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Many real-world networks contain a statistically surprising number of certain subgraphs, called network
motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph
frequencies in the original network with a statistical null model. In this paper, we propose an alternative
approach to motif analysis where network motifs are defined to be connectivity patterns that occur in a
subgraph cover that represents the network using minimal total information. A subgraph cover is defined to
be a set of subgraphs such that every edge of the graph is contained in at least one of the subgraphs in the
cover. Some recently introduced random graph models that can incorporate significant densities of motifs
have natural formulations in terms of subgraph covers, and the presented approach can be used to match
networks with such models. To prove the practical value of our approach, we also present a heuristic for the
resulting NP hard optimization problem and give results for several real-world networks.
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I. INTRODUCTION

Many complex systems can be modeled as networks
where vertices represent interacting elements and edges
interactions between them. A large number of real-world
networks has been found to contain a statistically surprising
number of certain small connectivity patterns called net-
work motifs [1]. Network motifs, which are also commonly
referred to as basic building blocks of networks, are thought
to play an important role in the structural and functional
organization of complex networks. For instance, in bio-
logical and technological networks, motifs are thought to
contribute to the overall functioning of networks by
performing modular tasks such as information processing
[2]. Hence, methods for identifying such characteristic
connectivity patterns are of great importance for a better
understanding of complex networks.
The prevalent approach to motif analysis is due to Milo

et al. [1] and is based on comparing the subgraph
frequencies of the original network with a statistical null
model that preserves some features of the original network.
Part of the analysis consists of generating a representative
sample of the null model which is used to determine
empirical values for the mean and variance-of-motif counts
in the null model. Motifs for which the frequencies
significantly deviate from the null model are then classified
as network motifs. In their original paper, Milo et al.

suggest that when detecting motifs of size n, the null model
should conserve the degree distribution of the original
network as well as the motif counts of size n − 1. For
generating such networks, they propose a simulated
annealing approach. However, it is not clear whether the
simulated annealing approach uniformly samples such null
models. Moreover, in most applications, it is computation-
ally not feasible to preserve lower-order motif counts for
motifs larger than four vertices. Consequently, in most
practical applications [1,3,4], lower-order motif counts are
not conserved and the configuration model [5] with the
same degree distribution as the original network is used as a
null model. Not conserving lower order motif counts has the
unwanted consequence that most subgraphs that contain an
overrepresented submotif are classified as network motifs.
In this paper, we introduce an alternative approach to

motif analysis that is based on using subgraph covers as
representations of graphs. A subgraph cover can be seen as
a decomposition of the network into smaller building
blocks. Given any network, there are many ways of
decomposing it into a subgraph cover. Consequently, one
needs a way of comparing subgraph covers. In this article
we follow the total information approach by Gell-Mann and
Lloyd [6] and look at motifs as regularities of a network
which can be used to obtain a more concise representation
of the network. In our approach, network motifs are defined
as subgraph patterns that appear in a subgraph cover that
represents the network using minimal total information.
Note that this definition of network motifs is fundamentally
different from the definition of Milo et al. [1].
Another aim of this paper is to establish a connection

between motif analysis and random graph models. In
contrast to most real-world networks, commonly used
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network models are locally treelike. Developing random
graph models that can incorporate high densities of
triangles and other motifs has been a long-standing
problem. Recently, two random graph models that can
incorporate significant densities of motifs have been
proposed [7,8]. However, it remains unclear how one
should select the set of motifs to be used in such models,
given a specific network. As we shall see later, these
models can be formulated as ensembles of subgraph covers
and total information-optimal subgraph covers can be used
to match networks with specific instances of these models.
The article is organized as follows: In Sec. II, we present

the theory underlying our approach. Then, in Sec. III, we
examine the resulting optimization problem and propose a
heuristic for it. In Sec. IV, we present empirical results for
several real-world networks and also test the heuristic on
some synthetic networks with a predefined motif structure.
Finally, in Sec. V, we summarize our results and discuss
directions for future research.

II. THEORY

In this section, we first introduce necessary graph and
information-theoretical concepts. We then define the total
information for subgraph covers, and following the
approach by Gell-Mann and Lloyd [6], we use the small-
ness of the total information as a criterion for selecting a
subgraph cover that is an optimal representation of a given
network. Finally, we discuss the relation between total
information-optimal subgraph covers and model selection
for random graphs.

A. Subgraph covers

A graph G ¼ (VðGÞ; EðGÞ) is a ordered pair of sets
where VðGÞ [jVðGÞj ¼ N] is the set of points called
vertices and EðGÞ is a set of links called edges that connect
pairs of vertices. Depending on the kind of network, edges
might be directed or undirected, although, in this article, we
will not make an explicit distinction between directed and
undirected graphs since the arguments and definitions
apply to both equally well. In general, we will assume
that G is sparse, i.e., jEðGÞj ¼ OðNÞ. Most real-world
networks are sparse [9].
In graph theory, motifs correspond to isomorphism

classes. Two graphs G and H are said to be isomorphic
(G≃H) whenever there exists a bijection ϕ: VðGÞ →
VðHÞ such that ðx; yÞ ∈ EðGÞ⇔(ϕðxÞ;ϕðyÞ) ∈ EðHÞ for
all x; y ∈ VðGÞ. Such a map ϕ is called an isomorphism.
Being isomorphic is an equivalence relation, and the
corresponding equivalence classes are called isomorphism
classes.
A graph H is called a subgraph of G whenever VðHÞ ⊆

VðGÞ and EðHÞ ⊆ EðGÞ. A set of subgraphs C is said
to be a subgraph cover ofGwhenever⋃H∈CEðHÞ ¼ EðGÞ.
Subgraph covers are representations of graphs, meaning

that given a subgraph cover, the corresponding graph can
be recovered fully from the cover. Trivial examples of
subgraph covers are the set of all edges of G and G itself.
Other examples are the maximal clique and star covers,
which are the sets of all cliques or stars that are not
subcliques or substars. (An n clique consists of n vertices
that are all mutually connected, an n star consists of a single
central vertex that is connected to n peripheral vertices, and
a subclique or substar is a clique or star that is a subgraph of
some larger clique or star.) While the maximal star cover is
closely related to the adjacency-list representation of the
graph, clique covers are closely related to bipartite repre-
sentations [5,10].
Given a cover C, its motif set MðCÞ is the set of the

isomorphism classes of the subgraphs inC. Similarly, given a
set of isomorphism classesM, anM cover CM is a subgraph
cover of which every element belongs to some class in M.

B. The total information approach

The total information framework [6] is based on the idea
that, given an entity, one can use Shannon information or
entropy to describe its random or nonregular aspects and
algorithmic information content to describe its regularities
or rule-based features. In this approach, identifying certain
regularities of an entity is equivalent to embedding it into an
ensemble of objects that share these regularities while they
differ in other aspects.
The first information measure of interest for the total

information approach is the entropy, also known as the
Shannon information. For an ensemble EðR; prÞ, where R
is the set of possible outcomes and pr is the respective
probability of an element r ∈ R, the entropy measures the
uncertainty regarding the outcome of E and is given by

S ¼ −KX
r

pr logpr; ð1Þ

where K is a constant. When K ¼ 1 and the logarithm is
base 2, the entropy is measured in bits.
Another information measure that is needed in order to

define the total information is the effective complexity. The
effective complexity ϵðEÞ of an entity that is embedded into
an ensemble E as a typical member is given by the
algorithmic information content (AIC) of the ensemble.
The algorithmic information content of such an ensemble E
with respect to a universal computer U is the length of the
shortest program that instructs U to output a description of
E and then halt [i.e., ϵðEÞ ¼ AICUðEÞ]. In general, the
effective complexity is not computable and computer
dependent; therefore, in practice, one is restricted to work
with approximations in the form of upper bounds. The issue
of how to define a practical effective complexity for
subgraph covers is dealt with in Sec. III.
The sum of the effective complexity and the entropy is

the total information required to describe both the random
features and regularities of an entity using a certain model:
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ΣðEÞ ¼ ϵðEÞ þ SðEÞ: ð2Þ

For a given entity, there might be a multitude of ensembles
into which the entity can be embedded as a typical member
and it may not always be clear which set of regularities or
model provides the best description of the entity. The total
information provides a basis for comparing models that
describe the same entity. When comparing models, the better
model is theone thatminimizes the total information and then,
subject to this constraint, minimizes the effective complexity.
Together with additional constraints on computation time,
the framework provides a method for identifying regularities
or models that “most” effectively describe a given entity
that in many regards is independent of the observer [6]. The
minimization of the total information is closely related to the
minimum description-length [11] and minimum messaging-
length approaches [12].

C. Uniform subgraph covers

Following the above definitions, we define the total
information of subgraph covers by embedding them into
uniform subgraph covers. The uniform subgraph cover
Eðm; nmÞ is defined to be the uniform ensemble of all
subgraph covers having motif set M and motif counts nm.
In order to compute the entropy, we need to compute the
number of different ways a motif m can appear on N
vertices, which depends on the automorphism group of the
motif. An automorphism of a graph is a permutation of its
vertex labels that preserves the edges of the graph. The
number of all such permutations gives us the number of
equivalent vertex labelings of the graph. To specify an
instance of m on N vertices, one needs to specify the set of
vertices m appears on and how it is embedded into this set.
From the definition of the automorphism group, it follows
that there are jmj!=jautðmÞj different ways a motif m can
appear on a set of jmj vertices. Thus, a motif m with
automorphism group autðmÞ can appear on N vertices in
N!=ðN − jmjÞ!jautðmÞj different ways. Consequently, the
entropy of a set of nm distinct instances of m is given by

Sðm; nmÞ ¼ log

�
N!

ðN−jmjÞ!jautðmÞj
nm

�
; ð3Þ

which, given m, is the information required to specify nm
instances of m on N vertices.
Generalizing the above expression, the entropy of a

cover C with motif setMðCÞ and motif counts nm (m ∈ M)
is defined as the entropy of the uniform ensemble of all
covers with motif counts nm:

SðCÞ ¼
X

m∈MðCÞ
Sðm; nmÞ: ð4Þ

When needed, the entropy terms can easily be approxi-
mated using Stirling’s formula. For instance, when nm and
N are large enough and jmj > 2,

Sðm;nmÞ ¼ nm½jmj logN − log jautðmÞj− lognm þ logðeÞ�
þOðlogNÞ: ð5Þ

As in the case of the entropy, we define the effective
complexity of a cover using uniform covers with the same
motif counts: ϵðCÞ ¼ AICU½EðMðCÞ; nmÞ�. Consequently,
the total information of a cover can be defined as

ΣðCÞ ¼ ϵðCÞ þ SðCÞ: ð6Þ
Following the total information approach, a cover is an

optimal representation of the network if it minimizes the
total information. As a result, we can define the network
motifs of G to be the motif set of a Σ-optimal subgraph
cover of G: M½CΣðGÞ�. The Σ-optimal subgraph cover also
gives a decomposition of the network in terms of these
motifs. In general, there might be more than one subgraph
cover that minimizes Σ. If the Σ-optimal subgraph cover is
not unique, additional criteria such as the minimization of
the effective complexity [6] have to be considered in order
to pick one of the solutions over the others.
The quantity ϵ½CΣðGÞ� can be interpreted as a measure of

the complexity of G’s subgraph structure, which actually is
in correspondence with other measures that are frequently
used as indicators of a network’s complexity, such as the
broadness of the degree distribution and/or clustering.
While the broadness of the degree distribution gives the
variety of the star-shaped subgraphs that occur in the
network, high clustering indicates that the network has a
local structure that involves subgraphs other than trees.
Another quantity of interest is the amount of compres-

sion the optimal cover provides with respect to the edge
cover of G;CeðGÞ:

ΔΣðGÞ ¼ Σ½CeðGÞ� − Σ½CΣðGÞ�: ð7Þ
ΔΣðGÞ gives us a measure of how muchG deviates from an
Erdös-Rényi-type random graph with respect to its sub-
graph structure. Motifs can also be assigned a quantitative
significance similar to the z score used by Milo et al. [1]
based on the compression they provide. One such measure
is the c score cm:

cmðGÞ ¼
Σ½CΣðGÞ −m�
Σ½CΣðGÞ�

− 1; ð8Þ

where ½CΣðGÞ −m� is the cover obtained by replacing the
m subgraphs in CΣðGÞ with the single-edge subgraphs they
cover. By definition, cm is always non-negative and zero for
the single-edge motif and motifs that are not contained
in CΣðGÞ.

D. Subgraph covers and model selection

In this section, we will consider two models that are
closely related to subgraph covers: the model introduced by
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Bollobás, Janson, and Riordan [7] and the model intro-
duced by Karrer and Newman [8]. Although these models
can account for large densities of nontrivial subgraphs, it is
not clear how one should select the set of motifs to be used
in such models when matching these with a given network.
In their article, Karrer and Newman [8] mention the fitting
of such model to networks as an important open problem.
In the following, we formulate these models in terms of
subgraph covers and discuss how Σ-optimal subgraph
covers can be used to associate networks with such models.
Random graphs with clustering.—In Ref. [7], Bollobás,

Janson, and Riordan introduced a very general class of
random graph models that is based on adding copies of
certain motifs onto the vertices of a graph. For the sake
of simplicity, we will only consider the homogeneous
models, i.e., the case where all vertices have the same
type. For the nonhomogeneous version of the model as well
as various analytical results concerning the properties of the
model, we refer the reader to the original paper [7]. In the
homogeneous case, the model can be defined as follows:
Let M be a set of motifs, each given by a labeled
representative, and for every m ∈ M, let km be a positive
constant that corresponds to the density of the motif
in the model. Then, for each m ∈ M and jmj-tuple
ðv1; v2;…; vjmjÞ of vertices, one adds a copy of m to G,
such that the ith vertex of m is mapped onto vi, with
probability

pm ¼ km
Njmj−1 : ð9Þ

Since we are mainly interested in simple graphs, we will
assume that any parallel edges that are formed in this
process are replaced with single edges in the network. The
normalization factor 1=Njmj−1 ensures that the model has
OðNÞ edges. Depending on the symmetry of m, the models
formulated above allow for more multiple copies of the
same m-subgraph to be added to the graph. Although the
probability of such events is small, the model can be
slightly modified to avoid such redundancies by consider-
ing jmj-subset instead of jmj-tuples. Then, for each such
subset, every distinct m subgraph is added with probability

pm ¼ kmjautðmÞj
Njmj−1 ; ð10Þ

where the factor jautðmÞj ensures that both models contain
the same number of copies of m on average.
With the above modification, the model defines a

multinomial distribution PðM;kÞð·Þ over the space of M
covers. The corresponding distribution over graphs results
from the projection of subgraph cover configurations onto
edge configurations. Thus, the probability of a graph G in
this model is given by

PðM;kÞðGÞ ¼
X

C∈CMðGÞ
PðM;kÞðCÞ; ð11Þ

where CMðGÞ is the set of all M covers of G.
Uniform subgraph covers are essentially microcanonical

versions of these models. Consequently, the presented
approach can be seen as a way of inferring the sub-
graph-cover state of such models. The Σ-optimal cover
can be further used as a basis for associating the network
with nonhomogeneous models of this type that also include
correlations between subgraphs.
Generalized configuration models.—Another random

graph model that is closely related to subgraph covers is
the generalized configuration model proposed by Karrer
and Newman [8]. This model is defined on the basis of a
motif setM and a corresponding role sequence r. Here, the
role sequence specifies the number of different motifs
attached to each vertex and how these motifs are attached to
the vertex. The way in which a certain motif is attached to
the vertex is given by the orbit of the automorphism group
of the motifs the vertex belongs to. (The orbit of a vertex is
the set of vertices it can be mapped onto by the auto-
morphism group.) In order to generate a graph correspond-
ing to a role sequence r, every vertex is assigned a number
of subgraph stubs corresponding to its role index. A graph
is then generated by matching stubs corresponding to the
same type of subgraph in appropriate combinations at
random and connecting them in order to form the corre-
sponding motif subgraph. However, in this form, the model
allows for two or more stubs of the same vertex to be
matched together, which results in a subgraph that is a
vertex contraction of the original motif. When such
problematic cases are excluded from the model, every
matching of the stubs actually corresponds to an M cover.
Consequently, the generalized configuration models can be
formulated in terms of subgraph covers: The model
corresponding to a role sequence r is the uniform ensemble
of all subgraph covers with role sequence r.
Determining a role sequence for a network is essentially

equivalent to choosing a subgraph cover for the network,
since every subgraph cover produces a specific role
sequence for the network. The Σ-optimal cover can be
considered as a viable candidate for assigning a role
sequence to a network. On the other hand, an important
property of the generalized configuration models is that
biconnected subgraph counts are essentially determined by
the motif set while singly connected subgraphs can be
mostly accounted for by the role sequence. Consequently,
one can also consider restricting the analysis to biconnected
subgraphs when determining a role sequence for the
network. Restricting motifs to biconnected motifs also
significantly reduces the number of subgraphs that have
to be considered in the analysis since the majority of
connected subgraphs of sparse networks is only singly
connected.
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The models described above suggest that, in principle,
one could also consider more general or nonuniform
ensembles of subgraph covers to define the total informa-
tion. For instance, in the case of the generalized configu-
ration model, one could use the ensemble of all subgraph
covers that result in the same role sequence. However, there
is no known simple way of calculating the entropy of such
ensembles, even if only single-edge subgraphs are consid-
ered, which would be equivalent to the classical configu-
ration model. In addition, such ensembles have high
effective complexity.

E. The relation to the method of Milo et al.

From a compression point of view, the motifs of the
Σ-optimal cover correspond to the motifs with respect to
which the graph maximally deviates from a random graph.
Although the Erdös-Rényi random graph is not, in general,
the null model of choice in applications of the method of
Milo et al., both methods can be seen as trying to find
motifs with respect to which the network differs from a
random graph. In this sense, the subgraph-cover approach
and the method of Milo et al. share similar goals. Using
generalized configuration models to define the total infor-
mation would allow for a more direct comparison of the
two approaches, but as explained in the previous section,
there are additional difficulties associated with using these
models.
A general problem one faces when using the method of

Milo et al. is that subgraph frequencies are, in general,
highly interdependent. The most obvious of such depend-
encies are motif-submotif-type dependencies. That is, the
presence of a motif implies the presence of larger motifs
containing it as a submotif and its own submotifs. Motif-
submotif-type dependencies further imply that counts of
motifs that have a submotif in common are correlated. In
order to avoid larger motifs to be classified as network
motifs only because they contain some smaller over-
represented motif, Milo et al. propose using a null model
that conserves lower-order motifs. However, conserving
lower order motif counts does not cover all dependencies.
For instance, a certain overrepresented motif might occur
almost exclusively as a submotif of one or more larger
network motifs. The Σ-optimal cover naturally avoids
such interdependencies by simultaneously considering
motifs of all sizes and effectively penalizing the sharing
of edges between subgraphs. Despite their differences,
one would expect both methods to find similar motifs,
provided that lower-order motifs are conserved by the
null model.

III. THE Σ-OPTIMAL SUBGRAPH-COVER
PROBLEM

In general, when finding optimal subgraph covers, one
would like to consider the most general set of potential

motifs. However, in practice, there are several technical
limitations, the first being the graph isomorphism problem.
That is, there exists no known polynomial time algorithm
for resolving the problem of whether two finite graphs are
isomorphic. The same holds for finding the automorphism
group of a graph. Fortunately, there are several software
packages that can efficiently compute the automorphism
group of small graphs [13]. Second, the problem of finding
whether a graph G contains a certain motif as a subgraph is
NP complete. Thus, finding subgraph instances can be
computationally expensive, especially for large motifs.
Third, the number of connected motifs grows faster than
exponentially with size. For instance, there are over a
million different directed motifs of size 6. Therefore, the set
of candidate motifs of which the subgraph instances are to
be included in the analysis has to be restricted so that the
analysis can be completed in reasonable time. Restricting
the set of candidate motifs to all connected motifs up to a
certain size seems to be an obvious choice. On the other
hand, one can also include special classes of motifs of
arbitrary size into the set of candidate motifs.
If one wants to include special classes of motifs into

the set of candidate motifs, any prior knowledge of the
structure of the network can be used to make an educated
guess about which motifs are more likely to produce covers
with small total information. For instance, when examining
the network representing an electronic circuit, the motifs
corresponding to various known subcomponents of the
circuit should be included in the set of candidate motifs.
Also, if the network at hand is known to have a broad
degree distribution, star-shaped motifs can be included.
Similarly, if some motifs are known to favor a certain type
of dynamical behavior that is thought to be relevant to the
network performing certain tasks, these patterns and their
generalizations can be included into the analysis. As
previously mentioned, if one intends to use the subgraph
cover in order to determine a role degree sequence for
the network, the set of motifs can be restricted to bicon-
nected motifs. Disconnected motifs can be excluded from
the analysis since the cover that independently contains the
connected components of such subgraphs always has lower
total information.
Another issue that has to be addressed in practice is that

the algorithmic information content is not computable and
in addition is computer dependent. In practice these
difficulties can be circumvented by substituting the algo-
rithmic information content of the ensemble with the code
length of a reasonable encoding of it. Another simplifica-
tion we make is to assume that motifs are independently
encoded, which results in an effective complexity term that
is additive in the motifs. One obvious way of encoding
motifs is to use edge lists. In this case, we have

ϵðmÞ ¼ log�½jVðmÞj� þ log�½jEðmÞj� þ S½jVðmÞj; jEðmÞj�;
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where S½jVðmÞj; jEðmÞj� is the entropy of the ensemble
of all graphs, with the same vertex and edge counts
as m, and log� is the iterated logarithm. On the other
hand, one can also use a predefined or fixed encoding or
catalog of the candidate motifs to define their effective
complexities.
After the simplifications above, the total information

reduces to

ΣðCÞ ¼ log�N þ
X

m∈MðCÞ
½Sðm; nmÞ þ ϵðmÞ þ log� nm�:

ð12Þ

The choice of code used to define the effective complex-
ity depends on the set of candidate motifs. The edge-list
encoding has the advantage of being independent of the set
of candidate motifs and therefore is a natural choice when
considering all motifs up to a certain size. On the other
hand, given a specific set of candidate motifs, the catalog
approach, in general, results in shorter code lengths
compared to the edge-list encoding. Therefore, the catalog
approach is suitable when the set of candidate motifs
contains special classes such as cliques, stars, cycles,
etc., since these have obvious shorter encodings than their
edge lists.
Although the edge-list encoding seems to be a natural

candidate when considering general motifs, it might be
argued that the choice of code used to approximate the
effective complexity term is subjective. However, in prac-
tice, almost all comparable model-selection approaches
require similar subjective choices [11,12,14]. From a
Bayesian viewpoint, where the effective complexity term
can be associated with a prior, the subjectivity of this choice
might be less of a problem. The main goal of this article is
not to advocate a specific approach to model selection but
rather to show that subgraph covers can be used as a basis
for motif analysis. The reason for us choosing the total
information approach is that it accounts for the fact that
the parameters of the ensembles are graphs in a rather
intuitive way.
Another, more practical, way of looking at the effective

complexity is as a safeguard against overfitting. From this
point of view, the effective complexity of a motif corre-
sponds to the minimal entropy gain it has to provide in
order to be included in the optimal cover. Therefore, the
effective complexity of a motif can be seen as setting a
frequency threshold for the motif. Thus, the problem can
also be formulated in terms of entropy minimization and
frequency constraints. If overfitting is less of a concern, one
can even set the effective complexity to 0, which in our case
is equivalent to the maximum-likelihood approach. Using
maximum-likelihood or similar reduced effective complex-
ity terms or frequency thresholds might be useful if one
wants to find a maximal number of potentially relevant
motifs or when the network is small (N < 200) since in

such networks the maximal potential entropy gains of
motifs are limited. The algorithms we shall present in the
next section can be modified in a straightforward manner to
incorporate frequency thresholds.

A. The greedy algorithm

Even with the candidate motifs restricted, finding a
Σ-optimal subgraph cover is a nontrivial optimization
problem. As formulated above, the problem of finding a
Σ-optimal subgraph cover is a nonlinear set-covering
problem, where the set to be covered is the edge set of
the graph and the subsets are the edge sets of the subgraph
instances of the candidate motifs. Set-covering problems
are known to be NP hard, even in the linear case [15].
Consequently, in most practical applications, exact solu-
tions are elusive and a heuristic has to be used.
The greedy algorithm we propose might be seen as a

generalization of the greedy heuristic introduced by
Chvatal [16] for the linear set-covering problem. The
algorithm is based on the stepwise construction of a
subgraph cover. At each step, the algorithm finds the motif
that covers not-yet-covered edges of G most efficiently in
terms of total information per edge. Given a partial cover C,
the efficiency of a set Sm of m subgraphs is defined as

σðSm; CÞ ¼
ΣðSmÞ

jEðSmÞ − EðCÞj ; ð13Þ

where EðCÞ and EðSmÞ are the set of edges covered by C
and Sm, respectively, and ΣðSmÞ is the total information
corresponding to Sm. More precisely, ΣðSmÞ¼Sðm;jSmjÞþ
ϵðmÞþ log�ðjSmjÞ. Following this definition, an optimal
instance set of m is defined as a set of m subgraphs that
minimizes σ. At each step, the algorithm determines the
efficiency of all motifs in the candidate motif set by
determining an optimal instance set for each of them. In
the next step, the algorithm checks for each motif whether
including its optimal instance set into the cover increases
the overall total information of the cover. Then, from the
motifs of which the optimal instance set does not increase
the total information, the most efficient one is selected.
Having found the most efficient motif, the corresponding
optimal instance set is added to the cover and the set of
covered edges is updated. The process is repeated until all
edges of the graph are covered. To ensure that the
algorithm terminates, we require that the single-edge
motif is always included in the set of candidate motifs.
The total information of partial covers is calculated by
adding to them the single-edge subgraphs corresponding
to the uncovered edges. Here, one should note that motifs
cannot be selected based solely on their efficiency
because, in general, adding the optimal instance set of
a motif to the cover decreases the efficiency of other
motifs which, in certain cases, might lead to an increase of
the overall total information.
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Algorithm 1 GreedyOptimalCover ½GðE; VÞ;MS�
CoveredEdges ¼ ∅;Cover ¼ ∅;Motifs ¼ ∅
While jCoveredEdgesj < jEj do

C;m ¼ FINDMOTIFðG;MS;CoveredEdgesÞ
CoveredEdges ← CoveredEdges ∪i∈C eðiÞ
Cover ← Cover ∪ C
Motifs ← Motifs ∪ fmg

end While
return Cover, Motifs
function FINDMOTIF (G, MS, CoveredEdges)
for m ∈ MS do

CðmÞ ¼ OptimalInstanceSet½m;CoveredEdges; GðE; VÞ�
end for
M ¼ argminm∈MSfσ½CðmÞ;CoveredEdges�jΣ½Cover ∪ CðmÞ�
≤ ΣðCoverÞg
return CðMÞ;M

end function

Here, OptimalInstanceSet is a function that computes an
optimal instance set, given a motif and a set of covered
edges, Σ is the total information, and MS is the set of
candidate motifs.
Given a motif m and a set of covered edges, finding an

optimal instance set is a nontrivial optimization problem
on its own. When subgraphs in the cover are not allowed to
share edges, finding an optimal instance set is equivalent to
finding a maximum independent set ofm subgraphs, that is,
a set of m subgraphs of maximum cardinality such that no
two of the subgraphs in the set have an edge in common.
This problem is equivalent to the maximum independent
vertex-set problem and is NP complete [15]. As a result,
some type of heuristic has to be employed. The descriptions
of two such heuristics can be found in the Supplemental
Material [17]. Depending on the heuristic, finding an
optimal instance set requires some or all of the subgraph
instances of m to be computed. There exist several well-
known algorithms that can be used for this purpose [18,19].

IV. EMPIRICAL RESULTS

In the following, we apply the greedy heuristic to several
real-world networks from different fields. We also consider
some synthetic networks that are realizations of uniform
subgraph covers with predetermined motif frequencies in
order to test the heuristic.
Because of the computational resources available, the

size of the subgraphs used in the analysis is limited to five
in the directed and six in the undirected cases. We also
consider biconnected subgraph covers in relation with
generalized configuration models. All results are obtained
using the maximal independent-set heuristic (for details,
see the Supplemental Material [17]) for finding optimal
instance sets and edge lists for encoding motifs. In the
following tables, N and E stand for the number of vertices
and edges, respectively. In addition to the total information
of the obtained cover Σ, the tables also show the total

information of the corresponding edge cover/Erdös Renyi
ensemble ERI as a benchmark. Both these quantities are
rounded to the closest integer and are given in bits.
Because of the random choices involved in finding

optimal instance sets, the algorithm might find different
covers for the same network on different runs. The covers
shown in the figures are the best solutions obtained over
multiple runs. A more detailed discussion on the variability
of the heuristic can be found in the Supplemental Material
[17]. In Table I, the ranges of motif counts obtained over ten
runs are also shown. Here, we should stress that the
proposed heuristics are primarily aimed at demonstrating
the feasibility of using Σ-optimal subgraph covers as a basis
of motif analysis and other heuristics might be devised for
the resulting covering problem.

A. Real-world networks

Table I shows the motifs found for the network repre-
senting the Western State Power Grid of the United States
[20]. The motif structure indicates that, among other motifs,
cycles and cliques play an important role in the organiza-
tion of this network.
In Tables II and III, the motifs found for the transcription

networks of the bacteria E. coli [21] and the yeast S.
cerevisiae [1] are shown. For Table II, only biconnected
motifs up to size 5 were considered, while Table III shows
the results obtained using all connected subgraphs up to
size 5. Including singly connected motifs in the candidate
motif set has almost no effect on the biconnected motifs and
mostly results in star-shaped motifs or motifs that consist of
one vertex intersection of previously found biconnected
motifs. The networks share three out of four motifs in the
case of biconnected motifs.
In Table IV, we see the results for two networks

representing electronic circuits that are digital fractional
multipliers [1]. For these networks, the algorithm not only
finds the same motifs for both networks but the motif
counts in the optimal cover also scale almost exactly with
network size.

TABLE I. The network motifs of the network representing the
Western States Power Grid of the United States found using
connected subgraphs up to size 6. The ranges of the motif counts
of the covers found over ten runs are also shown in parentheses.
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In Table V, the network motifs found for the metabolic
networks [22] of several species from different domains of
life are shown. We find almost the same motifs in all of
these networks, and most motif counts also scale approx-
imately with network size.
Table VI shows the network motifs found in networks

representing the Internet at the level of autonomous
systems [23]. The counts of common motifs also scale
approximately with network size.
In commonly analyzed networks, we find three-and four-

node motifs that are almost identical to those found by Milo
et al. [1] using a null model that conserves lower-order
motifs. In the transcription networks, we find all the motifs
found by Milo et al., although in the case of the S.
cerevisiae network, the feed-forward loop only appears
as a submotif of the larger motif consisting of three feed-
forward loops sharing an edge. Also, for the electronic
circuit networks, we find the same three-and four-node
motifs, although the three- and four-cycles appear only as
submotifs. A closer analysis shows that in these networks,
three- and four-cycles occur almost exclusively as

subgraphs of larger network motifs (three-cycles:
s420-19=20, s822-39=40; four-cycles: s420-11=11,
s838-23=23).
The analysis of various networks shows that networks

having similar functions also have similar motif structures.
The results further support that motifs play an important
role in the structural organization of complex networks.
Furthermore, for networks of the same type, the motif
counts also scale approximately with network size. The
results also show that subgraph covers can be used to obtain
representations that are up to 20% shorter compared to
edge-list representations.

TABLE II. The network motifs of the transcription networks of
E. coli and S. cerevisiae obtained using all biconnected motifs up
to size 5.

TABLE III. The motifs of the transcription networks of E. coli
and S. cerevisiae obtained using all connected motifs up to size 5.

TABLE IV. The motifs of electronic circuits (digital fractional
multipliers) obtained using all connected motifs up to size 5.

TABLE V. The motifs of various metabolic networks
obtained using biconnected subgraphs up to size 5.
AA ¼ Aquifex aeolicus (bacteria), AB ¼ Actinobacillus
actinomycetemcomitans (bacteria), EC ¼ Escherichia coli (bac-
teria), CE ¼ Caenorhabditis elegans (eukaryote), AG ¼
Archaeoglobus fulgidus (archaea), and AP ¼ Aeropyrum pernix
(archaea).
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As previously mentioned, Σ-optimal subgraph covers
can be used as a basis for associating networks with
generalized configuration models, which can be used to
make various predictions about the properties of these
networks. The method can be further tested by comparing
properties of the analyzed networks with these models.
However, such comparisons are beyond the scope of this
article and will be treated separately in later articles.

B. Network classification

The method can also be used to obtain a classification of
networks that is similar to the classification given by Milo
et al. in Ref. [24]. Following the approach of Ref. [24], we
use motif-significance profiles that are given by the
normalized c score ~cm:

~cm ¼ cmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m0∈MðCΣÞc

2
m0

q : ð14Þ

The significance profiles of various network types are
given in Fig. 1. We find that networks of the same type also
have very similar significance profiles. The figures only
show the regions of the significance profiles corresponding
to the motifs that have a nonzero c score. Compared to the
full significance profile, these regions are relatively small
since there are 9578 connected and 7585 biconnected
motifs up to size 5 in the directed case and 30 connected

motifs up to size 5 in the undirected case. Thus, compared
to the subgraph profiles used in Ref. [24], the method
provides a much finer-grained classification.

C. Synthetic networks

Finally, we also consider some synthetic networks that
are realizations of uniform subgraph covers with predeter-
mined motif counts in order to test whether the heuristic is
able to recover the underlying motif set or subgraph cover
in such cases. As shown in Table VII, for all random
networks, the algorithm is able to recover the motif set. For
network 1, the algorithm exactly recovers the underlying
subgraph cover. Network 2 is generated to mimic the motif
structure found for an electronic circuit (s838; see
Table IV), and the algorithm is able to recover the original
subgraph cover with only one extra subgraph. On the other
hand, for networks 3 and 4, the motif counts differ
significantly from the counts of the uniform subgraph
covers used to generate the networks, especially with
respect to the five-star counts. This deviation is probably
caused by the fact that these networks contain a large
number of five-stars, of which only some are explicitly
contained in the underlying cover. Consequently, finding an
optimal instance set of five-stars becomes more difficult.
This effect is more pronounced in network 3 because it is
denser compared to network 4.
As is the case with any heuristic, the quality of the

solution depends on the structure of the network. One can

TABLE VI. The motifs of various autonomous system networks obtained using all connected motifs up to size 5.
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construct examples where the greedy heuristic fails to
recover all the motifs used to generate the network. In
general, the greedy heuristic favors patterns that are dense,
symmetric, and occur in large numbers in the network.
Thus, if the graph contains only a few copies of a motif that
is not very dense, the algorithm might not be able to recover
that motif. Also, if a motif contains a submotif that is more
dense and symmetric compared to the entire motif, the
greedy algorithm might pick the submotif over the motif
itself since the submotif covers edges more efficiently.

V. DISCUSSION

In this article, we introduced an alternative approach to
motif analysis in networks that is based on finding a
subgraph cover of the network that represents it using
minimal total information. We proposed a heuristic for the
resulting NP hard optimization problem. The subgraph
covers obtained for various networks show that the algo-
rithm finds nearly identical motifs for networks with similar
functions. Moreover, by considering subgraphs of various
sizes simultaneously and with respect to a single global
measure, the method is able to detect even large motifs
consistently.
Another advantage of the method is that it provides an

explicit decomposition of the network into motif subgraphs
which allows motifs to be studied within the context of the
rest of the network rather than in isolation.

We also showed that total information-optimal subgraph
covers can be used to match networks with random
graph models that incorporate the obtained motif structure
which allows more accurate modeling of networks in
general.

FIG. 1. The motif-significance profiles of various networks corresponding to the covers given in Tables II, IV, V, and VI.

TABLE VII. The motifs obtained for networks corresponding
to realizations of uniform subgraph covers. The quantities
corresponding to the ensembles used to generate the networks
are given in parentheses.
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Subgraph covers can readily be generalized to graphs
with labeled or colored vertices and edges as well as graphs
with parallel and self-edges. Such labels might be chosen
so that they correspond to known functional roles of
vertices or the community structure of the network. On
the other hand, the obtained subgraph covers could also be
used as a starting point for detecting communities in
networks or for inferring functional roles of vertices.
Communities that differ with respect to their internal
organization can also be expected to differ with respect
to their motif structure. Similarly, one would expect the
functional role of a vertex to be strongly correlated with the
motifs it is a part of.
The total information approach can also be extended to

ensembles more general than uniform subgraph covers.
Moreover, model-selection approaches other than the total
information approach can also be used. Such alternative
formulations essentially correspond to using a different cost
function in the covering problem.
The presented analysis strongly suggests that subgraph

covers can be used to compress network data. In such
applications, the total information might be replaced by the
expected code length of the subgraph cover.
Finally, there is also room for improvement on the side of

the heuristics. We consider the development of alternative
algorithms to be an important topic for further research.
While the greedy algorithm can be improved, other widely
used approximation schemes such as simulated annealing
or genetic algorithms can also be applied to the problem.

ACKNOWLEDGMENTS

The geng and directg tools that are a part of the NAUTY

[13] package by Brendan D. McKay were used in gen-
erating the various isomorphism classes used in our
analysis and the graph tool [25] PYTHON package devel-
oped by Tiago de Paula Peixoto for finding subgraphs and
manipulating graphs in general. The author thanks
Professor Jürgen Jost for constructive discussion as well
as Güven Demirel andMurat Saglam for the critical reading
of the manuscript. The author acknowledges the financial
support of the International Max-Planck Research School
Mathematics in the Sciences.

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D.
Chklovskii, and U. Alon, Network Motifs: Simple Building
Blocks of Complex Networks, Science 298, 824 (2002).

[2] U. Alon, Network Motifs: Theory and Experimental
Approaches, Nat. Rev. Genet. 8, 450 (2007).

[3] S. Wernicke and F. Rasche, Fanmod: A Tool for Fast
Network Motif Detection, Bioinformatics 22, 1152 (2006).

[4] F. Schreiber and H. Schwöbbermeyer, Mavisto: A Tool for
the Exploration of Network Motifs, Bioinformatics 21, 3572
(2005).

[5] M. E. J. Newman, Handbook of Graphs and Networks:
From the Genome to the Internet (Wiley-Vch, Weinheim,
2003).

[6] M. Gell-Mann and S. Lloyd, Information Measures, Effec-
tive Complexity, and Total Information, Complexity 2, 44
(1996).

[7] B. Bollobás, S. Janson, and O. Riordan, Sparse Random
Graphs with Clustering, Random Struct. Algorithms 38,
269 (2011).

[8] B. Karrer and M. E. J. Newman, Random Graphs Contain-
ing Arbitrary Distributions of Subgraphs, Phys. Rev. E 82,
066118 (2010).

[9] M. E. J. Newman, The Structure and Function of Complex
Networks, SIAM Rev. 45, 167 (2003).

[10] J.-L. Guillaume and M. Latapy, Bipartite Structure of All
Complex Networks, Inf. Proc. Lett. 90, 215 (2004).

[11] J. Rissanen, Modeling by Shortest Data Description,
Automatica 14, 465 (1978).

[12] C. S. Wallace, Statistical and Inductive Inference by
Minimum Message Length (Springer, New York, 2005).

[13] B. D. McKay and A. Piperno, Practical graph isomorphism,
II, J. Symb. Comput. 60, 94 (2014).

[14] D. J. C. MacKay, Information Theory, Inference, and
Learning Algorithms (Cambridge university press, Cam-
bridge, 2003), Vol. 7.

[15] M. R. Garey and D. S. Johnson, Computers and Intrac-
tability (Freeman, San Francisco, 1979), Vol. 174.

[16] V. Chvatal, A Greedy Heuristic for the Set-Covering
Problem, Math. Oper. Res. 4, 233 (1979).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.4.041026 for the descrip-
tion of two heuristics, of varying computational complexity,
for computing optimal instance sets of motifs.

[18] J. R. Ullmann, An Algorithm for Subgraph Isomorphism,
J. Assoc. Comput. Mach. 23, 31 (1976).

[19] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, A (Sub)
Graph Isomorphism Algorithm for Matching Large Graphs,
IEEE Trans. Pattern Anal. Mach. Intell. 26, 1367 (2004).

[20] D. J. Watts and S. H. Strogatz, Collective Dynamics of
Small-World Networks, Nature (London) 393, 440 (1998).

[21] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Network
Motifs in the Transcriptional Regulation Network of
Escherichia Coli, Nat. Genet. 31, 64 (2002).

[22] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.
Barabási, The Large-Scale Organization of Metabolic
Networks, Nature (London) 407, 651 (2000).

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos, in Proceedings
of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (ACM, Chicago, IL,
2005), p. 177–187.

[24] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I.
Ayzenshtat, M. Sheffer, and U. Alon, Superfamilies of
Evolved and Designed Networks, Science 303, 1538 (2004).

[25] http://graph‑tool.skewed.de.

SUBGRAPH COVERS: AN INFORMATION THEORETIC … PHYS. REV. X 4, 041026 (2014)

041026-11

http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1093/bioinformatics/btl038
http://dx.doi.org/10.1093/bioinformatics/bti556
http://dx.doi.org/10.1093/bioinformatics/bti556
http://dx.doi.org/10.1002/(SICI)1099-0526(199609/10)2:1%3C44::AID-CPLX10%3E3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1099-0526(199609/10)2:1%3C44::AID-CPLX10%3E3.0.CO;2-X
http://dx.doi.org/10.1002/rsa.20322
http://dx.doi.org/10.1002/rsa.20322
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.ipl.2004.03.007
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1287/moor.4.3.233
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://link.aps.org/supplemental/10.1103/PhysRevX.4.041026
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1109/TPAMI.2004.75
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/ng881
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1126/science.1089167
http://graph-tool.skewed.de
http://graph-tool.skewed.de
http://graph-tool.skewed.de

