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The adaptive Thouless-Anderson-Palmer equation is derived for inverse Ising problems in the presence
of quenched random fields. We test the proposed scheme on Sherrington-Kirkpatrick, Hopfield, and random
orthogonal models and find that the adaptive Thouless-Anderson-Palmer approach allows accurate inference of
quenched random fields whose distribution can be either Gaussian or bimodal. In particular, another competitive
method for inferring external fields, namely, the naive mean field method with diagonal weights, is compared
and discussed.
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I. INTRODUCTION

The inverse Ising problem has been intensively studied
in statistical physics and computational biology in the past
few years [1–4]. Such studies are of huge practical and
theoretical relevance. On one hand, the advent of techniques
for multielectrode recording and microarray measurement
produces high-throughput biological data [5]. Unveiling the
biological mechanism underlying these experimental data
poses a challenging computational problem. In the inverse
Ising problem, one tries to construct a statistical mechanics
description of the original system directly from the data,
and it provides a promising tool for dimensional reduction
in modeling vast amounts of biological data [6]. On the
other hand, for guaranteeing the reliability of the obtained
description, it is also necessary to examine the reconstruction
performance of the inverse algorithms numerically and/or
analytically by utilizing artificial data that are generated from
a variety of known Ising spin models [4,7–10].

In general, the experimental data are described by M

independent samples {σ 1,σ 2, . . . ,σM} in which σ is an
N -dimensional vector with binary components (σi = ±1) and
N is the system size. The Ising model provides the least
structured model to match the statistics of the experimental
data as

PIsing(σ ) = 1

Z(h,J)
exp

⎡
⎣∑

(ij )

Jijσiσj +
∑

i

hiσi

⎤
⎦ , (1)

where (ij ) denotes all distinct spin pairs and the parti-
tion function Z(h,J) depends on N -dimensional fields and
N(N−1)

2 -dimensional couplings. These fields and couplings
are chosen to yield the same first and second moments
(magnetizations and pairwise correlations, respectively) as
those obtained from the experimental data. The inverse
temperature β ≡ 1/T is absorbed into the strength of fields and
couplings.

Based on magnetizations and correlations, the inference of
fields and couplings of the Ising model is a computationally
hard problem, especially for large systems. However, one
can resort to mean field methods, such as the naive mean
field (nMF) [11], Thouless-Anderson-Palmer (TAP) equa-
tion [7], Sessak-Monasson (SM) expansion [12], and Bethe
approximation (BA) [13–15], to get an approximate solution

to the inverse problem with computationally feasible costs.
Previous investigations have mostly focused on the inference
of the coupling vector, whereas the inference error of fields
has been less analyzed. In fact, external fields represent
intrinsically preferred directions of {σi}, which are also very
important for understanding information processing in real
neuronal networks [1,16] and gene interaction networks [3]
and for predicting protein structures from sequence data [2,17].
Therefore, an accurate estimation of external fields is also
highly desirable.

To this end, we propose the adaptive Thouless-Anderson-
Palmer (adaTAP) approach for the inverse Ising problem and
establish the framework on the basis of Gibbs free energy and
Gaussian approximation. We find that the adaTAP yields an
accurate estimation of external fields as long as it converges.
We confirm the efficiency of adaTAP on three kinds of mean
field models: the Sherrington-Kirkpatrick (SK) model [18],
the Hopfield [19] model, and the random orthogonal model
(ROM) [20]; other existing mean field inverse algorithms
are also compared. In particular, another competitive method
for inferring external fields, namely, the naive mean field
method with diagonal weights [7,11], is compared and
discussed.

The outline of this paper is as follows. The adaptive TAP
approach to the inverse Ising problem with quenched random
fields is derived in Sec. II. In Sec. III, extensive numerical
simulations are carried out to test the inference performance
of adaTAP on the Hopfield model, SK model, and ROM. The
comparison with other existing mean field methods is also
made and discussed. Concluding remarks are given in Sec. IV.

II. ADAPTIVE TAP APPROACH

For the Ising model defined in Eq. (1), we write the
magnetization-dependent free energy (also termed Gibbs free
energy) as

G(m) = −hT m + Extrθ

{
θT m − ln

∑
σ

e
1
2 σ T Jσ+θT σ

}
, (2)

where the Lagrange multiplier vector θ is introduced to fix
magnetizations at all sites to their thermal expectation values,
i.e., mi = 〈σi〉. hT denotes the transpose of a vector h. The
notation Extr stands for the extremum with respect to the
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corresponding parameters (θ here). The exact evaluation of
the partition function in Eq. (2) is computationally difficult
for a large system. However, one can resort to mean field
approximations. We adopt the following strategy. First, each
coupling is multiplied by a real number l ∈ [0,1], and the
Gibbs free energy can then be expressed by

G(m) = G(m,l = 1) =
∫ 1

0
dl

∂G(m,l)

∂l
+ G(m,l = 0)

(3a)� Gg(m,l = 1) − Gg(m,l = 0) + G(m,l = 0),

G(m,l) = −hT m + Extrθ

{
θT m − ln

∑
σ

e
l
2 σ T Jσ+θT σ

}
,

(3b)

Gg(m,l) = −hT m + Extrθ ,�

{
θT m − 1

2
tr(�C̃)

− ln
∫

dσe− 1
2 σ T (�−lJ)σ+θT σ

}
, (3c)

where C̃ij ≡ 〈σiσj 〉, and we have used Gaussian statistics for
the binary spins with expectation constraints, i.e., 〈σiσj 〉g =
〈σiσj 〉Ising, which are enforced by a symmetric matrix �.
Here, tr(A) denotes the trace of a matrix A. For simplicity,
we assume � is a diagonal matrix, � = diag(�1, . . . ,�N ),
whose diagonal terms are determined via the extremization
of the corresponding Gibbs free energy. The Gaussian ap-
proximation makes the computation of the partition func-
tion tractable. This scheme is also called the expectation
consistence approximation [21] and was applied to derive
the message-passing algorithm for the perceptron learning
problem [22]. Conventional Plefka expansion [23] truncates
the power series expansion of G(m,l) to second order in l, but
Eq. (3a) contains terms of all orders. Note that the third term in
Eq. (3a) is the Gibbs free energy of noninteracting Ising spins
at fixed magnetizations and can be easily evaluated. The final
expression for the Gibbs free energy reads

G(m) � −1

2
mT Jm − hT m +

∑
i

H(mi) + 1

2
ln det(� − J)

− 1

2

∑
i

(
1 − m2

i

)
�i + 1

2

[
N +

∑
i

ln
(
1 − m2

i

)]
,

(4)

where H(mi) ≡ 1+mi

2 ln 1+mi

2 + 1−mi

2 ln 1−mi

2 and � follows
the extremization condition of Eq. (3c) with l = 1,

(� − J)−1
ii = 1 − m2

i . (5)

Equilibrium values of magnetizations are determined by
meq = argminmG(m) and the free energy F = minm G(m).
A quick calculation gives the self-consistent equation for m,

mi = tanh

[
hi +

∑
j

Jijmj − mi

(
�i − 1

1 − m2
i

)]
, (6)

which is exactly the adaptive TAP equation first introduced
in Refs. [24,25] for the Ising model. Equation (6) can also
be derived under other mean field approximations [26–28].
The third term inside the square bracket of Eq. (6) forms the
Onsager correction term which requires no prior knowledge of

the coupling statistics, playing an important role in inferring
external fields. �i in Eq. (6) is a function of {mi} determined
by Eq. (5). The fixed point of the self-consistent equation gives
meq. We remark here that Eq. (6) can be reduced to the normal
TAP equation obtained from a high-temperature expansion of
the Gibbs free energy [23,29,30], i.e., the third term inside
the square bracket of Eq. (6) becomes −mi

∑
j (1 − m2

j )J 2
ij

(Onsager reaction term) through high-temperature expansion.
To obtain the inference equations for couplings, we use the

identity HC = I [7,31,32], where H is the Hessian matrix of
the Gibbs free energy, Hij ≡ ∂2G

∂mi∂mj
, and C is the connected

correlation matrix whose entries are Cij ≡ 〈σiσj 〉 − mimj . I is
an identity matrix. Magnetizations and correlations are already
given by the experimental data in the inverse Ising problem.
Finally, the inference equation reads

Jij = −(C−1)ij + mi(B−1)ij (7)

for i �= j , where Bij ≡ 1
2mi

[χij ]2, which expresses how large
the change of mi is given a small perturbation to �j

and we define χ = (� − J)−1. The expression for Bij is
derived by using the Sherman-Morrison formula [33]. A small
perturbation ��j to �j will lead to a corresponding change
of mi according to Eq. (5), which is described by the following
equation:

[χ−1 + ��j ]−1
ii = χii − ��jχ

2
ij

1 + ��jχij

= 1 − (mi + �mi)
2,

(8)

where the Sherman-Morrison formula is used in the first
equality and the notation ��j means that only the j th
diagonal term of matrix �� is nonzero and equal to ��j .
Noting that both �mi and ��j are small, one can obtain
Bij ≡ ∂mi

∂�j
= 1

2mi
[χij ]2 by using Eq. (5) once again. After

couplings are reconstructed, external fields are inferred as

hi = tanh−1(mi) −
∑

j

Jijmj + mi

(
�i − 1

1 − m2
i

)
. (9)

To predict the coupling, we need to solve the adaTAP
equation (5). An iterative scheme is proposed as follows.
Step 1. Let t = 0 and initialize Jij = −(C−1)ij , �i = (1 −
m2

i )−1 for all (ij ) and i, respectively.

Step 2. At t , set t ′ = 0, �̃
t ′=0 = �t , χ = (�t − Jt )−1.

Step 2.1. t ′ ← t ′ + 1, update �̃t ′
i = �̃t ′−1

i + ��̃i where
��̃i = 1

1−m2
i

− 1
χii

for all i. After update of each �̃t ′
i , χ needs

to be updated simultaneously as χnew
kl = χold

kl − χold
ki ��̃iχ

old
il

1+��̃iχ
old
ii

derived by using the Sherman-Morrison formula.

Step 2.2. Until |��̃i | < ε� for all i, then assign �t = �̃
t ′
,

χ t = χ and go to Step 3. Otherwise, if t ′ < t ′max, go to Step 2.1,
else return UNCONVERGED.
Step 3. t ← t + 1, update J t

ij = −(C−1)ij + mi(B−1)ij where

Bij ≡ 1
2mi

[χt−1
ij ]2, until |J t

ij − J t−1
ij | < εJ for all (ij ), then go

to Step 4. Otherwise, if t < tmax, go to Step 2, else return
UNCONVERGED.
Step 4. Infer hi according to Eq. (9) for all i.
In step 2.1, the step size ��̃i for updating �̃i can be derived
by using Eq. (5) and the Shermon-Morrison formula, which
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gives χii − ��̃iχ
2
ii

1+��̃iχii
= 1 − m2

i . In the iterative scheme, we

set the parameters tmax = t ′max = 1000, and ε� = εJ = 10−4.
In practice, we find that both � and J in our simulations
shown below converge in tens of steps when the temperature
is not very low. The computational complexity of this iterative
scheme is dominated by the inverse of the matrix (e.g., C
or B), keeping the same order as that of other mean field
methods.

To compare performances of different mean field inverse
algorithms, we define the inference error for couplings and
fields, respectively, as

�J =
[

2

N (N − 1)

∑
i<j

(
J ∗

ij − J true
ij

)2
]1/2

, (10a)

�h =
[

1

N

∑
i

(
h∗

i − htrue
i

)2
]1/2

, (10b)

where J ∗
ij (h∗

i ) is the inferred coupling (field) and J true
ij (htrue

i )
is the true one.

III. NUMERICAL SIMULATIONS

We evaluate the inference performance of the adaTAP
approach on three mean field models with either Gaussian
distributed or bimodal distributed random fields. For the SK
model, each entry of the coupling matrix is independently
drawn at random from a Gaussian distribution with zero mean
and variance 1/N . In the Hopfield model, the coupling is
constructed according to Hebb’s rule, i.e., Jij = 1

N

∑P
μ=1 ξ

μ

i ξ
μ

j

where P random Gaussian patterns {ξμ} are stored in the
network. ξ

μ

i are independent Gaussian random variables with
zero mean and unit variance. We also test our method on ROM
whose coupling matrix is constructed as J = OT DO, where
O is an orthogonal matrix chosen with the Haar measure
[20,34]. D = diag(λ1, . . . ,λN ) and λ follows a distribution
ρ(λ) = αδ(λ − 1) + (1 − α)δ(λ + 1).

To collect the data of magnetizations and correlations, we
use the exact enumeration on small-size systems of N = 15,
which produces noise-free data for predicting the underlying
parameters. In this case, M = 2N . Inference results of adaTAP
on these three tested models are compared with those obtained
by other mean field methods. For comparison, we briefly
describe the other four existing mean field methods for the
inverse Ising problem. The couplings between spin i and j

(i �= j ) are inferred as follows:

J nMF
ij = −(C−1)ij , (11a)

J TAP
ij = 2(C−1)ij

−1 − √
1 − 8mimj (C−1)ij

, (11b)

J SM
ij = J nMF

ij + J ind
ij − Cij

LiLj − C2
ij

, (11c)

J BA
ij = − tanh−1

[
1

2(C−1)ij
(aij − bij ) − mimj

]
, (11d)

where

J ind
ij = 1

4
ln

[
(1 + C̃ij )2 − (mi + mj )2

(1 − C̃ij )2 − (mi − mj )2

]
,

aij =
√

1 + 4LiLj (C−1)2
ij ,

bij =
√

(aij − 2mimj (C−1)ij )2 − 4(C−1)2
ij ,

and Li = 1 − m2
i . After couplings are inferred, fields can be

predicted using the following equations:

hnMF
i = tanh−1(mi) −

∑
j �=i

J nMF
ij mj , (12a)

hTAP
i = tanh−1(mi)−

∑
j �=i

J TAP
ij mj+mi

∑
j �=i

(
J TAP

ij

)2(
1 − m2

j

)
,

(12b)

hBA
i = tanh−1(mi) −

∑
j �=i

tanh−1[tij f (mj,mi,tij )], (12c)

where tij = tanh J BA
ij and f (x,y,t) =

1−t2−
√

(1−t2)2−4t(x−yt)(y−xt)
2t(y−xt) . Since SM expansion has

large inference errors for predicting fields even when
considering up to the third order in the small correlation
expansion [12], we would not show its field inference
performances for the temperature range we consider. The
nMF also reports high inference errors; however, nMF with
diagonal weights (nMFdw), i.e., hnMFdw

i = hnMF
i − Jiimi

where Jii = 1
1−m2

i

− (C−1)ii [11], will significantly improve

the field prediction, as will be discussed in the following
paragraphs. Note that nMFdw gives the same predictions on
off-diagonal couplings with nMF.

We first examine the inference performance of adaTAP on
mean field models, where quenched random fields are drawn
independently at random from a Gaussian distribution with
zero mean and variance σ 2

h . As displayed in Fig. 1(a) for the
Hopfield model, adaTAP shows slightly better performance
than the TAP approach in coupling constructions, whereas the
SM expansion has the best performance at high temperatures
and the BA has the best one at low temperatures. Regarding
field inference, adaTAP performs much better than other
methods in the entire temperature range under consideration.
However, if we incorporate an effective self-coupling (diag-
onal weight) Jii into the inference equation (12a), nMF with
diagonal weights will achieve nearly the same accuracy with
adaTAP in predicting external fields, although adaTAP still
gives a bit lower inference error. This also holds for the other
two mean field models. For example, at β � 0.667, the relative
inference error defined by �R = (�nMFdw

h − �adaTAP
h )/�nMFdw

h

is about 35.79% for the Hopfield model, 62.27% for the ROM,
and 28.73% for the SK model. Note that nMF without diagonal
weights definitely gives a highest inference error among
all mean field methods compared here. As the temperature
becomes sufficiently low, adaTAP ceases to converge within
tmax or t ′max, thus becoming unable to predict couplings and
fields. To infer a model with quenched random fields, TAP and
BA will also have no solution at low enough temperatures. In
this case, nMFdw may continue to give a low inference error in
predicting fields, since it effectively incorporates higher order
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FIG. 1. (Color online) Inference performances of adaTAP on
Hopfield, random orthogonal, and SK models with Gaussian dis-
tributed random fields, compared with those obtained by other
existing mean field methods. Magnetizations and correlations used
to infer fields and couplings are calculated through exact exhaustive
enumeration on networks of size N = 15. Each data marker is the
average over 20 random realizations for which σ 2

h = 0.01. (a) Results
for the Hopfield model with P = 3. (b) Results for the ROM with
α = 0.6. (c) Results for the SK model.

FIG. 2. (Color online) Inference performances of adaTAP on
the Hopfield, random orthogonal, and SK models with bimodal
distributed random fields, compared with those obtained by other
existing mean field methods. Magnetizations and correlations used
to infer fields and couplings are calculated through exact exhaustive
enumeration on networks of size N = 15. Each data marker is the
average over 20 random realizations for which h0 = 0.3,p = 0.6.
(a) Results for the Hopfield model with P = 3. (b) Results for the
ROM with α = 0.6. (c) Results for the SK model.
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contributions in Plefka expansion via diagonal weights [7],
until the correlation matrix is no longer invertible. We also
performed simulations with a larger σ 2

h (e.g., σ 2
h = 0.1), and

it is observed that the field inference performance deteriorates
and adaTAP fails to converge at a higher temperature for some
samples compared to the case with a smaller field variance.
It should be mentioned that the adaTAP still yields lower
inference errors when it converges, compared to nMFdw.
Figure 1(b) shows inference results for ROM with the ran-
dom orthogonal coupling matrix. Although adaTAP behaves
slightly worse than TAP for inferring couplings, it produces
surprisingly accurate estimates of external fields in the entire
temperature range in Fig. 1(b). Note that the inference accuracy
obtained by other mean field methods (except nMFdw) can
be further improved by at least one order of magnitude by
using adaTAP when the random fields are Gaussian distributed.
For coupling inferences of the SK model [see Fig. 1(c)], the
performance of adaTAP lies between those of nMF and TAP,
while the SM expansion gives a more accurate prediction than
other methods at high temperatures.

Fortunately, the superiority of adaTAP for field inference is
also true when the random field is bimodal distributed, i.e.,
ph(h) = pδ(h − h0) + (1 − p)δ(h + h0). Its performance is
shown in Fig. 2 with p = 0.6,h0 = 0.3. The improvement
of the field prediction by adaTAP is evident in this case, even
compared to nMFdw. In adaTAP, we assume zero diagonal
couplings (no self-interactions in our model to generate the
data); however, the third term inside the square bracket of
Eq. (6) provides an adaptive Onsager correction to the nMF
approximation, playing the same key role with effective
diagonal couplings in inferring external fields. In this adaptive
manner, lower inference error of fields and couplings is
achieved compared to nMFdw. Interestingly, adaTAP can even
perform better than TAP in predicting couplings for certain
ranges of temperatures in this case.

All the models investigated so far are of the fully connected
type. For examining the capability to deal with another extreme
of sparsely connected networks, the proposed scheme is also

FIG. 3. (Color online) Inference performances of adaTAP on a
tree (N = 22) compared with nMFdw and BA (exact method on a tree
model). Each data marker is the average over 10 random realizations.

tested on a tree model. Our proposed scheme performs better
than other methods except BA, which is exact on a tree
and gives very accurate inference both on the couplings
and fields. The result is shown in Fig. 3. A tree of size
N = 22 is constructed, such that each node inside the tree
has degree equal to 3, and, to mimic an infinite Bethe lattice,
we generate the external fields for the boundary spins as
ĥi = hi + ∑

k∈∂i\j hk→i , where j is the only spin inside the
tree connected to the boundary spin i and the cavity field hk→i

is randomly chosen from a population dynamics for an infinite
Bethe lattice [35]. Couplings and fields (hi for the boundary
spins) for the tree follow Gaussian distributions N (0,1) and
N (0,0.01), respectively. Magnetizations and correlations are
calculated by using susceptibility propagation algorithms [16].
However, in real applications, for example, a typical neuronal
network of size around N = 100 is not strongly diluted with an
exact tree structure; therefore, our method is expected to still
give good estimates of external fields. To confirm this point,
we test adaTAP on a diluted SK model, where each nonzero

FIG. 4. (Color online) Inference performances of adaTAP on the
diluted SK model (pd = 0.4), compared with those obtained by other
existing mean field methods. Magnetizations and correlations used
to infer fields and couplings are calculated through exact exhaustive
enumeration on networks of size N = 15. Each data marker is the
average over 20 random realizations. (a) Results for the Gaussian
distributed random fields with σ 2

h = 0.01. (b) Results for the bimodal
distributed random fields with h0 = 0.3,p = 0.6.
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Gaussian distributed coupling is present with a predefined
probability pd . The Gaussian distribution has zero mean and
variance 1/c with c = pdN . As shown in Fig. 4, the adaTAP
still performs better than other mean field methods (including
nMFdw) in field inference, which is much more apparent when
random fields are bimodal distributed. In comparison with
nMFdw, even in the presence of Gaussian distributed random
fields, adaTAP still gives a relative error �R � 11.04% at
β � 0.667, although its inference error remains at the same
order with that of nMFdw.

IV. CONCLUSION

In summary, we propose the adaTAP approach for inverse
Ising problems and show its striking performance for inferring
external fields in mean field models. The adaTAP approach
requires no prior knowledge of the coupling statistics and
it improves the field prediction by an adaptive Onsager
correction term. Although adaTAP, TAP, and the BA will
have no solution in inferring mean field models with quenched
random fields at low temperatures, adaTAP does outperform
other existing mean field methods compared here to infer
quenched random fields if it converges, as shown for a wide
range of temperatures on the Hopfield, random orthogonal,
and (diluted) SK models. In the low-temperature phase, the

proposed algorithm may not converge and other methods,
such as the naive mean field method with diagonal weights,
can give low inference error until all methods fail at low
enough temperatures. We conclude that the power of adaTAP
for inverse Ising problems resides in its remarkable accuracy
in predicting external fields, especially for the case where
there is a single dominant state in phase space (adaTAP
typically converges). Furthermore, an accurate inference of
external fields in the Ising model is able to provide us with
insights into the mechanism underlying high-throughput data,
either coming from biological experiments or from large
databases [1,2,17]. The proposed adaTAP approach for the
inverse Ising problem is expected to have applications in
real data analyses (e.g., neural data, or sequences in the
protein databases), in combination with other mean field
methods.
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