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Network science is an interdisciplinary endeavor, with methods and applications drawn from across
the natural, social, and information sciences. A prominent problem in network science is the
algorithmic detection of tightly connected groups of nodes known as communities. We developed a
generalized framework of network quality functions that allowed us to study the community
structure of arbitrary multislice networks, which are combinations of individual networks coupled
through links that connect each node in one network slice to itself in other slices. This framework
allows studies of community structure in a general setting encompassing networks that evolve over
time, have multiple types of links (multiplexity), and have multiple scales.

Thestudy of graphs, or networks, has a long
tradition in fields such as sociology and
mathematics, and it is now ubiquitous in

academic and everyday settings. An important
tool in network analysis is the detection of
mesoscopic structures known as communities (or
cohesive groups), which are defined intuitively as
groups of nodes that are more tightly connected to
each other than they are to the rest of the network
(1–3). One way to quantify communities is by a
quality function that compares the number of
intracommunity edges to what one would expect
at random.Given the network adjacencymatrixA,
where the element Aij details a direct connection
between nodes i and j, one can construct a qual-
ity functionQ (4, 5) for the partitioning of nodes
into communities as Q = ∑ ij (Aij − Pij)d(gi, gj),
where d(gi, gj) = 1 if the community assignments
gi and gj of nodes i and j are the same and 0
otherwise, and Pij is the expected weight of the
edge between i and j under a specified null model.

The choice of null model is a crucial con-
sideration in studying network community struc-
ture (2). After selecting a null model appropriate
to the network and application at hand, one can
use a variety of computational heuristics to assign
nodes to communities to optimize the quality Q
(2, 3). However, such null models have not been
available for time-dependent networks; analyses
have instead depended on ad hoc methods to

piece together the structures obtained at different
times (6–9) or have abandoned quality functions
in favor of such alternatives as the Minimum
DescriptionLength principle (10). Although tensor
decompositions (11) have been used to cluster
network data with different types of connections,
no quality-function method has been developed
for such multiplex networks.

We developed a methodology to remove these
limits, generalizing the determination of commu-
nity structure via quality functions to multislice
networks that are defined by coupling multiple
adjacency matrices (Fig. 1). The connections
encoded by the network slices are flexible; they
can represent variations across time, variations
across different types of connections, or even
community detection of the same network at
different scales. However, the usual procedure for
establishing a quality function as a direct count of
the intracommunity edge weight minus that

expected at random fails to provide any contribu-
tion from these interslice couplings. Because they
are specified by common identifications of nodes
across slices, interslice couplings are either present
or absent by definition, so when they do fall inside
communities, their contribution in the count of intra-
community edges exactly cancels that expected at
random. In contrast, by formulating a null model in
terms of stability of communities under Laplacian
dynamics, we have derived a principled generaliza-
tion of community detection to multislice networks,
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Fig. 1. Schematic of amultislice network. Four slices
s= {1, 2, 3, 4} represented by adjacencies Aijs encode
intraslice connections (solid lines). Interslice con-
nections (dashed lines) are encoded byCjrs, specifying
the coupling of node j to itself between slices r and s.
For clarity, interslice couplings are shown for only two
nodes and depict two different types of couplings: (i)
coupling between neighboring slices, appropriate for
ordered slices; and (ii) all-to-all interslice coupling,
appropriate for categorical slices.
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Fig. 2. Multislice community detection of the
Zachary Karate Club network (22) across multiple
resolutions. Colors depict community assignments of
the 34 nodes (renumbered vertically to group
similarly assigned nodes) in each of the 16 slices
(with resolution parameters gs = {0.25, 0.5,…, 4}),
for w = 0 (top), w = 0.1 (middle), and w =
1 (bottom). Dashed lines bound the communities
obtained using the default resolution (g = 1).
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with a single parameter controlling the interslice
correspondence of communities.

Important to our method is the equivalence
between themodularity quality function (12) [with
a resolution parameter (5)] and stability of com-
munities under Laplacian dynamics (13), which
we have generalized to recover the null models for
bipartite, directed, and signed networks (14). First,
we obtained the resolution-parameter generaliza-

tion of Barber’s null model for bipartite networks
(15) by requiring the independent joint probability
contribution to stability in (13) to be conditional
on the type of connection necessary to step
between two nodes. Second, we recovered the
standard null model for directed networks (16, 17)
(again with a resolution parameter) by generaliz-
ing the Laplacian dynamics to include motion
along different kinds of connections—in this case,

both with and against the direction of a link. By
this generalization, we similarly recovered a null
model for signed networks (18). Third, we
interpreted the stability under Laplacian dynamics
flexibly to permit different spreading weights on
the different types of links, giving multiple reso-
lution parameters to recover a general null model
for signed networks (19).

We applied these generalizations to derive null
models for multislice networks that extend the
existing quality-function methodology, including
an additional parameter w to control the coupling
between slices. Representing each network slice s
by adjacencies Aijs between nodes i and j, with
interslice couplingsCjrs that connect node j in slice
r to itself in slice s (Fig. 1), we have restricted our
attention to unipartite, undirected network slices
(Aijs = Ajis) and couplings (Cjrs = Cjsr), but we can
incorporate additional structure in the slices and
couplings in the same manner as demonstrated for
single-slice null models. Notating the strengths of
each node individually in each slice by kjs =∑iAijs
and across slices by cjs = ∑rCjsr, we define the
multislice strength by kjs = kjs + cjs. The continuous-
time Laplacian dynamics given by

ṗis ¼ ∑jr

ðAijsdsr þ dijCjsrÞpjr
kjr

− pis ð1Þ

respects the intraslice nature of Aijs and the
interslice couplings of Cjsr. Using the steady-state
probability distribution p∗jr ¼ kjr=2m, where 2m =
∑ jrkjr, we obtained the multislice null model in
terms of the probability ris| jr of sampling node i in
slice s conditional on whether the multislice struc-
ture allowsone to step from ( j, r) to (i, s), accounting
for intra- and interslice steps separately as

risj jrp
∗
jr ¼

kis
2ms

kjr
kjr

dsr þ Cjsr

cjr

cjr
kjr

dij

� �
kjr
2m

ð2Þ

where ms = ∑jkjs. The second term in parentheses,
which describes the conditional probability of
motion between two slices, leverages the definition
of the Cjsr coupling. That is, the conditional
probability of stepping from ( j, r) to (i, s) along
an interslice coupling is nonzero if and only if i = j,
and it is proportional to the probability Cjsr/kjr of
selecting the precise interslice link that connects to
slice s. Subtracting this conditional joint probability
from the linear (in time) approximation of the
exponential describing the Laplacian dynamics,we
obtained a multislice generalization of modularity
(14):

Qmultislice ¼ 1

2m
∑
ijsr

h�
Aijs − gs

kiskjs
2ms

dsr
�
þ

dijCjsr

i
dðgis,gjrÞ ð3Þ

where we have used reweighting of the conditional
probabilities, which allows a different resolution gs
in each slice. We have absorbed the resolution pa-
rameter for the interslice couplings into the mag-
nitude of the elements ofCjsr, which, for simplicity,
we presume to take binary values {0,w} indicating
the absence (0) or presence (w) of interslice links.
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Fig. 3. Multislice community detection of U.S. Senate roll call vote similarities (23) withw = 0.5 coupling
of 110 slices (i.e., the number of 2-year Congresses from 1789 to 2008) across time. (A) Colors indicate
assignments to nine communities of the 1884 unique senators (sorted vertically and connected across
Congresses by dashed lines) in each Congress in which they appear. The dark blue and red communities
correspond closely to the modern Democratic and Republican parties, respectively. Horizontal bars
indicate the historical period of each community, with accompanying text enumerating nominal party
affiliations of the single-slice nodes (each representing a senator in a Congress): PA, pro-administration;
AA, anti-administration; F, Federalist; DR, Democratic-Republican; W, Whig; AJ, anti-Jackson; A, Adams; J,
Jackson; D, Democratic; R, Republican. Vertical gray bars indicate Congresses in which three communities
appeared simultaneously. (B) The same assignments according to state affiliations.
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Community detection in multislice networks
can then proceed using many of the same com-
putational heuristics that are currently available for
single-slice networks [although, as with the stan-
dard definition of modularity, one must be cautious
about the resolution of communities (20) and
the likelihood of complex quality landscapes that
necessitate caution in interpreting results on real
networks (21)]. We studied examples that have
multiple resolutions [Zachary Karate Club (22)],
vary over time [voting similarities in the U.S. Senate
(23)], or aremultiplex [the “Tastes, Ties, andTime”
cohort of university students (24)]. We provide
additional details for each example in (14).

We performed simultaneous community de-
tection across multiple resolutions (scales) in the
well-known Zachary Karate Club network, which
encodes the friendships between 34 members of a
1970s university karate club (22). Keeping the
same unweighted adjacency matrix across slices
(Aijs = Aij for all s), the resolution associated with
each slice is dictated by a specified sequence of
gs parameters, whichwe chose to be the 16 values
gs = {0.25, 0.5, 0.75,…, 4}. In Fig. 2, we depict
the community assignments obtained for cou-
pling strengths w = {0, 0.1, 1} between each
neighboring pair of the 16 ordered slices. These
results simultaneously probe all scales, includ-
ing the partition of the Karate Club into four com-
munities at the default resolution of modularity
(3, 25). Additionally, we identified nodes that have
an especially strong tendency to break off from
larger communities (e.g., nodes 24 to 29 in Fig. 2).

We also considered roll call voting in the U.S.
Senate across time, from the 1st Congress to the
110th, covering the years 1789 to 2008 and includ-
ing 1884 distinct senator IDs (26). We defined
weighted connections between each pair of sen-
ators by a similarity between their voting, specified
independently for each 2-year Congress (23). We
studied the multislice collection of these 110
networks, with each individual senator coupled to
himself or herself when appearing in consecutive
Congresses.Multislice community detection un-
covered interesting details about the continuity
of individual and group voting trends over time
that are not captured by the union of the 110 in-
dependent partitions of the separate Congresses.

Figure 3 depicts a partition into nine communities
that we obtained using coupling w = 0.5. The
Congresses in which three communities appeared
simultaneously are each historically noteworthy:
The 4th and 5th Congresses were the first with
political parties; the 10th and 11th Congresses
occurred during the political drama of former Vice
President Aaron Burr’s indictment for treason; the
14th and 15th Congresses witnessed the beginning
of changing group structures in the Democratic-
Republican party amidst the dying Federalist party
(23); the 31st Congress included the Compromise
of 1850; the 37th Congress occurred during the
beginning of the American Civil War; the 73rd and
74th Congresses followed the landslide 1932
election (during the Great Depression); and the
85th to 88th Congresses brought the major
American civil rights acts, including the congressio-
nal fights over the Civil Rights Acts of 1957, 1960,
and 1964.

Finally, we applied multislice community
detection to a multiplex network of 1640 college
students at a northeastern American university
(24), including symmetrized connections from the
first wave of this data representing (i) Facebook
friendships, (ii) picture friendships, (iii) roommates,
and (iv) student housing-group preferences. Be-
cause the different connection types are categorical,
the natural interslice couplings connect an individ-
ual in a slice to himself or herself in each of the
other three network slices. This coupling between
categorical slices thus differs from that above,
which connected only neighboring (ordered) slices.
Table 1 indicates the numbers of communities and
the percentages of individuals assigned to one, two,
three, or four communities across the four types of
connections for different values of w, as a first
investigation of the relative redundancy across the
connection types.

Our multislice framework makes it possible to
study community structure in a much broader class
of networks than was previously possible. Instead
of detecting communities in one static network at a
time, our formulation generalizing the Laplacian
dynamics approach of (13) permits the simulta-
neous quality-function study of community struc-
ture across multiple times, multiple resolution
parameter values, and multiple types of links. We

used this method to demonstrate insights in real-
world networks that would have been difficult or
impossible to obtain without the simultaneous
consideration of multiple network slices. Although
our examples included only one kind of variation at
a time, our framework applies equally well to
networks that have multiple such features (e.g.,
time-dependent multiplex networks). We expect
multislice community detection to become a
powerful tool for studying such systems.
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Table 1. Communities in the first wave of the multiplex “Tastes, Ties, and Time” network (24), using the
default resolution (g = 1) in each of the four slices of data (Facebook friendships, picture friendships,
roommates, and housing groups) under various couplings w across slices, which changed the number of
communities and percentages of individuals assigned on a per-slice basis to one, two, three, or four
communities.

w
Number of
communities

Communities per individual (%)

1 2 3 4

0 1036 0 0 0 100
0.1 122 14.0 40.5 37.3 8.2
0.2 66 19.9 49.1 25.3 5.7
0.3 49 26.2 48.3 21.6 3.9
0.4 36 31.8 47.0 18.4 2.8
0.5 31 39.3 42.4 16.8 1.5
1 16 100 0 0 0
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CorreCtions & CLarifiCations

www.sciencemag.org    sCiEnCE    erratum post date    16 july 2010 

Erratum
Reports: “Community structure in time-dependent, multiscale, and multiplex networks” 
by P. J. Mucha et al. (14 May, p. 876). Equation 3 contained a typographical error that was 
not caught during the editing process: The δ

sr
 term should have been outside of the paren-

theses within the square brackets. The correct equation, which also appears in the support-
ing online material as equation 9, is as follows:

See the revised supporting online material (www.sciencemag.org/cgi/content/full/
sci;328/5980/876/DC2), which also includes a correction to equation 11. The computations 
supporting the examples described in the Report were all performed with the correct for-
mula for Q

multislice
. The authors thank Giuseppe Mangioni for pointing out the error.
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