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Duality between equilibrium and growing networks
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In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an
exception. Most network models can be classified as either equilibrium or growing. Here we show that under
certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The
equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even
for any finite system size. The required conditions are satisfied in random geometric graphs in general and causal
sets in particular, and to a large extent in some real networks.
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I. INTRODUCTION

Statistical physics studies equilibrium and nonequilibrium
systems using different theory and methods, as these systems
are drastically different. Networks are not an exception.
The vast realm of network models can be roughly divided
into equilibrium and nonequilibrium domains [1,2]. In the
former, one studies equilibrium ensembles of graphs of a fixed
size. Classic examples are classical random graphs [3], or
soft configuration model and hidden variable models [4]. In
nonequilibrium models, graphs grow, usually by adding nodes
one at a time, introducing statistical dependencies. Preferential
attachment [5,6] is perhaps the best known example. These
two approaches are clearly different [1,4,7,8]. In the simplest
example, i.e., classical random graphs GN,p, each pair of N

nodes are independently connected with the same probability
p. The resulting degree distribution is Poissonian with mean
k̄ = pN . In a growing version of this model, new nodes N =
1,2,3, . . . are coming one at a time connecting to each existing
node with probability p = k̄/N . The degree distribution is
exponential [1]. The two ensembles are thus different since
they generate graphs with different degree distributions.

In general, equilibrium systems tend to be more amendable
for exact analytic treatment due to their simplicity. Networks
are not an exception in this respect either, with examples
including such powerful methods as exponential random
graphs and other graph entropy tools [9–18]. Exponential
random graphs are particularly interesting from a theoretical
perspective as they establish a precise connection between
equilibrium ensembles of graphs, and canonical equilibrium
ensembles in statistical mechanics. Yet the applicability of
these equilibrium tools to real networks is questioned by the
fact that real networks are not at an equilibrium; they are
growing.

Here we show that if certain conditions are satisfied,
then there exists a static (equilibrium) formulation GS for
any dynamic (growing) graph model GD , and vice versa.
Specifically we prove that graph ensembles GS and GD

are identical, and that this equivalence is exact not only
asymptotically, but even for any finite graph size. That is,
if GS generates graph G with probability P (G), then so does
GD .

We first discuss the required conditions in general (Sec. II),
explain why they are not satisfied in some popular network
models (Sec. III), and provide examples of network models

where these conditions are satisfied (Sec. IV). These examples
include random geometric graphs [19] in general and causal
sets [20] in particular. The latter are random geometric graphs
in Lorentzian spaces, and they were introduced as an approach
to quantum gravity [20]. Causal sets in de Sitter space-times,
such as the space-time of our accelerating universe [21,22],
have been recently shown to model adequately some structural
and dynamical properties of some real networks [23,24],
motivating our focus on random geometric graphs. In Sec. V
we narrow down our consideration to those, and work out the
details of equilibrium GS and growing GD models for random
geometric graphs, proving the exact equivalence between these
models, and confirming this equivalence in simulations.

II. GENERAL DUALITY CONDITIONS

Random graphs with hidden variables [4] are a very general
framework to which many popular network models belong as
particular cases. The equilibrium ensemble of graphsGS of size
N in this framework is defined in two steps: (1) for each node
t = 1,2, . . . ,N , sample its hidden variable ht from distribution
ρN (h), shorthand ht ←↩ ρN (h), and (2) connect each node pair
{s,t}, s < t � N , with probability pN (hs,ht ).

That is, the ensemble of discrete states, i.e., graphs, is
fully defined in terms of two continuous functions: the hidden
variable probability density function (PDF) ρN (h), and the
connection probability pN (h,h′).

The generalization to the growing case is straightforward. A
sequence of growing graphs GD of increasing size t = 1,2, . . .

is constructed by adding nodes numbered by t one at a time,
and (1) for each new node t = 1,2, . . ., sample its hidden
variable ht from distribution ρt (h), and (2) connect new node
t to existing nodes s, s < t , with probability pt (hs,ht ), where
both hidden PDF and connection probability can in general
depend on time or current graph size t .

The two ensembles GS and GD can be equivalent in the
weak and strong senses. We say that they are equivalent in the
weak sense if they generate graphs G of size N with the same
probability P (G). They are equivalent in the strong sense if this
condition holds for graphs of any size. Denoting G’s adjacency
matrix by ast , s,t = 1,2, . . . ,N , and by pst the probability of
connection between nodes s and t in GS , pst = pN (hs,ht ),
the probability that the equilibrium GS construction generates
graph G, given the hidden variable sampling {h1,h2, . . . ,hN },

022808-11539-3755/2013/88(2)/022808(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.022808


DMITRI KRIOUKOV AND MASSIMO OSTILLI PHYSICAL REVIEW E 88, 022808 (2013)

is

P (G|h1,h2, . . . ,hN ) =
∏
s<t

p
ast

st (1 − pst )
1−ast . (1)

Since all hidden variables {h1,h2, . . . ,hN } are independent,
their joint PDF ρN (h1,h2, . . . ,hN ) is the product of one-point
PDFs,

ρN (h1,h2, . . . ,hN ) =
N∏

t=1

ρN (ht ), (2)

and the probability P (G) of graph G in the GS ensemble is

P (G) =
∫

P (G|h)ρN (h)dh, (3)

where h = {h1,h2, . . . ,hN }. These equations imply that GD is
equivalent to GS in the weak sense if the nonequilibrium GD

construction generates the same joint distribution of hidden
variables ρN (h), and if the connection probabilities in both
cases are also the same pN (h,h′).

Indeed, if these two conditions hold, then the growing GD

definition for a graph of size N is different from the equilibrium
GS definition only in the order in which node pairs {s,t} are
examined in the linking process, which is step (2) in both
definitions. In the GS case this order is manifestly random,
induced by random labeling t = 1,2, . . . ,N of nodes, while
in the GD case this order appears to be preferred, induced
by a preferred node labeling t = 1,2, . . . ,N reflecting node
birth times. In reality however both orderings are random,
and every node pair is examined once and connected or not
connected with the same probabilities. Simply put, if the target
graph size N is fixed in the growing case, then clearly one
can set the connection probability in this case equal to the
connection probability in the equilibrium case with the same
N , so that Eqs. (1)–(3) apply to the growing ensemble GD

as well, although only in the weak sense, for the given N .
Since P (G) is the same in the two ensembles, they are weakly
equivalent. Since they are weakly equivalent, they generate any
N -size graph G with the same probability P (G). Therefore, the
two sufficient conditions that ρN (h) and pN (h,h′) are the same
in both ensembles are effectively the necessary conditions as
well.

If the equilibrium and nonequilibrium ensembles are also
strongly equivalent, then the connection probability cannot
depend on time or graph size N , pN (h,h′) = p(h,h′). Indeed,
suppose h1 and h2 are hidden variables of the first and second
nodes in the growing ensemble GD . The probability p12 of
connection between the nodes can obviously depend only on
h1 and h2 but not on N simply by the definition of the strong
equivalence implying that p12 must be the same regardless of
the target graph size N until which the GD growing process is
let to run.

If the distribution of hidden variable does not depend on
graph size either, ρN (h) = ρ(h), then we have the simplest
case of manifestly identicalGS andGD , but they generate dense
graphs since the average degree in the ensembles is given by

k̄ = N

∫∫
ρ(h)p(h,h′)ρ(h′)dh dh′. (4)

Almost all real networks are sparse. A graph ensemble is
sparse if k̄ = o(N ) [k̄ = O(1) or at most k̄ = O(log N ) in

most models of real networks]. We thus see that for our graph
ensembles GS and GD to be strongly equivalent and sparse,
the distribution of hidden variables in them must depend on
graph size. One possibility is ρN (h) with a support that grows
with N . Such ρN (h) will have a normalization coefficient that
decreases with N . We will see that this scenario is indeed
enacted in random geometric graphs. But first we show why
some popular network models do not satisfy the strong duality
conditions considered above.

III. NONDUAL NETWORK MODELS

In this section we consider three well-studied network
models: classical random graphs, configuration model, and
preferential attachment. The first two are equilibrium, and we
show that there are no growing formulations that would be
identical to these equilibrium ensembles in the strong sense.
The last example is a growing network model, for which no
strongly dual equilibrium formulation exists.

A. Classical and regular random graphs

Classical random graphs mentioned in the Introduction
provide perhaps the simplest example of strong nonduality
of sparse graphs. This example belongs to the class of random
graphs with hidden variables, except that there are no hidden
variables, meaning that the hidden variable distributions (none)
are the same in the equilibrium GS and nonequilibrium GD

ensembles. However, the connection probability p = k̄/N

manifestly depends on N . Therefore, for any given N , one
has no problem defining GD weakly equivalent to GS . Indeed,
if one wishes to generate graph G of size N in the growing
procedure with the same probability P (G) as in the equilibrium
procedure, one simply adds nodes t = 1,2, . . . ,N one at a
time and connects them to existing nodes s, s < t , with
constant probability p = k̄/N . This way all node pairs are
connected with the same probability as in the equilibrium
procedure, except that node pairs are examined for linking
not in a completely random but in some specific order. We
emphasize the difference between this growing construction
and the growing construction in the introduction where N

was not a constant target graph size, but the current growing
graph size, ensuring that the average node degree in graphs
of different sizes in the ensemble was constant, i.e., did not
depend on the graph size.

The only way to make the two ensembles strongly equiv-
alent is to forget about average degree, and to connect
each pair of nodes with the same constant probability p,
making the two ensembles manifestly identical since both
hidden variable distribution and connection probability are
now the same and do not depend on N . In this case, however,
the resulting graphs are dense, and their average degree is
k̄ = Np. The considerations above imply that there is no
growing formulation that would be identical to the equilibrium
ensemble for any graph size N and fixed k̄.

The distribution of individual node degrees in classical
random graphs is the Poisson distribution with mean k̄, which
is the maximum-entropy distribution with a given mean [25].
In that sense classical random graphs are maximum-entropy
random graphs with a fixed expected node degree k̄. But the
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node degrees can be fixed not only on average (colloquially,
in the “canonical ensemble”;or “soft constraint” sense), but
also exactly to some integer k (“microcanonical ensemble”
or “hard constraints”). In the latter case we have k-regular
random graphs—random graphs with all nodes having the
same degree k. The growing version of k-regular random
graphs is manifestly impossible, since it is impossible to
connect a k-degree node to a k-regular graph of size N , and
obtain a k-regular graph of size N + 1, because the k existing
nodes to which the new node connects will increase their
degrees to k + 1.

B. Soft and hard configuration models

The soft (canonical) and hard (microcanonical) configu-
ration models are random graphs with a given sequence of
expected degrees or exact degrees, respectively. To construct
such graphs one usually first samples exact or expected degrees
kt , t = 1,2, . . . ,N , from some target degree distribution ρ(k).
In the soft case this distribution can be continuous, but in the
hard case the sampled degrees must be integers. Upon such
sampling, in the soft case, one connects all node pairs {s,t} with
probability pst = kskt/(k̄N )—the soft model is thus a model of
random graphs with hidden variables, where hidden variables
ht are expected degrees kt . In the hard case, one attaches kt

edge stubs to nodes t , and then connects or matches random
pairs of edge stubs attached to different nodes to form edges.
We must emphasize here that these constructions as described
are not exactly correct. In the soft case, for example, the correct
connection probability is not exactly pst = kskt/(k̄N ) [26] but
pst = 1/[1 + k̄N/(kskt )] [11,27], and there are many details
one has to worry about in the hard case [28–30], but these
details are not important for us here.

The important point is that in both soft and hard cases
the probability of connections between nodes of (expected)
degrees ks and kt scales as pst ∼ kskt/N , i.e., it explicitly
depends on N . Therefore, considerations quite similar to those
in the classical random graph case apply here as well, and no
strongly dual growing formulations exist for these equilibrium
ensembles either.

C. Preferential attachment

Preferential attachment is not a network model with hidden
variables since the probability of connections depends not on
any hidden variables but on observable degrees of nodes in
a growing graph. However, considerations similar to previous
examples apply here as well: since node degrees grow with the
graph size, the connection probability depends on it as in those
examples, violating the necessary condition for strong duality.
As a consequence there can exist no strongly dual equilibrium
formulation of the preferential attachment model.

A weakly dual formulation does exist as a mapping of
preferential attachment to a hidden variable model in which
the hidden variables are node birth times, and the connection
probability is their function [4]. This model is not exactly
identical to preferential attachment since the relation between
the degrees of nodes and their birth times is not deterministic—
the time-dependent distribution of degrees of nodes born at
a given time is nontrivial and can be approximated by a �

distribution only in the thermodynamic limit [1]. To the best
of our knowledge there exists no weakly dual model that would
be exactly identical to preferential attachment for finite graph
sizes.

As a note closely related to the last point, the difficulties one
must be prepared to face and deal with in the nonequilibrium
settings are well illustrated by the fact that even though
with some effort one can derive the exact expression for
the distribution of node degrees in preferential-attachment
graphs [5,6], it is impossible to write down a simple closed-
form expression for probability P (G) to generate graph G

in preferential attachment; cf. simple Eqs. (1)–(3) in the
equilibrium case.

IV. DUAL NETWORK MODELS

Random geometric graphs is a well-studied and perhaps the
simplest network model for which strong duality holds. In this
section we recall the definitions of random geometric graphs
and causal sets, and provide a high-level explanation of why
strong duality is possible in this case. The details of these dual
definitions are worked out in the next section.

A. Random geometric graphs

Informally, random geometric graphs are discrete approxi-
mations of smooth geometries, with nodes representing “atoms
of space,” and links representing some coarse information
about proximity between these atoms. Formally, the equi-
librium definition is as follows: given a compact region in
a geometric space, sprinkle a number of nodes uniformly at
random over the region, and then connect each pair of nodes
if the distance between them in the space is below a certain
threshold. If the region grows somehow and so does the number
of nodes, we have a growing network model.

For concreteness, we first consider the simplest case,
the Euclidean disk of radius R � 1. Its area or volume
is V = πR2. We want to sprinkle N nodes into this disk.
If we do so, the average node density in the disk will be
δ = N/V . If we sprinkle nodes uniformly, then any subarea
of volume dV will contain dN = δ dV nodes on average.
To accomplish such uniform sprinkling in practice, one first
selects a coordinate system—the polar coordinates (r,θ ),
r ∈ [0,R], and θ ∈ [0,2π ], in the considered case, for example.
In these coordinates, the metric, i.e., the square of the length
of an infinitesimal line segment between points (r,θ ) and
(r + dr,θ + dθ ), is

ds2 = dr2 + r2dθ2, (5)

while the volume form, i.e., the volume of an infinitesimal
area between four points (r,θ ), (r + dr,θ ), (r + dr,θ + dθ ),
and (r,θ + dθ ), is

dV = r dr dθ. (6)

Sprinkling nodes t = 1,2, . . . ,N onto the disk boils down to
assigning to them their coordinates (rt ,θt ). To ensure that
sprinkling is uniform, dN = δ dV , one has to respect the
volume form (6), which says that angular coordinates θt must
be sampled from the uniform distribution on [0,2π ], θt ←↩

U(0,2π ), while the PDF ρ(r) from which radial coordinates
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rt are sampled, rt ←↩ ρ(r), must be proportional to r , ρ(r) =
cr , where c = 2/R2 is the normalization coefficient. Upon
sampling the coordinates (rt ,θt ) for all nodes t = 1,2, . . . ,N

as described, one then connects all node pairs {s,t} if the
Euclidean distance dst between s and t is below a given
threshold dc � R. Each node t thus connects to all other nodes
that happen to lie within the disk of radius dc centered at t .
Since the node density is uniform, the expected degree of all
nodes, except those at rt ∈ [R − dc,R], is the same and equal to
k̄ = δπd2

c . One can show that the distribution of node degrees
is in fact Poisson with mean k̄.

This model is yet another example of equilibrium random
graphs with hidden variables. Each node has two hidden vari-
ables, radial rt and angular θt coordinates distributed according
to ρ(r) and U(0,2π ), and the connection probability is the
Heaviside step function, pst = �(dc − dst ). This connection
probability does not depend on graph size, which is one
necessary condition for strong duality. The other condition
is that the distribution of hidden variables must be the same
in the equilibrium and growing ensembles. The only way to
satisfy this condition is to grow the size of a graph and the size
of the disk that this graph occupies in a balanced way, such
that at each step the joint distribution of node coordinates
in the growing graph is the same as in the equilibrium
case. Intuitively, it must be possible to satisfy this condition
as well.

Indeed, consider a large equilibrium graph G of size N

occupying disk D of radius R = √
N/(δπ ), and consider the

sequence of its subgraphs Gt , t = 1,2, . . . ,N , induced by the
t nodes with the smallest radial coordinates rt , rN = R; see
Fig. 1. Intuitively, it is clear that each subgraph Gt is also an
equilibrium random geometric graph, except it is of smaller
size t � N , occupying smaller disk Dt of radius rt � R. At
the same time, we can consider sequence Gt , t = 1,2, . . . ,N ,
as a growing graph occupying growing disk Dt . In fact, this
growth process does not have to stop at t = N and can continue
forever. If new nodes t connect to existing nodes with the same

R rt

FIG. 1. (Color online) Random geometric graph G on a Euclidean
disk D of radius R. Its subgraph Gt is induced by all nodes lying in
a smaller disk Dt of radius rt < R. (N = 300, R = 1, rt = 0.7, and
dc = 0.2.)

probability pst = �(dc − dst ), then this growing ensemble is
strongly equivalent to the equilibrium ensemble.

One has to implement this idea with care to make sure
that at each step t , the assignment of coordinates (rt ,θt ) to
new node t is such that the resulting joint distribution of the
coordinates of all nodes s = 1,2, . . . ,t is exactly the same
as in the equilibrium case, i.e., equal to the distribution of t

independent samples θs ←↩ U(0,2π ) and rs ←↩ 2r/r2
t . These

implementation details making the statements above precise
are in the next section.

Random geometric graphs can certainly be defined in
spaces of any dimension and curvature, positive or negative.
The main thing that changes is the metric. Changing metric
changes the expression for distances between points, and the
volume form. The former affects the distance calculations
in the connection probability, while the latter defines the
PDFs of node coordinates. The metric and volume form
in the (d + 1)-dimensional spaces, d � 1, of curvature +1
(spherical space), 0 (Euclidean space), and −1 (hyperbolic
space), are, in spherical coordinates (r,θ1, . . . ,θd ), r � 0,
θ1, . . . ,θd−1 ∈ [0,π ], and θd ∈ [0,2π ],

ds2 = dr2 + sin2 r d	2
d , dV = sind r dr d
d, (7)

ds2 = dr2 + r2 d	2
d , dV = rd dr d
d, (8)

ds2 = dr2 + sinh2 r d	2
d , dV = sinhd r dr d
d, (9)

where

d	2
d =

d∑
i=1

dθ2
i

i−1∏
j=1

sin2 θj ,

(10)

d
d =
d∏

i=1

sind−i θi dθi

are the metric and volume form on the unit d-dimensional
sphere. For example, if d = 2, then d	2

2 = dθ2
1 + sin2 θ1 dθ2

2 ,
which is the metric on the unit sphere, while its volume form
is d
2 = sin θ1 dθ1 dθ2, so that the polar (θ2) coordinates of
nodes must be sampled from U(0,2π ), while their azimuthal
(θ1) coordinates must be sampled from PDF (1/2) sin θ . If
d = 1 and the space is hyperbolic, then the PDF of radial
coordinates r on the disk of radius R is sinh r/(cosh R − 1) ≈
exp(r − R).

All the network models considered in Sec. III have asymp-
totically zero clustering. Contrary to those models, all random
geometric graphs have finite clustering in the thermodynamic
limit because triplets of nodes located close to each other in
the space are all connected forming triangles. If the space
is hyperbolic and if in addition the distance cutoff dc in the
connection probability pst = �(dc − dst ) is not constant but
dc = R, then the node degree distribution in resulting graphs
is a power law with exponent γ = 3 [31]. However, in this
case there is no strong duality since the connection probability
pst = �(R − dst ) depends on the graph size via disk radius R.

B. Causal sets

Nothing stops us from extending the definition of random
geometric graphs in Riemannian spaces considered above to
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pseudo-Riemannian spaces. The simplest and best-studied
subcategory of pseudo-Riemannian spaces are Lorentzian
spaces, and the simplest example of a Lorentzian space is the
flat two-dimensional Minkowski space-time. Its metric and
volume form in coordinates x,t ∈ R are

ds2 = −dt2 + dx2, dV = dt dx. (11)

The problem that one immediately faces is that distances are
no longer positive for distinct points, or zero if two points
are the same. A pair of distinct points, called events, can
now be separated by spacelike �s2 > 0, lightlike �s2 = 0,
or timelike �s2 < 0 space-time intervals �s. Therefore, if
we want to define a random geometric graph in a Lorentzian
space, then edges in this graph can no longer represent any
meaningful proximity information—two faraway points in the
Euclidean sense can be at zero distance in the Lorentzian
sense. Consequently, no distance cutoff dc in the connection
probability can make any sense any longer. Instead, the
fundamental property of Lorentzian spaces is their causal
structure. Two events are said to be causally related if they
are timelike separated, and the causal structure of a spacetime
is nothing but the structure of these causal relations in it. The
causal structure is a fundamental property of a Lorentzian
spacetime because, unless the space-time is too pathological,
its causal structure almost fully defines the space-time itself
[32,33].

These considerations lead to the following equilibrium
definition of random geometric graphs in Lorentzian spaces:
given a compact region in a Lorentzian space, sprinkle a
number of nodes uniformly at random over the region, and
then connect each pair of nodes if they are timelike separated.
For example, given a box x ∈ [0,R] and t ∈ [0,R] in the
two-dimensional Minkowski space-time, we first sprinkle N

nodes i = 1,2, . . . ,N into the box by sampling

xi,ti ←↩ U(0,R), (12)

and then connect each pair of nodes {i,j}, i < j � N , if

�xij < �tij , where (13)

�xij = |xi − xj |, (14)

�tij = |ti − tj |. (15)

The sprinkling density is δ = N/R2. A sample graph is shown
in Fig. 2.

Random Lorentzian graphs defined above are called causal
sets or causets, and they were proposed as an approach to
quantum gravity [20]. Nodes in these causets are supposed to
represent Planck-scale “atoms” of a quantum space-time. One
important task in the causet quantum gravity program is to
derive some fundamental laws for causet growth dynamics that
would grow causets similar to those obtained by equilibrium
sprinkling onto the physical space-time that we observe [34].
This difficult task is far from complete. If it succeeds one day,
it might explain the emergence of the observable spacetime
from some fundamental physical principles—a goal that other
quantum gravity programs pursue as well. Although we show
here that equilibrium causets can also be constructed in a
growing fashion, to define this growth dynamics we must have
a space-time to start with.

x

t

FIG. 2. Random geometric graph in box x ∈ [0,R], t ∈ [0,R] in
two-dimensional Minkowski space-time. (N = 20; R = 1.)

Since the expansion of our universe is accelerating [21,
22], the space-time that we live in is asymptotically de Sitter
[35]. de Sitter space-time has positive curvature, and it is the
solution of Einstein’s equation for an empty universe with
positive cosmological constant 
, i.e., positive vacuum energy
known as dark energy. In “spherical” coordinates t ∈ R (time)
and θ1, . . . ,θd−1 ∈ [0,π ], θd ∈ [0,2π ] (space), the metric and
volume form in (d + 1)-dimensional de Sitter space-time of
curvature +1 are

ds2 = −dt2 + cosh2 t d	2
d , dV = coshd t dt d
d. (16)

At each moment of time t , the spatial part of the space-time
(“current universe”) is thus a d-dimensional sphere of radius
cosh t .

If we consider only the half of de Sitter space-time
with t � 0, and set t ≡ r , then the de Sitter equations (16)
become evidently similar to the hyperbolic equations (9).
This similarity has been explored in Ref. [23], where it was
shown that de Sitter causets are asymptotically identical to the
growing network model in Ref. [24]. This model is based on
random geometric graphs growing in hyperbolic spaces, and
it explains and accurately predicts not only many structural
properties of some real networks, such as the Internet, social
and biological networks, but also their growth dynamics. This
asymptotic equivalence between the structure and dynamics
of growing real networks, and the structure and dynamics of
growing de Sitter causets, motivates our interest to the latter
here.

In practice it is often convenient to switch from the
time coordinates t ∈ R to the conformal time coordinates
η ∈ (−π/2,π/2) defined by sec η = cosh t . In these conformal
coordinates the metric and volume form become

ds2 = sec2 η
(−dη2 + d	2

d

)
,

(17)
dV = secd+1 η dη d
d,

so that two events are timelike separated if the conformal time
difference �η between them exceeds their spatial distance
�	d . For example, if d = 1, then

ds2 = sec2 η(−dη2 + dθ2), dV = sec2 η dη dθ. (18)
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FIG. 3. (Color online) Random geometric graph in region η ∈
[0,η0] or t ∈ [0,T ], sec η0 = cosh T , in two-dimensional de Sitter
space-time. The angular coordinate of nodes are their spatial
coordinates θ ∈ [0,2π ], while their radial coordinates r are set equal
to their temporal coordinates t , r = t = arccosh sec η. (N = 300;
T = 5.)

Therefore, to build a causet of size N in a compact region
of space-time between, for instance, η = 0 (“big bang”) and
η = η0 (“current time”), we first sample spatial θi and temporal
ηi coordinates for all nodes i = 1,2, . . . ,N from their PDFs
defined by the volume form,

θi ←↩ ρ(θ ) = U(0,2π ), (19)

ηi ←↩ ρ(η) = sec2 η

tan η0
, (20)

and then connect all node pairs {i,j}, i < j � N , if

�θij < �ηij , where (21)

�θij = π − |π − |θi − θj ||, (22)

�ηij = |ηi − ηj |. (23)

The sprinkling density is δ = N/(2π tan η0). A sample graph
is shown in Fig. 3.

As proved in Ref. [23], the graphs thus constructed have
strongest possible clustering and power-law distribution of
node degrees with exponent γ = 2. This power law applies
to nodes with degrees k � δ, i.e., to essentially all degrees in
sufficiently large and sparse causets. Indeed, the causet size and
average degree scale with the current time T = arccosh sec η0

as N ∼ δeT and k̄ ∼ δT . Therefore, if N is large and k̄ is small,
then δ is small, too. In denser causets with δ � 1, nodes of
low degrees k � δ follow a power law with γ = 3/4. Similar
results apply to higher dimensions d > 1 and plausibly to
other spatial foliations because of the Lorentz invariance [23].
The higher the dimension, the weaker the clustering, but the
distribution of node degrees k � δ is still a power law with
γ = 2. The origin of this power law is a combination of two
exponentials. The first exponential is the density of nodes ρ(t)
as a function of their temporal coordinate t , ρ(t) ∼ edt . This
exponential function is a direct consequence of the fact that
the node density is uniform according to the volume form (16).

The second exponential is the expected degree k̄(t) of nodes
born at time t , k̄(t) ∼ e−dt , proportional to the volume of
their future light cones [23]. Combined, these two exponential
scalings yield a power law with γ = 2. As mentioned before,
an analogous random geometric graph construction with the
uniform node density in hyperbolic spaces yields γ = 3.

The important point is that the connection probability
pij = �(�ηij − �θij ) does not depend on the graph size or
sprinkled area. Therefore, similar to Riemannian graphs, we
expect strong duality to hold for these Lorentzian graphs as
well. This is indeed the case as we show next.

V. EXACT DUALITY

In this section we work out the definition details for the equi-
librium GS and growing GD graph ensembles that are exactly
identical to each other for any graph size. For concreteness and
simplicity we limit our exposition to random geometric graphs
in spaces with spherical symmetry considered in the previous
section. In this case it is possible to derive these dual definitions
from some basic facts about Poisson point processes (PPPs)
on a positive real line.

A. Reducing the problem to a PPP on R+

Two graph ensembles with hidden variables are the same
if the joint distributions of hidden variables in them are the
same, and if their connection probabilities are also the same.
In equilibrium and growing random geometric graphs, the
connection probabilities are the same and do not depend
on graph size, which is a necessary condition for strong
duality. In random geometric graphs in spaces with spherical
symmetry, the distribution of angular coordinates are also
explicitly identical. In two dimensions, for example, the
angular coordinates θ of all nodes are independent samples
from the same distribution U(0,2π ) in both equilibrium and
growing formulations. Therefore, the only remaining condition
that must be satisfied for GS and GD to be strongly dual is that
the joint distributions of radial coordinates in the Riemannian
case or time coordinates in the Lorentzian case are also the
same in GS and GD .

The volume form in spaces with spherical symmetry can
be written as

dV = f (x)dx d
d. (24)

In Eqs. (7)–(9), for example, x ≡ r , and f (x) = sind x,
f (x) = xd , and f (x) = sinhd x, respectively. In Eq. (16),
x ≡ t , and f (x) = coshd x, while in Eq. (17), x = η and
f (x) = secd+1 x. Therefore, it is convenient to switch from
the radial or temporal coordinates x to the volume coordinates
v ∈ R+ given by

v = σd

∫ x

0
f (x ′)dx ′, where (25)

σd =
∫

d
d = 2π
d+1

2

�
(

d+1
2

) (26)

is the volume of the d-dimensional sphere. By the definition
of these v coordinates, if nodes are uniformly distributed in
a compact region of space(-time) with x ∈ [0,X], then their
v coordinates are uniformly distributed on real interval [0,V ]
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in the usual sense, i.e., with the uniform PDF U(0,V ), where
V = v(X).

The problem thus reduces to proper sampling of coordinates
vi of nodes i on R+. Assuming we have a correct prescription
for that, which is the subject of the rest of this section, to
construct graph G in GS or GD , we then (1) map vi to xi

by inverting (25), which is similar to using the inverse CDF
method to sample random variables xi from their PDF,

xi ←↩ ρ(x) = f (x)∫ X

0 f (x ′) dx ′
, (27)

(2) sample the angular coordinates θ1,θ2, . . . ,dθd according
to their PDFs defined by d
d , and (3) connect (new) node
pairs with their connection probabilities. If the distribution
of coordinates vi in GS and GD are the same, then the two
ensembles are strongly dual.

We thus want to sample a (growing) number of points
N on a (growing) real interval [0,V ] uniformly at random
with density δ = N/V . Uniform sampling implies that any
subinterval �V contains �N = δ �V points on average. The
simplest implementation of such uniform sampling is given
by a Poisson point process (PPP) with rate δ. By definition, a
PPP on a real line with rate δ is a distribution of points on the
line such that the number of points in any interval of length
V is Poisson distributed with mean δV , and the numbers of
points in disjoint intervals are independent random variables.
In what follows, we will rely on some basic textbook facts
about PPPs [36].

B. Equilibrium ensembles GS,V and GS,N

To properly define equilibrium ensembles for which dual
growing ensembles would exist, we first observe that the
prescription that we have followed so far, i.e., sampling exactly
N points from interval I = [0,V ] of a fixed length V , cannot
be exactly correct—N and V cannot be fixed simultaneously.

Indeed, let us fix δ = 1 and consider ensemble GS on
interval [0,2] from which we sample exactly two points
uniformly at random. In the growing ensemble GD that we
want to be identical to thisGS , we first sample exactly one point
from interval [0,1] at the first graph-growing step, and then at
the second step we sample exactly one point from interval
[1,2]. Unfortunately, the two ensembles cannot be identical
because, for example, the number of points in interval [0,1] in
the described GD is always 1, while the number of points in
the same interval [0,1] in GS can be 0 (both points happen to
lie in [1,2]), 1 (one point in [0,1], the other in [1,2]), or 2 (both
points in [0,1]). The number of points in [0,1] in GS is equal
to 1 only on average. Since the distributions of the number of
points in an interval are not the same, then clearly the joint
distribution of point locations cannot be the same either, and
no duality is thus possible.

These observations demonstrate that sampling a fixed
number of points from a fixed interval does not correctly
implement our intention to “sample points uniformly at
random.” The simplest correct implementation, a PPP with
rate δ, can be formulated either for a fixed interval or for a
fixed number of nodes, but not for both. That is, we cannot
have just one equilibrium ensemble GS of graphs of fixed size
N occupying a space(-time) region of fixed volume V . We

necessarily have two different ensembles GS,V and GS,N . In
the former, the space(-time) volume is fixed to V ; in the latter,
the graph size is fixed to N .

By the PPP definition, the correct procedure to sample
coordinates vi of nodes in the fixed-volume V ensemble GS,V

is as follows: (1) sample graph size N from the Poisson
distribution

N ←↩ PδV (N ) = e−δV (δV )N

N !
, (28)

and (2) sample N random numbers vi , i = 1, . . . ,N , from the
uniform distribution on [0,V ],

vi ←↩ U(0,V ). (29)

That is, N cannot fixed. It must be a Poisson-distributed
random variable. Its mean is

N̄ =
∞∑

N=0

NPδV (N ) = δV . (30)

The only complication with the fixed-graph-size N en-
semble GS,N is that we have to know the distribution of the
v-coordinate V of the N th point in a PPP. This distribution
is also known as the distribution of waiting times V for
the N th outcome in a Poisson process, and it is given
by the � distribution. Therefore, the correct procedure to
sample vi , i = 1,2, . . . ,N , in GS,N is as follows: (1) sample
space(-time) volume V from the � distribution dual to the
Poisson distribution PδV (N )

V ←↩ �N,δ(V ) = e−δV (δV )N

N !

N

V
, (31)

(2) set vN = V , and (3) for i = 1,2, . . . ,N − 1, sample

vi ←↩ U(0,V ). (32)

That is, V cannot fixed. It must be a �-distributed random
variable. Its mean is

V̄ =
∫ ∞

V =0
V �N,δ(V ) = N

δ
. (33)

Since the � distribution �N,δ(V ) is the distribution of
volumes V occupied by N points in a PPP with rate δ, the
GS,N definition implements the same PPP as GS,V , except that
not the volume V but the number of points N is now fixed.

C. Growing ensembles GD,V and GD,N

Similar to the equilibrium case, in the growing case we can
grow either volume V or graph size N by fixed increments,
sampling the other variable from an appropriate distribution.
We cannot increase both N and V by fixed amounts.

The simplest and most practically relevant case that we
consider first is the growing ensemble GD,N , where at each
time step i = 1,2, . . . ,N we add exactly one node i as follows:
(1) sample volume increment V from the exponential distri-
bution,

V ←↩ �1,δ(V ) = δe−δV , (34)

and (2) assuming v0 = 0, set the new node coordinate to

vi = vi−1 + V. (35)

This definition relies on the fact that the distribution of waiting
times V for an outcome of a Poisson process with rate δ is
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v-coordinate: V V+V'

node number:
GD,V

v-coordinate: V V+V'

node number:
GD,N

N N+1

N+1 N+N  '

N+N'

FIG. 4. Illustration of the Poisson point process in GD,N (top) and
GD,V (bottom).

exponential, equal to the � distribution with N = 1. The v

coordinate of new node i is then equal to the v coordinate
of the previous node i − 1, plus this waiting time V . This
construction implements the same PPP as in the previous
subsection.

We can also extend this GD,N definition to a more general
case where we add any fixed number of nodes at each
graph-growing step. Denoting by N the current graph size
(before adding nodes), V the last (N th) node coordinate vN ,
and N ′ the number of new nodes to add, here is the general
GD,N definition, see Fig. 4(top), as follows: (1) sample volume
increment V ′ from the � distribution,

V ′ ←↩ �N ′,δ(V ′), (36)

(2) set the coordinate of the new last (N + N ′th) node to
V + V ′,

vN+N ′ = V + V ′, (37)

and (3) sample coordinates for the rest of new nodes i =
N + 1,N + 2, . . . ,N + N ′ − 1 from the uniform distribution
on [V,V + V ′],

vi ←↩ U(V,V + V ′). (38)

The other option is GD,V where we increase the volume
by a fixed amount. This amount can be 1/δ at each step, so
that the expected number of nodes we add each time is 1. In
general this volume increment can be any positive number.
Denoting by V and N the current volume and graph size
(before adding new nodes), and by V ′ the volume increment,
the graph-growing step in GD,V is defined as follows [see
Fig. 4(bottom)]: (1) sample the number of new nodes N ′ from
the Poisson distribution dual to �N ′,δ(V ′),

N ′ ←↩ PδV ′(N ′), (39)

and (2) sample coordinates of new nodes i = N + 1,N +
2, . . . ,N + N ′ from the uniform distribution on [V,V + V ′],

vi ←↩ U(V,V + V ′). (40)

The number of new nodes N ′ can be zero with the larger
probability, the smaller V ′.

D. Relationship between the four ensembles

It is evident that the definitions of the graph-growing
steps in GD,V and GD,N are identical to the definitions of
equilibrium ensembles GS,V and GS,N applied to different
intervals ([V,V + V ′] in GD,V instead of [0,V ] in GS,V ) or
node sets (N + 1, . . . ,N + N ′ in GD,N instead of 1, . . . ,N

in GS,N ). All the four ensembles are thus nothing but four
different implementations of the same PPP with rate δ on R+.

In fixed-volume ensembles GS,V and GD,V , we take a
snapshot of this PPP on interval [0,V ]. In fixed-graph-size
ensembles GS,N and GD,N , we take different a snapshot of the
same PPP on node set 1, . . . ,N . Therefore, we have two pairs
of identical ensembles: GS,V = GD,V and GS,N = GD,N . Not
only the ensembles in each pair are dual in the sense of exact
equivalence, but the pairs themselves are also dual in the sense
that they provide two dual fixed-V vs N views on the same
PPP. In the thermodynamic limit N,V → ∞, we have the full
view of the same PPP on the whole R+. The two pairs of
ensembles converge to each other, i.e., all the four ensembles
become identical.

In other words, we have the following diagram:

GS,V = GD,V


 

GS,N = GD,N

where the equal sign “=”means the exact equivalence for
any system size, while symbol “∼” stands for the asymptotic
equivalence and for the V vs N PPP duality at finite sizes. The
proofs of these statements follow directly from the fact that all
these ensembles implement the same PPP. For completeness,
we provide these proofs here.

E. Duality proofs

1. Fixed-volume ensembles

To show that the joint distributions of node coordinates in
GS,V and GD,V are the same, it suffices to show this for the first
two graph-growing steps in GD,V . Let V,V ′ and N,N ′ be the
fixed volumes and Poisson-sampled numbers of nodes at the
first and second steps,

N ←↩ PδV (N ), (41)

N ′ ←↩ PδV ′ (N ′). (42)

Sampling N real numbers (v coordinates) uniformly from
[0,V ], and then sampling N ′ numbers uniformly from [V,V +
V ′] is clearly identical to sampling N + N ′ numbers uniformly
from [0,V + V ′], and the joint distributions of samples in both
cases are the same.

In the GS,V corresponding to the described GD,V , N ′′
numbers are sampled uniformly from the same interval
[0,V + V ′], where

N ′′ ←↩ Pδ(V +V ′)(N ′′). (43)

The joint distributions of v coordinates are thus exactly the
same in GS,V and GD,V if the probability that N ′′ = X is
equal to the probability that N + N ′ = X, which is indeed the
case because a sum of Poisson-distributed random variables is
Poisson distributed with the mean equal to the sum of means.

2. Fixed-graph-size ensembles

Similarly, to show that the joint distributions of node
coordinates in GS,N and GD,N are the same, it suffices to show
this for the first two nodes i = 1,2 in GD,N . The generalization
to the first two steps with arbitrary numbers of nodes is straight-
forward. We work with joint distributions ρ(v1,v2) whose
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arguments are ordered v1 � v2; if v1 > v2, then ρ(v1,v2) = 0.
The unordered joint distribution is then ρ∗(v1,v2) =
[ρ(v1,v2) + ρ(v2,v1)]/2, or in general ρ∗(v1,v2, . . . ,vN ) =
(1/N !)

∑
π ρ(vπ(1),vπ(2), . . . ,vπ(N)), where the summation is

over the N ! permutations π of indices 1,2, . . . ,N .
Let V,V ′ be the first and second volume increments in GD,N

with adding one node at each step,

V ←↩ �1,δ(V ) = δe−δV , (44)

V ′ ←↩ �1,δ(V ′) = δe−δV ′
. (45)

These distributions define the distribution of the first node
coordinate v1 and the conditional distribution of the second
node coordinate v2:

ρD(v1) = δe−δv1 , (46)

ρD(v2|v1) = δ�(v2 − v1)e−δ(v2−v1), (47)

where we have inserted the Heaviside step function �(v2 − v1)
to emphasize that v1 � v2. The joint distribution is then

ρD(v1,v2) = ρD(v2|v1)ρD(v1) = δ2�(v2 − v1)e−δv2 . (48)

In the corresponding GS,N , the total volume V ′′ is sampled
from �2,δ(V ′′),

V ′′ ←↩ �2,δ(V ′′) = δ2V ′′ e−δV ′′
. (49)

The first node coordinate is sampled uniformly from [0,V ′′],
while the second node coordinate is equal to V ′′. In other
words, the distribution of the second node coordinate v2 and
the conditional distribution of the first node coordinate v1 are

ρS(v2) = δ2v2e
−δv2 , (50)

ρS(v1|v2) = �(v2 − v1)

v2
. (51)

Completing the proof, the joint distribution is then

ρS(v1,v2) = ρS(v1|v2)ρS(v2)

= δ2�(v2 − v1)e−δv2

= ρD(v1,v2). (52)

As a consequence, the marginal distributions for the first
and second coordinates are identical in GS,N and GD,N :

ρS(v1) =
∫ ∞

v2=0
ρS(v1,v2) dv2 = �1,δ(v1) = ρD(v1), (53)

ρD(v2) =
∫ ∞

v1=0
ρD(v1,v2) dv1 = �2,δ(v2) = ρS(v2). (54)

The last equation is a particular instance of the general fact that
the sum of �-distributed random variables is �-distributed with
the mean equal to the sum of means.

F. Importance of the joint distribution

One may question our focus on the joint distributions
above: do they really matter, and would not it be sufficient to
show that the one-point coordinate densities in dual ensembles
coincide? The equality between one-point distributions is
a necessary but definitely not sufficient condition because
one-point distributions are marginals of joint distributions, and
two different joint distributions can have the same marginal.
If the joint coordinate distributions are different, then even

if their marginals are the same, some graph properties can
be different, even in the thermodynamic limit. One example
of such properties is the maximum degree. As one can see
in Fig. 3, the expected degree of a node is a decreasing
function of its temporal coordinate in de Sitter causets.
Therefore, the distribution of the maximum degree depends
on the distribution of the smallest time coordinate. The latter
distribution is given be the order statistics [37], but the order
statistics is fully determined only by the joint distribution, and
not by its marginals. In general, two different joint distributions
with the same marginals have different order statistics, and
consequently different distributions of smallest or largest
samples.

In that regard, it is instructive to consider the following
fixed-N ensemble GW,N , where W stands for “wrong”: for all
nodes i = 1, . . . ,N , sample their coordinates

vi ←↩ �i,δ(vi). (55)

The erroneous intuition might be that since the v-coordinate of
the ith node in a PPP is distributed according to �i,δ(v), then we
can safely sample directly from this distribution, and one can
check that if we do so, then the single-point PDF will be indeed
equal to the one in GS,N = GD,N , derived below. However,
this process is no longer the same PPP, and its joint PDF is
different from the one in GS,N = GD,N , because the ordering
of coordinates can now be violated. Indeed, vi can with certain
probability be larger than vj for any i < j , while by definition,
�i,δ(v) is the distribution of the ith largest coordinate in a PPP.
As a result, GW,N is not identical to GS,N = GD,N even in
the thermodynamic limit, which one can verify in simulations
by checking the maximum and average degree statistics, for
instance.

G. Simulations

To confirm in simulations that we have constructed two
pairs of identical graph ensembles GS,V = GD,V and GS,N =
GD,N , it would suffice to show that the joint distribution of node
coordinates in the equivalent pairs are the same. However,
since visualizing joint distributions of a large number of
variables is impractical, we limit ourselves to showing their
one-point PDFs. For concreteness, we do so for causal sets in
(1 + 1)-dimensional de Sitter space-time.

The fixed-V ensembles GS,V = GD,V are straightforward:
the v-PDF in them is uniform on [0,V ], while the η-PDF is
proportional to sec2 η:

ρ(v) = 1

V
, where v ∈ [0,V ], (56)

ρ(η) = sec2 η

tan η0
, where η ∈ [0,η0], and (57)

V = 2π tan η0. (58)

Figures 5(a) and 5(b) confirm that the η-PDF is indeed the
same in GS,V and GD,V , and equal to (57).

In the fixed-N ensembles GS,N = GD,N , even at N = 1,
the single node can have an arbitrarily large coordinate,
meaning that the corresponding distributions are defined on
the whole infinite space v ∈ [0,∞) and η ∈ [0,π/2). Since the
distribution of the v coordinate of the ith node in the PPP is
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FIG. 5. (Color online) Probability density functions (PDFs) for
conformal time coordinates η in equilibrium and growing ensembles
of de Sitter causal sets. Panels (a) and (b) deal with the fixed-V
ensemblesGS,V andGD,V , where the exact η-PDF is given by Eq. (57),
the solid blue curves. The red circles and black dots are simulation
results for GS,V and GD,V . In (a), the total volume is V = 2 × 2π ,
so that η0 = arctan 2 = 1.107 148. In the growing ensemble, this
volume is grown in two increments V1 = V2 = 2π . In (b), the total
volume is V = 2π × 104, so that η0 = arctan 104 = 1.570 696. In
the growing ensemble, this volume is grown in 104 increments
V1 = · · · = V104 = 2π . Panels (c) and (d) show the corresponding
results for fixed-N ensembles GS,N and GD,N , where the exact PDF
is given by Eq. (61). In (c), the total number of nodes is N = 2.
In the growing ensemble, this number is grown in two increments
of one node each, N1 = N2 = 1. In (d), the total number of nodes
is N = 104. In the growing ensemble, this number is grown in 104

increments of one node each, N1 = · · · = N104 = 1. The numbers
of samples (PPP runs) in simulations are S = 106 in (a) and (c),
and S = 104 in (b) and (d). The sprinkling density (PPP rate) is
δ = 1 everywhere. The data for the equilibrium ensembles (red
circles) almost fully overlap with the data for the growing ensembles
(black dots), both matching perfectly the theoretical predictions (blue
curves).

given by ρi(v) = �i,δ(v), the PDF of v coordinates for N nodes
is simply

ρ(v) = 1

N

N∑
i=1

�i,δ(v) = δ

N
Q(N,δv), where (59)

Q(N,δv) = �(N,δv)

�(N )
(60)

is the regularized � function. The η-PDF is then

ρ(η) = δ

N
(sec2 η) Q(N,δ tan η). (61)

Figures 5(c) and 5(d) confirm that the η-PDF is indeed the
same in GS,N and GD,N , and equal to (61).

The equivalence between panels (b) and (d) in Fig. 5 also
illustrates the fact that since in the thermodynamic limit N →
∞ the regularized � function approaches 1, Q(N,δv) → 1,

then

ρ(v) → δ

N
, and (62)

ρ(η) → δ

N
sec2 η, (63)

so that the fixed-N ensemble GS,N = GD,N with ρ(v) = δ/N

becomes asymptotically identical to the fixed-V ensemble
GS,V = GD,V with ρ(v) = 1/V , both implementing the same
PPP on the infinite half of de Sitter space-time with η > 0.

VI. CONCLUSION

Almost all real networks are growing, justifying certain
concerns, sometimes skepticism, about the utility of equilib-
rium methods in analyzing real networks. Yet the structure
and dynamics of these networks turn out to be well described
by network models characterized by the unusual exact equiv-
alence between equilibrium and nonequilibrium formulations
that we have proved here. These results thus provide a different
perspective and further theoretical grounds for the use of
powerful equilibrium methods in the analysis of real networks.

Concerning how well these strongly dual models describe
real networks, we have to stress that strong duality strictly
holds in de Sitter causal sets, whereas it holds only ap-
proximately in growing hyperbolic graphs in Ref. [24] that
describe well the structure and growth dynamics of some real
networks. The growth dynamics of these hyperbolic graphs
becomes identical to the growth dynamics of de Sitter causets
only in the thermodynamic limit [23], and only for a specific
(default) set of parameters in Ref. [24]. With these specific
values of parameters, the model generates graphs with specific
properties. These properties are as follows: (1) power-law
degree distributions with exponent γ = 2, and (2) strongest
possible clustering, i.e., zero temperature in Ref. [24]. The
former property applies to many real networks, Fig. 6(a), but
the latter does not, explaining differences between clustering
in de Sitter causets and real networks, Fig. 6(b). However,
even though clustering in real networks is not the strongest
possible, it is still strong and thermodynamically stable, often
even increasing slightly as the network grows [24]. This
means that the temperature of real networks, quantifying
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FIG. 6. (Color online) Degree distribution (a) and clustering
(b) in de Sitter causets GS,N and GD,N , 1000 samples each of size
N = 23 752, sprinkling density δ = 0.834 751/2π , average degree
k̄ = 4.9188, and average clustering c̄ = 0.7862 and c̄ = 0.7854,
respectively, and in some real networks: AS Internet (N = 23 752,
k̄ = 4.9188, c̄ = 0.6055), functional brain network (N = 23 713,
k̄ = 6.1436, c̄ = 0.1552), and PGP Web of Trust (N = 23 797,
k̄ = 7.8587, c̄ = 0.4816).
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how far their connection probability is from the step-function
(zero-temperature) connection probability in causal sets, is in
fact low [24]. In that respect the differences between de Sitter
causets and real networks may be not that substantial.

The fact that strong stasis-dynamics duality holds for causal
sets may be interesting from the philosophical perspective,
where the problem of time finds new thematic developments
in the causal set context [38]. Intuitively, the finding that causal
sets are strongly dual is expected because, on the one hand,
causal sets attempt to describe a quantization of static space-
time, while on the other hand, time is dynamic.

In general, however, the exact equivalence between equi-
librium and nonequilibrium systems is somewhat unusual in
physics, and may even appear as a paradox. In the realm of
network models, for example, the required duality conditions
are rarely satisfied, and do not hold in most familiar network
models, such as classical random graphs, configuration model,
or preferential attachment. Perhaps the most fundamental
counterexample to this usual nonequivalence is the connec-
tion between equilibrium statistical mechanics (ESM) and
Euclidean quantum field theory (QFT) [39]. In both cases the
expression for the expected value of some observable O can
be formally written as

Ō = 1

Z

∫
x

O e− S(x)
h dx, where (64)

Z =
∫

x

e− S(x)
h dx (65)

is the partition function. Notation triplet S,x,h stands for
energy, state, and kT in ESM, while the same triplet in
QFT is action, quantum fields, and the Planck constant.
Observable O can be magnetization in ESM or scattering
amplitude in QFT. This example is clearly different from
the network duality that we have considered here. This
network duality is the equivalence between two apparently
different systems, which as we can easily prove, are actually
the same because they are two different reflections of the
same underlying process, a PPP. Equation (64) describes
drastically different physical systems—classical equilibrium
systems and quantum nonequilibrium processes. They are
not the same in any sense, and no analogy of “an under-
lying PPP” explaining (64) is currently known, although
there are some speculations [40]. Therefore, the similarity
between the ESM-QFT connection and network duality
discussed here is perhaps limited to the frequent observation
that the same mathematics describes two different physical
phenomena.
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