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Abstract. Let Φ be a uniformly distributed random k-SAT formula with n variables and m
clauses. Nonrigorous statistical mechanics ideas have inspired a message passing algorithm called
belief propagation guided decimation for finding satisfying assignments of Φ. This algorithm can be
viewed as an attempt at implementing a certain thought experiment that we call the decimation
process. In this paper we identify a variety of phase transitions in the decimation process and link
these phase transitions to the performance of the algorithm.
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1. Introduction and results. Let k ≥ 3 and n > 1 be integers, let r > 0 be
a real, and set m = �rn�. Let Φ = Φk(n,m) be a propositional formula obtained by
choosing a set of m clauses of length k over the variables V = {x1, . . . , xn} uniformly
at random. To be precise, we consider Φ as a sequence of m clauses, each of which is
a set of k distinct, possibly negated variables, i.e., Φ is chosen uniformly at random
from among all (2k

(
n
k

)
)m such sequences. For k, r fixed we say that Φ has some

property P with high probability (w.h.p.) if limn→∞ P [Φ ∈ P ] = 1.

1.1. Background and motivation. The interest in random k-SAT originates
from the experimental observation that for certain densities r the random formula
Φ is satisfiable w.h.p. while a large class of algorithms, including and particularly
the workhorses of practical SAT solving such as sophisticated solvers based on the
Davis–Putnam–Logemann–Loveland (DPLL) algorithm, fail to find satisfying assign-
ments efficiently [20]. Over the past decade, a fundamentally new class of algorithms
has been proposed on the basis of sophisticated but non-rigorous ideas from statis-
tical physics [7, 19]. Experiments performed for k = 3, 4, 5 indicate that these new
“message passing algorithms,” namely, belief propagation guided decimation and sur-
vey propagation guided decimation (BP and SP decimation), excel on random k-SAT
instances [16]. Indeed, the experiments suggest that BP and SP decimation find sat-
isfying assignments for r close to the threshold where Φ becomes unsatisfiable w.h.p.
Generally, SP decimation is deemed conceptually superior to BP decimation.

For example, in the case k = 4 the threshold for the existence of satisfying assign-
ments is conjectured to be m/n ∼ r4 ≈ 9.93 [18]. According to experiments from [16],
SP decimation finds satisfying assignments for densities up to r = 9.73. Experiments
from [23] suggest that the “vanilla” version of BP decimation succeeds up to r = 9.05.
Another version of BP decimation (with a different decimation strategy from [7]) suc-
ceeds up to r = 9.24, again according to experimental data from [16]. By comparison,
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1472 AMIN COJA-OGHLAN AND ANGELICA Y. PACHON-PINZON

the currently best rigorously analyzed algorithm is efficient up to r = 5.54 [12], while
zChaff, a prominent practical SAT solver, becomes ineffective beyond r = 5.35 [16].

Since random k-SAT instances have widely been deemed extremely challenging
benchmarks, the stellar experimental performance of the physicists’ message passing
algorithms has stirred considerable excitement. However, the statistical mechanics
ideas that BP and SP decimation is based on are highly nonrigorous. Thus, a rigorous
analysis of these message passing algorithms is an important but challenging open
problem. A first step was made in [9], where it was shown that BP decimation does not
outperform far simpler combinatorial algorithms for sufficiently large clause lengths k.
More precisely, the main result of [9] is that there is a constant ρ0 > 0 (independent of
k) such that the “vanilla” version of BP decimation fails to find satisfying assignments
w.h.p. if r > ρ02

k/k. By comparison, nonconstructive arguments show that w.h.p. Φ
is satisfiable if r < rk = 2k ln 2 − k and unsatisfiable if r > 2k ln 2 [4, 5]. This means
that for k � ρ0 sufficiently large, BP decimation fails to find satisfying assignments
w.h.p. already for densities a factor of (almost) k below the threshold for satisfiability.

The analysis performed in [9] is based on an intricate method for directly tracking
the execution of BP decimation. Unfortunately this argument does little to illuminate
the conceptual reasons for the algorithms’ demise. In particular, [9] does not provide
a link to the statistical mechanics ideas that inspired the algorithm.

The present paper aims to remedy these defects. Here we study the decimation
process, an idealized thought experiment that inspired BP decimation and that the
algorithm strives to implement. We show that this experiment undergoes a variety of
phase transitions that explain the failure of BP decimation for densities r > ρ0 ·2k/k.
Our results identify phase transitions jointly in terms of the clause/variable density r
and with respect to the time parameter of the decimation process. The latter dimen-
sion was ignored in the original statistical mechanics work on BP [7, 19] but turns out
to have a crucial impact on the performance of the algorithm. On a nonrigorous ba-
sis, this has been pointed out recently by Ricci-Tersenghi and Semerjian [23], and our
results can be viewed as providing a rigorous albeit quantitatively less precise version
of their main results. The results of this paper can also be seen as a generalization
of the ones obtained in [2] for random k-SAT, and indeed our proofs build upon the
techniques developed in that paper.

1.2. The decimation process. For a propositional formula Φ we let S(Φ) sig-
nify the set of all satisfying assignments. Furthermore, if x is a variable of Φ and
S(Φ) 	= ∅, then we let

Mx(Φ) =
|{σ ∈ S(Φ) : σ(x) = 1}|

|S(Φ)|

denote the marginal probability that x takes the value “true” in a random satisfying
assignment of Φ.

BP decimation is a polynomial-time algorithm that aims to (heuristically) imple-
ment the following “thought experiment,” which we call the decimation process [21,
23].1

1Several different versions of BP decimation have been suggested. In this paper we refer to the
simplest but arguably most natural one, also considered in [9, 21, 23]. Other versions decimate the
variables in a different order, allowing for slightly better experimental results [7, 16].
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THE DECIMATION PROCESS IN RANDOM k-SAT 1473

Experiment 1 (decimation process). Input: A satisfiable k-CNF Φ.
Result: A satisfying assignment σ : V → {0, 1} (with 0/1 representing “false”/“true”).
0. Let Φ0 = Φ.
1. For t = 1, . . . , n do
2. Compute the fractionMxt(Φt−1) of all satisfying assignments of Φt−1

in which the variable xt takes the value 1.

3. Assign σ(xt) = 1 with probability Mxt(Φt−1), and let σ(xt) = 0
otherwise.

4. Obtain the formula Φt from Φt−1 by substituting the value σ(xt)
for xt and simplifying (i.e., delete all clauses that were satisfied by
assigning xt, and omit xt from all other clauses).

5. Return the assignment σ.
A moment’s reflection reveals that, given a satisfiable input formula Φ, the deci-

mation process outputs a uniform sample from the set of all satisfying assignments of
Φ. The obvious obstacle to actually implementing this experiment is the computation
of the marginal probability Mxt(Φt−1) that xt takes the value “true” in a random
satisfying assignment of Φt−1, a #P -hard problem in the worst case. Yet the key
hypothesis underlying BP decimation is that these marginals can be approximated
efficiently on random formulas by means of a message passing algorithm. We will
discuss the BP decimation algorithm and its connection to Experiment 1 below.

We are going to study the decimation process when applied to a random formula
Φ for densities r < 2k ln 2 − k, i.e., in the regime where Φ is satisfiable w.h.p. More
precisely, conditioning on Φ being satisfiable, we let Φt be the (random) formula
obtained after running the first t iterations of Experiment 1. The variable set of
this formula is Vt = {xt+1, . . . , xn}, and each clause of Φt consists of at most k
literals. We say that almost all σ ∈ S(Φt) have a certain property A if |A∩S(Φt)| =
(1− o(1))|S(Φt)|.

We will identify various phase transition that the formulas Φt undergo as t grows
from 1 to n. As it turns out, these can be characterized in terms of two simple
parameters. The first is the clauses density r ∼ m/n. Actually, it will be most
convenient to work with

ρ = kr/2k,

so that m/n ∼ ρ · 2k/k. We will be interested in the regime ρ0 ≤ ρ ≤ (1 − εk)k ln 2,
where ρ0 is a constant (independent of k) and εk → 0 as k gets large. The upper
bound (1 − εk)k ln 2 marks the point where satisfying assignments cease to exist [5].
The second parameter is the fraction

θ = 1− t/n

of “free” variables (i.e., variables not yet set by time t).

1.3. Results. Let Φ be a k-CNF on V = {x1, . . . , xn}, let 1 ≤ t < n, and let Φt

be the formula obtained after t steps of the decimation process.

The symmetric phase. Suppose that σ ∈ S(Φt). A variable x ∈ Vt is loose in
σ if there is τ ∈ S(Φt) such that σ(x) 	= τ(x) and dist(σ, τ) ≤ lnn, where dist(·, ·)
denotes the Hamming distance.

Theorem 2. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

k · θ > exp

[
ρ

(
1 +

ln ln ρ

ρ
+

10

ρ

)]D
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1474 AMIN COJA-OGHLAN AND ANGELICA Y. PACHON-PINZON

the random formula Φt has the following properties w.h.p.:
1. In almost all satisfying assignments σ ∈ S(Φt) at least 0.99θn variables are

loose.
2. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
3. For almost all σ ∈ S(Φt) we have

|{τ ∈ S(Φt) : dist(σ, τ) ≤ 0.49θn}| ≤ exp(−Ω(n)) |S(Φt)| .
Intuitively, Theorem 2 can be summarized as follows. In the early stages of the

decimation process (while θ is “big”), most variables in a typical σ ∈ S(Φt) are
loose. Hence, the correlations among the variables are mostly local: if we “flip” one
variable in σ, then we can “repair” the unsatisfied clauses that this may cause by
simply flipping another lnn variables. Furthermore, for at least a good fraction of
the variables, the marginals Mx(Φt) are bounded away from 0/1. Finally, the third
statement says that for a “typical” σ ∈ S(Φt) only an exponentially small fraction
of S(Φt) lies within distance 0.49θn off σ. This means that the set S(Φt) is “well

spread” over the Hamming cube {0, 1}Vt .

Shattering and rigidity. Let Φ be a k-CNF and let σ ∈ S(Φt). For an integer
ω ≥ 1 we call a variable x ∈ Vt ω-rigid if any τ ∈ S(Φt) with σ(x) 	= τ(x) satisfies
dist(σ, τ) ≥ ω.

Furthermore, we say that a set S ⊂ {0, 1}Vt is (α, β)-shattered if it admits a

decomposition S =
⋃N

i=1 Ri into pairwise disjoint subsets such that the following two
conditions are satisfied:

SH1. We have |Ri| ≤ exp(−αθn)|S| for all 1 ≤ i ≤ N .
SH2. If 1 ≤ i < j ≤ N and σ ∈ Ri, τ ∈ Rj , then dist(σ, τ) ≥ βθn.
Theorem 3. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤

k ln 2− 2 lnk, and

(1)
ρ

ln 2
(1 + 2ρ−2) ≤ kθ ≤ exp

[
ρ

(
1− ln ρ

ρ
− 2

ρ

)]

there exist α = α(k, ρ) > 0, β = β(k, ρ) > 0 such that the random formula Φt has the
following properties w.h.p.:

1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. S(Φt) is (α, β)-shattered.
3. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
4. For almost all σ ∈ S(Φt) we have

|{τ ∈ S(Φt) : dist(σ, τ) ≤ 0.49θn}| ≤ exp(−Ω(n)) |S(Φt)| .
Thus, if the fraction θ of free variables lies in the regime (1), then in most satisfying

σ ∈ S(Φt) the values assigned to 99% of the variables are linked via long-range
correlations: to “repair” the damage done by flipping a single rigid variable it is
inevitable to reassign a constant fraction of all variables. This is mirrored in the
geometry of the set S(Φt): it decomposes into exponentially many exponentially tiny
subsets, which are mutually separated by a linear Hamming distance Ω(n). Yet as in
the symmetric phase, the marginals of a good fraction of the θn remaining variables
are bounded away from 0/1, and the set S(Φt) remains well spread over the Hamming

cube {0, 1}Vt .

The ferromagnetic phase. Let α > 0. We say that a set S ⊂ {0, 1}θn is
α-ferromagnetic if for any σ, τ ∈ S we have dist(σ, τ) ≤ αθn.
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Theorem 4. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

(2) ln ρ < k · θ < (1− ρ−2) · ρ

ln 2

the random formula Φt has the following properties w.h.p.:
1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. The set S(Φt) is ρ exp(4− ρ)-ferromagnetic.
3. At least 0.99θn variables x ∈ Vt satisfy Mx(Φt) ∈

[
0, 2−k/2

] ∪ [1− 2−k/2, 1
]
.

4. There is a set R ⊂ Vt of size |R| ≥ 0.99θn such that for any σ, τ ∈ S(Φt) we
have

|{x ∈ R : σ(x) 	= τ(x)}| ≤ k22−kn.

In other words, as the decimation process progresses to a point that the fraction θ
of free variables satisfies (2), the set of satisfying assignments shrinks into a subset of

{0, 1}Vt of tiny diameter, in contrast to a well-spread shattered set as in Theorem 3.
Furthermore, most marginalsMx(Φt) are either extremely close to 0 or extremely close
to 1. In fact, there is a large set R of variables on which all satisfying assignments
virtually agree. (More precisely, any two can’t disagree on more than k22−kn variables
in R.)

The forced phase. We call a variable x forced in the formula Φt if Φt has a
clause that only contains the variable x (a “unit clause”). Clearly, in any satisfying
assignment x must be assigned so as to satisfy this clause.

Theorem 5. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

(3) lnn/n ≤ k · θ < ln(ρ)(1− 10/ lnρ)

the random formula Φt is such that at least 0.99θn variables are forced w.h.p.
Theorem 5 shows that in the final phase of the decimation process, most variables

are not just rigid but indeed their values can be read off due to the existence of many
unit clauses. In other words, for most variables there is a local reason why the variable
must take a particular value.

1.4. Belief propagation. As mentioned earlier, the BP decimation algorithm is
an attempt at implementing the decimation process by means of an efficient algorithm.
The key issue with this is the computation of the marginalsMxt(Φt−1) in step 2 of the
decimation process. Indeed, the problem of computing these marginals is #P -hard in
the worst case. Thus, instead of working with the “true” marginals, BP decimation
uses certain numbers μxt(Φt−1, ω) that can be computed efficiently, where ω ≥ 1 is an
integer parameter. The precise definition of the μxt(Φt−1, ω) can be found below, but
basically, the μxt(Φt−1, ω) are the result of a “local” dynamic programming algorithm
(“belief propagation”) that depends upon the assumption of a certain correlation
decay property. For given k, ρ, the key hypothesis underpinning the BP decimation
algorithm can be stated as follows.

Hypothesis 6. For any ε > 0 there is ω = ω(ε, k, ρ, n) ≥ 1 such that w.h.p. for
all 1 ≤ t ≤ n we have |μxt(Φt−1, ω)−Mxt(Φt−1)| < ε.

In other words, Hypothesis 6 states that throughout the entire decimation process,
the “BP marginals” μxt(Φt−1, ω) are a good approximation to the true marginals
Mxt(Φt−1).
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Theorem 7. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0 and
ρ0 ≤ ρ ≤ k ln 2 − 2 lnk the following is true for any integer ω = ω(k, ρ, n) ≥ 1.
Suppose that

(4) c0 ln(ρ) < k · θ < ρ/ ln 2.

Then for at least 0.99θn variables x ∈ Vt we have μx(Φt, ω) ∈ [0.49, 0.51] .
Comparing Theorem 4 with Theorem 7, we see that w.h.p. for θ satisfying (4)

most of the true marginals Mx(Φt) are very close to either 0 or 1, whereas the BP
marginals lie in [0.49, 0.51]. Thus, in the regime described by (4) the BP marginals do
not provide a good approximation to the actual marginals. Intuitively, this means that
in the ferromagnetic phase the hypothesis that the marginalsMxt(Φt) are determined
by local effects is wrong. Indeed, our proof of Theorem 4 is based on genuinely
“global” expansion-type arguments. Thus, as a direct consequence of Theorems 4
and 7 we obtain the following.

Corollary 8. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0,
ρ0 ≤ ρ ≤ k ln 2− 3 ln k Hypothesis 6 is untrue.

Let us state the precise definition of the BP marginals; this follows [7, 9, 21, 22,
23], which also contain more background on BP. (Strictly speaking, we include the
definition of the μxt(Φt−1, ω) only for the sake of completeness. We won’t actually
need the definition in our proof of Theorem 7, as we will simply invoke a result
from [9] that reduces the analysis of the BP marginals to the proof of a certain quasi-
randomness property of the input formula.)

Let Φt−1 be a Boolean formula on Vt−1 = {xt, . . . , xn}. The factor graph of Φt−1

is the bipartite graph G = G(Φt−1) whose vertices are the variables Vt−1 and the
clauses of Φt−1. Each clause is adjacent to the variables that occur in it. Let N(v)
denote the neighborhood of a vertex v in G. For a variable x ∈ Vt and a clause
a ∈ N(x) we will denote the ordered pair (x, a) by x → a. Similarly, a → x stands
for the pair (a, x). Furthermore, we let sign(x, a) = 1 if x occurs in a positively and
sign(x, a) = −1 otherwise.

The message space M(Φt−1) is the set of all tuples (μx→a(ζ))x∈Vt, a∈N(x), ζ∈{0,1}
such that μx→a(ζ) ∈ [0, 1] and μx→a(0)+μx→a(1) = 1 for all x, a, ζ. For μ ∈ M(Φt−1)
we define μa→x(ζ) = 1 if ζ = (1 + sign(x, a))/2, and

(5) μa→x(ζ) = 1−
∏

y∈N(a)\{x}
μy→a

(
1− sign(y, a)

2

)

otherwise. Furthermore, we define the belief propagation operator BP as follows: for
any μ ∈ M(Φt−1) we define BP(μ) ∈ M(Φt−1) by letting

(BP(μ))x→a(ζ) =

∏
b∈N(x)\{a}

μb→x(ζ)

∏
b∈N(x)\{a}

μb→x(0) +
∏

b∈N(x)\{a}
μb→x(1)

(6)

unless the denominator equals zero, in which case (BP(μ))x→a(ζ) =
1
2 .

Finally, the values μx(Φt, ω) are defined as follows. Let μ [0] = 1
2 · 1 ∈ M(Φt−1)

be the vector with all entries equal to 1
2 . Moreover, define inductively

μ [�] = BP(μ [�− 1]) for 1 ≤ � ≤ ω.
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Then

μx(Φt−1, ω) =

∏
b∈N(x)

μb→x(1) [ω]

∏
b∈N(x)

μb→x(0) [ω] +
∏

b∈N(x)

μb→x(1) [ω]
(7)

for any x ∈ Vt, unless the denominator is zero, in which case we set μx(Φt−1, ω) =
1
2 .

Let us briefly discuss the motivation behind this formal definition. For an integer
ω ≥ 1 let Nω(xt) signify the set of all vertices of G that have distance at most 2ω
from xt. Then the induced subgraph G [Nω(xt)] of the factor graph corresponds to
the subformula of Φt−1 obtained by removing all clauses and variables at distance
more than 2ω from xt. Note that all vertices at distance precisely 2ω are variables, so
that any satisfying assignment of Φ induces a satisfying assignment of the subformula.
Let us denote by Mxt(Φt−1, ω) the marginal probability that xt takes the value 1 in
a random satisfying assignment of this subformula.

It is not difficult to verify that if the induced subgraph G [Nω(xt)] is a tree,
then μxt(Φt−1, ω) = Mxt(Φt−1, ω) [7]. Indeed, the definition of the μxt(Φt−1, ω)
can be viewed as a dynamic programming algorithm for computing Mxt(Φt−1, ω) if
G [Nω(xt)] is a tree. Moreover, standard arguments show that in a random formula
Φ actually G [Nω(xt)] is a tree w.h.p. (so long as ω = o(lnn)). Thus, the basic idea
behind BP decimation is to approximate the true marginal Mxt(Φt−1) by the local
marginal Mxt(Φt−1, ω) in the tree G [Nω(xt)].

1.5. Summary and discussion. Fix k ≥ k0 and ρ ≥ ρ0. Theorems 2–5
show how the space of satisfying assignments of Φt evolves as the decimation pro-
cess progresses; this is depicted schematically in Figure 1. In the symmetric phase
kθ ≥ exp((1+ oρ(1))ρ), where there still is a large number of free variables, the corre-
lations among the free variables are purely local (“loose variables”). As the number
of free variables enters the regime (1+ oρ(1))ρ/ ln 2 ≤ kθ ≤ exp((1− oρ(1))ρ), the set
S(Φt) of satisfying assignments shatters into exponentially many tiny “clusters,” each
of which comprises only an exponentially small fraction of all satisfying assignments.
Most satisfying assignments exhibit long-range correlations among the possible values
that can be assigned to the individual variables (“rigid variables”). This phenomenon
goes by the name dynamic replica symmetry breaking in statistical mechanics [17].

While in the previous phases the set of satisfying assignments is scattered all
over the Hamming cube, in the ferromagnetic phase (1 − oρ(1)) ln ρ ≤ kθ ≤ (1 −
oρ(1))ρ/ ln 2 the set of satisfying assignments has a tiny diameter. This is mirrored
by the fact that the marginals of most variables are extremely close to either 0 or 1.
Furthermore, in (most of) this phase the estimates of the marginals resulting from
belief propagation are off (Theorem 7). More precisely, even if BP decimation would
emulate the decimation process perfectly up until the ferromagnetic phase commences,
the mistaken BP marginals would then lead BP to assign rigid variables “wrongly”
(i.e., differently than they are assigned in any satisfying assignment). In effect, BP
decimation would fail to find a satisfying assignment, regardless of its subsequent
decisions. Finally, in the forced phase kθ ≤ (1 − oρ(1)) ln ρ there is an abundance
of unit clauses that make it easy to read off the values of most variables. However,
getting stuck in the ferromagnetic phase, BP decimation won’t even reach this regime.

These results suggest that the reason for the failure of BP decimation is the exis-
tence of the ferromagnetic phase. Intuitively, in the ferromagnetic phase the marginals
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   k

exp ( )
   k

   k ln2

   k ln2

   ln ( )

symmetric phase

shattering phase

ferromagnetic phase

forced phase

Fig. 1. The phase diagram of the decimation process with schematic represenations of the
“shape” of the solution space S(Φt) in the various phases.

are governed by genuinely global phenomena (essentially expansion properties) that
elude the inherently local BP computation. By contrast, it is conceivable that BP
does indeed yield the correct marginals in the previous phases. Verifying or falsifying
this remains an important open problem.

1.6. Related work.

The statistical mechanics perspective. BP and SP decimation are inspired
by a generic but highly nonrigorous analysis technique from statistical mechanics
called the cavity method [7]. This technique is primarily destined for the analysis of
phase transitions. It is based on the (unproven) replica symmetry breaking hypothesis,
which aims to characterize the possible types of correlations among the variables [17].

In [7, 17] the cavity method was used to study the structure of the set S(Φ) of
satisfying assignments (or, more accurately, properties of the Gibbs measure) of the
undecimated random formula Φ. Thus, the results obtained in that (nonrigorous)
work identify phase transitions solely in terms of the formula density ρ. On the basis
of these results, it was hypothesized that (certain versions of) BP decimation should
find satisfying assignments up to ρ ∼ ln k or even up to ρ ∼ k ln 2. The argument
given for the latter scenario in [17] is that the key obstacle for BP to approximate the
true marginals is condensation, a phenomenon that is conjectured to be very similar
to ferromagnetism with respect to its effect on belief propagation. In terms of the
parameter ρ, the condensation threshold was (nonrigorously) estimated to occur at
ρ = k ln 2−3k2−k−1 ln 2. However, [9] shows that (the basic version of) BP decimation
fails to find satisfying assignments already for ρ ≥ ρ0 with ρ0 a constant independent
of k.
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The explanation for this discrepancy is that [7, 17] neglect the time parameter
θ = 1 − t/n of the decimation process. As Theorem 4 shows, even for fixed ρ ≥ ρ0
(independent of k) ferromagnetism occurs as the decimation process proceeds to θ
in the regime (2). This means that decimating variables has a similar effect on the
geometry of the set of satisfying assignments as increasing the clause/variable density.
On a nonrigorous basis an analysis both in terms of the formula density ρ and the
time parameter θ was carried out in [23]. Thus, our results can be viewed as a rigorous
version of [23] (with proofs based on completely different techniques). In addition,
Theorem 7 confirms rigorously that for ρ, θ in the ferromagnetic phase, BP does not
yield the correct marginals.

The present results have no immediate bearing on the conceptually more so-
phisticated SP decimation algorithm. However, we conjecture that SP undergoes a
similar sequence of phase transitions and that the algorithm will not find satisfying
assignments for densities ρ ≥ ρ0 with ρ0 a certain constant independent of k.

Rigorous work. Theorem 3 can be viewed as a generalization of the results on
random k-SAT obtained in [2] (which additionally deals with further problems such
as random graph/hypergraph coloring). In [2] we rigorously proved a substantial
part of the results hypothesized in [17] on shattering and rigidity in terms of the
clause/variable density ρ; this improved prior work [3, 6, 10]. The new aspect of the
present work is that we identify not only a transition for shattering/rigidity, but also
for ferromagnetism and forcing in terms of both the density ρ and the time parameter θ
of the decimation process. As explained in the previous paragraph, the time parameter
is crucial to link these phase transitions to the performance of algorithms such as BP
decimation.

In particular, from Theorem 3 we can recover the main result of [2] on random
k-SAT. Namely, if ρ ≥ ln k + 2 ln ln k + 2, then (1) is satisfied even for θ = 1, i.e., the
undecimated random formula Φ has the properties 1–4 stated in Theorem 3 w.h.p.
Technically, the present paper builds upon the methods developed in [2]. But in
addition, new arguments are needed to accommodate the time parameter θ to prove
the statements on the marginals of the variables in Theorems 2–4 and to establish
ferromagnetism (Theorem 4).

The best current rigorous algorithmic results for random k-SAT are [8, 12, 13, 15].
For general k, the best current algorithm succeeds up to ρ ∼ ln k [8].

Many algorithmic results for random k-SAT, including [13, 15], are derived via
the method of differential equations [24]; an excellent account of this is provided in [1].
Such algorithms typically assign one variable at a time based on some “local” rule,
simplify the formula accordingly, and proceed to the next variable until either a sat-
isfying assignment is found or an empty clause (i.e., a contradiction) is generated. In
particular, there is usually no (or essentially no) backtracking or reassigning variables
at a later time. In a sense, BP guided decimation can be viewed as a far-reaching
generalization of these algorithms (cf. [6]). However, in contrast to the decimation
process that we are studying here, in differential equations analyses of algorithms the
distribution of the formula that occurs after t steps typically has a relatively sim-
ple characterization. More precisely, this distribution is normally characterized by a
handful of parameters that capture the past decisions of the algorithm, such as the
number of clauses of a given length remaining.

By contrast, in the decimation process the distribution that we need to study is
inherently complicated. In particular, the analysis of this distribution hinges upon the
study of uniformly random satisfying assignments of the random formula Φ. Indeed,
characterizing this distribution precisely is perhaps one of the most difficult open
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problems in the theory of random constraint satisfaction problems. However, as we
will see we can harness a key insight from [2] in order to get an approximation of this
distribution that is sufficiently good for our purposes. We will return to this problem
in section 3.

1.7. Organization of the paper. Before we come to the proofs of our main
results, we need to go over some notation and preliminaries in section 2. Moreover, in
section 3 we will introduce a further probability distribution (the “planted model”)
that will facilitate the analysis of the decimation process.

Theorems 2–7 are organized according to the various phases of the decimation
process. However, to prove them it is more natural to proceed according to the tech-
niques needed to establish the various types of statements. Therefore, we will prove
the statements on loose/rigid/forced variables in Theorems 2–4 in section 4. Then, in
section 5 we will prove the claims about shattering and ferromagnetism. Furthermore,
section 6 deals with the statements on the marginals Mx(Φt−1). Thus, Theorems 2,
3, 4, and 5 follow by combining the corresponding statements of Theorems 17, 26,
and 37 below. Finally, in section 7 we will show how Theorem 7 follows from some
auxiliary results from [9].

2. Preliminaries and notation. Throughout the paper, particularly in the var-
ious computations, we will always assume that k ≥ k0 and ρ ≥ ρ0 for sufficiently large
constants k0, ρ0 > 0, unless specified otherwise. We will also assume implicitly that n
is large.

Recall that Vt = {xt+1, . . . , xn} is the set of variables of the formula obtained
after the first t steps of the decimation process. In addition, we let

Lt = {xt+1, x̄t+1, . . . , xn, x̄n}
be the corresponding set of literals. For a literal l let |l| denote the underlying variable.
For a formula Φ on V = {x1, . . . , xn}, an assignment σ ∈ {0, 1}V , and 1 ≤ t ≤ n we
let Φt,σ denote the formula obtained by substituting σ(xs) for xs for all 1 ≤ s ≤ t and
simplifying (i.e., omitting all clauses that are satisfied and omitting all false literals
from the remaining clauses).

We need the following Chernoff bound on the tails of a binomially distributed
random variable X with mean λ (see [14, pp. 26–28]): for any t > 0,

P(X ≥ λ+ t) ≤ exp (−t · ϕ(t/λ)) and P(X ≤ λ− t) ≤ exp (−t · ϕ(−t/λ)) ,(8)

where

(9) ϕ(x) = (1 + x) ln(1 + x)− x.

The following theorem provides a lower bound on the typical number of satisfying
assignments.

Theorem 9 (see [3]). Assume k ≥ 4 and ρ ≤ k ln 2− k2/2k. Then

1

n
ln |S(Φ)| ≥ ln 2 + r ln(1− 2−k)− 0.99ρ/2k w.h.p.

There is a natural way to associate a bipartite graph with a propositional formula
Φ, known as the factor graph (cf. section 1.4). Its vertices are the variables and the
clauses of Φ, and each clause is adjacent to all the variables it contains. For a variable
x we let N3(x) be the subgraph of the factor grpah that is spanned by all vertices at
distance at most 3 from x. A variable x is tame if N3(x) is acyclic and contains no
more than ln(n) variables. The following is a well-known fact about random k-CNFs.
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Proposition 10 (see [2]). Suppose k ≥ 3 and 0 < r ≤ 2k ln 2. W.h.p. all but
o(n) variables are tame in Φ.

Finally, the following lemma expresses an elementary expansion property of the
random formula Φ.

Lemma 11. For any k ≥ 3 there is χ = χ(k) > 0 such that for all 0 < r ≤ 2k the
random formula Φ has the following property w.h.p.:

(10)
There is no set Q of 1 ≤ |Q| ≤ χn variables such that the number
of clauses containing at least two variables from Q is at least 2|Q|.

Proof. We use a first moment argument. Let 1 ≤ q ≤ χn and let Q0 =
{x1, . . . , xq} be a fixed set of size q. For any set Q we let Y (Q) be the number
of clauses containing at least two variables from Q. Moreover, let Xq be the number
of sets Q of size q such that Y (Q) ≥ 2q. Since the distribution of Φ is symmetric with
respect to permutations of the variables, we have

(11) E [Xq] ≤
(
n

q

)
· P [Y (Q0) ≥ 2q] ≤ exp [q(1 + ln(n/q))] · P [Y (Q0) ≥ 2q] .

Furthermore, the probability that a random k-clause contains two variables from Q0

is at most
(
k
2

)
(q/n)2 (because for each of the

(
k
2

)
pairs of “slots” in the clauses the

probability that both of them are occupied by variables from Q0 is at most (q/n)2). As
Fk(n,m) consists of m independent k-clauses, Y (Q0) is stochastically dominated by
a binomial random variable Bin(m,

(
k
2

)
(q/n)2). Consequently, assuming that q/n ≤ χ

is sufficiently small, we get

P [Y (Q0) ≥ 2q]

≤ P

[
Bin

(
m,

(
k

2

)( q
n

)2)
≥ 2q

]

≤ exp

[
−1.9q ·

[
ln

(
2q(

k
2

)
(q/n)2m

)
− 1

]]
(by the Chernoff bound (8))

≤ exp

[
−1.9q · ln

(
4

ek2r
· n
q

)]
≤ exp

[
−1.9q · ln

(
4

ek22k
· n
q

)]
.(12)

Choosing χ = χ(k) sufficiently small, we can ensure that (q/n)1/4 ≤ χ1/4 ≤ 4/(ek22k).
Plugging this bound into (12), we get

P [Y (Q0) ≥ 2q] ≤ exp [−1.1q · ln (n/q)] .(13)

Combining (11) and (13), we get E [Xq] ≤ exp [−0.1q ln (n/q)] . In effect,

E
∑

1≤q≤χn

Xq = O(n−0.1).

Hence, Markov’s inequality implies that w.h.p.
∑

1≤q≤χnXq = 0, in which case (10)
holds.

3. Analyzing the decimation process. Here we perform some groundwork
to facilitate our analysis of the decimation process. The goal is to get a handle on the
following experiment:

D1. Generate a random formula Φ, conditioned on Φ being satisfiable.
D2. Run the decimation process for t steps to obtain Φt.
D3. Choose a satisfying assignment σt ∈ S(Φt) uniformly at random.
D4. The result is the pair (Φt,σt).
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Because throughout the paper we will only work with densities m/n where Φ is
satisfiable w.h.p., the conditioning in step D1 is essentially void. Recalling that the
outcome of the decimation process is a uniformly random satisfying assignment of the
input formula Φ, we see that the following experiment is equivalent to D1–D4:

U1. Generate a random formula Φ, conditioned on Φ being satisfiable.
U2. Choose σ ∈ S(Φ) uniformly at random.
U3. Substitute σ(xi) for xi for 1 ≤ i ≤ t and simplify to obtain Φt = Φt,σ.
U4. The result is the pair (Φt,σt), where σt : Vt → {0, 1} , x �→ σ(x).
Fact 12. The two probability distributions induced on formula/assignment pairs

by the two experiments D1–D4 and U1–U4 are identical.
Still, an analysis of U1–U4 seems difficult because of U2: it is unclear how to

analyze (or implement) this step directly. Following [2], we will surmount this problem
by considering yet another experiment.

P1. Choose an assignment σ′ ∈ {0, 1}V uniformly at random.
P2. Choose a formula Φ′ with m clauses that is satisfied by σ′ uniformly at

random.
P3. Substitute σ′(xi) for xi for 1 ≤ i ≤ t and simplify to obtain Φ′

t = Φ′
t,σ′ .

P4. The result is the pair (Φ′
t,σ

′
t), where σ′

t : Vt → {0, 1} , x �→ σ′(x).
The distribution P1–P4 is easy to sample from and, in effect, it is also amenable to

a rigorous analysis. For given the assignment σ′, there are (2k−1)
(
n
k

)
clauses in total

that evaluate to true under σ′, and to generate Φ′ we merely choose m out of these
uniformly and independently. Unfortunately, it is not true that the experiment P1–P4
is equivalent to U1–U4. However, we will employ a result from [2] that establishes
a connection between these two experiments that is strong enough to extend many
results from P1–P4 to U1–U4.

To state this result, observe that P1–P4 and U1–U4 essentially only differ in their
first two steps. Thus, let Λk(n,m) denote the set of all pairs (Φ, σ), where Φ is a
k-CNF on V = {x1, . . . , xn} with m clauses, and σ ∈ S(Φ). Let Uk(n,m) denote
the probability distribution induced on Λk(n,m) by U1–U2, and let Pk(n,m) signify
the distribution induced by P1–P2; this distribution is sometimes called the planted
model.

Theorem 13 (see [2]). Suppose k ≥ 4 and 0 < ρ < k ln 2 − k2/2k. Let
E ⊂ Λk(n,m). If PPk(n,m) [E ] ≥ 1− exp(−ρn/2k), then PUk(n,m) [E ] = 1− o(1).

We will need the following consequence of Theorem 9.
Corollary 14. Let 1 ≤ t ≤ n. Let (Φt,σt) be a pair chosen from the experiment

U1–U4. Then w.h.p.

(14)
1

n
ln |S(Φt)| ≥ θ ln 2 + r ln(1 − 2−k)− ρ

2k
.

Proof. Theorem 9 shows that 1
n ln |S(Φ)| ≥ ln 2 + r ln(1− 2−k)− 0.99ρ/2k w.h.p.

Thus, it suffices to show that for any fixed formula Φ such that

(15)
1

n
ln |S(Φ)| ≥ ln 2 + r ln(1 − 2−k)− 0.99ρ/2k

for almost all σ ∈ S(Φ) we have

1

n
ln |S(Φt,σ)| ≥ θ ln 2 + r ln(1− 2−k)− ρ

2k
.

To show this, let I = {0, 1}t. For each σ ∈ {0, 1}n let σ|t denote the vector
(σ(x1), . . . , σ(xt)) ∈ I. For each σ∗ ∈ I let Z(σ∗) be the number of assignments
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σ ∈ S(Φ) such that σ|t = σ∗. Then our goal is to show that 1
n lnZ(σ|t) ≥ θ ln 2 +

r ln(1− 2−k)− ρ
2k for almost all σ ∈ S(Φ). Thus, let

q = Pσ∈S(Φ)

[
1

n
lnZ(σ|t) < θ ln 2 + r ln(1− 2−k)− ρ

2k

]
.

If σ ∈ S(Φ) is chosen uniformly at random, then for any σ∗ ∈ I we have

P [σ|t = σ∗] = Z(σ∗)/Z, where Z =
∑
τ∈I

Z(τ) = |S(Φ)| .

Therefore, by (15)

q =
∑

σ∗∈I:Z(σ∗)≤Z/(2t exp(0.01ρn/2k))

Z(σ∗)
Z

≤ 2t

Z
· Z

2t exp(0.01ρn/2k)
≤ exp(−Ω(n)),

as claimed.
In addition to the experiment P1–P4, which led to the planted model Pk(n,m),

we need the following variant:
P1′. Choose an assignment σ′ ∈ {0, 1}V uniformly at random.
P2′. Choose a formula Φ′ by including each of the (2k−1)

(
n
k

)
possible clauses that

are satisfied under σ′ with probability p = m/((2k − 1)
(
n
k

)
) independently.

P3′. Substitute σ′(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula
Φ′

t = Φ′
t,σ′ .

P4′. The result is the pair (Φ′
t,σ

′
t), where σ′

t : Vt → {0, 1} , x �→ σ′(x).
Steps P1′–P2′ of this experiment induce a probability distribution P ′

k(n,m) on
formula/assignment pairs. The following corollary establishes a connection between
this distribution and Uk(n,m).

Corollary 15 (see [2]). Suppose that k ≥ 4 and 0 < r < 2k ln 2 − k. Let E be
any property of formula/assignment pairs. If PP′

k(n,m) [E ] ≥ 1 − exp(−ρn/2k), then
PUk(n,m) [E ] = 1− o(1).

Let Φ be a propositional formula, let σ ∈ S(Φ), and let l be a literal. We say that
l supports a clause C of Φ under σ if l is the only literal of C that is true under σ.
We will need the following elementary observation about the distribution P ′

k (n,m).
Lemma 16. Let (Φ′,σ′) be a pair chosen from the distribution P ′

k (n,m).
1. For each literal l that is true under σ′ the number of clauses supported by l

is binomially distributed Bin( kn · (nk),m/((2k − 1)
(
n
k

)
)).

2. For any integer D the number of literals l that support fewer than D clauses
is binomially distributed with mean

(16) n · P
[
Bin

(
k

n
·
(
n

k

)
,

m

(2k − 1)
(
n
k

)
)
< D

]
.

Proof. Without loss of generality we may condition on σ′ assigning the value
true to all variables. For any variable x let Sx be the set of all possible clauses in
which x is the only positive literal. Then |Sx| =

(
n−1
k−1

)
= k

n · (nk). (Choose the k − 1
other variables occurring in the clause; the signs are prescribed by x being the unique
positive literal.) Moreover, let Sx be the number of clauses from Sx that actually
appear in the random formula F . As each of the clauses in Sx is included in F
with probability p = m/((2k − 1)

(
n
k

)
) independently, Sx has a binomial distribution

Bin( kn · (nk), p). This establishes 1.
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Since for any two variables x, y we have Sx ∩Sy = ∅, the random variables Sx are
mutually independent for all variables x. Therefore, the number S =

∑
x 1{Sx<D} of

variables supporting fewer than D clauses in F is binomially distributed as well.

4. Loose, rigid, and forced variables.

4.1. Overview. In this section we prove the statements made in Theorems 2–5
on loose/rigid/forced variables. The following theorem summarizes them.

Theorem 17. There exist constants k0, ρ0 > 0 such that for all k ≥ k0 and
ρ0 ≤ ρ ≤ k ln 2− 2 lnk the following three statements hold for a random pair (Φt,σt)
chosen from the experiment U1–U4 w.h.p.:

1. If kθ > exp[ρ(1 + ln ln ρ
ρ + 10

ρ )], then at least 0.99θn variables x ∈ Vt are loose
w.h.p.

2. If 1 < kθ < exp[ρ(1− 3 ln ρ
ρ )], then at least (1− ρ3

exp(ρ) )θn variables x ∈ Vt are

Ω(n)-rigid w.h.p.
3. If ln(n)/n < θ < (ln(ρ) − 10)/k, then at least 0.99θn variables are forced

w.h.p.
Let (Φt,σt) be the (random) outcome of U1–U4; let us assume without loss

of generality that σt is the all-true assignment. The notions of loose/rigid/forced
describe how easy or difficult it is to “repair” the damage done by flipping the value
assigned to a single variable x from σt(x) to 1 − σt(x) (i.e., to satisfy the resulting
unsatisfied clauses). To get a combinatorial intuition, observe that we can simply
assign x the opposite value 1 − σt(x), unless Φt has a clause C in which x underlies
the only literal that is true under σt. If there is such a clause C, we say that x
supports C.

But even if x supports a clause C, x might be easy to flip. For instance, if C
features some variable y 	= x that does not support any clause, then we could just
flip both x, y simultaneously. Thus, to understand for what θ, ρ variables are rigid we
need to analyze the distribution of the number of clauses that a variable supports, the
probability that these clauses only consists of variables that support further clauses,
the probability that the same is true of those clauses, etc.

It does not seem easy to analyze this kind of property directly on the random
outcome (Φt,σt) of U1–U4. By contrast, as we will see the analysis can be carried out
quite neatly on the random pair (Φ′

t,σ
′
t) generated by the experiment P1–P4. Hence,

we will work with (Φ′
t,σ

′
t) and then extend the result to (Φt,σt) via Theorem 13.

For a variable x ∈ Vt let Sx be the number of clauses supported by x. Given
the assignment σ′ chosen in step P1, there are a total of

(
n−1
k−1

)
possible clauses that

x supports. Since in step P2 we include m out of the (2k − 1)
(
n
k

)
possible clauses

satisfied under σ′ uniformly and independently, we get

E [Sx] = m

(
n− 1

k − 1

)(
(2k − 1)

(
n

k

))−1

= ρ/(1− 2−k) > ρ.

In fact, Sx is binomially distributed. Hence, P [Sx = 0] ≤ exp(−ρ). Thus, the expected
number of variables x ∈ Vt with Sx = 0 is ≤ θn exp(−ρ). Furthermore, if we condition
on Sx = j ≥ 1, then the actual clauses C1, . . . , Cj supported by x are just uniformly
distributed over the set of all

(
n−1
k−1

)
possible clauses that x supports. Therefore, the

expected number of variables y ∈ Vt with Sy = 0 occurring in any one of these clauses
Ci is
(17) (k − 1) · θ exp(−ρ) + o(1).
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Hence, (17) suggests that for θ � exp(ρ)/(k − 1), there is a good chance that
Ci might contain a variable y that does not support another clause, and hence that
x is loose. Indeed, this observation provides the starting point for the proof of the
first part of Theorem 17 in section 4.2. By contrast, if (k − 1) · θ exp(−ρ) � 1,
then (17) indicates that Ci is unlikely to contain another nonsupporting variable. In
section 4.3 below we will turn this into a proof of the second part of Theorem 17.
Finally, section 4.4 contains the proof of the existence of forced variables.

4.2. Loose variables. Let σ be a satisfying assignment of a k-CNF Φ. Remem-
ber that a literal l supports a clause C of Φ if l is the only literal in C that is true
under σ. Moreover, we say that a literal l is 1-loose if it is true under σ and supports
no clause. In addition, l is 2-loose if l is true under σ and each clause that l supports
contains a 1-loose literal from Lt. Thus, any 1-loose literal is 2-loose as well. The key
step of the proof is to establish the following.

Proposition 18. Suppose that θ ≥ 3 exp(ρ)(ln ρ + 10)/k and r ≤ 2k ln 2 − k.
Let (Φ,σ) be a random pair chosen from the distribution Uk (n,m). Then there are
at least 0.999θn 2-loose literals in Lt w.h.p.

To obtain Theorem 2 from Proposition 18, we will show that any 2-loose literal
is loose w.h.p. (Of course, in principle one could generalize this argument by defin-
ing/studying t-loose variables for t > 2. However, to prove Theorem 2 it is sufficient
to consider 2-loose literals.) To prove Proposition 18, we start by estimating the
number of 1-loose literals.

Lemma 19. Suppose that θ ≥ exp(ρ)/k and ρ ≤ k ln 2. Let (Φ′,σ′) be a random
pair chosen from the distribution P ′

k (n,m). With probability at least 1−exp(−k22−kn)
the number of 1-loose literals in Lt is at least θn · exp(−ρ)/2.

Proof. By Lemma 16 the number X of 1-loose literals in Lt has a binomial
distribution with mean

E [X ] = θn · P
[
Bin

(
k

n
·
(
n

k

)
,

m

(2k − 1)
(
n
k

)
)

= 0

]

= θn ·
(
1− m

(2k − 1)
(
n
k

)
) k

n ·(nk)
∼ θn · exp

(
− kr

2k − 1

)

= θn exp(−ρ− ρ/(2k − 1)) ≥ 0.99θn exp(−ρ) as ρ ≤ k ln 2.

Hence, the Chernoff bound (8) shows that

P [X < θn exp(−ρ)/2] ≤ P [X < E [X ]− 0.49θn exp(−ρ)]
≤ exp [−E [X ] · φ(−0.49θn exp(−ρ)/E [X ])]

≤ exp

[
− (0.49θn exp(−ρ))2

2E [X ]

]

≤ exp

[
− (0.49)2θ exp(−ρ)n

2 · 0.99
]

≤ exp [−θ exp(−ρ)n/9]
≤ exp [−n/(9k)] [since θ ≥ exp(ρ)/k]

≤ exp(−k22−kn),

as desired.
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With Lemma 19 in place, we can now estimate the number of 2-loose literals in
a pair chosen from the planted distribution P ′

k(n,m).
Lemma 20. Suppose that θ ≥ 3 exp(ρ)(ln ρ + 10)/k and that ρ ≤ k ln 2. Let

(Φ′,σ′) be a random pair chosen from the distribution P ′
k(n,m). Then with probability

at least 1− exp(−k21−kn) the number of 2-loose literals in Lt is at least 0.999θn.
Proof. To simplify the notation, we are going to condition on σ′ being the all-true

assignment; this is without loss of generality (by symmetry). For each variable x ∈ Vt
we let Sx be the number of clauses supported by x. Moreover, let S =

∑
x∈Vt

Sx

and let X be the number of variables x ∈ Vt such that Sx = 0. Thus, X equals the
number of 1-loose variables.

Let E be the event that X ≥ θn exp(−ρ)/2 and S ≤ 2ρθn. Since the number of
possible clauses with precisely one positive literal in Lt is θn

(
n−1
k−1

)
, S has a binomial

distribution, i.e.,

S ∼ Bin

[
θn

(
n− 1

k − 1

)
,

m

(2k − 1)
(
n
k

)
]
.

Therefore, Lemma 19 implies that

P [¬E ] ≤ P [X < θn exp(−ρ)/2] + P [S > 2ρθn]

≤ exp
[−k22−kn

]
+ P

[
Bin

(
θn

(
n− 1

k − 1

)
,

m

(2k − 1)
(
n
k

)
)
> 2ρθn

]
.(18)

We have

θn

(
n− 1

k − 1

)
· m

(2k − 1)
(
n
k

) =
2k

2k − 1
· ρθn.

Hence, combining (18) with the Chernoff bound (8), we obtain for sufficiently large k

P [¬E ] ≤ exp
[−k22−kn

]
+ exp [−0.99ρθn] ≤ 2 exp

[−k22−kn
]
,(19)

where in the last step we used the assumption that ρ ≥ ρ0 for a fixed constant ρ0 > 0.
Let us now condition on the event that S = s for some number s ≤ 2ρθn, and

on the event E . In this conditional distribution for each of the s clauses supported
by some variable in Vt the k − 1 negative literals are just drawn uniformly without
replacement, independently for the s clauses. Therefore, for each such clause the
probability to not contain a negative literal ȳ whose underlying variable y is 1-loose
is (1+ o(1))(1−X/n)k−1. Consequently, the number T of clauses supported by some
variable in Vt in which no 1-loose variable occurs negatively has a binomial distribution
with mean (1 + o(1))s(1 −X/n)k−1. Hence,

E [T |E] ≤ 2ρθn · (1− θ exp(−ρ)/2)k−1 ≤ 2ρθn exp(−θ exp(−ρ)k/3) ≤ 2 exp(−10)θn.

Thus, the Chernoff bound (8) implies that for k ≥ k0 large enough

P [T > 0.001θn|E] ≤ exp(−0.001θn) ≤ exp
[−k22−kn

]
.(20)

Finally, the assertion follows from (19) and (20).

D
ow

nl
oa

de
d 

11
/0

3/
16

 to
 1

38
.3

8.
10

6.
61

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE DECIMATION PROCESS IN RANDOM k-SAT 1487

Proof of Proposition 18. Let E be the event that a pair (Φ, σ) ∈ Λn,m has at least
0.999θn 2-loose literals. Lemma 20 shows that

(21) PP′
k(n,m) [E ] ≥ 1− exp(−k21−kn) ≥ 1− exp(−ρn/2k).

Hence, Corollary 15 and (21) imply that PUk(n,m) [E ] = 1− o(1) as desired.
Proof of Theorem 17, part 1. By Fact 12 it suffices to prove the desired statement

for the experiment U1–U4. Thus, let (Φ,σ) be a pair chosen from the distribution
Uk (n,m). Without loss of generality we may condition on σ being the all-true as-
signment. Let L be the set of all tame variables in Vt that are 2-loose. Then by
Propositions 10 and 18 we have |L| ≥ (0.999 − o(1))θn ≥ 0.99θn w.h.p. Assuming
that this is indeed the case, we are going to show that if x ∈ L, then there is a
satisfying assignment τ such that τ(x) 	= σ(x) and dist(τ,σ) ≤ ln(n).

Thus, fix a variable x ∈ L. If x is 1-loose, then we can just set τ(x) = 1−σ(x) = 0
and τ(y) = σ(y) = 1 for all y 	= x to obtain a satisfying assignment with dist(τ,σ) = 1,
because x does not support any clauses. Hence, assume that x is 2-loose but not 1-
loose. Let C be the set of all clauses supported by x in (Φ,σ). Any clause C ∈ C
contains a negative occurrence of a 1-loose variable xC ∈ Vt in C (by the very definition
of 2-loose). Define τ(x) = 0, τ(xC) = 0 for all C ∈ C, and τ(y) = σ(y) = 1 for all
other variables y.

We claim that τ is a satisfying assignment. To see this, assume for contradiction
that there is a clause U that is unsatisfied under τ . Then U contains a variable from
{x} ∪ {xC : C ∈ C} positively, while none of these variables occurs negatively in U .
Hence, U 	∈ C. Moreover, since the variables xC , C ∈ C, do not support any clauses,
U indeed contains two variables from the set {x}∪{xC : C ∈ C} positively. There are
two possible cases.

Case 1: x occurs in U . Let C ∈ C such that xC occurs in U as well. Then the
factor graph contains the cycle x,C, xC , U, x, in contradiction to our assumption that
x is tame.

Case 2: x does not occur in U . There exist C1, C2 ∈ C such that xC1 , xC2 occur
in U . Hence, the factor graph contains the cycle x,C1, xC1 , U, xC2 , C2, x, once more
in contradiction to the assumption that x is tame.

Hence, there is no clause U that is unsatisfied under τ . Finally, since all the
variable xC with C ∈ C have distance two from x in the factor graph, and as x is
tame, we have dist(σ, τ) ≤ lnn.

4.3. Rigid variables. Let (Φ,σ) be chosen from the distribution Uk(n,m) and
assume that σ is the all-true assignment. As we saw in section 4.1, in order to
show that for θ � exp(ρ)/k most variables are Ω(n)-rigid, we need to show that
most variables support at least a few clauses that consist exclusively of variables that
support other clauses. To get started, we prove the following lower bound on the
number of literals that support at least three clauses. Recall from (9) that ϕ(x) =
(1 + x) ln(1 + x)− x.

Proposition 21. Suppose that k ≥ 6 and 0 < r ≤ 2k ln 2− k. Let

μ = ρ · 2k/(2k − 1) and ζ = (1 + μ+ μ2/2)/ exp(μ),

and assume that 2kθζϕ(1) > ρ. Then w.h.p. in a random pair (Φ,σ) chosen from
the distribution Uk (n,m) no more than 2ζθn literals in Lt support fewer than three
clauses.
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Proof. Let S be the number of literals l ∈ Lt that support fewer than three
clauses. We are going to show that

(22) PP′
k(n,m) [S > 2ζθn] ≤ exp(−ρn/2k).

Then Corollary 15 implies the assertion.
By the second part of Lemma 16, in the distribution P ′

k (n,m) the random variable
S is binomially distributed with mean

E [S] = |Lt| · P
[
Bin

(
k

n

(
n

k

)
,

m

(2k − 1)
(
n
k

)
)
< 3

]

∼ θn · P
[
Po

(
k

2k − 1
· m
n

)
< 3

]
= θnP [Po(μ) < 3] = θζn.

Hence, the Chernoff bound (8) shows that

PP′
k(n,m) [S > 2ζn] ≤ exp (−(1 + o(1))θζϕ(1)n) .(23)

By the assumptions on μ and θ we have θζϕ(1) > ρ/2k. Hence, (22) follows from
(23).

Let (Φ,σ) be chosen from the distribution Uk(n,m) and assume that σ is the
all-true assignment. Even if many variables in Vt support several clauses, this does
not necessarily mean that these variables are Ω(n)-rigid, because these clauses might
contain other variables from Vt that do not support any clauses (cf. section 4.1).
However, as we shall see next, if there is a set S of variables that each support at
least two clauses that each consist of variables from S only, then indeed the variables
in S are Ω(n)-rigid w.h.p.

To be precise, let (Φ, σ) ∈ Λk(n,m) be a formula/satisfying assignment pair. We
say that a set S ⊂ Lt of literals is t-self-contained if each literal l ∈ S is true under σ
and supports at least two clauses that contain literals from {x1, x̄1, . . . , xt, x̄t}∪S ∪ S̄
only, where S̄ is the set of all negations of literals in S.

Proposition 22. For any k ≥ 3 there is a number χ = χ(k) > 0 such that for
any 0 < r ≤ 2k ln 2−k the following is true. Let (Φ,σ) be a random pair chosen from
the distribution Uk (n,m). Then w.h.p. for any 0 ≤ t ≤ n, in any t-self-contained set
S all variables x ∈ S ∪ S̄ are χn-rigid.

Proof. Let (Φ,σ) be a random pair chosen from the distribution Uk (n,m). With-
out loss of generality we may condition on σ being the all-true assignment. By
Lemma 11 there is a number χ = χ(k) > 0 such that (10) is satisfied w.h.p., and
we are going to assume that this is the case.

Let S be a t-self-contained set. Suppose that τ is a satisfying assignment such
that the set Q of all variables x ∈ S ∪ S̄ such that τ(x) 	= σ(x) is nonempty. For
each variable x ∈ Q there are two clauses C1(x), C2(x) that are supported by x
in σ and that consist of literals from {x1, x̄1, . . . , xt, x̄t} ∪ S ∪ S̄ only (because S
is self-contained). Since τ is satisfying and τ(x) 	= σ(x), both C1(x) and C2(x)
contain another variable from Q. Hence, there are at least 2|Q| clauses that contain
at least two variables from Q. Thus, (10) implies that |Q| > χn, and consequently
dist(σ, τ) ≥ |Q| > χn.

Now we will show that under certain assumptions on the parameters ρ, θ, a ran-
dom pair (Φ, σ) chosen from Uk(n,m) has a large t-self-contained set w.h.p.
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Proposition 23. Suppose that k ≥ 4 and 0 < r ≤ 2k ln 2−k and that 0 ≤ θ ≤ 1.
Set

μ =
ρ2k

2k − 1
, ζ =

1 + μ+ μ2/2

exp(μ)
, λ = 1− (1− 3θζ)k−1, γ =

μ · (exp(λμ) − 1− λμ)

(1− ζ) exp(μ)

and let h(x) = −x lnx− (1 − x) ln(1 − x). If ζ < 1/3,

(24) 2kθζϕ(1) > ρ, and θ(ζ ln(γ) + h(ζ)) + ρ/2k < 0,

then a random pair (Φ,σ) chosen from Uk (n,m) has a t-self-contained set of size
≥ (1− 3ζ)θn w.h.p.

Proof. Consider a random pair (Φ,σ); without loss of generality, suppose that σ
is the all-true assignment. In order to construct a t-self-contained set, we could run
the following process, somewhat reminiscent of the “whitening” from [6]. First, let Z
be the set of all variables that support fewer than three clauses. Then, we add to Z
all variables x ∈ Vt \ Z that do not support at least two clauses. Finally, we remove
all clauses that contain a variable from Z. This process is repeated until no further
variables are added to Z. Clearly, the set of all variables x ∈ Vt \ Z that support at
least two clauses after this process halts is t-self-contained.

The basic idea behind the proof is to analyze the above process, i.e., to estimate
the number of variables remaining that support at least two clauses. To carry this
analysis out, we will work with the planted model. Let p = m/((2k − 1)

(
n
k

)
). Let

(Φ′,σ′) be chosen from the distribution P ′
k (n,m). Without loss of generality we may

condition on σ′ being the all-true assignment. Furthermore, fix a set Z ⊂ Vt of at
most 2ζθn variables and condition on the event EZ that Z is the set of all variables
in Vt that support at most two clauses (cf. Proposition 21).

The analysis of the process depends on two probabilistic phenomena. The first
of these is the distribution of the number of clauses supported by variables x 	∈ Z.
Clearly, the more clauses a variable x 	∈ Z supports, the more likely it is that this
variable will “survive” the above process (i.e., that it still supports two or more
clauses in the end). The second phenomenon is the probability that a random clause
supported by a variable x 	∈ Z gets removed, i.e., that it contains a variable from Z.

To study the first phenomenon, for any variable x 	∈ Z we let Sx be the number
of clauses supported by x. Then the first part of Lemma 16 implies that Sx has a
binomial distribution Bin(

(
n−1
k−1

)
, p), conditioned on the outcome being at least three.

As a consequence, for any j ≥ 3 we have

PP′
k(n,m) [Sx = j|EZ ] =

P
[
Bin(

(
n−1
k−1

)
, p) = j

]
P
[
Bin(

(
n−1
k−1

)
, p) ≥ 3

] ≤ 1 + o(1)

1− ζ
·
((n−1

k−1

)
j

)
pj(1 − p)(

n−1
k−1)−j

≤ 1 + o(1)

1− ζ
· 1
j!

((
n− 1

k − 1

)
p

)j

exp

[
−p
((

n− 1

k − 1

)
− j

)]

≤ (1 + o(1))μj

j! exp(μ)(1 − ζ)
· exp(jp).(25)

To study the second phenomenon, let X ⊂ Vt \ Z be a set of ζθn variables. For
each x ∈ X we let Tx(X) be the number of clauses supported by x in which a variable
from X ∪ Z occurs negatively. (Hence, the set X ∪ Z corresponds to the Z in the
above description of the process.) In a random clause supported by x the variables
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underlying the k − 1 negative literals in that clause are distributed uniformly over
V = {x1, . . . , xn}. Therefore, given EZ the probability that such a clause contains at
least one variable from X ∪ Z is

1− (1 − |X ∪ Z|/n)k−1 + o(1) ≤ 1− (1− 3θζ)k−1 + o(1) ∼ λ.

Hence, if we condition on both EZ and Sx = j, then the probability that Tx(X) ≥ Sx−
1 is at most j · (λ+ o(1))j−1. Thus, letting γ = μ · (exp(λμ) − 1− λμ) /(1− ζ) exp(μ),
we obtain from (25)

PP′
k(n,m) [Tx(X) ≥ Sx − 1|EZ ] =

∑
j≥3

P [Tx(X) ≥ Sx − 1|EZ and Sx = j] · P [Sx = j|EZ ]

≤ (1 + o(1))
∑
j≥3

jλj−1μj exp(jp)

j! exp(μ)(1 − ζ)
∼ γ.

Given that EZ occurs the events Tx(X) ≥ Sx − 1 are mutually independent for all
x ∈ X (because each clause satisfied under σ is present in Φ′ with probability p
independently). Therefore,

PP′
k(n,m) [∀x ∈ X : Tx(X) ≥ Sx − 1|E ] ≤ (γ + o(1))θζn.(26)

Let SZ denote the event that there is no t-self-contained set S ⊂ Vt \ Z such that
|S| ≥ |Vt \ Z| − ζθn ≥ (1− 3ζ)θn.

If EZ occurs but SZ does not, then there is a set X ⊂ Vt \ Z of size ζn such that
Tx(X) ≥ Sx − 1 for all x ∈ X . To see this, consider the following formal description
of our process. Initially, let X = ∅. Then, while there is a variable x 	∈ X ∪ Z
such that Tx(X) ≥ Sx − 1, add x to X . If a t-self-contained set S ⊂ Vt \ Z of size
|S| ≥ |Vt \ Z| − ζθn exists, then this process will stop with a set X ⊂ Vt \ (S ∪ Z) of
size |X | ≤ |Vt \ (S ∪ Z)| < ζθn. Hence, by the union bound and (26)

PP′
k(n,m) [¬SZ |EZ ]
≤ PP′

k
(n,m) [∃X ⊂ Vt \ Z, |X | = ζθn : ∀x ∈ X : Tx(X) ≥ Sx − 1|EZ ]

≤
∑

X⊂Vt\Z, |X|=θζn

PP′
k(n,m) [∀x ∈ X : Tx(X) ≥ Sx − 1|EZ ]

≤
(
(1− 2ζ)θn

θζn

)
· (γ + o(1))θζn

≤ exp [(1− 2ζ)h(ζ/(1 − 2ζ)) · θn] · (γ + o(1))ζθn

≤ exp [θn · ((1− 2ζ)h(ζ/(1 − 2ζ)) + ζ · ln γ + o(1))]

(24)
< exp(−ρn/2k).(27)

Now, let E be the event that there is a set Z of size |Z| ≤ 2ζθn such that EZ
occurs, and let S be the event that there is such a Z such that SZ occurs. Then (27)
and the law of total probability imply P [S|E ] ≥ 1− exp(−ρn/2k), and thus

(28) PP′
k(n,m) [S ∨ ¬E ] ≥ 1− exp(−ρn/2k)

Combining (28) with Corollary 15, we thus see that PUk(n,m) [S ∨ ¬E ] = 1− o(1). As
Proposition 21 and (24) ensure that PUk(n,m) [¬E ] = o(1), we thus obtain PUk(n,m) [S] =
1− o(1), as desired.
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Proof of Theorem 17, part 2. Propositions 22 and 23 reduce the problem of
proving the existence of a large set of rigid variables to a problem in calculus. Namely,
assuming that 1 < kθ ≤ exp(ρ)/(ρ3) and ρ ≤ k ln 2 − 2 ln k we need to verify (24).
Our assumption that ρ ≤ k ln 2 − 2 lnk and that kθ > 1 imply that ζ ≥ 1

3ρ
2k2/2k.

Therefore,

2kθζϕ(1) >
ϕ(1)

3
ρ2k2θ > ρ,

and thus the first inequality in (24) is valid. Moreover, since h(ζ) ≤ ζ(1 − ln ζ),
proving the second inequality in (24) reduces to showing θζ [ln γ + 1− ln ζ] < −ρ/2k,
i.e.,

(29) θζ ln(eγ/ζ) < −ρ/2k.
Plugging in the definitions of γ and ζ, we see that for μ not too small

ln

(
eγ

ζ

)
= ln

[
eμ(exp(λμ) − λμ− 1)

(1 − ζ)(1 + μ+ μ2/2)

]
≤ ln

(
5e [exp(λμ) − λμ− 1]

μ

)
.

Since 3θζ ≤ 4/(kρ) for ρ ≥ ρ0 sufficiently large, we have λ = 1− (1− 3θζ)k−1 ≤ 4kθζ.
Hence,

λμ ≤ 4kμθζ ≤ 4μ2

exp(μ)
· exp(μ)

μ3
≤ 4/μ.

Therefore, we obtain for μ ≥ ρ ≥ ρ0 large

ln

(
eγ

ζ

)
≤ ln

(
4e(λμ)2

μ

)
≤ ln

(
64e/μ3

) ≤ −1.

As θζ ≥ ζ/k ≥ 1
2μ

2 exp(−μ)/k ≥ 1
3ρ

2/2k for k ≥ k0 and ρ ≥ ρ0 not too small, we
thus obtain (29).

Let us make the following statement from the proof of Theorem 17 explicit to
facilitate the proof of Theorem 26.

Corollary 24. Suppose that ln(ρ)− 10 ≤ kθ < (1 − ρ−2) · ρ/ (ln 2). Let (Φ,σ)
be a pair chosen from the distribution U1–U4. Then there is a t-self-contained set
R ⊂ Vt of size |R| ≥ (1− 3ζ)θn ≥ 0.99θn w.h.p.

4.4. Forced variables. Let (Φ, σ) be a formula/assignment pair. A clause C
forces a variable x ∈ Vt if C contains k − 1 literals from {x1, x̄1, . . . , xt, x̄t}, none of
which satisfies C under σ, and x underlies the remaining literal of C, which satisfies
the clause under σ.

Lemma 25. Suppose that ρ ≥ ρ0, k ≥ k0, and kθ ∼ ln(ρ)− 10. Then w.h.p. in a
pair (Φ,σ) chosen from the distribution Uk(n,m) at least 0.991θn variables in Vt are
forced.

Proof. Let F be the event that at least 0.991θn variables in Vt are forced. We
are going to show that

(30) PP′
k(n,m) [F ] ≥ 1− exp(−ρn/2k),

so that the assertion follows from Corollary 15.
Thus, let (Φ′,σ′) be a pair chosen from the distribution P ′

k(n,m). We may
assume without loss of generality that σ′ is the all-true assignment. By Lemma 16 for
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1492 AMIN COJA-OGHLAN AND ANGELICA Y. PACHON-PINZON

each variable x ∈ Vt the number of clauses that x supports has a binomial distribution
with mean μ = ρ · 2k/(2k − 1). Furthermore, if C is a random clause supported by x,
then C contains k − 1 random negative literals; the probability that all of these are
in V \ Vt equals (1 − θ + o(1))k−1. Hence, the number Fx of forcing clauses for x is
binomially distributed with mean

E [Fx] = μ(1− θ + o(1))k−1

≥ ρ(1− θ)k−1 [as μ = ρ · 2k/(2k − 1) > ρ]

≥ ρ exp
[−(θ + θ2)(k − 1)

]
[as θ ≤ ln(k)/k and thus 1− θ ≥ exp(−θ − θ2)]

≥ ρ exp
[−θk − θ2k

]
= ρ exp [(1 − θ) · (10− ln(ρ)) + o(1)] [as kθ ∼ ln(ρ)− 10]

= exp [10 + θ · (10− ln(ρ)) + o(1)] = exp
[
10− θ2k + o(1)

] ≥ exp(5),

because θ ≤ ln(k)/k by our assumptions that ρ ≤ k ln 2 and kθ ∼ ln(ρ)−10. Therefore,
for any x ∈ Vt we have P [Fx = 0] ≤ exp(− exp(5)), and the events ({Fx = 0})x∈Vt

are mutually independent. Hence, the number Z of variables x ∈ Vt with Fx = 0 is
binomially distributed with mean exp(− exp(−5))θn. Thus, the Chernoff bound (8)
and our assumption that kθ ∼ ln(ρ)− 10 yield

P [Z ≥ 0.009θn] ≤ exp(−0.009θn) ≤ exp(−ρn/2k),

whence (30) follows.
Proof of Theorem 17, part 3. Lemma 25 directly implies the third part of The-

orem 17 in the case kθ ∼ ln(ρ) − 10. The remaining task is to prove the claim for
smaller values of θ, namely, for any lnn/n ≤ θ ≤ θ0 = (ln(ρ)−10)/k. Let t = (1−θ)n
and t0 = (1− θ0)n. To obtain a pair (Φt,σt) from the distribution U1–U4, we could
proceed as follows. First, choose a pair (Φt0 ,σt0) from the distribution U1–U4 with t0
variables decimated. Then, assign the variables in x ∈ Vt0 \Vt the truth values σt0(x),
simplify the formula, and let σt(y) = σt0(y) for all y ∈ Vt. We are going to use this
“two-round” experiment to analyze the number of forced variables in (Φt,σt).

The above experiment shows that any variable x ∈ Vt that is forced in (Φt0 ,σt0)
remains forced in (Φt,σt). Let F be the set of forced variables in (Φt0 ,σt0). Given
that |F| = j, the set F is a uniformly random subset of Vt0 , just by the symmetry
of the distribution (Φ,σ) with respect to permutations of the variables. Hence, if
we condition on the event that |F| ≥ 0.991θ0n, then |F ∩ Vt| has a hypergeometric
distribution with mean at least 0.991θn. (This is because we are interested in the
number of “special” elements that we catch upon selecting without replacement θn
elements out of a total θ0n elements, where |F| ≥ 0.991θ0n among all θ0n elements
are special.) Since the variance of the hypergepmetric distribution is bounded by its
expectation, we can use Chebyshev’s inequality to get |F ∩ Vt| ≥ (0.991θ − o(1))n ≥
0.99θn w.h.p. (here we use that θn ≥ lnn � 1). Thus, part 3 of Theorem 17 follows
from Lemma 25.

5. Shattering, pairwise distances, and ferromagnetism.

5.1. Overview. In this section we establish the various statements on the global
“shape” of the set S(Φt) from Theorems 2–4. The following theorem summarizes
them.

Theorem 26. There exist constants k0, ρ0 > 0 such that for all k ≥ k0, and
ρ0 ≤ ρ ≤ k ln 2− 2 ln k the following three statements hold:
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1. If

ρ

ln 2
(1 + ρ−2 + 22−k) ≤ kθ ≤ exp

[
ρ

(
1− ln ρ

ρ
− 2

ρ

)]
,

then S(Φt) is (exp(2 − ρ) − ε, exp(2 − ρ) + ε)-shattered w.h.p. for some 0 <
ε = ε(k, ρ) < exp(2− ρ).

2. If ln ρ < kθ < (ρ− 1/ρ)/ ln 2, then S(Φt) is ρ exp(4−ρ)-ferromagnetic w.h.p.
Furthermore, there is a set R ⊂ Vt of size |R| ≥ 0.99θn such that for any
σ, τ ∈ S(Φt) we have

(31) |{x ∈ R : σ(x) 	= τ(x)}| ≤ k22−kn.

3. If θ > ρ(1 + 2/ρ2)/(k ln 2), then for almost all σ ∈ S(Φt) we have

|{τ ∈ S(Φt) : dist(σ, τ) ≤ 0.49θn}| ≤ exp(−Ω(n)) |S(Φt)| .
To prove Theorem 26, we adapt arguments from [2, 3, 10, 11] to the setting with

the two parameters θ, ρ (rather than just the density ρ). Let (Φt,σt) be the (random)
outcome of the experiment U1–U4. For 0 ≤ α ≤ 1 let Xα(Φt,σt) denote the number
of satisfying assignments τ ∈ S(Φt) with Hamming distance dist(σt, τ) = αθn. To
establish the shattering part of Theorem 3, we basically need to study the random
variables Xα(Φt,σt).

As this seems difficult to accomplish directly, we are going to work with the
planted model again. That is, let (Φ′

t,σ
′
t) be the outcome of the experiment P1–P4.

It is fairly easy to get a handle on the expected number E [Xα(Φ
′
t,σ

′
t)] of satisfying

assignments τ ∈ S(Φ′
t) at distance dist(σ′

t, τ) = αθn. Let

(32) ψ(α) = ψk,ρ(α) = −αθ lnα− (1−α)θ ln(1−α) +
2kρ

k
ln

(
1− 1− (1 − αθ)k

2k − 1

)
.

Lemma 27. For any 0 < α < 1 we have 1
n ln E [Xα(Φ

′
t,σ

′
t)] ≤ ψ(α).

Proof. The total number of assignments τ at Hamming distance αθn from σ′
t such

that σ′
t(xi) = τ(xi) for all 1 ≤ i ≤ t equals

(
θn
αθn

)
. (Just choose the αθn variables from

Vt where the two assignments disagree.) For any such assignment, the probability that
a random clause that has 1 ≤ l ≤ k satisfied literals under σ′

t is unsatisfied under τ
equals (αθ)l(1−αθ)k−l (for τ has to disagree with σ′

t on all l satisfied literals but on
none of the k − l unsatisfied ones). Hence, the probability that a random clause that
is satisfied under σ′

t happens to be unsatisfied under τ is

1

2k − 1

k∑
l=1

(
k

l

)
(αθ)l(1 − αθ)k−l =

1− (1 − αθ)k

2k − 1
.

Since the m clauses of Φ′
t are chosen independently from among the clauses satisfied

under σ′
t, we obtain that

P [τ satisfies Φ′
t] =

(
1− 1− (1− αθ)k

2k − 1

)m

for any τ with σ′
t(xi) = τ(xi) for all 1 ≤ i ≤ t and dist(σ′

t, τ) = αθn. Finally, using
the linearity of the expectation, we get

E [Xα(Φ
′
t,σ

′
t)] =

∑
τ as above

P [τ satisfies Φ′
t] =

(
θn

αθn

)(
1− 1− (1− αθ)k

2k − 1

)m

.
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1494 AMIN COJA-OGHLAN AND ANGELICA Y. PACHON-PINZON

Fig. 2. The three possible shapes of the function ψ (illustrated for k = 16, ρ = 5, and θ =
1, 0.37, 0.34).

Taking logarithms and bounding the binomial coefficient via Stirling’s formula yields
the assertion.

Combining Theorem 13 and Lemma 27, we can essentially reduce the analysis
of the random variables Xα(Φt,σt) to the study of the function ψ, i.e., a problem
in calculus. As we will see, depending on the choice of ρ, θ the function ψ takes
one of three possible shapes; see Figure 2. The left plot illustrates the shape of ψ
for “large” θ in the symmetric regime kθ > exp(ρ), where ψ is strictly positive in
the entire interval (0, 1/2). The second plot corresponds to the shattered regime
ρ/ ln 2 < kθ < exp(ρ). In this case, there is an interval (α, β) between 0 and 1

2
where ψ is negative. Hence, Lemma 27 shows that for the outcome (Φ′

t,σ
′
t) of P1–P4

the expected number of satisfying assignments τ such that αθn ≤ dist(τ,σ′
t) ≤ βθn

is exponentially small, and thus by Markov’s inequality there are no such τ w.h.p.
This observation in combination with the lower bound on the number of satisfying
assignments of Φ′

t from Corollary 14 will allow us to show that w.h.p. σ′
t lies in a tiny

cluster of satisfying assignments that is separated from the remaining set S(Φ′
t) by

a linear Hamming distance. Finally, the third plot corresponds to the ferromagnetic
phase kθ < ρ/ ln 2, where the expected number of satisfying assignments beyond a
certain small distance αθn from σ′

t is exponentially small. Hence, in this phase only
the small cluster of satisfying assignments around σ′

t remains.
In section 5.2 we will show that shattering occurs when the shape of ψ changes

from the first to the second shape. Moreover, in section 5.3 we will show that fer-
romagnetism corresponds to the third shape. Finally, ψ also contains the necessary
information to prove the statement about pairwise distances (see section 5.4).

5.2. Shattering. In this section we prove the first part of Theorem 26. The
main step of the proof is summarized in the following proposition.

Proposition 28. Let k ≥ 6 and r > 0 be fixed. Let 0 < θ ≤ 1. Suppose that
there is a number a ∈ (0, 1) such that

(33) ψ(a) + ρ/2k < 0 and sup
0<α<a

ψ(α) < θ ln 2 + 2kρ ln(1− 2−k)/k − ρ/2k−1.

Then there is ε = ε(k, ρ) such that for a pair (Φt,σt) generated by the experiment
U1–U4, the set S(Φt) is (a− ε, a+ ε)-shattered w.h.p.

The proof of Proposition 28 appears at the end of this section. Before we come
to that, let us show how Proposition 28 implies the first part of Theorem 26. To this
end, we need to verify (33).

Lemma 29. Assume that 0 ≤ θ ≤ exp(ρ − 2)/(ρk). Let a = exp(2 − ρ). Then
ψ(a) < −aθ/2.
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Proof. We have

ψ(a) ≤ aθ(1− ln a)− ρ

k

(
1− (1− aθ)k

) ≤ aθ(1 − ln a)− ρ

k
(1− exp(−akθ))

≤ aθ(1− ln a)− ρ

k

(
akθ − (akθ)2/2

)
= aθ [1− ln a− ρ(1− akθ/2)] ,

where we used the elementary inequality exp(−z) ≤ 1 − z + z2/2 for z ≥ 0. Since
kθρ ≤ exp(ρ− 2) by assumption, our choice of a implies that

ψ(a) ≤ aθ [1− ln a− ρ+ a exp(ρ− 2)/2] = −aθ/2,
as claimed.

Lemma 30. Assume that 0 ≤ θ ≤ exp(ρ − 2)/(ρk). Let a = exp(2 − ρ). Then
supα<a ψ(α) ≤ 3

2e2kρ .
Proof. Let 0 ≤ α < a. We have

ψ(α) ≤ θ(α − α lnα− αρ(1− αkθ/2)).

Let ψ1(α) be the expression on the right-hand side (r.h.s.). Then

d

dα
ψ1(α) = θ [− lnα− ρ+ αkρθ] ,

d2

dα2
ψ1(α) = θ [kρθ − 1/α] .

Thus, our assumption on θ implies that d2

dα2ψ1(α) < 0 for all 0 < α < a, and therefore
ψ1 has a unique local maximum in the interval (0, α). To pinpoint this maximum,
note that for α0 = exp(−ρ) the first derivative d

dαψ1(α0) is positive. Moreover,

at α1 = exp(1 − ρ) we have d
dαψ1(α1) < 0. Hence, the unique local maximum of

ψ1 lies in the interval (α0, α1). To study the maximum value, consider the function
ψ2 : α �→ α−α lnα−αρ. Its derivative is d/dαψ2(α) = −ρ−lnα, so that the maximum
of this function occurs at α0. Furthermore, the quadratic term α �→ α2θρk/2 is
monotonically increasing in α. Therefore,

sup
0<α<a

ψ(α) ≤ sup
0<α<a

ψ1(α) = sup
α0<α<α1

ψ1(α) ≤ θ(ψ2(α0) + α2
1θρk/2) ≤ 3θ exp(−ρ)/2.

Finally, the assertion follows from the assumed bound on θ.
Proof of Theorem 26, part 1. Assume that ρ ≤ k ln 2− ln k and

ρ

k ln 2
(1 + ρ−2 + 22−k) ≤ θ ≤ exp(ρ− 2)/(ρk).

Let a = exp(2− ρ). Lemma 29 shows that

ψ(a) + ρ/2k ≤ ρ/2k − exp(2 − ρ)θ/2 ≤ ρ/2k − exp(2− ρ)ρ

2k ln 2

=
ρ

2k

(
1− 2k exp(2 − ρ)

2k ln 2

)
.

Since ρ ≤ k ln 2− ln k, the r.h.s. is negative. By Lemma 30 we have

θ ln 2 +
2kρ

k
ln(1− 2−k)− ρ/2k−1 ≥ θ ln 2− ρ

k
− ρ/2k−2

≥ 1

kρ
> sup

α<a
ψ(α).(34)

Thus, the assertion follows from Proposition 28.
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Proof of Proposition 28. In the rest of this section we keep the notation and
the assumptions from Proposition 28. Let

b = θ ln 2 + 2kρ ln(1 − 2−k)/k.

We will mostly be working with a formula/assignment pair (Φ′,σ′) chosen from the
planted distribution Pk (n,m). Recall that Φ′

t,σ′ denotes the formula obtained by
substituting the value σ′(xi) for the variables xi for 1 ≤ i ≤ t, and simplifying.

Lemma 31. There exist numbers ξ > 0, 0 < a1 < a2 < 1 such that a pair (Φ′,σ′)
chosen from the distribution Pk (n,m) has the following two properties with probability
at least 1− exp(−(ξ + ρ/2k)n).

1. Φ′
t,σ′ does not have a satisfying assignment τ with a1n < dist(σ′, τ) < a2n.

2. |{τ ∈ S(Φ′
t,σ′) : dist(σ′, τ) < a2n}| ≤ exp((b − ξ − ρ/2k)n).

Proof. For α > 0 we let

Xα =
∣∣{τ ∈ S(Φ′

t,σ′) : dist(σ′, τ) = αθn
}∣∣ .

By Lemma 27,

lnE [Xα]

n
≤ ψ(α).(35)

Let a ∈ (0, 1) be such that ψ(a) + ρ/2k < 0 (cf. (33)). As ψ is continuous there
exist 0 < a1 < a < a2 < 1 and ξ1 > 0 such that

(36) sup
a1≤α≤a2

ψ(α) < −ρ/2k − 2ξ1.

Combining (35) and (36), we conclude that E [Xα] ≤ exp
[−n(ρ/2k + 2ξ1)

]
for all

a1 ≤ α ≤ a2. Summing over integers a1n ≤ j ≤ a2n, we see that for large n∑
a1n≤j≤a2n

E
[
Xj/n

] ≤ n exp
[−n(ρ/2k + 2ξ1)

] ≤ exp
[−n(ρ/2k + ξ1)

]
.

Hence, by Markov’s inequality the probability that there is a satisfying assignment
τ that coincides with σ′ on the first t variables such that a1n ≤ dist(σ′, τ) ≤ a2n is
bounded by exp(−n(ρ/2k + ξ1)). This proves the first assertion.

Since we are assuming that sup0<α<a ψ(α) < b− ρ/2k−1, and as (36) shows that
ψ(α) < −ρ/2k − 2ξ1 < b− ρ/2k−1 − 2ξ1 for all a ≤ α < a2, there is a number ξ2 > 0
such that

sup
0<α≤a2

ψ(α) < b− ρ/2k−1 − 3ξ2.

Hence, (35) implies that

E [Xα] ≤ exp(nψ(α)) ≤ exp(n(b − ρ/2k−1 − 3ξ2)) for all 0 < α ≤ a2.

Taking the sum over integers 0 ≤ j ≤ a2n, we get for large enough n∑
0≤j≤a2n

E
[
Xj/n

] ≤ n exp(n(b− ρ/2k − 3ξ2)) ≤ exp(n(b− ρ/2k−1 − 2ξ2)).

That is, the expected number of assignments τ ∈ S(Φt,σ′) such that dist(σ′, τ) ≤ a2n
is bounded by exp(n(b−ρ/2k−1− 2ξ2)). Hence, Markov’s inequality entails that with
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probability at least 1 − exp(−n(ρ/2k + ξ2)) there are at most exp(n(b − ρ/2k − ξ2))
such satisfying assignments τ . This proves the second assertion.

Corollary 32. There exist numbers ξ > 0, 0 < a1 < a2 < 1 such that a
pair (Φ,σ) chosen from the distribution Uk (n,m) enjoys the two properties stated in
Lemma 31 with probability at least 1− exp(−ξn).

Proof. This follows directly from Lemma 31 and Theorem 13.
Proof of Proposition 28. Let ξ, a1, a2 be the numbers provided by Corollary 32

and let (Φ,σ) be a pair chosen from the distribution Uk(n,m). With each assignment
τ ∈ S(Φt,σ) we associate a set

C(τ) = {χ ∈ S(Φt,σ) : dist(χ, τ) ≤ a1n}.
Moreover, we call τ ∈ S(Φt,σ) good if |C(τ)| ≤ exp((b − ρ/2k − ξ)n) and there is
no χ ∈ S(Φt,σ) such that a1n ≤ dist(χ, τ) ≤ a2n. Let Sgood be the set of all good
τ ∈ S(Φt,σ) and Sbad = S(Φt,σ) \ Sgood. Corollary 32 and our choice of b ensure that
Φ has the following two properties w.h.p.:

|S(Φt,σ)| ≥ exp(n(b− ρ/2k)),(37)

|Sgood| ≥ (1− exp(−ξn)) · |S(Φt,σ)| .(38)

Assuming that (37) and (38) hold and that n is sufficiently large, we are going
to construct a decomposition of S(Φt,σ) into subsets as required by SH1–SH2. To
this end, choose some σ1 ∈ Sgood. Having defined σ1, . . . , σl, we choose an arbitrary

σl+1 ∈ Sgood \ ⋃l
j=1 C(σj), unless this set is empty, in which case we stop. Let

σ1, . . . , σN be the resulting sequence and define

Rl = C(σl) \
l−1⋃
j=1

C(σj) for 1 ≤ l ≤ N and R0 = S(Φt,σ) \
N⋃
l=1

Rl.

Then S(Φt,σ) = R0 ∪ · · · ∪ RN . (Observe that possibly R0 = ∅, while Rl 	= ∅ for all
1 ≤ l ≤ N as σl ∈ Rl.) Furthermore, for each 1 ≤ l ≤ N we have Rl ⊂ C(σl) and thus

|Rl| ≤ |C(σl)| ≤ exp((b − ρ/2k − ξ)n) (because σl is good)

≤ |S(Φt,σ)| · exp(−ξn) (by (37)).(39)

Furthermore, as R0 ⊂ Sbad, (38) implies

(40) |R0| ≤ |Sbad| ≤ exp(−ξn)) · |S(Φt,σ)| .
Combining (39) and (40) we see that the decomposition R0, . . . , RN satisfies SH1.
Furthermore, SH2 is satisfied by construction.

5.3. Ferromagnetism. Here we prove the second part of Theorem 26. The
following proposition reduces that task to a problem in calculus.

Proposition 33. Let k ≥ 3 and r > 0 be fixed. Let 0 < θ ≤ 1. If there is a
number a ∈ (0, 1) such that

(41) sup
a<α≤1

ψ(α) + ρ/2k < 0,

then in the result (Φt,σt) of the experiment U1–U4 the formula Φt is 2a-ferromagnetic
w.h.p.
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Proof. Let (Φ′,σ′) be a pair chosen from the planted distribution Pk(n,m). For
α > 0 we let

Xα =
∣∣{τ ∈ S(Φ′

t,σ′) : dist(σ′, τ) = αθn
}∣∣ .

Then 1
n ln E [Xα] ≤ ψ(α) by Lemma 27. Hence, 1

n ln E [Xα] < −ρ/2k for α > a by (41).
Thus, Markov’s inequality yields

P
[∃τ ∈ St(Φ

′
t,σ′) : dist(σ′, τ) ≥ aθn

] ≤ θn · exp(−(Ω(1) + ρ/2k)n) < exp(−ρn/2k).
Therefore, the assertion follows from Theorem 13.

Lemma 34. Suppose that ρ ≤ k ln 2 − 2 lnk and θ = (1 − 1/ρ2) ρ
k ln 2 . Moreover,

assume that ρ ≥ ρ0 and k ≥ k0 for certain constants ρ0, k0. Let a = exp(2 − ρ).
Then (41) is satisfied.

Proof. Let h (x) = −x lnx− (1 − x) ln(1 − x) be the entropy function. We have

ψ(α) = θh(α) +
2kρ

k
ln

(
1− 1− (1− αθ)k

2k − 1

)

≤ θh(α) − 2kρ

k(2k − 1)

(
1− (1− αθ)k

)
(using ln(1− z) ≤ −z)

≤ θh(α) − ρ

k

(
1− (1 − αθ)k

) ≤ θh(α) − ρ

k
(1− exp(−αkθ)).

To bound the r.h.s., we are going to consider several cases, assuming each time that
ρ ≥ ρ0, k ≥ k0 are sufficiently large.

Case 1: α ≤ 1/(kρθ). As α ≥ a = exp(2− ρ), we have

h(α) ≤ α(1 − lnα) ≤ α(1 − ln a) ≤ α(ρ− 1).

Furthermore, using exp(−z) ≤ 1− z + z2/2, we get

(42) −ρ
k
(1 − exp(−αkθ)) ≤ −αθρ (1− αkθ/2) .

Hence, as αkρθ ≤ 1 by assumption,

ψ(α) ≤ αθ

[
αkρθ

2
− 1

]
≤ −αθ/2.

The assumption ρ ≤ k ln 2− 2 lnk ensures that the last term is smaller than −ρ/2k.
Case 2: 1/(kρθ) < α < 1/(kθ). Using the lower bound on α, we get

h(α) ≤ α(1− lnα) ≤ α(1 + ln(ρkθ)).

Furthermore, using (42), we obtain

ψ(α) ≤ αθ

[
1 + ln(kρθ)− ρ+

αkρθ

2

]
≤ αθ [1 + ln(kρθ)− ρ/2] (as α < 1/(kθ))

≤ αθ [1− ln ln 2 + 2 ln ρ− ρ/2] (as θ ≤ ρ
k ln 2 )

≤ −αθρ/4.
The assumption ρ ≤ k ln 2− 2 lnk ensures that the last term is smaller than −ρ/2k.
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Case 3: 1/(kθ) < α ≤ α0 = 0.15. Since h(α) is monotonically increasing for
α < 1/2, we have

ψ(α) ≤ θh(α) − ρ

k
(1− exp(−αkθ)) ≤ θh(α0)− ρ

k
(1− 1/e)

≤ ρ

k

[
h(α0)

ln 2
− 1 + 1/e

]
.

The choice of α0 ensures that the last term is smaller than −ρ/2k.
Case 4: α0 < α. As kθ = (1− 1/ρ2)ρ/ ln 2, we get

ψ(α) ≤ θh(α) − ρ

k
(1− exp(−αkθ))

≤ θ ln 2− ρ

k
(1− exp(−α0(1 − 1/ρ2)ρ/ ln 2))

≤ ρ

k

[
exp(−α0ρ)− 1/ρ2

]
.

The last term is smaller than −ρ/2k because ρ ≤ k ln 2.
Proof of Theorem 26, part 2a. Let θ0 = (1 − 1/ρ2)ρ/(k ln 2) and t0 = (1 − θ0)n.

Lemma 34 and Proposition 33 show that for the specific value θ0 the formula Φt is
exp(2−ρ)-ferromagnetic w.h.p. Now, suppose that t > t0 and thus θ < θ0, while kθ >
ln ρ. Then Φt is obtained from Φt0 by assigning some further variables. Therefore,

max {dist(σ, τ) : σ, τ ∈ S(Φt)} ≤ max {dist(σ, τ) : σ, τ ∈ S(Φt0)} .

Hence, Proposition 33 and Lemma 34 imply that Φt is ρ exp(4 − ρ)-ferromagnetic
w.h.p.

We are left to show part 2b of Theorem 26, i.e., the existence of a large set R
of variables on which all satisfying assignments virtually agree. For this we need the
following lemma.

Lemma 35. Suppose that 1 ≤ kθ ≤ ρ/(ln 2). Let (Φ,σ) be a pair chosen from
the distribution Uk (n,m). Then w.h.p. the following statement is true:

(43)
There is no set of variables Z ⊂ Vt of size 2kn/2k ≤ |Z| ≤ (eρ)−4θn such that
each variable in Z supports two clauses under σ, each of which contains an
occurrence of a variable in Z that evaluates to false under σ.

Proof. Let (Φ′,σ′) be chosen from the planted model P ′
k (n,m). For a set Z ⊂ Vt

let XZ = 1 if each variable in Z supports two clauses under σ′, each of which contains
an occurrence of a variable in Z that evaluates to false under σ′. As each clause that
is satisfied under σ′ is present in Φ′ with probability p independently, and as for each
variable x ∈ Z there are no more than |Z|(n−2

k−2

)
possible clauses supported by x that

contain another variable from Z, we obtain

PP′
k(n,m) [XZ = 1] ≤

(
|Z|
(
n− 2

k − 2

)
p

)2|Z|
≤ (kρ|Z|/n)2|Z|.

Thus, for any 0 < α ≤ (eρ)−4 we can bound the probability that there is a set Z of
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size |Z| = αθn with XZ = 1 as follows:

PP′
k(n,m) [∃Z, |Z| = αθn : XZ = 1]

≤
∑

Z:|Z|=αθn

PP′
k(n,m) [XZ = 1] ≤

(
θn

αθn

)
(αkθρ)2αθn

≤
( e
α

)αθn
(αkθρ)

2αθn
=
[
eα(kθρ)2

]αθn
≤ (eαρ4/ ln2 2)αθn (as θ ≤ ρ/ ln 2)

≤ exp(−αθn) (as α ≤ (eρ)−4)

≤ exp(−2kn/2k),(44)

because |Z| = αθn ≥ 2kn/2k. Using the union bound, we obtain from (44) that

PP′
k(n,m)

[∃Z, 2kn/2k ≤ |Z| ≤ (eρ)−4θn : XZ = 1
] ≤ n · exp(−2kn/2k)

< exp(−ρn/2k),(45)

because we assume that ρ ≤ k ln 2. Thus, (45) and Corollary 15 imply the asser-
tion.

Proof of Theorem 26, part 2b. Assume that kθ < (1− ρ−2) · ρ/ (ln 2). Let (Φ,σ)
be a pair chosen from the distribution U1–U4. We are going to show that w.h.p. there
is a set R ⊂ Vt of size |R| ≥ 0.99θn such that (31) holds for any σ, τ ∈ S(Φt). If
kθ < ln(ρ)− 10, then this will follow from the third part of Theorem 17 by letting R
be the set of forced variables.

Thus, suppose that ln(ρ) − 10 ≤ kθ < (1 − ρ−2) · ρ/ (ln 2). Let (Φ,σ) be a pair
chosen from the distribution U1–U4. From Corollary 24, Lemma 35, and part 2a of
Theorem 26 we know that w.h.p. (Φ,σ) has the following three properties:

1. There is a t-self-contained set R ⊂ Vt of size |R| ≥ (1− 3ζ)θn ≥ 0.99θn.
2. Condition (43) holds.
3. S(Φt) is ρ exp(4− ρ)-ferromagnetic.

Let τ ∈ S(Φ) be a satisfying assignment and let Z(τ) = {x ∈ R : σ(x) 	= τ(x)} . Since
R is t-self-contained, each x ∈ Z supports two clauses under σ. Furthermore, each of
these clauses contains a further variable from Z, because τ is a satisfying assignment.
Therefore, (43) shows that either |Z(τ)| < 2kn/2k or |Z(τ)| > (eρ)−4θn. But if
|Z(τ)| > (eρ)−4θn, then

dist(σ, τ) ≥ |Z(τ)| ≥ (eρ)−4θn > ρ exp(4− ρ)θn,

and thus S(Φt) is not ρ exp(4 − ρ)-ferromagnetic. This shows that w.h.p. we have
|Z(τ)| ≤ 2kn/2k, and thus R satisfies (31).

5.4. Pairwise distances. In this section we prove the third part of Theorem 26.
Once more by analyzing the function ψ, we can show that w.h.p. in a pair (Φt,σt)
chosen from the distribution U1–U4 only a small fraction of all satisfying assignments
are close to σt.

Lemma 36. Suppose that θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2). Let (Φ,σ) be a pair

chosen from the distribution Uk(n,m). W.h.p. we have

|{τ ∈ S(Φt,σ) : dist(τ,σt) ≤ 0.49θn}| ≤ exp(−Ω(n)) |S(Φt,σ)| .
Proof. By Corollary 14, w.h.p.

(46)
1

n
ln |S(Φt,σ)| ≥ θ ln 2 + r ln

(
1− 2−k

)− ρ/2k > 0.
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We are going to show that

(47) sup
α≤0.49

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
< −ρ/2k−1.

Then the assertion follows from Corollary 15, Lemma 27, and (46).
Thus, we are left to show (47). Since −z − z2 ≤ ln(1− z) ≤ −z for |z| ≤ 1/2, we

have

ψ(α) − θ ln 2− 2kρ

k
ln
(
1− 2−k

)
= θ(h(α) − ln 2) +

2kρ

k

[
ln

(
1− 1− (1− αθ)k

2k − 1

)
− ln

(
1− 2−k

)]

≤ θ(h(α) − ln 2)− 2kρ

k
·
[
1− (1− αθ)k

2k − 1
− 2−k − 4−k

]

≤ θ(h(α) − ln 2) +
ρ

k
(1− αθ)k + 2−k [as ρ ≤ k ln 2]

≤ θ(h(α) − ln 2) +
ρ

k
exp(−αkθ) + 2−k.

The differential of the last expression with respect to θ is negative, and thus the func-
tion is monotonically decreasing in θ. Therefore, it suffices to consider the minimum
value θ = ρ/(k ln 2). Thus, we obtain

ψ(α)− θ ln 2− 2kρ

k
ln
(
1− 2−k

) ≤ ρ

k

(
h(α)

ln 2
− 1 + exp

(
− αρ

ln 2

))
+ 2−k.(48)

We consider a few different cases, assuming each time that ρ ≥ ρ0, k ≥ k0 are suffi-
ciently large.

Case 0: α < exp(2 − ρ). Lemma 30 shows that ψ(α) ≤ 1/(kρ) and (34) shows
that

θ ln 2 + 2k
ρ

k
ln(1− 2−k) ≥ θ ln 2− ρ/k − ρ/2k.

Hence,

ψ(α) − θ ln 2− 2kρ

k
ln
(
1− 2−k

) ≤ 1

kρ
− θ ln 2 +

ρ

k
+ ρ/2k.

Since we are assuming that θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2), the r.h.s. is smaller than

ρ/2k−1.
Case 1: exp(2 − ρ) ≤ α ≤ exp(−ρ/2). Since exp(−z) ≤ 1 − z + z2/2 for z > 0,

we get from (48)

ψ(α) − θ ln 2− r ln
(
1− 2−k

) ≤ αρ

k ln 2

[
1− lnα− ρ+

αρ2

2 ln 2

]
+ 2−k

≤ αρ

k ln 2

[
−1 +

αρ2

2 ln 2

]
+ 2−k < −ρ/2k−1,

provided that ρ0 ≤ ρ ≤ k ln 2− 2 lnk.

D
ow

nl
oa

de
d 

11
/0

3/
16

 to
 1

38
.3

8.
10

6.
61

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1502 AMIN COJA-OGHLAN AND ANGELICA Y. PACHON-PINZON

Case 2: exp(−ρ/2) ≤ α ≤ 1/(2ρ). Bounding the exponential by a quadratic
function, we get

ψ(α)− θ ln 2− r ln
(
1− 2−k

) ≤ αρ

k ln 2

[
1− lnα− ρ+

αρ2

2 ln 2

]
+ 2−k

≤ αρ

k ln 2

[
−ρ
2
+

ρ

4 ln 2

]
+ 2−k < −ρ/2k−1,

provided that ρ0 ≤ ρ ≤ k ln 2− 2 lnk.
Case 3: 1/(2ρ) < α ≤ 10 ln(2)/ρ. Suppose that α = x ln(2)/ρ for some 1/2 ≤

x ≤ 10 ln 2. Then

ψ(α) − θ ln 2− r ln
(
1− 2−k

)
≤ ρ

k

[
x ln 2

ρ
(1− lnx− ln ln 2 + ln ρ)− 1 + exp(−x)

]
+ 2−k.

As x remains bounded away from 0, the term exp(−x)− 1 is strictly negative. Thus,
the entire expression is smaller than −ρ/2k−1 for ρ ≥ ρ0 sufficiently large.

Case 4: 10 ln(2)/ρ < α ≤ 0.49. We have

ψ(α) − θ ln 2− r ln
(
1− 2−k

) ≤ ρ

k

(
h(0.49)

ln 2
− 1 + exp(−10)

)
+ 2−k.

The r.h.s. is clearly smaller than −ρ/2k−1.
Lemma 36 directly implies the third part of Theorem 26.

6. Estimating the actual marginals. In this section we will prove the various
statements from Theorems 2–4 about the marginals of the truth values of individual
variables.

Theorem 37. There exist constants k0, ρ0 > 0 such that for all k ≥ k0 and
ρ0 ≤ ρ ≤ k ln 2− 2 ln k, the following two statements hold:

1. If θ ≥ ρ
k ln 2 (1+1/ρ2+ k/2k−2), then w.h.p. for at least θn/3 variables x ∈ Vt

we have

Mx(Φt) ∈ [0.01, 0.99] .

2. If ln(n)/n < θ < ρ(1 − 1/ρ2)/(k ln 2), then w.h.p. for all but exp(−ρ)θn
variables x ∈ Vt we have

Mx(Φt) ∈
[
0, 2−k/2

]
∪
[
1− 2−k/2, 1

]
.

To get an intuition why Theorem 37 might be true, observe that Theorem 26
implies that for θ as under 1, the pairwise distance between satisfying assignments
is typically big. In other words, the satisfying assignment are spread out over the
Hamming cube, which seems incompatible with many variables having marginals ex-
tremely close to either 0 or 1. By contrast, for θ as under 2, i.e., in the “ferromagnetic”
phase, the set of satisfying assignments is confined to a tiny part of the Hamming cube
(cf. Theorem 26). Thus, it is not surprising that the marginals of most variables are
close to either 0 or 1 in this case.

Proof of Theorem 37. Let us first assume that θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2). Let

(Φt,σt) be a pair chosen from the distribution U1–U4. We set up an auxiliary graph
G whose vertices are all pairs (x, τ) of variables x ∈ Vt and assignments τ ∈ S(Φt).
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A pair (x, τ) is connected by an edge with another pair (x, τ ′) if τ(x) = τ ′(x). We
claim that w.h.p.

(49) 2|E(G)| ≤ 0.511|S(Φt)|2θn.
To see this, let us call an assignment τ ∈ S(Φt) sparse if the total number of τ ′ ∈
S(Φt) such that dist(τ, τ ′) < 0.49θn is o(|S(Φt)|). Then Lemma 36 implies that
w.h.p. all but o(|S(Φt)|) assignments τ ∈ S(Φt) are sparse. Therefore, we obtain

2|E(G)| =
∑

(x,τ)∈Vt×S(Φt)

deg(x, τ)

≤
∑

τ∈S(Φt) sparse

∑
τ ′∈S(Φt)

(θn− dist(τ, τ ′)) + θn |S(Φt)|

· |{τ ∈ S(Φt) : τ is not sparse}|
≤ 0.51θn|S(Φt)|2 + θn · o(|S(Φt)|2) ≤ 0.511θn|S(Φt)|2,

as claimed.
Now, assume that Φt does indeed satisfy (49), i.e., 2|E(G)| ≤ 0.511|St(Φ)|2θn.

Suppose that x is a variable whose marginal does not lie in (0.01, 0.99). Then the set

Sx = {(τ, x) : τ ∈ S(Φt)} spans at least
(
0.99S(Φt)

2

)
edges. Hence, if we let ν be the

number of variables x whose marginal does not lie in (0.01, 0.99), then

ν

(
0.99S(Φt)

2

)
≤ |E(G)| ≤ 0.511|St(Φ)|2θn/2.

Therefore, ν ≤ 0.511+o(1)
0.99 θn ≤ 2

3θn, whence the first part of Theorem 37 follows.
We come to the proof of the second assertion. If kθ < ln(ρ)/2, then part 3 of

Theorem 17 (i.e., the existence of forced variables) immediately implies part 2 of
Theorem 37. Thus, let us assume that ln(ρ)/2 ≤ kθ ≤ ρ/ ln 2. Let (Φ,σ) be a pair
chosen from the distribution Uk(n,m). By the second part of Theorem 17, w.h.p.
there is a set R of size |R| ≥ 0.99θn for which (31) holds, i.e., for any τ ∈ S(Φt) we
have

(50) |{x ∈ R : σ(x) 	= τ(x)}| ≤ k2−kn.

Assuming that there is such a set R, we define an auxiliary bipartite graph B whose
vertices are the variables in R and the satisfying assignments S(Φt). Each variable
x ∈ R is connected with all τ ∈ S(Φt) such that τ(x) 	= σ(x). The number of edges
of B satisfies

(51) |E(B)| ≤ k2−kn |S(Φt)| ,
for (50) implies that each τ ∈ S(Φt) has degree at most k2−kn in B.

For each variable x ∈ R the marginal probability that x takes the truth value
1− σ(x) equals d(x)/ |S(Φt)|. Let ν denote the number of x ∈ R such that

d(x)/ |S(Φt)| > 2−k/2.

Then (51) entails that ν ≤ k2−k/2n ≤ 0.01θn, where the last inequality follows
from our assumption that θ ≥ ln(ρ)/(2k) and that k ≥ k0, ρ ≥ ρ0 are sufficiently
large.
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7. Belief propagation. The proof of Theorem 7 builds strongly on results
from [9]. The main technical contribution of [9] is an analysis of the computation
of the belief propagation marginals defined in (7). We will be able to use that anal-
ysis largely as a “black box.” This is because [9] reduces the analysis of the BP
computation to the proof that the outcome Φt of the experiment U1–U4 enjoys cer-
tain quasi-randomness properties. We begin by stating the necessary properties. To
this end, we define

(52) δt = exp(−c(1− t/n)k) for any 0 ≤ t ≤ n, and T =

(
1− ln ρ

c2k

)
n,

where 0 < c < 0.1 is a small absolute constant (independent of k, ρ, t, n).

Fix a k-CNF Φ and an assignment σ ∈ {0, 1}V . Let G = G(Φ, σ, t) denote the
factor graph of Φt,σ. For a vertex v of G we let N(v) denote the neighborhood of v
in G. Furthermore, for a variable x ∈ Vt and a set Q ⊂ Vt we let

N≤1(x,Q) = {b ∈ N(x) : |N(b) ∩Q \ {b}| ≤ 1 ∧ 0.1θk ≤ |N(b)| ≤ 10θk}.(53)

Thus, N≤1(x,Q) is the set of all clauses that contain x (which may or may not be
in Q) and at most one other variable from Q. In addition, there is a condition on
the length |N(b)| of the clause b in the decimated formula Φt,σ. (Observe that having
assigned the first t variables, we should expect the average clause length to be θk.)

We call a clause a of Φ redundant if there is another clause b such that |N(a) ∩
N(b)| ≥ 2. For a clause b and a variable x ∈ N(b) we let sign(x, b) = 1 if x occurs in b
positively and sign(x, b) = −1 otherwise. Moreover, for a linear map Λ : RVt → RVt

let ‖Λ‖� signify the norm

‖Λ‖� = max
ζ∈RVt\{0}

‖Λζ‖1
‖ζ‖∞

.

Definition 38. Let δ > 0. We say that (Φ, σ) is (δ, t)-quasi-random if Φ satisfies
Q0 and Φt,σ satisfies Q1–Q4 below.

Q0. There are no more than ln lnn redundant clauses. Moreover, no variable
occurs in more than lnn clauses of Φ.

Q1. No more than 10−5δθn variables occur in clauses of length less than θk/10
or greater than 10θk. Moreover, there are at most 10−4δθn variables x ∈ Vt
such that

(θk)3δ ·∑b∈N(x) 2
−|N(b)| > 1.

Q2. If Q ⊂ Vt has size |Q| ≤ δθn, then there are no more than 10−4δθn variables
x such that either ∑

b∈N(x):|N(b)∩Q\{x}|=1

2−|N(b)| > ρ(θk)5δ, or(54)

∑
b∈N(x):|N(b)∩Q\{x}|>1

2|N(b)∩Q\{x}|−|N(b)| >
δ

θk
, or(55)

∣∣∣∣∣∣
∑

b∈N≤1(x,Q)

sign(x, b)

2|N(b)|

∣∣∣∣∣∣ >
δ

1000
.(56)
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Q3. For any 0.01 ≤ z ≤ 1 and any set Q ⊂ Vt of size 0.01δ(n − t) ≤ |Q| ≤
100δ(n− t) we have ∑

b:|N(b)∩Q|≥z|N(b)|
z|N(b)| ≤ 1.01|Q|.

Q4. For any set Q ⊂ Vt of size |Q| ≤ 10δ(n− t) the linear operator

ΛQ : RVt → RVt ,(57)

Γ �→
( ∑

b∈N≤1(x,Q)

∑
y∈N(b)\{x}

2−|N(b)| · sign(x, b)sign(y, b)Γy

)
x∈Vt

has norm ‖ΛQ‖� ≤ δ4θn.
Although we will just employ the analysis of the BP mechanics from [9] in a

black-box manner, it may be helpful to get an intuitive understanding of the above
properties. Condition Q0 is just a well-known general property of random formulas.
A necessary condition for the BP formalism to apply is that the factor graph does
not have (many) short cycles. Since redundant clause induce cycles of length four,
it is unsurprising that we need to impose that there are few of them. Moreover, the
condition on the maximum degree of a variable is needed for technical reasons.

We already observed that the average clause length is kθ, and condition Q1 re-
quires that most clauses have about this length. The second condition in Q1 ensures
that only few variables occur in many short clauses, where there is a trade-off be-
tween the actual length of the clause and the number of clauses of that length that
we tolerate.

Conditions Q2 and Q3 are essentially expansion properties of the factor graph
of Φt,σ. More precisely, (54) and (55) require that there is no small set Q ⊂ Vt of
variables that is overly strongly connected with the rest of the factor graph. Moreover,
(56) imposes that the clauses that x touches and that do not contain another variable
from the small forbidden set Q do not have a strong preference as to the value that
x should take. That is, the difference between the number of positive and negative
occurrences of x in these clauses (weighted by their lengths) is not too big.

Condition Q3 requires that there does not exist a small set Q from which very
many clauses contain many variables. Roughly speaking, if we picture the factor
graph of Φt,σ as a sparse random (bipartite) graph, then we would expect that the
average degree of a small set is not much more than two. The purpose of Q3 is to
impose a suitable formulation of such a condition.

Finally, Q4 is perhaps the most important property. We can think of ΛQ as
a signed, weighted “adjacency operator” on the variables Vt, in which clauses that
are exposed to some forbidden set Q are excluded. More precisely, each clause b
connecting two variables x, y contributes 2−|N(b)| if both occur with the same sign in b,
and −2−|N(b)| otherwise. Hence, once more clauses are weighted by their lengths. The
operator ΛQ corresponds to (a projection of the) total derivative of the BP operator
at the point where all messages are 1/2. Hence, Q4 expresses that the derivative of
the BP operator is essentially “flat” at that point.

Combined, properties Q0–Q4 basically imply that on Φt,σ iterating the BP opera-
tor ω times for any ω ≥ 1 will not produce a large set of variables whose BP marginals
deviate significantly from 1/2. More precisely, these properties imply that any sub-
stantial deviations from 1/2 cannot spread through the formula because such biases
will average out due to the expansion properties Q1–Q3 and because the derivative
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of the BP operator at the point where all messages are 1/2 (essentially) vanishes due
to Q4.

To formalize the notion that most BP marginals are close to 1/2, we need a few
more definitions. Let Φ be a k-CNF and let δ > 0. For a number δ > 0 and an index
l > t we say that xl is (δ, t)-biased if the result μxl

(Φt,σ, ω) of the BP computation
on Φt,σ differs from 1

2 by more than δ, i.e.,

|μxl
(Φt,σ, ω)− 1/2| > δ.

Moreover, (Φ, σ) is (δ, t)-balanced if no more than δθn variables are (δ, t)-biased.
Theorem 39 (see [9]). There is ρ0 > 0 such that for any k, r satisfying ρ0 ·2k/k ≤

r ≤ 2k ln 2 and n sufficiently large the following is true. Suppose (Φ, σ) is (δt, t)-quasi-
random for some 1 ≤ t ≤ T , with δt, T as in (52). Then (Φ, σ) is (δt, t)-balanced.

To put Theorem 39 to work, we need to verify that for a pair (Φt,σt) chosen
from the distribution U1–U4 quasi-randomness holds w.h.p.

Proposition 40. There exists constants ρ0 > 0, k0 > 0 such that for any k ≥ k0
and r satisfying ρ0 · 2k/k ≤ r ≤ 2k ln 2 a pair (Φt,σt) chosen from the distribution
U1–U4 is (δt, t)-quasi-random w.h.p. for any t ≤ T such that θ = 1− t/n ≤ ρ/(k ln 2).
Theorem 7 follows directly by combining Theorem 39 and Proposition 40. Thus,
the remaining task is to prove Proposition 40, i.e., to establish the quasi-randomness
properties detailed in Definition 38. The following lemma deals with condition Q0.

Lemma 41 (see [9]). The random formula Φ satisfies condition Q0 w.h.p. for
any density 0 < r = m/n ≤ 2k ln 2.

Furthermore, to prove that a random pair (Φt,σt) chosen from the distribution
U1–U4 satisfies Q1–Q4 w.h.p., we once more take a detour via the planted model.
More precisely, below we will show the following.

Proposition 42. There exists a constant ρ0 > 0 such that for any k, r satisfying
ρ0 · 2k/k ≤ r ≤ 2k ln 2 there is ξ = ξ(k, r) > 0 so that for n large and δt, T in (52)
the following is true. Let (Φ′,σ′) be a pair chosen from the planted model P ′

k(n,m).
Then

P [(Φ′,σ′) is (δt, t)-quasi-random|Q0] ≥ 1− exp
[−ρ21−kn

]
(58)

for any t ≤ T such that θ = 1− t/n ≤ ρ/(k ln 2).
Combining Lemma 41, Proposition 42, and Corollary 15 yields Proposition 40.

Proof of Proposition 42. Let (Φ′,σ′) be a pair chosen from the planted model
P ′
k(n,m). Our goal is to establish (58). To simplify the notation, we may and will

assume without loss that σ′ = 1 is the all-true assignment. In order to prove Propo-
sition 42, it will be convenient to use a further auxiliary result from [9]. This result
deals with a random formula Φ′′ on V = {x1, . . . , xn} obtained by including each
possible clause with probability p = m/((2k − 1)

(
n
k

)
) independently. Thus, Φ′′ is a

random formula in which the total number of clauses is binomially distributed with

mean 2k

2k−1 · rn.
Proposition 43 (see [9, Appendix E]). There exists a constant ρ0 > 0 such

that for any k, r satisfying ρ0 · 2k/k ≤ r ≤ 2k ln 2 for n large and δt, T as in (52)
the following properties hold for the random formula Φ′′ with probability at least 1−
exp[−10

∑
s≤t δs] for any 1 ≤ t ≤ T given that Φ′′ satisfies Q0.
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1. Q1 and Q3 are satisfied.
2. For any set Q of size |Q| ≤ δtθn there are at most 10−5δθn variables x that

satisfy either (54), (55), or

(59)

∣∣∣∣∣∣
∑

b∈N≤1(x,Q)

sign(x, b)

2|N(b)|

∣∣∣∣∣∣ >
δt

2000
.

3. For any Q ⊂ V the operator ΛQ from (57) satisfies ‖ΛQ‖� ≤ δ4t (n− t)/2
The following lemma will allow us to establish a connection between the two

random formulas Φ′ and Φ′′.
Lemma 44. There exists a constant ρ0 > 0 such that for any k, r satisfying

ρ0 ·2k/k ≤ r ≤ 2k ln 2 the following is true for the random formula Φ′′ with probability
at least 1− exp(−ρ22−kn).

1. The total number of all-negative clauses is bounded by 21−km.
2. For each variable x ∈ Vt let Nx be the number of all-negative clauses in which
x appears. Then the number of variables x ∈ Vt with Nx > 20.01θk is bounded
by δ2t θn.

Proof. The first assertion simply follows from Chernoff bounds. With respect
to the second assertion, assume that the first claim occurs, i.e., the total number
of all-negative clauses is bounded by 21−km = 2ρn/k. Then for each variable the
average number of occurrences in such clauses is bounded by 2ρ. Therefore, the total
number of variables that occur more than 20.01θk times is bounded by 2ρ · 2−0.01θkn.
By symmetry, the number of such variables that are among the last θn variables is
(asymptotically) binomially distribution with mean 2ρ · 2−0.01θkθn. Therefore, the
second assertion follows from Chernoff bounds as well.

Proof of Proposition 42. Assume that t ≤ T is such that θ ≤ ρ/(k ln 2). As the
δs from (52) form a geometric sequence, we have

∑
s≤t δs ∼ n

ck exp(cθk) . Since we are

assuming that ρ ≤ k ln 2, that 0 < c < 0.1, θ ≤ ρ/(k ln 2), we have

(60)
∑
s≤t

δs ∼ n (exp(ck(1 − θ + 1/n))− 1)

ck exp(ck)
≥ ρn

2k−1
.

The formula Φ′ is obtained by including each clause that is satisfied under the
all-true assignment with probability p = m/((2k − 1)

(
n
k

)
) independently. Hence, we

can think of Φ′′ as being obtained by just adding to Φ′ each of the
(
n
k

)
clauses that

are unsatisfied under the all-true assignment (i.e., all-negative clauses) independently
with probability p. Thus, with probability at least

1− exp

⎡
⎣−10

∑
s≤t

δs

⎤
⎦ (60)

≥ 1− exp(−ρ21−kn)

the formula Φ′′ has the properties 1–3 from Proposition 43. Let us condition on this
event.

Since Φ′′ contains Φ′ as a subformula, the fact that Φ′′ enjoys properties Q1 and
Q3 implies directly that the same is true of Φ′. Furthermore, any variable x for which
either (54) or (55) is true in Φ′ has the same property in Φ′′ (because the expressions
on the left-hand side are monotone with respect to the addition of clauses). With
respect to the expression in (56), let Q ⊂ Vt be a set of size |Q| ≤ δtθn. For any
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x ∈ Vt let

Sx(Φ
′) =

∑
b∈N≤1,Φ′ (x,Q)

sign(x, b)

2|NΦ′ (b)| ,Sx(Φ
′) =

∑
b∈N≤1,Φ′′ (x,Q)

sign(x, b)

2|NΦ′′ (b)|

and let

Rx = Sx(Φ
′′)− Sx(Φ

′).

Due to Q1, we may assume that all clauses b ∈ N≤1,Φ′′(x,Q) \ N≤1,Φ′(x,Q) are of
length at least 0.1θk. Thus, letting Nx denote the number of clauses in Φ′′ \ Φ′

containing x, we get |Rx| ≤ 2−0.1θkNx. The second part of Lemma 44 implies that
for all but δ2t θn variables we have Nx ≤ 20.01θk. Hence,

|Rx| ≤ 2−0.99θk for all but δ2θn variables.

This shows in combination with the second part of Proposition 43 that Φ′ satisfies
Q2.

With respect to Q4, let D be the difference of the two linear operators for Φ′ and
Φ′′. Only clauses of length at least 0.1θk and at most 10θk contribute to D. Hence,
letting N denote the number of all-negative clauses, we have

‖D‖� ≤ 2−0.1θk(10θk)2N.

Since N ≤ 21−km = 2ρn/k by Lemma 44, we thus get

‖D‖� ≤ 200θn(θk)2−0.1θk.

This implies together with the third part of Proposition 43 that Φ′ satisfies Q4.
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