Compute the objective function in Simulated Annealing
exp {log Pr(z"” | Z7 i Wr)/ T } or
exp {1og1>r(z§’>|z§’_), wo, z“*”)/Tm]

up to a constant using the current statistics, and then obtain the normalized distrib-
ution. (Note: the two objective functions correspond to the offline inference and the
online inference, respectively.)

— Sample the community assignment for node i according to the distribution obtained
above, update it to the new one.

— Update the statistics.

6.2 Time complexity

In our implementation, we adopt several techniques to improve the efficiency of the algo-
rithm. First, since in each step of the sampling, only one node i at a given time ¢ changes
its community assignment, almost all the statistics can be updated incrementally to avoid
recomputing. Second, our algorithm is designed to take advantage of the sparseness of the
matrix W@ . For instance, we exploit the sparseness of W to facilitate the computation of

ﬁ,(fl‘ "2) We give the time complexity as the following.

Theorem 3 The time complexity of our implementation of the Gibbs sampling algorithm is
O(nT + eT + K>T + NT(eC, + nC,)) where e is the maximal number of edges over all
the time steps in the social network, N is the number of iterations in Gibbs sampling, C,
and C, are constants.

Proof In the initial computation for the statistics in (6)—(10), O (n) is the time for computing
n,((l), Vk; O(nT) is the time complexity of computing n,(cl_:)Tl), and n,ﬁl_f), Vk,1; O(eT) is the
time complexity of computing fz,((}:T), Vk, 1. In these computations, we make use the sparse-
ness of z\"’, which has only one non-zero value, and the sparseness of W; O (nT + K>T) is
the time for computing n,((}:T) , Vk, [. In the subsequent updating at each iteration of the Gibbs

sampling algorithm, only one zf’) is possibly changed, the updating only takes O (e!C; +C5),

@ Springer

170 Mach Learn (2011) 82: 157-189

where e is the number of edges associated with node i at time 7, summing over all nodes
at all time steps, O(eT Cy + nT C5) is the time required to update the statistics after updat-
ing all community assignments at each iteration. Finally adding the time together, the time
complexity of the Gibbs sampling algorithm is O(n 4+ eT +nT +nT + K*T + N(eTC; +
nT C,)), which is also O(nT + eT + K>T + NT (eC; + nC)). O

As can be seen, when the social network is sparse and when the degree of each node is
bounded by a constant, the running time of each iteration of our Gibbs sampling algorithm
is linear in the size of the social network.

7 Extensions

In this section, we present two extensions to our basic framework, including how to handle
different types of links and how to handle insertion and deletion of nodes in the network. In
addition, we discuss how to choose the hyperparameters in our model.

7.1 Handling different types of link

So far, we have used binary links in our model, where the binary links (i.e., either w;; =1
or w;; = 0) indicate the presence or absence of a relation between a pair of nodes. However,
there exist other types of links in social networks as well. Here we show how to extend our
model to handle two other cases: when w;; € N and when w;; € RT.

In some applications, w;; indicates the frequency of certain interactions. For example,
w;; may represent the occurrence of interactions between two bloggers during a day, the
number of papers that two authors co-authored during a year, etc. In such cases, w;; can be
any non-negative integer. Our current model actually can handle this case with little change:
the emission probability

Pr(wijlz;, 25) = [[(Pi (1 = P)) (13)
k,l

remains valid for w;; € N/, except that instead of a Bernoulli distribution (i.e., w;; =0 or
1), now w;; follows a geometric distribution. Note that the (1 — P) term is needed to take
into account the case where there is no edge between i and j. With minor modifications, we
give the joint probability PrOVr, Z7) in offline inference, and the conditional probability
Pr(Z®|W®, Z¢=DY in online inference as follows:

[T, D) +)
T + 3,)

k
A(1:T 1.T
X 1_[B (n,ﬂ, g, ny)+/3k1)
K>k

Provy, 20 o [[Ty +v0 [|
k

A(1:T) (1:7)

o n
Xl_[B< k; +Oékk,%+,3kk>,
k

Pr(ZV|W®) o [T (rf” + 1)
k

@ Springer

Mach Learn (2011) 82: 157-189 171

X 1_[B (fl(l) + au, ny +ﬂk1>
Kl>k

A(l) n(l)
XHB —+05 %""ﬂkk ,

B T +)
PrzO WO, 2 o [[=
o\ T Y)

X 1_[B (ﬁ;(fl) + o, n;(f,) + 5k1)
ki>k

A(t) n(t)
XHB —+Ot %‘i‘lgkk .

In other applications, w;; indicates the similarity or distance between nodes. For example,
w;; may represent the topic similarity between posts written by two bloggers, the content
similarity between a paper and the papers it cites, etc. In such cases, w;; € R™ belongs to the
set of non-negative real numbers. In such a case, we can first discretize w;; by using finite
bins and then introduce the emission probabilities as before. Another way to handle the
case when w;; € R is suggested by Zhu (2005), which is to introduce a k-nearest neighbor
graph and therefore reduce the problem to the case when w;; =0 or 1.

7.2 Handling the variability of nodes

In dynamic social networks, at a given time, new individuals may join in the network and
old ones may leave. To handle insertion of new nodes and deletion of old ones, existing
algorithm such as (Chi et al. 2007) and (Lin et al. 2008) use some heuristics, e.g., by assum-
ing that all the nodes are in the network all the time but in some time steps certain nodes
have no incident links. In comparison, in both the online and the offline versions of our al-
gorithm, no such heuristics are necessary. For example, for online inference, let S, denote
the set of nodes at time ¢, I, = S, () S;—1 be set of nodes appearing in both time steps # and
t—1.U, =S, — S,— be the new nodes at time ¢. Then we can naturally model the posterior
probability of the community assignments at time ¢ as

PI'(Z(f)|W(t>, Z(ffl)) o Pr(Z(’), W(f)|Z(t*1))
=Pr (W12 Pr(Z1Z V) Pr(Z) (14)

and we can directly write the part corresponding to (12) in Theorem 2 as

T +)
Pr(ZO /WO, 2y o [[Ty, +v0 < [] (]_[e
k k / F(nk_»,], + Z[,u«kl)

A(1) (1) ~ (1)
X 1_[B (”kt,s, Tk Nyys, — Mg s, T ﬂk/)
Ki>k

Ao n® 50
> 1_[B Mk, S, + kk,S; kk,S; + ,Bkk

2

@ Springer

172 Mach Learn (2011) 82: 157-189

where n} ¢ is the corresponding statistics evaluated on the nodes set of S. Similar results can
be derived for the offline learning algorithm. In brief, our model can handle the insertion
and deletion of nodes without using any heuristics.

7.3 Hyperparameters

In this subsection, we discuss the roles of the hyperparameters (y, o, 8, and) and give
some guidelines on how to choose the values for these hyperparameters. In the experimental
studies, we will further investigate the impact of the values of these hyperparameters on the
performance of our algorithm.

— v is the hyperparameter for the prior of 7. We can interpret the y; as an effective number
of observations of z;; = 1. Without other prior knowledge we set all y; to be the same.

— o, B are the hyperparameters for the prior of P. As stated before, we discriminate two
probabilities in P, i.e., Py the “within-community” link probability, and Py ;.. the
“between-community” link probability. For the hyperparameters, we set two groups of
values, i.e., (1) ok, B, Yk and (2) oty 14k, Bri ik Because we have the prior knowledge
that nodes in the same community have higher probability to link to each other than nodes
in different communities, we set o > Okl 1tk 5 Bk < ,31(1,17&1(.

— is the hyperparameter for A. Ay, = {Ax1, ..., Ak, ..., Axg} are the transition proba-
bilities for nodes to switch from the kth community to other (including coming back to
the kth) communities in the following time step. tr« = {1, -- - Liks - - - » kK } Can be

interpreted as effective number of nodes in the kth community switching to other (includ-
ing coming back to the kth) communities in the following time step. With prior belief that
most nodes will not change their community memberships over time, we set flgx > i 1k -

Finally, how to select the exact values for the hyperparameters y, «, 8, and u is further
described in the empirical studies.

8 Experimental studies

In this section, we conduct several experimental studies. First, we show that the performance
of our algorithms is not sensitive to most hyperparameters in the Bayesian inference and for
the only hyperparameters that impact the performance significantly, we provide a principled
method for automatic parameter selection. Second, we show that our Gibbs-sampling-based
algorithms have very fast convergence rate, which makes our algorithms very practical for
real applications. Third, by using a set of benchmark datasets with a variety of charac-
teristics, we demonstrate that our algorithms clearly outperform several state-of-the-art al-
gorithms in terms of discovering the true community memberships and capturing the true
evolution of community memberships. Finally, we use three real datasets of dynamic social
networks to illustrate that from these datasets, our algorithms are able to reveal interesting
insights that are not directly obtainable from other algorithms. In all the following experi-
ments, the Gibbs-sampling algorithm is run with temperature sequence of 1:-0.1:0, and iter-
ation number sequence of [20, 10, 10, 10, 10, 10, 10, 5, 5, 5, 5], and totally 100 iterations.

8.1 Performance metrics

The experiments we conducted can be categorized into two types, those with ground truth
available and those without ground truth. By ground truth we mean the true community

@ Springer

Mach Learn (2011) 82: 157-189 173

membership of each node at each time step. When the ground truth is available, we mea-
sure the performance of an algorithm by the normalized mutual information between the
true community memberships and those given by the algorithm. More specifically, if the
true community memberships are represented by C = {C1, ..., Cx} and those given by the
algorithm are represented by C' = {C1, ..., Ck}, then the mutual information between the
two is defined as

p(Ci, CY)

MIC.C) = C;,C)log ————
©.r=2, pCCploe s oy

Ci.C
and the normalized mutual information is defined by

Mic,c)
max(H (C), H(C"))

MIC,C) =

where H(C) and H (C’) are the entropies of the partitions C and C’. The value of MI is
between 0 and 1 and a higher MI value indicates that the result given by the algorithm C’
is closer to the ground truth C. This metric MI has been commonly used in the information
retrieval field (Gong and Xu 2007; Xu and Gong 2004).

Where there is no ground truth available in the dataset, we measure the performance
by using the metric of modularity which is proposed by Newman and Girvan (2004) for
measuring community partitions. For a given community partition C = {Cy, ..., Cg}, the
modularity is defined as

| Cur(Vi, Vo) [Cut(Vi, V) \
Modu(€) = Xk: [cu(V,V) (Cut(V, V)) }

where V represents all the nodes in the social network and V; indicates the set of nodes
in the kth community Cy. Cut(V;, V;) = ZpEV,',qEVj Wpy. As state in (Newman and Gir-
van 2004), modularity measures how likely a network is generated due to the proposed
community structure versus generated by a random process. Therefore, a higher modular-
ity value indicates a community structure that better explains the observed social network.
Many existing studies, such as (Brandes et al. 2008; Chen et al. 2009; Lin et al. 2008;
White and Smyth 2005), have used this metric for performance analysis.

8.2 Experiments on synthetic datasets
8.2.1 Data generator

We generate synthetic data by following a procedure suggested by Newman and Girvan
(2004). The data consists of 128 nodes that belong to 4 communities with 32 nodes in
each community. Links are generated in the following way. For each pair of nodes that
belong to the same community, the probability that a link exists between them is p;,; the
probability that a link exists between a pair of nodes belonging to different communities
is pou:. However, by fixing the average degree of nodes in the network, which we set to
be 16 in our datasets, only one of p;, and p,,; can change freely. In other words, a single
parameter z, which represents the mean number of edges from a node to nodes in other
communities, is enough to describe the data. By increasing z (and therefore p,,,), the net-
work becomes more noisy in the sense that the community structure becomes less obvi-
ous and hard to detect. In this study, we generate datasets under four different noise levels

@ Springer

174 Mach Learn (2011) 82: 157-189

80

. . = abes M .
100F", - . . R0 100

A o e . 55
120fs * . s e 1 120
IR

0 20 40 60 80 100 120
nz = 1946

(b) Level 2

100¢

120

(c) Level 3 (d) Level 4

Fig. 2 The adjacency matrices for the datasets with different noise levels, where the x and y axes represent
the nodes, and each dot represents a link between the corresponding pair of nodes

by setting z = 2, 3, 4, 5, which correspond to p;, = 0.1935 (p,,, = 0.0208), p;, = 0.1613
(Pour = 0.0312), p;, = 0.1290 (p,,; = 0.0417), and p;,, = 0.0968 (p,,, = 0.0521), respec-
tively. The adjacency matrices for the datasets at the four noise levels are shown in Fig. 2.
The above network generator described by Newman et al. can only generate static net-
works. To study dynamic evolution, we let the community structure of the network evolve
in the following way. We start with introducing evolution to the community memberships:
at each time step after time step 1, we randomly choose 10% of the nodes to leave their
original community and join the other three communities at random. After the community
memberships are decided, links are generated by following the probabilities p;, and p,,, as
before. We generate the network with community evolution in this way for 10 time steps.

@ Springer

Mach Learn (2011) 82: 157-189 175

8.2.2 Hyperparameters

In the first experiment, we study the impact of the hyperparameters on the performance of
our algorithm. Figure 3 shows the performance of our algorithm, in terms of the average
normalized mutual information and the average modularity over all time steps, under a large
range of values for the hyperparameters y (for the initial probability =) and p (for the tran-
sition matrix A), respectively. As can be seen, the performance varies little under different
values for y and p, which verifies that our algorithm is robust to the setting of these hyper-
parameters. As a result, in the following experiments, unless stated otherwise, we simply set
y =1 and pi = 10. Note that we only show the results of our online inference algorithm
for the dataset with noise level 2. The results for the dataset with other noise levels and for
the offline inference algorithm are similar and therefore are not shown here.

However, the performance of our algorithm is somewhat sensitive to the hyperparameters
« and B for P, which is the stochastic matrix representing the community structure at each
time step. In Fig. 4(a) we show the performance of our algorithm under a large range of
a and B values, which demonstrates that the performance varies under different o and 8
values. This result makes sense because o and S are crucial for the stochastic model to
correctly capture the community structure of the network. For example, the best performance
is achieved when « is in the same range as the total number of links in the network. In
addition, we see a clear correlation between the accuracy with respect to the ground truth,
which is not seen by our algorithm, and the modularity, which is available to our algorithm.
This correlation is clearly demonstrated in Fig. 4(b), where we scaled the modularity so
that it has the same mean as the average mutual information. As a result, we can use the
modularity value as a validation metric to automatically choose good values for « and 8. All
the experimental results reported in the following are obtained from this automatic validation
procedure.

Fig. 3 The performance, in 15 15
terms of (a) the average Il Average MI Il Average MI
normalized mutual information [__JAverage Modu [__JAverage Modu

and (b) the average modularity
over all time steps, under
different values for y and pyx 0.5
(with ug; =1, Yk # 1), which
shows that the performance is not

sensitive to y and p 0 1 2 3 4 5 0 1 2 3 4 5
(a) v =0.01, 0.1, 1, 5, and 10 (b) prr = 1, 5, lel, 1e2, and 1e3
1.5 1.5
Il Average MI Il Average MI
[]Average Modu []Scaled Modu

Fig. 4 The performance, in terms of (a) the average normalized mutual information vs. the average mod-
ularity and (b) the average normalized mutual information vs. the scaled modularity, over all time steps,
under the cases with « and g valued at «, B are (g = 1, By = 1), (px =5, By = 1), (g =10, B = 1),
(okx = €2, By = 10), (a = led, By = 10), and in all the cases g ;¢ = 1

@ Springer

176 Mach Learn (2011) 82: 157-189

8.2.3 Comparison with the baseline algorithms

In this experiment, we compare the performance of the online and offline versions of our
DSBM algorithm with those of two recently proposed algorithms for analyzing dynamic
communities—the dynamic graph-factorization clustering algorithm (FacetNet) by Lin et al.
(2008) and the evolutionary spectral clustering algorithm (EvolSpect) by Chi et al. (2007). In
addition, we also provide the performance of the static versions for all the algorithms—static
stochastic block models (SSBM, Holland and Leinhardt 1976) for DSBM, static graph-
factorization clustering (SGFC, Yu et al. 2005) for FacetNet, and static spectral clustering
(SSpect, Shi and Malik 2000) for EvolSpect.

Figure 5 presents the performance, in terms of the normalized mutual information with
respect to the ground truth over the 10 time steps, of all the algorithms for the four datasets
with different noise levels. We can obtain the following observations from the results. First,
our DSBM algorithms have the best accuracy and outperform all other baseline algorithms at
every time step for all the four datasets. Second, the offline version of our algorithm, which
takes into consideration all the available data simultaneously, has better performance than
that of the online version. Third, the evolutionary versions of all the algorithms outperform
their static counterparts in most cases, which demonstrates the advantages of the dynamic
models in capturing community evolution in dynamic social networks. We obtain similar
results for the modularity metric and due to the limit of space, we do not include them here.

1 "w‘—w—w’
0.99 r 1
0.98 -
80971 S
2096 | g
S S
E 0.95 €
§ 0.94 §
5 ~#— DSBM offline 5 ~#—DSBM offline
= 0.93 | =©~DSBM online 1 = 0.93 { -©~DSBM online
=B~ FacetNet =B~ FacetNet
0.92 { —-EvolSpect 1 0.92 H <6 EvolSpect
=~ SSBM =3 SSBM
0.91 SGFC 1 0