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Abstract

We question the validity of the grand canonical ensemble for the description

of Bose–Einstein condensation of small ideal Bose gas samples in isolated har-

monic traps. While the ground state fraction and the specific heat capacity

can be well approximated with the help of the conventional grand canonical

arguments, the calculation of the fluctuation of the number of particles con-

tained in the condensate requires a microcanonical approach. Resorting to the

theory of restricted partitions of integer numbers, we present analytical and

numerical results for such fluctuations in one– and three-dimensional traps,

and show that their magnitude is essentially independent of the total particle

number.
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I. BOSE–EINSTEIN CONDENSATION IN ISOLATED TRAPS: CAN WE RELY

ON THE GRAND CANONICAL ENSEMBLE?

After the breakthrough in the preparation and detection of Bose–Einstein condensates
of rubidium [1], sodium [2], and lithium [3], the second generation of experiments on ultra-
cold, magnetically trapped Bose gases now starts to probe condensate properties such as
the temperature dependence of the condensate fraction [4,5] or collective excitations of the
condensate [6–8]. A matter-of-principle experiment has shown the feasibility of an output
coupler for condensed trapped atoms [9], two different, overlapping condensates have been
produced in a single trap [10], and interference fringes between two freely expanding con-
densates have been demonstrated [11], thus proving first-order coherence of “mesoscopic”
matter waves. Higher-order coherence has been inferred from three-body recombination
rates of condensed atoms [12], and even the propagation of sound in a Bose condensate
could be directly observed [13].

These developments naturally force the theorist to investigate a conceptually important
question: When dealing with Bose–Einstein condensates consisting of about 103 to 106

particles in a magnetic trap, to which extent can the different thermodynamical ensembles
be considered as equivalent? A Bose gas cooled below the condensation point and kept in
a trap is neither in thermal contact with a heat bath, nor exchanging particles with some
particle reservoir. Hence, the only ensemble that is appropriate for describing this situation
is the microcanonical one. And yet, the theoretical discussion of trapped condensates so far
mainly relies on the grand canonical ensemble.

Within the grand canonical ensemble, the description of a trapped, ideal Bose gas con-
sisting of N particles is comparatively simple. We consider an isotropic harmonic trap with
oscillator frequency ω, so that the degree of degeneracy of the j-th single-particle state is

gj =
1

2
(j + 1)(j + 2) . (1)

Hence, the difference µ̃ of the chemical potential and the single-particle ground state energy
is determined by the equation

N =
∞∑

j=0

j2/2 + 3j/2 + 1

exp[(jh̄ω − µ̃)/kBT ] − 1
, (2)

where kB denotes the Boltzmann constant, and T is the temperature. This sum can be
evaluated approximately by introducing the density of states

ρ(E) ≈ 1

2

E2

(h̄ω)3
+ γ

E

(h̄ω)2
(3)

with γ = 3/2, which follows immediately from eq. (1). Converting the sum into an integral
and applying standard arguments, one then finds the condensation temperature [14–16]

T
(3)
C ≈ T

(3)
0

[
1 − γ ζ(2)

3 ζ(3)2/3
· 1

N1/3

]
, (4)

where

2



T
(3)
0 =

h̄ω

kB

(
N

ζ(3)

)1/3

(5)

denotes the condensation temperature pertaining to the large-N -limit [17,18]; ζ(z) is the

Riemann zeta function. The lowering of T
(3)
C with respect to T

(3)
0 is of order N−1/3 and

results from the enhancement of the density of states (3) above the leading “volume”-term:
since there are more states available, the need to condense arises only at lower temperatures.
It should be noted that, strictly speaking, there is no well-defined condensation temperature
for a gas consisting of a finite number of particles. However, Fig. 1 clearly demonstrates
that the onset of condensation in a three-dimensional harmonic trap becomes quite sharp
already for particle numbers of the order of 105, and eq. (4) describes this onset very well.

In contrast to the textbook case of the free Bose gas, the heat capacity of the harmonically
trapped Bose gas exhibits a steep drop at the condensation point. As shown in Fig. 2, this
drop becomes a discontinuous jump by about 6.6 kB per particle in the large-N -limit.

Remaining within the scope of the grand canonical ensemble, this analysis can be made
formally more precise, and generalized to moderately anisotropic harmonic traps [19–22],
which changes the value of γ. But can one rely on the grand canonical ensemble? Ziff,
Uhlenbeck, and Kac have made a case that the grand canonical ensemble does not represent

any physical situation for the condensed ideal Bose gas , and advocate that its anomalous

predictions should be ignored [23]. These “anomalous predictions” are related to what we
call the “grand canonical fluctuation catastrophe”: within the grand canonical ensemble,
the r.m.s.-fluctuations δN0 of the ground state occupation number N0 are given by [24,25]

(δN0)
2 = N0 (N0 + 1) , (6)

implying that δN0 is of the order of the total particle number N below the condensation
point. However, if we consider an isolated Bose gas in a trap, all particles occupy the ground
state at zero temperature, so that the true fluctuations of N0 vanish. The grand canonical
prediction for δN0 thus differs drastically from the microcanonical one.

II. MICROCANONICAL APPROACH TO FLUCTUATIONS OF THE GROUND

STATE OCCUPATION

Since the magnitude of the fluctuations δN0 is related to the coherence properties of the
condensate, it is of substantial interest to compute the true, i.e., microcanonical fluctuations
for a trapped ideal Bose gas. We will study an isotropic harmonic trapping potential with
oscillator frequency ω in d dimensions, and denote by n the number of excitation quanta for
some preassigned value of the excitation energy E:

n =
E

h̄ω
. (7)

The prime task now is to determine the number Ω(d)(n|N) of microstates. Since there are
generally many microstates where only a part of the N particles carries all n excitation
quanta, leaving the other particles in the ground state, Ω(d)(n|N) equals the number of
possibilities for distributing the n quanta over at most N Bose particles. Then the difference
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Ω(d)(n|Nex) − Ω(d)(n|Nex − 1) is the number of possibilities for distributing n quanta over
exactly Nex particles, with Nex ranging from 1 to N , so that

p(d)
ex (Nex|n) =

Ω(d)(n|Nex) − Ω(d)(n|Nex − 1)

Ω(d)(n|N)
, Nex = 1, 2, . . . , N , (8)

is the probability for finding Nex out of N particles excited when the total excitation energy
is n · h̄ω. Since the remaining N − Nex particles occupy the ground state, the first moment
〈Nex〉 of the distribution (8) yields die microcanonical expectation value of the ground state
occupation number according to

〈N0〉 = N − 〈Nex〉 ; (9)

the corresponding fluctuations follow from

(δN0)
2 = 〈N2

ex〉 − 〈Nex〉2 . (10)

III. CONDENSATE FLUCTUATIONS IN A ONE-DIMENSIONAL OSCILLATOR

POTENTIAL

The case d = 1 had been considered already in 1949 by Temperley [26], and shortly
thereafter by Nanda [27]. It is of particular interest, since it can be treated in detail analyti-
cally with the tools furnished by the theory of the partion of integers: the number Ω(1)(n|N)
of microstates corresponds to the number of partitions of the integer n into at most N sum-
mands; the commutativity of the summands reflects the indistinguishability of the Bosons.
We now have to distinguish two cases: if n ≤ N , then the fact that the number of particles
is finite has no consequences for the enumeration of microstates, and we are dealing with
unrestricted partitions of n. If n > N , the partitions of n are restricted by the requirement
that the number of summands, corresponding to the number of excited particles, does not
exceed N .

Let us first consider the case n ≤ N . We follow the usual convention and denote the
number of unrestricted partitions of n as p(n). Introducing the dimensionless inverse tem-
perature ξ = h̄ω/(kBT ), it is an elementary exercise to show that

∞∑

n=0

p(n) e−nξ =
∞∏

j=1

1

1 − exp(−jξ)
≡ Z(1)

∞
(ξ) , (11)

which means that the generating function for p(n) corresponds, physically speaking, to
the canonical partition function of a fictituous system of infinitely many distinguishable
harmonic oscillators with frequencies that are integer multiples of ω. Given this, it is natural
to introduce the new variable x = exp(−ξ) and to extract the numbers p(n) by inverting
eq. (11) with the help of the saddle point approximation, after expressing ξ in terms of n.
But we have to be careful: for temperatures that may physically be considered as “low”,
but are still high compared to h̄ω/kB, the variable exp(−ξ) is close to unity, so that we need
to know the behaviour of Z(1)

∞
(ξ) in the vicinity of a singularity. However, there exists the

remarkable identity (see eq. (1.42) in ref. [28])
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Z(1)
∞

(ξ) =

√
ξ

2π
exp

(
ζ(2)

ξ
− ξ

24

)
Z(1)

∞
(4π2/ξ) (12)

that links the low-temperature behaviour of our fictituous oscillator system to its high-
temperature dynamics. This allows us to derive the low-temperature approximation

ln Z(1)
∞

(ξ) ≈ ζ(2)

ξ
+

1

2
ln ξ − 1

2
ln 2π , (13)

which, in turn, yields the desired energy-temperature relation:

n = − ∂

∂ξ
ln Z(1)

∞
(ξ) ≈ ζ(2)

ξ2
. (14)

Now we can compute the canonical entropy

S(ξ)/kB = nξ + ln Z(1)
∞

(ξ) (15)

and apply “Bethe’s theorem” [29] to get

p(n) ∼ exp [S(ξ(n))/kB]
(
−2π ∂n

∂ξ

)1/2
=

1

4
√

3n
exp


π

√
2

3
n


 . (16)

The right hand side is nothing but the celebrated Hardy–Ramanujan formula for the number
of unrestricted partitions [28], so we have just sketched a physicist’s solution to a number-
theoretical problem. There is one detail that deserves particular attention: Bethe’s theorem
amounts to the inversion of the canonical partition sum (11) within the saddle point ap-
proximation, so that the dominant contributions to this sum are properly taken into account
within the Gaussian approximation. As a result, the microcanonical entropy ln p(n) differs
from the canonical entropy S(ξ(n))/kB by the saddle point correction − ln(−2π∂n/∂ξ)/2.
Such differences between thermodynamical quantities pertaining to different ensembles are
characteristic for small systems. Expressed the other way round, the usually assumed equal-
ity of thermodynamical quantites in different ensembles holds to the extent that such saddle
point corrections can be neglected.

Now we can turn to the case n > N , where the number of quanta exceeds the number
of particles, and have to determine the number Ω(1)(n|N) ≡ pN(n) of restricted partitions
of n. In principle, one can proceed as in the previous case, since there is the identity [30]

∞∑

n=0

pN(n) e−nξ =
N∏

j=1

1

1 − exp(−jξ)
≡ Z

(1)
N (ξ) : (17)

The generating function for pN (n), that is, the canonical partition function for N ideal
Bosons trapped by a one-dimensional harmonic potential, equals the canonical partition
function of a system of N harmonic oscillators with frequencies ω, 2ω, . . . , Nω. The
corresponding asymptotic formula for pN(n), which turns out to be rather intricate, has
been given by Auluck and Kothari [30]. However, a beautiful theorem due to Erdös and
Lehner [31] helps to simplify the analysis: if, for some given n and x, the number N obeys
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N =

√
n lnn

C
+ x

√
n with C = π

√
2

3
, (18)

then

lim
n→∞

pN(n)

p(n)
= exp

(
− 2

C
e−

1

2
Cx
)

. (19)

Hence, for given large values of n and N we define x according to

x =
N√
n
− ln n

C
, (20)

and obtain the approximation

pN(n) ≈ p(n) exp
(
− 2

C
e−

1

2
Cx
)

. (21)

In order to check this approximation, we first determine the numbers pN(n) = Ω(1)(n|N) by
means of the saddle point inversion of eq. (17), evaluate the distributions (8), and compute
the relative fluctuations δN0/N according to eq. (10). The results for N = 103, 104, and
105 are shown as full lines in Fig. 3. The corresponding data obtained with the help of
the Erdös–Lehner approximation (21) are indicated by the dashed lines. Evidently, the
approximation is quite good already for N = 104.

The merit of the approximation (21) lies in the fact that it allows us to derive an analytical
expression for the microcanonical low-temperature ground state fluctuations of the ideal Bose
gas trapped by a one-dimensional harmonic potential [32]:

δN0 ≈
π√
6

kBT

h̄ω
for T ≪ T

(1)
0 ≡ h̄ω

kB

N

ln N
. (22)

As already seen in Fig. 3, the low-temperature fluctuations vanish linearly with temperature.
Most notably, they do not depend on the particle number N . This is immediately obvious
for temperatures below the “restriction temperature” T

(1)
R that is defined by the condition

n(T
(1)
R ) = N , since below T

(1)
R the number of microstates becomes independent of N , so that

“the condensate has no chance to know how many particles it consists of”. However, for d = 1
this restriction temperature is merely of the order of N1/2, since kBT

(1)
R ≈ h̄ω(N/ζ(2))1/2,

wheras the N -independence of δN0 actually persists almost up to kBT
(1)
0 = h̄ω(N/ lnN),

where the occupation of the ground state becomes significant [32]. This N -independence
of δN0 appears to be characteristic for isolated condensates in general, as we shall indicate
below.

IV. CONDENSATE FLUCTUATIONS IN A THREE-DIMENSIONAL TRAP

The analysis for the case d = 3 proceeds in close analogy to the case d = 1. The
restriction temperature, determined from n(T

(3)
R ) = N , now reads

T
(3)
R ≈ 0.8 N−1/12 T

(3)
0 , (23)
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which means that T
(3)
R is about one fourth of the condensation temperature for a gas consist-

ing of 106 particles. Below T
(3)
R the number of microstates, and hence all thermodynamical

properties of the trapped gas, are independent of the particle number N . Accordingly, we
write Ω(3)(n|N) = Ω(3)(n) for n corresponding to temperatures T less than T

(3)
R , so that

Ω(3)(n) denotes the three-dimensional analogue of p(n). The generating function for Ω(3)(n)
again equals the canonical partition function of a system of infinitely many, distinguishable
harmonic oscillators [33]:

∞∑

n=0

Ω(3)(n) e−nξ =
∞∏

j=1

1

[1 − exp(−jξ)]gj
≡ Z(3)

∞
(ξ) . (24)

The saddle point inversion of this generating function is straightforward, but a bit tedious.
The result has been given by Nanda in 1951 [34]:

Ω(3)(n) =
ñ−25/32

4π (3ζ(4))1/2
exp

(
4ζ(4)ñ3/4 +

3

2
ζ(3)ñ1/2 +

[
ζ(2)− 3

8

ζ(3)2

ζ(4)

]
ñ1/4 + B

)
(25)

with

ñ =
n

3ζ(4)

and

B =
ζ(3)3

8ζ(4)2
− ζ(2)ζ(3)

4ζ(4)
+

3

2
ζ ′(−1) +

1

2
ζ ′(−2) .

This is one of the rare examples of a truly asymptotic formula for the number of microstates
of a non-trivial Bose system.

For temperatures above T
(3)
R the finiteness of the particle number restricts the number of

microstates, and we have to compute Ω(3)(n|N). It turns out that the logarithm of Ω(3)(n)

provides a quite good approximation to ln
(
Ω(3)(n|N)

)
even up to the condensation temper-

ature [33], so that the entropy of the fictituous Boltzmannian oscillator system described by
the partition function (24) approximates the entropy of the trapped Bose gas for all tem-
peratures below the onset of condensation. This means that the distributions p(3)

ex (Nex|n)
introduced in eq. (8) must be well peaked; those microstates where the n > N quanta are

actually “spread out” over all N particles carry only a minor statistical weight below T
(3)
C .

But still, this finding is of no help for computing the fluctuations δN0, since this compu-
tation requires, according to eq. (8), to consider auxiliary systems consisting of Nex ≤ N
particles and to determine the numbers Ω(3)(n|Nex). The problem now is that an immediate
analogue to the generating function (17) does not exist, that is, the canonical N -particle

partition function Z
(3)
N (ξ) is not known in closed form. However, there exists the recursion

formula [35–37]

Z
(d)
N (ξ) =

1

N

N∑

k=1

Z
(d)
1 (kξ)Z

(d)
N−k(ξ) (26)
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that can numerically be evaluated and inverted within the saddle point approximation, so
that we can determine the distributions p(3)

ex (Nex|n) at least numerically with high preci-
sion [33]. The results for N = 1000 are shown in Fig. 4: as anticipated, the distributions
are well peaked, and moreover remarkably close to Gaussians.

From the expectation values of these distributions we obtain the microcanonical expec-
tation values of the ground state occupation number, depicted as the full line in Fig. 5.
The agreement with the corresponding grand canonical data (dashed) is stunning, but in
view of the preceding Fig. 4 not unexpected: the predictions of the different ensembles will
be the same as long as the most probable values of Nex coincide with the expectation val-
ues, which is the case as long as the distributions p(3)

ex (Nex|n) stay symmetrical. This, in
turn, is guaranteed as long as the support of these distributions stays away from the border
Nex/N = 1. Hence, there is a slight difference between the microcanonical and the grand
canonical ground state fraction only in the immediate vicinity of the condensation point.
For d = 1 this difference is much more pronounced, since p(1)

ex (Nex|n) is considerably less well
peaked [32] than its counterpart for d = 3.

Fig. 6 shows the microcanonical fluctuations of the ground state occupation number for
d = 3 and N = 200, 500, and 1000. Remarkably, the low-temperature fluctuations for
these three systems agree perfectly. More generally, if we compare two trapped Bose gases
with different N under otherwise identical conditions, then their fluctuations δN0 are nearly
identical for temperatures below the lower of their condensation temperatures. This finding
generalizes the formula (22). Again, the N -independence of δN0 is immediately obvious for

temperatures lower than the restriction temperature T
(3)
R , but it actually persists almost

up to the condensation temperature, as a result of the well-peakedness of the distributions
p(3)

ex (Nex|n).

V. CONCLUDING REMARKS

We now come back to our initial question: Can we rely on the grand canonical ensemble
for Bose–Einstein condensation in isolated traps? As long as we are only interested in the
usual thermodynamical quantities, the answer is yes. Fig. 5 has shown that the grand
canonical prediction for the ground state occupation number in a three-dimensional trap is
almost indistinguishable from the microcanonical one even if the particle number N is as
low as 1000. But in view of the fact that one-dimensional traps are not out of reach [16,38],
it should be kept in mind that these differences are larger for d = 1 [32].

Another comparison between different ensembles is presented in Fig. 7, which depicts
the grand canonical (long dashes), canonical (short dashes), and microcanonical (full line)
specific heat capacity for d = 3 and N = 1000. Again, noticeable differences can be found
only close to the onset of condensation.

But when it comes to quantum statistical properties, the grand canonical ensemble is
unsound [23]. Adopting the microcanonical spirit and starting from the enumeration of
microstates, we have computed the microcanonical low-temperature fluctuations δN0 for
harmonically trapped Bose gases. While the case d = 1 could be treated fully analytically,
leading to eq. (22), the case d = 3 had to rely on the numerical evaluation of the recursion
relation (26). If one could derive an analytical approximation to the numbers Ω(3)(n|N) for
n > N , with a quality similar to that of the Erdös–Lehner approximation (21) to Ω(1)(n|N) ≡

8



pN(n), then the case d = 3 could be brought into the same textbook status that the case
d = 1 already has by now.

It is also worthwhile to point out that very recently Navez et al. have proposed a new
statistical ensemble, within which the ground state particles act as a reservoir, and exchange
of particles with the excited-states subsystem without exchange of energy is possible [39].
The predictions for the fluctuations δN0 obtained with the help of this so-called “Maxwell’s
Demon ensemble” agree very favourably with our strictly microcanonical results, so that
this ensemble might constitute a valuable tool for further studies.

In closing, we reiterate the most important result of the present analysis: while the
grand canonical ensemble predicts, for ideal Bose gases at low temperatures, ground state
number fluctuations δN0 of the order N , and while usual thermodynamical fluctuations scale
as

√
N , the low-temperature fluctuations δN0 for trapped, isolated ideal Bose condensates

are independent of the total particle number N .
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FIGURES

FIG. 1. Grand canonical ground state fraction N0/N for a three-dimensional isotropic harmonic

trap, and gases consisting of 103, 105, and 107 ideal Bose particles. The larger the particle number,

the sharper the onset of condensation, and the smaller the shift of the condensation temperature (4)

with respect to T0 = T
(3)
0 . These data result from exact numerical calculations that do not invoke

the continuum approximation.

FIG. 2. Grand canonical specific heat capacities for harmonically trapped ideal Bose gases

(d = 3). The particle numbers are N = 103, 104, . . . , 107. The higher the particle number, the

steeper the drop at the onset of condensation.

FIG. 3. Microcanonical fluctuations of the ground state occupation number for ideal Bose

gases in a one-dimensional harmonic trap, for N = 103, 104, and 105 (top to bottom). Full lines:

data obtained with the help of the saddle point inversion of eq. (17). Dashed: data resulting

from the Erdös–Lehner formula (21). T0 = T
(1)
0 ≡ h̄ωN/(kB ln N) marks the temperature below

which the ground state occupation becomes significant [32]. The seeming N -dependence of the

low-temperature fluctuations stems from the fact that they have been plotted versus the reduced

temperature T/T
(1)
0 , since T

(1)
0 depends on N .

FIG. 4. Microcanonical probability distributions p
(3)
ex (Nex|n) for finding Nex out of N = 1000

isotropically trapped Bose particles excited when the total energy is n · h̄ω. The temperatures

T/T
(3)
0 corresponding to the Gaussian-like distributions range from 0.3 to 0.9 (left to right, in

steps of 0.1); the temperature for the rightmost, monotonous distribution is T = 0.95T
(3)
0 , which

is higher than T
(3)
C ≈ 0.93T

(3)
0 , see eq. (4).

FIG. 5. Microcanonical ground state fraction (full line) for N = 1000 isotropically trapped

Bose particles (d = 3) versus reduced temperature T/T
(3)
0 , compared to the corresponding grand

canonical data (dashed).

FIG. 6. Microcanonical fluctuations δN0 versus temperature, for d = 3 and N = 200, 500, and

1000. The fluctuations are maximal close to the respective condensation points. Below the lowest

of the condensation points, the fluctuations of the three systems agree perfectly, thus revealing the

N -independence of δN0.

FIG. 7. Comparison of the grand canonical (long dashes), canonical (short dashes), and micro-

canonical (full line) specific heat capacity for d = 3 and N = 1000.
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