
DeepWalk: Online Learning of Social Representations

Bryan Perozzi
Stony Brook University

Department of Computer
Science

Rami Al-Rfou
Stony Brook University

Department of Computer
Science

Steven Skiena
Stony Brook University

Department of Computer
Science

{bperozzi, ralrfou, skiena}@cs.stonybrook.edu

ABSTRACT
We present DeepWalk, a novel approach for learning latent
representations of vertices in a network. These latent rep-
resentations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language modeling
and unsupervised feature learning (or deep learning) from
sequences of words to graphs.

DeepWalk uses local information obtained from truncated
random walks to learn latent representations by treating
walks as the equivalent of sentences. We demonstrate Deep-
Walk’s latent representations on several multi-label network
classification tasks for social networks such as BlogCatalog,
Flickr, and YouTube. Our results show that DeepWalk
outperforms challenging baselines which are allowed a global
view of the network, especially in the presence of missing
information. DeepWalk’s representations can provide F1

scores up to 10% higher than competing methods when la-
beled data is sparse. In some experiments, DeepWalk’s
representations are able to outperform all baseline methods
while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classification,
and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining; I.2.6 [Artificial Intelligence]: Learning; I.5.1
[Pattern Recognition]: Model - Statistical

Keywords
social networks; deep learning; latent representations; learn-
ing with partial labels; network classification; online learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623732

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

(a) Input: Karate Graph

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.8

1.6

1.4

1.2

1.0

0.8

0.6

34

1

33

3

24

32

9

24

14

8

31

30

28

67

11

5

29

26

20

25

16

2315

22

27

19

21

13

1810

17
12

(b) Output: Representation

Figure 1: Our proposed method learns a latent space repre-
sentation of social interactions in Rd. The learned represen-
tation encodes community structure so it can be easily ex-
ploited by standard classification methods. Here, our method
is used on Zachary’s Karate network [44] to generate a la-
tent representation in R2. Note the correspondence between
community structure in the input graph and the embedding.
Vertex colors represent a modularity-based clustering of the
input graph.

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of efficient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [16, 37], content rec-
ommendation [12], anomaly detection [6], and missing link
prediction [23]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [3] techniques, which have proven successful
in natural language processing, into network analysis for the
first time. We develop an algorithm (DeepWalk) that learns
social representations of a graph’s vertices, by modeling a
stream of short random walks. Social representations are
latent features of the vertices that capture neighborhood
similarity and community membership. These latent rep-
resentations encode social relations in a continuous vector
space with a relatively small number of dimensions. Deep-
Walk generalizes neural language models to process a special
language composed of a set of randomly-generated walks.
These neural language models have been used to capture the
semantic and syntactic structure of human language [7], and
even logical analogies [29].

DeepWalk takes a graph as input and produces a latent
representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed

701

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2623330.2623732&domain=pdf&date_stamp=2014-08-24

layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b) cor-
respond to clusters found through modularity maximization
in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-
narios, we evaluate its performance on challenging multi-label
network classification problems in large heterogeneous graphs.
In the relational classification problem, the links between
feature vectors violate the traditional i.i.d. assumption. Tech-
niques to address this problem typically use approximate
inference techniques [32] to leverage the dependency informa-
tion to improve classification results. We distance ourselves
from these approaches by learning label-independent repre-
sentations of the graph. Our representation quality is not
influenced by the choice of labeled vertices, so they can be
shared among tasks.

DeepWalk outperforms other latent representation meth-
ods for creating social dimensions [39,41], especially when
labeled nodes are scarce. Strong performance with our repre-
sentations is possible with very simple linear classifiers (e.g.
logistic regression). Our representations are general, and
can be combined with any classification method (including
iterative inference methods). DeepWalk achieves all of that
while being an online algorithm that is trivially parallelizable.

Our contributions are as follows:

• We introduce deep learning as a tool to analyze graphs,
to build robust representations that are suitable for
statistical modeling. DeepWalk learns structural reg-
ularities present within short random walks.

• We extensively evaluate our representations on multi-
label classification tasks on several social networks. We
show significantly increased classification performance
in the presence of label sparsity, getting improvements
5%-10% of Micro F1, on the sparsest problems we
consider. In some cases, DeepWalk’s representations
can outperform its competitors even when given 60%
less training data.

• We demonstrate the scalability of our algorithm by
building representations of web-scale graphs, (such as
YouTube) using a parallel implementation. Moreover,
we describe the minimal changes necessary to build a
streaming version of our approach.

The rest of the paper is arranged as follows. In Sections 2
and 3, we discuss the problem formulation of classification in
data networks, and how it relates to our work. In Section 4 we
present DeepWalk, our approach for Social Representation
Learning. We outline ours experiments in Section 5, and
present their results in Section 6. We close with a discussion
of related work in Section 7, and our conclusions.

2. PROBLEM DEFINITION
We consider the problem of classifying members of a social

network into one or more categories. Let G = (V,E), where
V represent the members of the network, E are their con-
nections, E ⊆ (V × V), and GL = (V,E,X, Y) is a partially

labeled social network, with attributes X ∈ R|V |×S where S
is the size of the feature space for each attribute vector, and
Y ∈ R|V |×|Y|, Y is the set of labels.

In a traditional machine learning classification setting, we
aim to learn a hypothesis H that maps elements of X to

the labels set Y. In our case, we can utilize the significant
information about the dependence of the examples embedded
in the structure of G to achieve superior performance.

In the literature, this is known as the relational classifica-
tion (or the collective classification problem [37]). Traditional
approaches to relational classification pose the problem as
an inference in an undirected Markov network, and then
use iterative approximate inference algorithms (such as the
iterative classification algorithm [32], Gibbs Sampling [15], or
label relaxation [19]) to compute the posterior distribution
of labels given the network structure.

We propose a different approach to capture the network
topology information. Instead of mixing the label space as
part of the feature space, we propose an unsupervised method
which learns features that capture the graph structure inde-
pendent of the labels’ distribution.

This separation between the structural representation and
the labeling task avoids cascading errors, which can occur in
iterative methods [34]. Moreover, the same representation
can be used for multiple classification problems concerning
that network.

Our goal is to learn XE ∈ R|V |×d, where d is small number
of latent dimensions. These low-dimensional representations
are distributed; meaning each social phenomena is expressed
by a subset of the dimensions and each dimension contributes
to a subset of the social concepts expressed by the space.

Using these structural features, we will augment the at-
tributes space to help the classification decision. These
features are general, and can be used with any classification
algorithm (including iterative methods). However, we be-
lieve that the greatest utility of these features is their easy
integration with simple machine learning algorithms. They
scale appropriately in real-world networks, as we will show
in Section 6.

3. LEARNING SOCIAL REPRESENTATIONS
We seek to learn social representations with the following

characteristics:

• Adaptability - Real social networks are constantly
evolving; new social relations should not require repeat-
ing the learning process all over again.

• Community aware - The distance between latent
dimensions should represent a metric for evaluating
social similarity between the corresponding members
of the network. This allows generalization in networks
with homophily.

• Low dimensional - When labeled data is scarce low-
dimensional models generalize better, and speed up
convergence and inference.

• Continuous - We require latent representations to
model partial community membership in continuous
space. In addition to providing a nuanced view of
community membership, a continuous representation
has smooth decision boundaries between communities
which allows more robust classification.

Our method satisfies these requirements by learning repre-
sentation for vertices from a stream of short random walks,
using optimization techniques originally designed for lan-
guage modeling. Here, we review the basics of both random
walks and language modeling, and describe how their combi-
nation satisfies our requirements.

702

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Vertexmvisitat ionmcount

10
0

10
1

10
2

10
3

10
4

10
5

k
mo

fm
V

e
rt

ic
e

s
FrequencymofmVertexmOccurrenceminmShort mRandom mWalks

(a) YouTube Social Graph

100 101
102 103 104 105

106 107

Word mention count

100

101

102

103

104

105

106

#
 o

f
W

o
rd

s

Frequency of Word Occurrence in Wikipedia

(b) Wikipedia Article Text

Figure 2: The distribution of vertices appearing in short
random walks (2a) follows a power-law, much like the distri-
bution of words in natural language (2b).

3.1 Random Walks
We denote a random walk rooted at vertex vi asWvi . It is a

stochastic process with random variables W1
vi ,W

2
vi , . . . ,W

k
vi

such that Wk+1
vi is a vertex chosen at random from the

neighbors of vertex vk. Random walks have been used as a
similarity measure for a variety of problems in content recom-
mendation [12] and community detection [2]. They are also
the foundation of a class of output sensitive algorithms which
use them to compute local community structure information
in time sublinear to the size of the input graph [38].

It is this connection to local structure that motivates us
to use a stream of short random walks as our basic tool
for extracting information from a network. In addition to
capturing community information, using random walks as
the basis for our algorithm gives us two other desirable
properties. First, local exploration is easy to parallelize.
Several random walkers (in different threads, processes, or
machines) can simultaneously explore different parts of the
same graph. Secondly, relying on information obtained from
short random walks make it possible to accommodate small
changes in the graph structure without the need for global
recomputation. We can iteratively update the learned model
with new random walks from the changed region in time
sub-linear to the entire graph.

3.2 Connection: Power laws
Having chosen online random walks as our primitive for

capturing graph structure, we now need a suitable method
to capture this information. If the degree distribution of
a connected graph follows a power law (i.e. scale-free), we
observe that the frequency which vertices appear in the short
random walks will also follow a power-law distribution.

Word frequency in natural language follows a similar distri-
bution, and techniques from language modeling account for
this distributional behavior. To emphasize this similarity we
show two different power-law distributions in Figure 2. The
first comes from a series of short random walks on a scale-free
graph, and the second comes from the text of 100,000 articles
from the English Wikipedia.

A core contribution of our work is the idea that techniques
which have been used to model natural language (where the
symbol frequency follows a power law distribution (or Zipf’s
law)) can be re-purposed to model community structure in
networks. We spend the rest of this section reviewing the
growing work in language modeling, and transforming it to
learn representations of vertices which satisfy our criteria.

3.3 Language Modeling
The goal of language modeling is to estimate the likelihood

of a specific sequence of words appearing in a corpus. More
formally, given a sequence of words Wn

1 = (w0, w1, · · · , wn),
where wi ∈ V (V is the vocabulary), we would like to maxi-
mize the Pr(wn|w0, w1, · · · , wn−1) over all the training cor-
pus. Recent work in representation learning has focused
on using probabilistic neural networks to build general rep-
resentations of words which extend the scope of language
modeling beyond its original goals.

In this work, we present a generalization of language mod-
eling to explore the graph through a stream of short random
walks. These walks can be thought of as short sentences and
phrases in a special language; the direct analog is to estimate
the likelihood of observing vertex vi given all the previous
vertices visited so far in the random walk, i.e.

Pr
(
vi | (v1, v2, · · · , vi−1)

)
(1)

Our goal is to learn a latent representation, not only a
probability distribution of node co-occurrences, and so we
introduce a mapping function Φ: v ∈ V 7→ R|V |×d. This
mapping Φ represents the latent social representation as-
sociated with each vertex v in the graph. (In practice, we
represent Φ by a |V |×d matrix of free parameters, which will
serve later on as our XE). The problem then, is to estimate
the likelihood:

Pr
(
vi |

(
Φ(v1),Φ(v2), · · · ,Φ(vi−1)

))
(2)

However, as the walk length grows, computing this condi-
tional probability becomes unfeasible.

A recent relaxation in language modeling [27, 28] turns
the prediction problem on its head. First, instead of using
the context to predict a missing word, it uses one word
to predict the context. Secondly, the context is composed
of the words appearing to both the right and left of the
given word. Finally, it removes the ordering constraint on
the problem, instead, requiring the model to maximize the
probability of any word appearing in the context without
the knowledge of its offset from the given word. In terms of
vertex representation modeling, this yields the optimization
problem:

minimize
Φ

− log Pr
(
{vi−w, · · · , vi+w} \ vi | Φ(vi)

)
(3)

We find these relaxations are particularly desirable for
social representation learning. First, the order independence
assumption better captures a sense of ‘nearness’ that is
provided by random walks. Moreover, this relaxation is quite
useful for speeding up the training time by building small
models as one vertex is given at a time.

Solving the optimization problem from Eq. 3 builds rep-
resentations that capture the shared similarities in local
graph structure between vertices. Vertices which have similar
neighborhoods will acquire similar representations (encoding
co-citation similarity), allowing generalization on machine
learning tasks.

By combining both truncated random walks and language
models we formulate a method which satisfies all of our
desired properties. This method generates representations
of social networks that are low-dimensional, and exist in a
continuous vector space. Its representations encode latent
forms of community membership, and because the method

703

Algorithm 1 DeepWalk(G, w, d, γ, t)

Input: graph G(V,E)
window size w
embedding size d
walks per vertex γ
walk length t

Output: matrix of vertex representations Φ ∈ R|V |×d

1: Initialization: Sample Φ from U |V |×d

2: Build a binary Tree T from V
3: for i = 0 to γ do
4: O = Shuffle(V)
5: for each vi ∈ O do
6: Wvi = RandomWalk(G, vi,t)
7: SkipGram(Φ, Wvi , w)
8: end for
9: end for

outputs useful intermediate representations, it can adapt to
changing network topology.

4. METHOD
In this section we discuss the main components of our

algorithm. We also present several variants of our approach
and discuss their merits.

4.1 Overview
As in any language modeling algorithm, the only required

input is a corpus and a vocabulary V. DeepWalk considers
a set of short truncated random walks its own corpus, and
the graph vertices as its own vocabulary (V = V). While
it is beneficial to know V and the frequency distribution of
vertices in the random walks ahead of the training, it is not
necessary for the algorithm to work as we will show in 4.2.2.

4.2 Algorithm: DeepWalk
The algorithm consists of two main components; first a

random walk generator, and second, an update procedure.
The random walk generator takes a graph G and samples
uniformly a random vertex vi as the root of the random
walk Wvi . A walk samples uniformly from the neighbors
of the last vertex visited until the maximum length (t) is
reached. While we set the length of our random walks in
the experiments to be fixed, there is no restriction for the
random walks to be of the same length. These walks could
have restarts (i.e. a teleport probability of returning back
to their root), but our preliminary results did not show any
advantage of using restarts. In practice, our implementation
specifies a number of random walks γ of length t to start at
each vertex.

Lines 3-9 in Algorithm 1 shows the core of our approach.
The outer loop specifies the number of times, γ, which we
should start random walks at each vertex. We think of each
iteration as making a ‘pass’ over the data and sample one
walk per node during this pass. At the start of each pass we
generate a random ordering to traverse the vertices. This
is not strictly required, but is well-known to speed up the
convergence of stochastic gradient descent.

In the inner loop, we iterate over all the vertices of the
graph. For each vertex vi we generate a random walk
|Wvi | = t, and then use it to update our representations
(Line 7). We use the SkipGram algorithm [27] to update

Algorithm 2 SkipGram(Φ, Wvi , w)

1: for each vj ∈ Wvi do
2: for each uk ∈ Wvi [j − w : j + w] do
3: J(Φ) = − log Pr(uk | Φ(vj))
4: Φ = Φ− α ∗ ∂J

∂Φ
5: end for
6: end for

these representations in accordance with our objective func-
tion in Eq. 3.

4.2.1 SkipGram
SkipGram is a language model that maximizes the co-

occurrence probability among the words that appear within
a window, w, in a sentence. It approximates the conditional
probability in Equation 3 using an independence assumption
as the following

Pr
(
{vi−w, · · · , vi+w} \ vi | Φ(vi)

)
=

i+w∏
j=i−w
j 6=i

Pr(vj |Φ(vi))

(4)
Algorithm 2 iterates over all possible collocations in ran-

dom walk that appear within the window w (lines 1-2). For
each, we map each vertex vj to its current representation
vector Φ(vj) ∈ Rd (See Figure 3b). Given the representa-
tion of vj , we would like to maximize the probability of its
neighbors in the walk (line 3). We can learn such a posterior
distribution using several choices of classifiers. For exam-
ple, modeling the previous problem using logistic regression
would result in a huge number of labels (that is equal to
|V |) which could be in millions or billions. Such models
require vast computational resources which could span a
whole cluster of computers [4]. To avoid this necessity and
speed up the training time, we instead use the Hierarchical
Softmax [30,31] to approximate the probability distribution.

4.2.2 Hierarchical Softmax
Given that uk ∈ V , calculating Pr(uk | Φ(vj)) in line 3

is not feasible. Computing the partition function (normal-
ization factor) is expensive, so instead we will factorize the
conditional probability using Hierarchical softmax. We assign
the vertices to the leaves of a binary tree, turning the pre-
diction problem into maximizing the probability of a specific
path in the hierarchy (See Figure 3c). If the path to vertex uk
is identified by a sequence of tree nodes (b0, b1, . . . , bdlog |V |e),
(b0 = root, bdlog |V |e = uk) then

Pr(uk | Φ(vj)) =

dlog |V |e∏
l=1

Pr(bl | Φ(vj)) (5)

Now, Pr(bl | Φ(vj)) could be modeled by a binary classifier
that is assigned to the parent of the node bl as Equation 6
shows,

Pr(bl | Φ(vj) = 1/(1 + e−Φ(vj)·Ψ(bl)) (6)

where Ψ(bl) ∈ Rd is the representation assigned to tree node
bl’s parent. This reduces the computational complexity of
calculating Pr(uk | Φ(vj)) from O(|V |) to O(log |V |).

We can speed up the training process further, by assigning
shorter paths to the frequent vertices in the random walks.
Huffman coding is used to reduce the access time of frequent
elements in the tree.

704

(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

Figure 3: Overview of DeepWalk. We slide a window of length 2w + 1 over the random walk Wv4 , mapping the central
vertex v1 to its representation Φ(v1). Hierarchical Softmax factors out Pr(v3 | Φ(v1)) and Pr(v5 | Φ(v1)) over sequences of
probability distributions corresponding to the paths starting at the root and ending at v3 and v5. The representation Φ is
updated to maximize the probability of v1 co-occurring with its context {v3, v5}.

4.2.3 Optimization
The model parameter set is θ = {Φ,Ψ} where the size

of each is O(d|V |). Stochastic gradient descent (SGD) [5]
is used to optimize these parameters (Line 4, Algorithm 2).
The derivatives are estimated using the back-propagation
algorithm. The learning rate α for SGD is initially set to
2.5% at the beginning of the training and then decreased
linearly with the number of vertices that are seen so far.

4.3 Parallelizability
As shown in Figure 2 the frequency distribution of vertices

in random walks of social network and words in a language
both follow a power law. This results in a long tail of infre-
quent vertices, therefore, the updates that affect Φ will be
sparse in nature. This allows us to use asynchronous version
of stochastic gradient descent (ASGD), in the multi-worker
case. Given that our updates are sparse and we do not ac-
quire a lock to access the model shared parameters, ASGD
will achieve an optimal rate of convergence [36]. While we
run experiments on one machine using multiple threads, it
has been demonstrated that this technique is highly scalable,
and can be used in very large scale machine learning [9].
Figure 4 presents the effects of parallelizing DeepWalk. It
shows the speed up in processing BlogCatalog and Flickr
networks is consistent as we increase the number of workers
to 8 (Figure 4a). It also shows that there is no loss of predic-
tive performance relative to the running DeepWalk serially
(Figure 4b).

4.4 Algorithm Variants
Here we discuss some variants of our proposed method,

which we believe may be of interest.

4.4.1 Streaming
One interesting variant of this method is a streaming ap-

proach, which could be implemented without knowledge of
the entire graph. In this variant small walks from the graph
are passed directly to the representation learning code, and
the model is updated directly. Some modifications to the
learning process will also be necessary. First, using a decay-
ing learning rate may no longer be desirable as it assumes the
knowledge of the total corpus size. Instead, we can initialize

20 21 22 23

of Workers

2-3

2-2

2-1

20

R
e

la
ti

v
e

 T
im

e

BlogCatalog

Flickr

(a) Running Time

20 21 22 23

of Workers

0.02

0.01

0.00

0.01

0.02

R
e

la
ti

v
e

 C
h

a
n

g
e

 i
n

 M
ic

ro
 F

1

BlogCatalog

Flickr

(b) Performance

Figure 4: Effects of parallelizing DeepWalk

the learning rate α to a small constant value. This will take
longer to learn, but may be worth it in some applications.
Second, we cannot necessarily build a tree of parameters any
more. If the cardinality of V is known (or can be bounded),
we can build the Hierarchical Softmax tree for that maximum
value. Vertices can be assigned to one of the remaining leaves
when they are first seen. If we have the ability to estimate
the vertex frequency a priori, we can also still use Huffman
coding to decrease frequent element access times.

4.4.2 Non-random walks
Some graphs are created as a by-product of agents inter-

acting with a sequence of elements (e.g. users’ navigation
of pages on a website). When a graph is created by such a
stream of non-random walks, we can use this process to feed
the modeling phase directly. Graphs sampled in this way will
not only capture information related to network structure,
but also to the frequency at which paths are traversed.

In our view, this variant also encompasses language mod-
eling. Sentences can be viewed as purposed walks through
an appropriately designed language network, and language
models like SkipGram are designed to capture this behavior.

This approach can be combined with the streaming variant
(Section 4.4.1) to train features on a continually evolving
network without ever explicitly constructing the entire graph.
Maintaining representations with this technique could enable
web-scale classification without the hassles of dealing with a
web-scale graph.

705

Name BlogCatalog Flickr YouTube
|V | 10,312 80,513 1,138,499
|E| 333,983 5,899,882 2,990,443
|Y| 39 195 47

Labels Interests Groups Groups

Table 1: Graphs used in our experiments.

5. EXPERIMENTAL DESIGN
In this section we provide an overview of the datasets and

methods which we will use in our experiments. Code and
data to reproduce our results will be available at the first
author’s website.1

5.1 Datasets
An overview of the graphs we consider in our experiments

is given in Figure 1.
• BlogCatalog [39] is a network of social relationships

provided by blogger authors. The labels represent the
topic categories provided by the authors.

• Flickr [39] is a network of the contacts between users
of the photo sharing website. The labels represent the
interest groups of the users such as ‘black and white
photos’.

• YouTube [40] is a social network between users of
the popular video sharing website. The labels here
represent groups of viewers that enjoy common video
genres (e.g. anime and wrestling).

5.2 Baseline Methods
To validate the performance of our approach we compare

it against a number of baselines:

• SpectralClustering [41]: This method generates a rep-
resentation in Rd from the d-smallest eigenvectors of

L̃, the normalized graph Laplacian of G. Utilizing the

eigenvectors of L̃ implicitly assumes that graph cuts
will be useful for classification.

• Modularity [39]: This method generates a represen-
tation in Rd from the top-d eigenvectors of B, the
Modularity matrix of G. The eigenvectors of B encode
information about modular graph partitions of G [35].
Using them as features assumes that modular graph
partitions will be useful for classification.

• EdgeCluster [40]: This method uses k-means clustering
to cluster the adjacency matrix ofG. Its has been shown
to perform comparably to the Modularity method, with
the added advantage of scaling to graphs which are too
large for spectral decomposition.

• wvRN [25]: The weighted-vote Relational Neighbor is
a relational classifier. Given the neighborhood Ni of
vertex vi, wvRN estimates Pr(yi|Ni) with the (appro-
priately normalized) weighted mean of its neighbors (i.e
Pr(yi|Ni) = 1

Z

∑
vj∈Ni

wij Pr(yj | Nj)). It has shown

surprisingly good performance in real networks, and
has been advocated as a sensible relational classification
baseline [26].

• Majority: This näıve method simply chooses the most
frequent labels in the training set.

1http://bit.ly/deepwalk

6. EXPERIMENTS
In this section we present an experimental analysis of our

method. We thoroughly evaluate it on a number of multi-
label classification tasks, and analyze its sensitivity across
several parameters.

6.1 Multi-Label Classification
To facilitate the comparison between our method and the

relevant baselines, we use the exact same datasets and exper-
imental procedure as in [39, 40]. Specifically, we randomly
sample a portion (TR) of the labeled nodes, and use them
as training data. The rest of the nodes are used as test. We
repeat this process 10 times, and report the average per-
formance in terms of both Macro-F1 and Micro-F1. When
possible we report the original results [39,40] here directly.

For all models we use a one-vs-rest logistic regression im-
plemented by LibLinear [11] extended to return the most
probable labels as in [39]. We present results for Deep-
Walk with (γ = 80, w = 10, d = 128). The results for
(SpectralClustering, Modularity, EdgeCluster) use Tang and
Liu’s preferred dimensionality, d = 500.

6.1.1 BlogCatalog
In this experiment we increase the training ratio (TR) on

the BlogCatalog network from 10% to 90%. Our results
are presented in Table 2. Numbers in bold represent the
highest performance in each column.

DeepWalk performs consistently better than EdgeCluster,
Modularity, and wvRN. In fact, when trained with only 20%
of the nodes labeled, DeepWalk performs better than these
approaches when they are given 90% of the data. The perfor-
mance of SpectralClustering proves much more competitive,
but DeepWalk still outperforms when labeled data is sparse
on both Macro-F1 (TR ≤ 20%) and Micro-F1 (TR ≤ 60%).

This strong performance when only small fractions of the
graph are labeled is a core strength of our approach. In the
following experiments, we investigate the performance of our
representations on even more sparsely labeled graphs.

6.1.2 Flickr
In this experiment we vary the training ratio (TR) on the

Flickr network from 1% to 10%. This corresponds to having
approximately 800 to 8,000 nodes labeled for classification
in the entire network. Table 3 presents our results, which
are consistent with the previous experiment. DeepWalk
outperforms all baselines by at least 3% with respect to Micro-
F1. Additionally, its Micro-F1 performance when only 3% of
the graph is labeled beats all other methods even when they
have been given 10% of the data. In other words, DeepWalk
can outperform the baselines with 60% less training data. It
also performs quite well in Macro-F1, initially performing
close to SpectralClustering, but distancing itself to a 1%
improvement.

6.1.3 YouTube
The YouTube network is considerably larger than the

previous ones we have experimented on, and its size pre-
vents two of our baseline methods (SpectralClustering and
Modularity) from running on it. It is much closer to a real
world graph than those we have previously considered.

The results of varying the training ratio (TR) from 1% to
10% are presented in Table 4. They show that DeepWalk
significantly outperforms the scalable baseline for creating

706

http://bit.ly/deepwalk

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 36.00 38.20 39.60 40.30 41.00 41.30 41.50 41.50 42.00
SpectralClustering 31.06 34.95 37.27 38.93 39.97 40.99 41.66 42.42 42.62
EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29

Micro-F1(%) Modularity 27.35 30.74 31.77 32.97 34.09 36.13 36.08 37.23 38.18
wvRN 19.51 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28
Majority 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26

DeepWalk 21.30 23.80 25.30 26.30 27.30 27.60 27.90 28.20 28.90
SpectralClustering 19.14 23.57 25.97 27.46 28.31 29.46 30.13 31.38 31.78
EdgeCluster 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92

Macro-F1(%) Modularity 17.36 20.00 20.80 21.85 22.65 23.41 23.89 24.20 24.97
wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57
Majority 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 2: Multi-label classification results in BlogCatalog

% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DeepWalk 32.4 34.6 35.9 36.7 37.2 37.7 38.1 38.3 38.5 38.7
SpectralClustering 27.43 30.11 31.63 32.69 33.31 33.95 34.46 34.81 35.14 35.41

Micro-F1(%) EdgeCluster 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19 32.84
Modularity 22.75 25.29 27.3 27.6 28.05 29.33 29.43 28.89 29.17 29.2
wvRN 17.7 14.43 15.72 20.97 19.83 19.42 19.22 21.25 22.51 22.73
Majority 16.34 16.31 16.34 16.46 16.65 16.44 16.38 16.62 16.67 16.71

DeepWalk 14.0 17.3 19.6 21.1 22.1 22.9 23.6 24.1 24.6 25.0
SpectralClustering 13.84 17.49 19.44 20.75 21.60 22.36 23.01 23.36 23.82 24.05

Macro-F1(%) EdgeCluster 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78 20.85
Modularity 10.21 13.37 15.24 15.11 16.14 16.64 17.02 17.1 17.14 17.12
wvRN 1.53 2.46 2.91 3.47 4.95 5.56 5.82 6.59 8.00 7.26
Majority 0.45 0.44 0.45 0.46 0.47 0.44 0.45 0.47 0.47 0.47

Table 3: Multi-label classification results in Flickr

% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DeepWalk 37.95 39.28 40.08 40.78 41.32 41.72 42.12 42.48 42.78 43.05
SpectralClustering — — — — — — — — — —

Micro-F1(%) EdgeCluster 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92 40.07
Modularity — — — — — — — — — —
wvRN 26.79 29.18 33.1 32.88 35.76 37.38 38.21 37.75 38.68 39.42
Majority 24.90 24.84 25.25 25.23 25.22 25.33 25.31 25.34 25.38 25.38

DeepWalk 29.22 31.83 33.06 33.90 34.35 34.66 34.96 35.22 35.42 35.67
SpectralClustering — — — — — — — — — —

Macro-F1(%) EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45 31.54
Modularity — — — — — — — — — —
wvRN 13.15 15.78 19.66 20.9 23.31 25.43 27.08 26.48 28.33 28.89
Majority 6.12 5.86 6.21 6.1 6.07 6.19 6.17 6.16 6.18 6.19

Table 4: Multi-label classification results in YouTube

707

24 25 26 27 28

d

0.30

0.32

0.34

0.36

0.38
M
ic
ro

F
1

Training

0.01

0.02

0.05

0.09

(a1) Flickr, γ = 30

24 25 26 27 28

d

0.25

0.30

0.35

M
ic
ro

F
1

γ
1

3

10

30

50

90

(a2) Flickr, TR = 0.05

24 25 26 27 28

d

0.32

0.34

0.36

0.38

0.40

0.42

M
ic
ro

F
1

Training

0.1

0.2

0.5

0.9

(a3) BlogCatalog, γ = 30

24 25 26 27 28

d

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ic
ro

F
1

γ
1

3

10

30

50

90

(a4) BlogCatalog, TR = 0.5

(a) Stability over dimensions, d

20 21 22 23 24 25 26 27

γ

0.25

0.30

0.35

M
ic
ro

F
1

d
16

32

64

128

256

(b1) Flickr, TR = 0.05

20 21 22 23 24 25 26 27

γ

0.25

0.30

0.35

0.40

M
ic
ro

F
1

Training

0.01

0.02

0.05

0.09

(b2) Flickr, d = 128

20 21 22 23 24 25 26 27

γ
0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ic
ro

F
1

d
16

32

64

128

256

(b3) BlogCatalog, TR = 0.5

20 21 22 23 24 25 26 27

γ
0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ic
ro

F
1

Training

0.1

0.2

0.5

0.9

(b4) BlogCatalog, d = 128

(b) Stability over number of walks, γ

Figure 5: Parameter Sensitivity Study

graph representations, EdgeCluster. When 1% of the labeled
nodes are used for test, the Micro-F1 improves by 14%.
The Macro-F1 shows a corresponding 10% increase. This
lead narrows as the training data increases, but DeepWalk
ends with a 3% lead in Micro-F1, and an impressive 5%
improvement in Macro-F1.

This experiment showcases the performance benefits that
can occur from using social representation learning for multi-
label classification. DeepWalk, can scale to large graphs,
and performs exceedingly well in such a sparsely labeled
environment.

6.2 Parameter Sensitivity
In order to evaluate how changes to the parameteriza-

tion of DeepWalk effect its performance on classification
tasks, we conducted experiments on two multi-label classifi-
cations tasks (Flickr, and BlogCatalog). In the interest
of brevity, we have fixed the window size and the walk length
to emphasize local structure (w = 10, t = 40). We then
vary the number of latent dimensions (d), the number of
walks started per vertex (γ), and the amount of training
data available (TR) to determine their impact on the network
classification performance.

6.2.1 Effect of Dimensionality
Figure 5a shows the effects of increasing the number of

latent dimensions available to our model.
Figures 5a1 and 5a3 examine the effects of varying the

dimensionality and training ratio. The performance is quite
consistent between both Flickr and BlogCatalog and
show that the optimal dimensionality for a model is depen-
dent on the number of training examples. (Note that 1% of
Flickr has approximately as many labeled examples as 10%
of BlogCatalog).

Figures 5a2 and 5a4 examine the effects of varying the
dimensionality and number of walks per vertex. The relative
performance between dimensions is relatively stable across
different values of γ. These charts have two interesting
observations. The first is that there is most of the benefit
is accomplished by starting γ = 30 walks per node in both
graphs. The second is that the relative difference between

different values of γ is quite consistent between the two
graphs. Flickr has an order of magnitude more edges than
BlogCatalog, and we find this behavior interesting.

These experiments show that our method can make useful
models of various sizes. They also show that the performance
of the model depends on the number of random walks it
has seen, and the appropriate dimensionality of the model
depends on the training examples available.

6.2.2 Effect of sampling frequency
Figure 5b shows the effects of increasing γ, the number of

random walks that we start from each vertex.
The results are very consistent for different dimensions

(Fig. 5b1, Fig. 5b3) and the amount of training data (Fig.
5b2, Fig. 5b4). Initially, increasing γ has a big effect in
the results, but this effect quickly slows (γ > 10). These
results demonstrate that we are able to learn meaningful
latent representations for vertices after only a small number
of random walks.

7. RELATED WORK
The main differences between our proposed method and

previous work can be summarized as follows:

1. We learn our latent social representations, instead of
computing statistics related to centrality [13] or parti-
tioning [41].

2. We do not attempt to extend the classification proce-
dure itself (through collective inference [37] or graph
kernels [21]).

3. We propose a scalable online method which uses only
local information. Most methods require global infor-
mation and are offline [17,39–41].

4. We apply unsupervised representation learning to graphs.

In this section we discuss related work in network classifica-
tion and unsupervised feature learning.

7.1 Relational Learning
Relational classification (or collective classification) meth-

ods [15, 25, 32] use links between data items as part of the

708

classification process. Exact inference in the collective classi-
fication problem is NP-hard, and solutions have focused on
the use of approximate inference algorithm which may not
be guaranteed to converge [37].

The most relevant relational classification algorithms to
our work incorporate community information by learning
clusters [33], by adding edges between nearby nodes [14], by
using PageRank [24], or by extending relational classification
to take additional features into account [43]. Our work takes
a substantially different approach. Instead of a new approxi-
mation inference algorithm, we propose a procedure which
learns representations of network structure which can then
be used by existing inference procedure (including iterative
ones).

A number of techniques for generating features from graphs
have also been proposed [13,17,39–41]. In contrast to these
methods, we frame the feature creation procedure as a repre-
sentation learning problem.

Graph Kernels [42] have been proposed as a way to use
relational data as part of the classification process, but are
quite slow unless approximated [20]. Our approach is com-
plementary; instead of encoding the structure as part of a
kernel function, we learn a representation which allows them
to be used directly as features for any classification method.

7.2 Unsupervised Feature Learning
Distributed representations have been proposed to model

structural relationship between concepts [18]. These repre-
sentations are trained by the back-propagation and gradient
descent. Computational costs and numerical instability led
to these techniques to be abandoned for almost a decade.
Recently, distributed computing allowed for larger models
to be trained [4], and the growth of data for unsupervised
learning algorithms to emerge [10]. Distributed represen-
tations usually are trained through neural networks, these
networks have made advancements in diverse fields such as
computer vision [22], speech recognition [8], and natural
language processing [1, 7].

8. CONCLUSIONS
We propose DeepWalk, a novel approach for learning

latent social representations of vertices. Using local infor-
mation from truncated random walks as input, our method
learns a representation which encodes structural regulari-
ties. Experiments on a variety of different graphs illustrate
the effectiveness of our approach on challenging multi-label
classification tasks.

As an online algorithm, DeepWalk is also scalable. Our
results show that we can create meaningful representations
for graphs which are too large for standard spectral methods.
On such large graphs, our method significantly outperforms
other methods designed to operate for sparsity. We also
show that our approach is parallelizable, allowing workers to
update different parts of the model concurrently.

In addition to being effective and scalable, our approach
is also an appealing generalization of language modeling.
This connection is mutually beneficial. Advances in lan-
guage modeling may continue to generate improved latent
representations for networks. In our view, language mod-
eling is actually sampling from an unobservable language
graph. We believe that insights obtained from modeling ob-
servable graphs may in turn yield improvements to modeling
unobservable ones.

Our future work in the area will focus on investigating
this duality further, using our results to improve language
modeling, and strengthening the theoretical justifications of
the method.

Acknowledgements
The authors thank the reviewers for their helpful comments. This

research was partially supported by NSF Grants DBI-1060572 and

IIS-1017181, and a Google Faculty Research Award.

9. REFERENCES
[1] R. Al-Rfou, B. Perozzi, and S. Skiena. Polyglot:

Distributed word representations for multilingual nlp.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages
183–192, Sofia, Bulgaria, August 2013. ACL.

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 475–486. IEEE, 2006.

[3] Y. Bengio, A. Courville, and P. Vincent. Representation
learning: A review and new perspectives. 2013.

[4] Y. Bengio, R. Ducharme, and P. Vincent. A neural
probabilistic language model. Journal of Machine
Learning Research, 3:1137–1155, 2003.

[5] L. Bottou. Stochastic gradient learning in neural
networks. In Proceedings of Neuro-Nı̂mes 91, Nimes,
France, 1991. EC2.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys (CSUR),
41(3):15, 2009.

[7] R. Collobert and J. Weston. A unified architecture for
natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th
ICML, ICML ’08, pages 160–167. ACM, 2008.

[8] G. E. Dahl, D. Yu, L. Deng, and A. Acero.
Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. Audio, Speech,
and Language Processing, IEEE Transactions on,
20(1):30–42, 2012.

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep
networks. In P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages
1232–1240. 2012.

[10] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol,
P. Vincent, and S. Bengio. Why does unsupervised
pre-training help deep learning? The Journal of
Machine Learning Research, 11:625–660, 2010.

[11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[12] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens.
Random-walk computation of similarities between
nodes of a graph with application to collaborative
recommendation. Knowledge and Data Engineering,
IEEE Transactions on, 19(3):355–369, 2007.

[13] B. Gallagher and T. Eliassi-Rad. Leveraging
label-independent features for classification in sparsely

709

labeled networks: An empirical study. In Advances in
Social Network Mining and Analysis, pages 1–19.
Springer, 2010.

[14] B. Gallagher, H. Tong, T. Eliassi-Rad, and
C. Faloutsos. Using ghost edges for classification in
sparsely labeled networks. In Proceedings of the 14th
ACM SIGKDD, KDD ’08, pages 256–264, New York,
NY, USA, 2008. ACM.

[15] S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):721–741, 1984.

[16] L. Getoor and B. Taskar. Introduction to statistical
relational learning. MIT press, 2007.

[17] K. Henderson, B. Gallagher, L. Li, L. Akoglu,
T. Eliassi-Rad, H. Tong, and C. Faloutsos. It’s who you
know: Graph mining using recursive structural features.
In Proceedings of the 17th ACM SIGKDD, KDD ’11,
pages 663–671, New York, NY, USA, 2011. ACM.

[18] G. E. Hinton. Learning distributed representations of
concepts. In Proceedings of the eighth annual conference
of the cognitive science society, pages 1–12. Amherst,
MA, 1986.

[19] R. A. Hummel and S. W. Zucker. On the foundations
of relaxation labeling processes. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
(3):267–287, 1983.

[20] U. Kang, H. Tong, and J. Sun. Fast random walk graph
kernel. In SDM, pages 828–838, 2012.

[21] R. I. Kondor and J. Lafferty. Diffusion kernels on
graphs and other discrete input spaces. In ICML,
volume 2, pages 315–322, 2002.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NIPS, volume 1, page 4, 2012.

[23] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American
society for information science and technology,
58(7):1019–1031, 2007.

[24] F. Lin and W. Cohen. Semi-supervised classification of
network data using very few labels. In Advances in
Social Networks Analysis and Mining (ASONAM),
2010 International Conference on, pages 192–199, Aug
2010.

[25] S. A. Macskassy and F. Provost. A simple relational
classifier. In Proceedings of the Second Workshop on
Multi-Relational Data Mining (MRDM-2003) at
KDD-2003, pages 64–76, 2003.

[26] S. A. Macskassy and F. Provost. Classification in
networked data: A toolkit and a univariate case study.
The Journal of Machine Learning Research, 8:935–983,
2007.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781, 2013.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems 26, pages
3111–3119. 2013.

[29] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic
regularities in continuous space word representations.
In Proceedings of NAACL-HLT, pages 746–751, 2013.

[30] A. Mnih and G. E. Hinton. A scalable hierarchical
distributed language model. Advances in neural
information processing systems, 21:1081–1088, 2009.

[31] F. Morin and Y. Bengio. Hierarchical probabilistic
neural network language model. In Proceedings of the
international workshop on artificial intelligence and
statistics, pages 246–252, 2005.

[32] J. Neville and D. Jensen. Iterative classification in
relational data. In Proc. AAAI-2000 Workshop on
Learning Statistical Models from Relational Data, pages
13–20, 2000.

[33] J. Neville and D. Jensen. Leveraging relational
autocorrelation with latent group models. In
Proceedings of the 4th International Workshop on
Multi-relational Mining, MRDM ’05, pages 49–55, New
York, NY, USA, 2005. ACM.

[34] J. Neville and D. Jensen. A bias/variance
decomposition for models using collective inference.
Machine Learning, 73(1):87–106, 2008.

[35] M. E. Newman. Modularity and community structure
in networks. Proceedings of the National Academy of
Sciences, 103(23):8577–8582, 2006.

[36] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems 24, pages 693–701. 2011.

[37] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
and T. Eliassi-Rad. Collective classification in network
data. AI magazine, 29(3):93, 2008.

[38] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of
computing, pages 81–90. ACM, 2004.

[39] L. Tang and H. Liu. Relational learning via latent
social dimensions. In Proceedings of the 15th ACM
SIGKDD, KDD ’09, pages 817–826, New York, NY,
USA, 2009. ACM.

[40] L. Tang and H. Liu. Scalable learning of collective
behavior based on sparse social dimensions. In
Proceedings of the 18th ACM conference on
Information and knowledge management, pages
1107–1116. ACM, 2009.

[41] L. Tang and H. Liu. Leveraging social media networks
for classification. Data Mining and Knowledge
Discovery, 23(3):447–478, 2011.

[42] S. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt. Graph kernels. The Journal of
Machine Learning Research, 99:1201–1242, 2010.

[43] X. Wang and G. Sukthankar. Multi-label relational
neighbor classification using social context features. In
Proceedings of the 19th ACM SIGKDD, pages 464–472.
ACM, 2013.

[44] W. Zachary. An information flow model for conflict and
fission in small groups1. Journal of anthropological
research, 33(4):452–473, 1977.

710

	Introduction
	Problem Definition
	Learning Social Representations
	Random Walks
	Connection: Power laws
	Language Modeling

	Method
	Overview
	Algorithm: DeepWalk
	SkipGram
	Hierarchical Softmax
	Optimization

	Parallelizability
	Algorithm Variants
	Streaming
	Non-random walks

	Experimental Design
	Datasets
	Baseline Methods

	Experiments
	Multi-Label Classification
	BlogCatalog
	Flickr
	YouTube

	Parameter Sensitivity
	Effect of Dimensionality
	Effect of sampling frequency

	Related Work
	Relational Learning
	Unsupervised Feature Learning

	Conclusions
	References

