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Abstract

There has been great interest in recent years in the development of
statistical models for dynamic networks. This paper targets networks
evolving in discrete time in which both nodes and edges can appear and
disappear over time, such as dynamic networks of social interactions.
We propose a stochastic block transition model (SBTM) for dynamic
networks that is inspired by the well-known stochastic block model
(SBM) for static networks and several recent dynamic extensions of
the SBM. Unlike most existing dynamic models, it does not make a
hidden Markov assumption on the edge-level dynamics, allowing the
presence or absence of edges to directly influence future edge probabil-
ities. We demonstrate that the proposed SBTM is significantly better
at reproducing durations of edges in real social network data between
edges while retaining the interpretability of the SBM.

1 Introduction

The analysis of data in the form of networks has been a topic of significant
interest across many disciplines, aided by the development of statistical mod-
els for network data. Many models have been proposed for static networks,
where the data consist of a single observation of the network (Goldenberg
et al., 2009). On the other hand, modeling dynamic networks is still in its
infancy; much research on dynamic network modeling has appeared only in
the past several years. Statistical models for static networks typically uti-
lize a latent variable representation for the network; such models have been
extended to dynamic networks by allowing the latent variables, which we
refer to as states, to evolve over time.
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Most of the previously proposed dynamic network models assume a hid-
den Markov structure, where an observed snapshot of the network at any
particular time is conditionally independent from all previous snapshots
given the current network states. Such an approach greatly simplifies the
model and allows for tractable inference; however, it may not be sufficiently
flexible to replicate certain observations from real network data, namely du-
rations of edges over time, which are extremely inaccurately reproduced by
existing models.

In this paper we propose a stochastic block transition model (SBTM)
for dynamic networks, inspired by the well-known stochastic block model
(SBM) for static networks. The approach generalizes two recent dynamic
extensions of SBMs that utilize the hidden Markov assumption (Yang et al.,
2011; Xu and Hero III, 2014). Unlike these dynamic models, the presence
of an edge between two nodes at any given time t directly influences the
probability that such an edge would appear at time t+ 1 in the SBTM.

Under the SBTM, we show that the sample mean of a scaled version
of the observed adjacency matrix at each time is asymptotically Gaussian.
By taking advantage of this property, we develop an efficient approximate
inference procedure using a combination of an extended Kalman filter and a
local search algorithm. We investigate the accuracy of the inference proce-
dure via simulation experiments. Finally, we fit the SBTM to a real dynamic
social network and demonstrate its ability to more accurately replicate edge
durations while retaining the interpretability of the SBM.

2 Related Work

There has been significant research dedicated to statistical modeling of dy-
namic networks, mostly in the past several years. Much of the earlier work
is covered in the excellent survey by Goldenberg et al. (2009). Key contri-
butions in this area include temporal extensions of

• Exponential random graph models (Guo et al., 2007).

• Stochastic block models (Xing et al., 2010; Ho et al., 2011; Ishiguro
et al., 2010; Yang et al., 2011; Xu and Hero III, 2014).

• Continuous latent space models (Sarkar and Moore, 2005; Sarkar et al.,
2007; Hoff, 2011; Lee and Priebe, 2011; Durante and Dunson, 2014).

• Latent feature models (Foulds et al., 2011; Heaukulani and Ghahra-
mani, 2013; Kim and Leskovec, 2013).
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Temporal extensions of stochastic block models are related to the pro-
posed model. Xing et al. (2010) and Ho et al. (2011) proposed dynamic
mixed-membership SBMs, for which a continuous class membership ma-
trix evolves over time, and snapshots of the network are generated by first
sampling a class membership for each node followed by sampling relations
between nodes. Ishiguro et al. (2010) proposed a temporal extension of the
infinite relation model, which is a nonparametric version of the SBM where
the number of classes is estimated from the data. The model is highly flex-
ible and is able to capture merges and splits of clusters over time. Yang
et al. (2011) and Xu and Hero III (2014) proposed temporal extensions of
the standard SBM; these models are closely related to the model proposed
in this paper and are further discussed in Section 3.2.

Most dynamic network models assume a hidden Markov structure for
tractability. Specifically, the network parameters or states often follow
Markovian dynamics, and it is assumed that consecutive snapshots of the
network are conditionally independent given the current states. While trac-
table, such an assumption may not be realistic in many settings, including
dynamic networks of social interactions. For example, if two people happen
to run into each other at some time, it may be more likely for them to in-
teract again in the near future. Indeed, Viswanath et al. (2009) discovered
that this was the case for wall posts between Facebook users. Over 80% of
pairs of users continued to interact one month after the initial interaction,
and over 60% continued after three months.

This type of observation suggests that the presence of future edges in
a dynamic network should depend on whether or not an edge is currently
present, and not only on the current network states. The model we propose
in this paper satisfies this property. To the best of our knowledge, the only
other dynamic network model satisfying this property is the latent feature
propagation model proposed by Heaukulani and Ghahramani (2013).

3 Stochastic Block Models

3.1 Static Stochastic Block Models

A static network is represented by a graph over a set of nodes V and a set of
edges E . The nodes and edges are represented by a square adjacency matrix
W , where an entry wij = 1 denotes that an edge is present from node i ∈ V to
node j ∈ V \ {i}, and wij = 0 denotes that no such edge is present. Unless
otherwise specified, we assume directed graphs, i.e. wij 6= wji in general,
with no self-edges, i.e. wii = 0. Let C = {C1, . . . , Ck} denote a partition of V
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into k classes. We use the notation i ∈ a to denote that node i belongs to
class a. We represent the partition by a class membership vector c, where
ci = a is equivalent to i ∈ a.

A stochastic block model (SBM) for a static network is defined as follows
(adapted from Definition 3 in Holland et al. (1983)):

Definition 1. LetW denote a random adjacency matrix for a static network
and c denote a class membership vector. W is generated according to a
stochastic block model with respect to the membership vector c if and only
if,

1. For any nodes i 6= j, the random variables wij are statistically inde-
pendent.

2. For any nodes i 6= j and i′ 6= j′, if

(a) i and i′ are in the same class, i.e. ci = ci′ ,

(b) j and j′ are in the same class, i.e. cj = cj′ ,

then the random variables wij and wi′j′ are identically distributed.

Let Θ ∈ [0, 1]k×k denote the matrix of probabilities of forming edges
between classes, which we refer to as the block probability matrix. It follows
from Definition 1 and the requirement that W be an adjacency matrix that
wij ∼ Bernoulli(θab), where i ∈ a and j ∈ b.

SBMs are used in two settings: the a priori setting, where class mem-
berships are either known or assumed, and the a posteriori setting, where
class memberships are estimated. Recent interest has focused on the more
difficult a posteriori setting, which we consider in this paper. Many methods
have been proposed for a posteriori estimation of the static SBM, including
Gibbs sampling (Nowicki and Snijders, 2001), label-switching (Karrer and
Newman, 2011; Zhao et al., 2012), and spectral clustering (Rohe et al., 2011;
Sussman et al., 2012). The label-switching methods use a heuristic for solv-
ing the combinatorial optimization problem of maximizing the likelihood
over the set of possible class memberships, which is too large for an ex-
haustive search to be tractable. The spectral clustering methods utilize the
singular vectors of the adjacency matrix W or a similar matrix to estimate
the class memberships.
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3.2 Dynamic Stochastic Block Models

In this paper, we consider dynamic networks evolving in discrete time. Both
nodes and edges could appear or disappear over time. Let (Vt, E t) denote
a graph snapshot, where the superscript t denotes the time index. Let Mt

denote a mapping from Vt, the set of observed nodes at time t, to the
set {1, . . . , |Vt|}. Using the appropriate mapping Mt, one can represent
a dynamic network using a time-indexed sequence of adjacency matrices
W (T ) = {W 1, . . . ,W T }, and correspondence between rows and columns of
different matrices can be established by inverting the mapping. In the re-
mainder of this paper, we drop explicit reference to the mappings and assume
that a node i ∈ Vt−1 ∩Vt is represented by row and column i in both W t−1

and W t.
We define a dynamic stochastic block model (DSBM) for a time-evolving

network in the following manner:

Definition 2. Let W (T ) denote a random sequence of T adjacency matrices
over the set of nodes V(T ) = ∪Tt=1Vt, and let c(T ) denote a sequence of
class membership vectors for these nodes. W (T ) is generated according to a
dynamic stochastic block model with respect to c(T ) if and only if for each
time t, W t is generated according to a static SBM with respect to ct.

This definition of a dynamic SBM encompasses dynamic extensions of
SBMs previously proposed in the literature (Yang et al., 2011; Xu and Hero
III, 2014), which model the sequence W (T ) as observations from a hidden
Markov-type model, where W t is conditionally independent of all past ad-
jacency matrices W (t−1) given the current SBM parameters Φt. We refer to
these hidden Markov SBMs as HM-SBMs.

Yang et al. (2011) proposed an HM-SBM that posits a Markov model
on the class membership vectors ct parameterized by a transition matrix
that specifies the probability that any node in class a at time t switches
to class b at time t + 1 for all a, b, t. The authors found that approximate
inference using variation expectation-maximization (EM) resulted in poor
fits due to getting trapped in local maxima and proposed instead to use a
combination of Gibbs sampling and simulated annealing, which they refer
to as probabilistic simulated annealing (PSA).

Xu and Hero III (2014) proposed an HM-SBM that places a state-space
model on the block probability matrices Θt. The temporal evolution of
these probabilities is governed by a linear dynamic system on the logits of
the probabilities Ψt = log(Θt/(1−Θt)), where the logarithms are applied to
each entry of the matrix. The authors performed approximate inference by
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using an extended Kalman filter augmented with a local search procedure,
which was shown to perform competitively with the PSA procedure of Yang
et al. (2011) in terms of accuracy but is about an order of magnitude faster.

4 Stochastic Block Transition Models

4.1 Motivation

One of the main disadvantages of using a hidden Markov-type approach for
dynamic SBMs relates to the assumption that edges at time t are condition-
ally independent from edges at previous times given the SBM parameters
(states) at time t. Hence the probability distribution of edge durations is
given by

Pr(duration = d)=
(
1− θt−1ab

)
θtab · · · θt+d−1ab

(
1− θt+dab

)
,

where the edge was first present at time t, and the nodes belong to classes a
and b for the entire duration of the edge. Note that the edge durations are
tied directly to the probabilities of forming edges at a given time θtab, which
controls the densities of the blocks. Specifically, the presence or lack of an
edge between two nodes at any particular time does not directly influence
the presence or lack of such an edge at a future time, which is undesirable
in certain settings, as noted in Section 2.

A model where the edge durations are de-coupled from the block den-
sities would allow for edges with long durations even in blocks with low
densities. We propose such a model, namely the stochastic block transition
model (SBTM). The main idea is as follows: for any pair of nodes i ∈ a and
j ∈ b at both times t−1 and t such that wt−1ij = 1, i.e. there is an edge from

i to j at time t − 1, wtij are independent and identically distributed (iid).

The same is true for wt−1ij = 0. In short, all edges in a block at time t − 1
are equally likely to re-appear at time t − 1, and non-edges in a block at
time t− 1 are equally likely to appear at time t, hence the name stochastic
block transition model.

4.2 Model Definition

To formalize the stochastic block transition model, we also need to specify
how to handle nodes that were not present at a previous time step as well
as nodes that change classes over time. Let i and j denote nodes in classes
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a and b, respectively, at both times t− 1 and t, and define

π
t|0
ab = Pr(wtij = 1|wt−1ij = 0) (1)

π
t|1
ab = Pr(wtij = 1|wt−1ij = 1). (2)

Unlike in the hidden Markov dynamic SBM, where edges are formed iid with
probabilities according to the block probability matrix Θt, in the SBTM,

edges are formed according to two block transition matrices: Πt|0 = [π
t|0
ab ],

denoting the probability of forming new edges within blocks, and Πt|1 =

[π
t|1
ab ], denoting the probability of existing edges recurring within blocks.

Let a′ and b′ denote the class memberships of nodes i and j at time t − 1.
If a node was not present at time t− 1, take the class membership to be 0.

We formally define a stochastic block transition model as follows:

Definition 3. Let W (T ) and c(T ) denote the same quantities as in Definition
2. W (T ) is generated according to a stochastic block transition model with
respect to c(T ) if and only if,

1. The initial adjacency matrix W 1 is generated according to a static
SBM with respect to c1.

2. At any given time t, for any nodes i 6= j, the random variables wtij are
statistically independent.

3. At time t ≥ 2, for any nodes i 6= j such that cti = a and ctj = b and for
any u ∈ {0, 1},

Pr(wtij = 1|wt−1ij = u) = ξtijπ
t|u
ab . (3)

The matrix of scaling factors Ξt = [ξtij ] is used to scale the transition

probabilities π
t|0
ab and π

t|1
ab to account for new nodes entering the network as

well as existing nodes changing classes over time.
We propose to choose the scaling factors ξtij to satisfy the following prop-

erties:

1. If nodes i ∈ a and j ∈ b at both times t− 1 and t, then ξtij = 1.

2. The scaled transition probability is a valid probability, i.e. 0 ≤ ξtijπ
t|u
ab ≤

1 for all i 6= j such that cti = a, ctj = b, and u ∈ {0, 1}.

3. The marginal distribution of the adjacency matrix W t should follow a
static SBM.
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Property 1 follows from the definition of the transition probabilities (1) and
(2). Property 2 ensures that the SBTM is a valid model. Finally, property
3 provides the connection to the static SBM.

4.3 Derivation of Scaling Factors

We now derive an expression for the scaling factor that satisfies each of the
three properties. Consider two nodes i′ ∈ a and j′ ∈ b at both times t − 1
and t. From property 3, the marginal probability Pr(wti′j′ = 1) depends only

on a and b, so we denote it by θtab, which can be expressed as

θtab = Pr(wti′j′ = 1)

= Pr(wti′j′ = 1|wt−1i′j′ = 0) Pr(wt−1i′j′ = 0)

+ Pr(wti′j′ = 1|wt−1i′j′ = 1) Pr(wt−1i′j′ = 1)

= π
t|0
ab (1− θt−1ab ) + π

t|1
ab θ

t−1
ab , (4)

where (4) follows from property 1.
Now consider the general case, where nodes i ∈ a′ and j ∈ b′ at time

t − 1 and i ∈ a and j ∈ b at time t. We begin with the case where a′ = 0
or b′ = 0, indicating that either node i or j, respectively, was not present at
time t− 1. For this case, wt−1ij = 0 so

Pr(wtij = 1) = Pr(wtij = 1|wt−1ij = 0) = ξtijπ
t|0
ab

Property 1 does not apply. In order for property 3 to hold, Pr(wtij = 1) must

be equal to θtab. Thus ξtij = θtab/π
t|0
ab . Note that this also satisfies property 2

because θtab is a valid probability.
Next consider the case where a′, b′ 6= 0, i.e. both nodes were present at

the previous time. Then

Pr(wtij = 1)

= Pr(wtij = 1|wt−1ij = 0) Pr(wt−1ij = 0)

+ Pr(wtij = 1|wt−1ij = 1) Pr(wt−1ij = 1) (5)

= ξ
t|0
ij π

t|0
ab (1− θt−1a′b′ ) + ξ

t|1
ij π

t|1
ab θ

t−1
a′b′ , (6)

where (6) follows from substituting (3) into (5) and by letting the scaling
factor

ξtij =

{
ξ
t|0
ij , if wt−1ij = 0

ξ
t|1
ij , if wt−1ij = 1

. (7)
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According to property 3, Pr(wtij = 1) = θtab. Hence one must choose the
scaling factor ξtij such that this is the case. The seemingly obvious solution is

to compare coefficients of π
t|0
ab and π

t|1
ab between (4) and (6) but this solution

does not satisfy property 2. Instead, we first identify a range of choices
for the scaling factor ξtij that satisfy properties 2 and 3, then we select a
particular choice that satisfies property 1.

Property 2 implies the following inequalities:

0 ≤ ξt|0ij ≤ 1/π
t|0
ab (8)

0 ≤ ξt|1ij ≤ 1/π
t|1
ab . (9)

Meanwhile, property 3 implies that

θtab = ξ
t|0
ij π

t|0
ab (1− θt−1a′b′ ) + ξ

t|1
ij π

t|1
ab θ

t−1
a′b′ . (10)

Re-arranging (10) and substituting into (9), one obtains

θtab − θ
t−1
a′b′

π
t|0
ab (1− θt−1a′b′ )

≤ ξt|0ij ≤
θtab

π
t|0
ab (1− θt−1a′b′ )

. (11)

Combining (8), (10), and (11), one arrives at the necessary conditions on

π
t|0
ab in order to satisfy properties 2 and 3:

α(a′, b′) ≤ ξt|0ij ≤ β(a′, b′), (12)

where the upper and lower bounds are functions of a′ and b′, the classes for
i and j, respectively, at time t− 1 and are given by

α(a′, b′) = max

(
0,

θtab − θ
t−1
a′b′

π
t|0
ab (1− θt−1a′b′ )

)
(13)

β(a′, b′) = min

(
1

π
t|0
ab

,
θtab

π
t|0
ab (1− θt−1a′b′ )

)
(14)

From (12)–(14), it follows that

ξ
t|0
ij = α(a′, b′) +

β(a′, b′)− α(a′, b′)

γ(a′, b′)
(15)

is a valid solution for any γ(a′, b′) ≥ 1.

9



In order to satisfy property 1 as well, ξ
t|0
i′j′ must be equal to 1 for any

nodes i′ ∈ a and j′ ∈ b at time t− 1. This can be accomplished by choosing

γ(a′, b′) =
β(a, b)− α(a, b)

1− α(a, b)
. (16)

Notice that the arguments in α(·) and β(·) are the current classes a and b,
regardless of the previous classes.

The assignment for ξ
t|0
ij is thus obtained by substituting (16) into (15).

This value can then be substituted into (10) to obtain the assignment for

ξ
t|1
ij .

Proposition 1. The scaling factor assignment given by (10), (15), and (16)
satisfies the three properties specified in Section 4.2.

Proof. Begin with property 1. Let i′ ∈ a and j′ ∈ b at both times t− 1 and
t. From (15) and (16),

ξ
t|0
i′j′ = α(a, b) + (β(a, b)− α(a, b))/γ(a, b)

= α(a, b) + (1− α(a, b))

= 1. (17)

Substituting (17) and (10) into (11),

ξ
t|1
i′j′ =

π
t|0
ab (θt−1ab − 1)

π
t|1
ab θ

t−1
ab

+
π
t|0
ab (1− θt−1ab ) + π

t|1
ab θ

t−1
ab

π
t|1
ab θ

t−1
ab

= 1.

Thus property 1 is satisfied.
From the derivation of the scaling factor assignment, it was shown that

properties 2 and 3 are satisfied provided γ(a′, b′) ≥ 1 for all (a′, b′). From
(16), this is true if and only if β(a, b) ≥ 1 for all (a, b). From (14), β(a, b) ≥
1/π

t|0
ab ≥ 1 because π

t|0
ab is a probability and hence must be between 0 and 1,

and

β(a, b) ≥
θtab

π
t|0
ab (1− θt−1ab )

= 1 +
π
t|1
ab θ

t−1
ab

π
t|0
ab (1− θt−1ab )

≥ 1,

where the equality follows from (4), and the final inequality results from

π
t|0
ab , π

t|1
ab , and θt−1ab all being probabilities and hence between 0 and 1. Thus

properties 2 and 3 are also satisfied.

Proposition 2. An SBTM with respect to c(T ) satisfying such an assump-
tion is a dynamic SBM; that is, any sequence W (T ) generated by the SBTM
also satisfies the requirements of a dynamic SBM.
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Proposition 2 holds trivially from property 3, which is satisfied due to
Proposition 1. Both the SBTM and HM-SBM are dynamic SBMs; the main
difference between the two is that, under the SBTM, the presence or lack of
an edge between two nodes at a particular time does affect the presence or
lack of such an edge at a future time as indicated by (3).

4.4 State Dynamics

The SBTM, as defined in Definition 3, does not specify the model governing
the dynamics of the sequence of adjacency matrices W (T ) aside from the
dependence of W t on W t−1 specified in requirement 3. To complete the
model, we use a linear dynamic system on the logits of the probabilities,
similar to Xu and Hero III (2014). Unlike Xu and Hero III (2014), however,
the states of the system would be the logits of the block transition matrices
Πt|0 and Πt|1.

Let x denote the vectorized equivalent of a matrix X, obtained by stack-
ing columns on top of one another, so that πt|0 and πt|1 are the vectorized
equivalents of Πt|0 and Πt|1, respectively. The states of the system can then
be expressed as a vector

ψt =

[
log(πt|0/(1− πt|0))
log(πt|1/(1− πt|1))

]
, (18)

resulting in the dynamic linear system

ψt = F tψt−1 + vt, (19)

where F t is the state transition model applied to the previous state, and
vt is a random vector of zero-mean Gaussian entries, commonly referred
to as process noise, with covariance matrix Γt. Note that (19) is the same
dynamic system equation as in Xu and Hero III (2014), only with a different
definition (18) for the state vector.

5 Model Inference

5.1 Asymptotic Distribution of Observations

The inference procedure for the dynamic SBM of Xu and Hero III (2014)
utilized a Central Limit Theorem (CLT) approximation for the block densi-
ties, which are scaled sums of independent, identically distributed Bernoulli
random variables wtij . Such an approach cannot be used for the SBTM be-
cause blocks no longer consist of identically distributed variables wtij due to
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the dependency between W t and W t−1. Furthermore, the presence of the
scaling factors ξtij in the transition probabilities (3) ensure that wtij are not

identically distributed even after conditioning on wt−1ij .
We show, however, that the sample mean of a scaled version of the

adjacencies, is asymptotically Gaussian. For a, b ∈ {1, . . . , k} and u ∈ {0, 1},
let

Bt|uab = {(i, j) : i 6= j, cti = a, ctj = b, wt−1ij = u}.

Note that Bt|0ab denotes the set of non-edges in block (a, b) at time t − 1,

which is also the set of possible new edges at time t, and Bt|1ab denotes the
set of edges in block (a, b) at time t − 1, which is also the set of possible
recurring edges at time t. Let

m
t|u
ab =

∑
(i,j)∈Bt|uab

wtij
ξtij

,

n
t|u
ab =

∣∣Bt|uab ∣∣.
m
t|0
ab and m

t|1
ab denote the scaled number of new and existing edges, respec-

tively, within block (a, b) at time t, while n
t|0
ab and n

t|1
ab denote the number of

possible new and existing edges, respectively. The following theorem shows

that the sample mean of the scaled adjacencies within Bt|uab is asymptotically
Gaussian as the block size increases.

Theorem 1. The sample mean of the scaled adjacencies

m
t|u
ab

n
t|u
ab

=
1

ntab

∑
(i,j)∈Bt|uab

wtij
ξtij
→ N

πt|uab ,
(
s
t|u
ab

n
t|u
ab

)2


in distribution as n
t|u
ab →∞, where

(
s
t|u
ab

)2
=

∑
(i,j)∈Bt|uab

Varu

(
wtij
ξtij

)

= π
t|u
ab

∑
(i,j)∈Bt|uab

1

ξtij
− nt|uab

(
π
t|u
ab

)2
, (20)

and Varu(·) denotes the condition variances Var(·|wt−1ij = u).
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Proof. The scaled adjacencies wtij/ξ
t
ij are independent, but not identically

distributed, so the classical CLT no longer applies. However, the Lyapunov
CLT can be applied provided Lyapunov’s condition is satisfied (Billingsley,
1995). In this setting, Lyapunov’s condition specifies that for some δ > 0,

lim
n
t|u
ab →∞

1(
s
t|u
ab

)2+δ ∑
(i,j)∈Bt|uab

Eu

∣∣∣∣∣wtijξtij − πt|uab
∣∣∣∣∣
2+δ
 = 0,

where Eu[·] denotes the conditional expectation E[·|wt−1ij = u].
We demonstrate that Lyapunov’s condition is satisfied for δ = 2. First

note that, although there are an infinite number of terms in the summation
(in the limit), there are a finite number of unique terms. Specifically wtij ∈
{0, 1}, and ξtij depends only on i, j through their current and previous class
memberships a, b, a′, and b′, which are all in {0, 1, . . . , k}. Hence

1(
s
t|u
ab

)4 ∑
(i,j)∈Bt|uab

Eu

(wtij
ξtij
− πt|uab

)4
 (21)

≤
n
t|u
ab(

s
t|u
ab

)4 max
(i,j)∈Bt|uab

Eu

(wtij
ξtij
− πt|uab

)4


=
1

O
(
n
t|u
ab

) ,
where the last equality follows from (20). Thus (21) approaches 0 as n

t|u
ab →

∞, and Lyapunov’s condition is satisfied. The Lyapunov CLT states that

1

s
t|u
ab

∑
(i,j)∈Bt|uab

(
wtij
ξtij
− πt|uab

)
d−→ N (0, 1)

where
d−→ denotes convergence in distribution. By rearranging terms one

obtains the desired result.

5.2 State-space Model Formulation

Theorem 1 shows that the sample means m
t|u
ab /n

t|u
ab are asymptotically Gaus-

sian. Assume that they are indeed Gaussian. Stack these entries to form
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the observation vector

yt =

[
m
t|0
11

n
t|0
11

· · ·
m
t|0
kk

n
t|0
kk

m
t|1
11

n
t|1
11

· · ·
m
t|1
kk

n
t|1
kk

]T
= h

(
ψt
)

+ zt, (22)

where the function h : R2k2 → R2k2 is defined by

hi(x) = 1/(1 + e−xi), (23)

i.e. the logistic sigmoid applied to each entry of x, ψt was defined in (18),
and zt ∼ N (0,Σt), where Σt is a diagonal matrix with entries given by(
s
t|u
ab /n

t|u
ab

)2
.

The equations (19) and (22) form a non-linear dynamic system with
zero-mean Gaussian observation and process noise terms zt and vt, respec-
tively, with the only non-linearity due to the logistic function h(·). Assume
that the initial state is also Gaussian distributed, i.e. ψ1 ∼ N

(
µ1,Γ1

)
, and

that {ψ1,v2, . . . ,vt, z2, . . . , zt} are mutually independent. If (22) was lin-
ear, then the optimal estimate for ψt (given observations y(T )) in terms of
minimum mean-squared error and maximum a posteriori probability (MAP)
would be given by the Kalman filter. Due to the non-linearity, we apply the
extended Kalman filter (EKF), which linearizes the dynamics about the pre-
dicted state and results in a near-optimal estimate (in the MAP sense) when
the estimation errors are small enough to make the linearization accurate.
The EKF was used for inference in systems of the form of (19) and (22) in
Xu and Hero III (2014).

5.3 Inference Procedure

Once the vector of sample means yt is obtained, a near-optimal estimate of
the state vector ψt can be obtained using the EKF. Recall that ψt contains
the logits of the probabilities of forming new edges πt|0 and the probabilities
of existing edges re-occurring πt|1. In order to compute the sample means
yt, however, one needs to first estimate the following quantities:

1. The unknown hyperparameters (ψ0,Γ0,Σt,Γt) of the state-space model
(19) and (22).

2. The vector of class memberships ct.

3. The matrix of scaling factors Ξt.
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Algorithm 1 SBTM inference procedure

At time step 1:

1: Initialize estimated class assignment using spectral clustering on W 1

2: Compute ML estimates ĉ1 and Θ̂1 by local search

3: Compute predicted state vector
ˆ
ψ2|1 at time step 2 using EKF predict

phase

At time step t > 1:

1: Initialize estimated class assignment ĉt ← ĉt−1

2: repeat {Local search (hill climbing) algorithm}
3: for all neighboring class assignments do
4: Compute plug-in estimate Ξ̂t of scaling matrix using Θ̂t−1, EKF

predicted state ψ̂
t|t−1

, and current class assignment
5: Compute plug-in estimate ŷt of sample means using Ξ̂t, W t, and

current class assignment

6: Compute estimate ψ̂
t|t

of state vector using EKF update phase
7: until reached local maximum of posterior density

8: Compute predicted state vector
ˆ

ψt+1|t at time step t + 1 using EKF
predict phase

Methods for estimating items 1 and 2 are discussed in Xu and Hero III
(2014). Item 1 can be addressed using standard methods for state-space
models, typically alternating between state and hyperparameter estimation
(Nelson, 2000). Item 2 is handled by alternating between a local search (hill
climbing) algorithm to estimate class memberships and the EKF to estimate
edge transition probabilities.

The main difference between the inference procedures of the HM-SBM
and the SBTM proposed in this paper involves item 3. The matrix of scaling
factors Ξt is a function of the marginal edge probabilities at the current and
previous times (Θt and Θt−1, respectively) as well as the current probabilities
of new and existing edges (Πt|0 and Πt|1, respectively). Θt can be computed
from the other three quantities from (4).

We propose to use plug-in estimates of Θt−1, Πt|0, and Πt|1 to estimate
the scaling matrix Ξt. Recall from (18) that the state vector ψt consists of
the logits of the new and existing edge probabilities. Hence we obtain[

π̂t|0 π̂t|1
]T

= h
(
ψ̂
t|t−1)

,
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where ψ̂
t|t−1

is the EKF prediction of the state vector at time t. The re-
cursion is initialized at t = 2 using the maximum-likelihood (ML) estimate
Θ̂1 obtained from W 1. The spectral clustering procedure of Sussman et al.
(2012) can be used to initialize the class assignments. A sketch of the entire
inference procedure is shown in Algorithm 1.

6 Experiments

6.1 Simulated Networks

In this experiment we generate synthetic networks in a manner similar to
a simulation experiment in Yang et al. (2011) and Xu and Hero III (2014),
except with the stochastic block transition model rather than the hidden
Markov stochastic block model. The network consists of 128 nodes initially
split into 4 classes of 32 nodes each. The edge probabilities for blocks at
the initial time step are chosen to be θ1aa = 0.2580 and θ1ab = 0.0834 for

a, b = 1, 2, 3, 4; a 6= b. The mean µ1 is chosen such that π
1|0
aa = 0.1, π

1|0
ab =

0.05, a 6= b, π
1|1
aa = 0.7, and π

1|1
ab = 0.45, a 6= b. The covariance Γ1 for the

initial state is chosen to be a scaled identity matrix 0.04I, respectively. The
state vector ψt evolves according to a Gaussian random walk model on ψt,
i.e. F t = I in (18). Γt is constructed such that γtii = 0.01 and γtij = 0.0025
for i 6= j. 10 time steps are generated, and at each time step, 10% of the
nodes are randomly selected to leave their class and are randomly assigned
to one of the other three classes. For consistency with Yang et al. (2011)
and Xu and Hero III (2014), we generate undirected graph snapshots in this
experiment.

We check the validity of the asymptotic Gaussian distribution of the
scaled sample means yt. In this simulation experiment, the true means and
standard deviations for yt are known and are used to standardize yt. Q-
Q plots for the standardized yt are shown in Figure 1. Figure 1a shows
the distribution of yt when both the true classes and true scaling factors
(calculated using the true states) are used. Notice that the empirical distri-
bution is close to the asymptotic Gaussian distribution, with slightly heavier
tail. Experimentally we find that this deviation decreases as the block sizes
increase, as one would expect from Theorem 1.

Figure 1b shows that the distribution of yt is roughly the same when
using estimated scaling factors along with the true classes, which is an en-
couraging result and suggests that the EKF-based inference procedure would
likely work well in the a priori block model setting. Figure 1c shows that
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(c) Estimated classes and scaling

Figure 1: Q-Q plots of standardized sample means ŷt in the simulation
experiment under three levels of estimation. With (a) true classes and scal-
ing factors, ŷt is close to the asymptotic Gaussian distribution predicted
by Theorem 1. Even with (b) estimated scaling factors, ŷt is still close to
the asymptotic Gaussian distribution. When (c) class memberships are also
estimated, ŷt is heavier tailed due to the errors in the estimated classes.
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Figure 2: Adjusted Rand indices with 95% confidence bands for three infer-
ence algorithms on the simulated networks.

the distribution of yt when using both estimated scaling factors and classes
is significantly more heavy-tailed. Since this is not seen in Figure 1b, we
conclude that it is due to errors in the class estimation, which causes the
distribution of yt to deviate from the asymptotically Gaussian distribution
when using true classes. The heavier tails suggest that perhaps a more ro-
bust filter, such as a filter that assumes Student-t distributed observations,
may provide more accurate estimates in the a posteriori setting.

Figure 2 shows a comparison of the class estimation accuracies of three
different inference algorithms: the EKF-based algorithm for the SBTM pro-
posed in this paper, the EKF algorithm for the HM-SBM (Xu and Hero III,
2014), and a static SBM fit using spectral clustering refined with a local
search to reach a local maximum of the likelihood for each snapshot. As
one might expect, the static SBM approach does not improve as more time
snapshots are provided. The poorer performance of the HM-SBM approach
compared to the proposed SBTM approach is also not a surprise since the
dynamics on the marginal block probabilities no longer follow a dynamic
linear system as assumed by Xu and Hero III (2014). The SBTM approach
is more accurate than the other two; however it still makes enough mistakes
to cause the heavier-tailed distribution of yt as previously discussed.

6.2 Facebook Wall Posts

We now test the proposed SBTM inference algorithm on a real data set,
namely a dynamic social network of Facebook wall posts (Viswanath et al.,
2009). Similar to the analysis by Viswanath et al. (2009), we use 90-day time
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steps from the start of the data trace in June 2006, with the final complete
90-day interval ending in November 2008, resulting in 9 total time steps.
We filter out people who were active for less than 7 of the 9 times as well as
those who posted to less than 20 other people’s walls, leaving 522 remaining
people.

We fit the SBTM to this dynamic network using Algorithm 1, beginning
with a spectral clustering initialization at the first time step. From exami-
nation of the singular values of the first snapshot, we choose a fit with k = 4
classes. Three dense and one loosely-connected community are observed at
all time steps, with only slight changes in community structure over time.
Visualizations of the class structure overlaid onto the adjacency matrices at
several time steps are included in the supplementary material. The initial
snapshot contains only 381 active nodes, so most changes in class assign-
ments are due to new nodes entering the network over time. The networks
are very sparse, with the densest block having marginal edge probability of
0.05. We find that the probabilities of forming new edges do not vary signifi-
cantly between blocks, ranging from about 0.05 to 0.07. The probabilities of
existing edges re-occurring show greater variation between blocks, ranging
from 0.25 to 0.55.

Adjacency matrices at three time steps are shown in Figure 3. The
estimated class structure at the final time step is overlaid onto the adjacency
matrices. Notice that all of the classes are actually communities, with denser
diagonal blocks compared to off-diagonal blocks. Only slight changes in the
class structure are observed over time.

A histogram of the edge durations observed in the network is shown in
Figure 4a. Notice that, despite the low density of the blocks, more than
20% of the edges appear over multiple time steps. We generate 10 synthetic
networks each from the HM-SBM and SBTM fits to the observed networks.
The histogram of edge durations from synthetic networks generated from the
HM-SBM is shown in Figure 4b. Due to the hidden Markov assumption,
only the densities of the blocks are being replicated over time, and as such,
the majority of edges are not repeated at the following time step. Compare
this to the edge durations generated from the proposed SBTM, shown in
Figure 4c. Notice that a significant fraction of edges are indeed repeated in
these synthetic networks, much like in the observed networks. These edge
durations cannot be replicated by hidden Markov models for the snapshots,
demonstrating the importance of the SBTM.

Notice also that the edge durations from the synthetic networks are actu-
ally slightly longer than from the observed networks. This is an artifact that
appears because not all nodes are active at all time steps in the observed
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Figure 3: Adjacency matrices at three different time steps constructed from
Facebook wall posts. The estimated classes at the final time t = 9 are over-
laid onto the adjacency matrices. Three dense and one loosely-connected
community are observed at all time steps, with only slight changes in com-
munity structure over time.
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(a) Observed network
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(b) HM-SBM simulated networks

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Edge duration

F
ra

c
ti
o
n
 o

f 
e
d
g
e
s

(c) SBTM simulated networks

Figure 4: Histograms of edge durations in (a) observed Facebook network,
(b) simulated networks from HM-SBM fit to observed network, and (c) sim-
ulated networks from SBTM fit to observed network.
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networks, causing edge durations to be shortened. One could perhaps repli-
cate this effect by adding a layer to the dynamic model simulating nodes
entering and leaving the network over time, which would be an interesting
direction for future work.

The proposed SBTM can also be extended to have edges depend directly
on whether edges were present further back than just the previous time step.
Such an approach would likely improve forecasting ability; however, it also
increases the number of states that need to be estimated, which creates
further challenges.
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