
Limits and Trade-Offs of Topological Network
Robustness
Christopher Priester1*, Sebastian Schmitt2, Tiago P. Peixoto3

1 Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany, 2 Honda Research Institute Europe GmbH, Offenbach am Main, Germany, 3 Institut

für Theoretische Physik, Universität Bremen, Bremen, Germany

Abstract

We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To
this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale
structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean
degree and number of blocks. The results provide strong evidence that three different blocks are sufficient to realize the
best trade-off between the two measures of robustness, i.e. to obtain the complete front of Pareto-optimal networks. For all
values of the mean degree, a characteristic three block structure emerges over large parts of the Pareto-optimal front. This
structure can be often characterized as a core-periphery structure, composed of a group of core nodes with high degree
connected among themselves and to a periphery of low-degree nodes, in addition to a third group of nodes which is
disconnected from the periphery, and weakly connected to the core. Only at both extremes of the Pareto-optimal front,
corresponding to maximal robustness against random and targeted node removal, a two-block core-periphery structure or
a one-block fully random network are found, respectively.
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Introduction

The theoretical investigation of complex networks has proven to

be a valuable tool for the study of many real-world systems [1–6].

One important aspect is how the topological properties of

networks are linked to their function and robustness [7,8].

Robustness is defined as the correct functioning in the presence

of disturbances, and it is a desired property of many empirical

network systems. The robustness of networks to topological

disturbances is a very active field of research [8–11], since it is

often assumed that it is a necessary ingredient for higher-order

forms of robustness associated with specific network dynamics [12–

16].

One popular way to address topological robustness is by

removing nodes from a given network and then analyzing how

connected the network remains as function of the number of nodes

removed [7,17,18]. In this way, the problem of robustness is

mapped to the classical phenomenon of percolation, and the

formation of a giant component in the remaining network after the

node removals.

Recent studies focused on the optimization of the topological

robustness of networks, when a given set of constraints are

imposed [11,19–25]. Most recent works have focused on

optimization according to different robustness criteria, such as

targeted attacks [11,25,26] and random failure [25,26]. However,

most real systems are subject to simultaneous types of perturba-

tions, which individually require different, and thus competing

strategies to mitigate failure. In order to properly access the

inherent trade-offs in such situations, one needs to combine

multiple robustness criteria. A standard technique is to chose a

weighted sum of the relevant criteria as the objective function to be

minimized or maximized. However, such an approach can be

ineffective if the goal is to map all possible trade-off values between

these objectives. In addition, it also bears the difficulty to define

properly scaled objective functions for each criterion, such that a

weighted sum really reflects the relative importance the multiple

criteria.

In order to avoid such issues we use a multi-objective

optimization approach [27–30], where a complete set of Pareto-

optimal solutions is directly obtained. The two objectives we focus

on are the topological robustness of networks against random and

targeted removal of nodes. These two types of robustness are

known to be in a trade-off relation, where increasing the

robustness with respect to one type of removal is likely to decrease

the other [18,25,26]. In particular, it has been recently shown that

in absence of any constraints other than a fixed average degree,

the optimization of robustness against random failure leads to a

core-periphery structure, where most nodes are connected to a
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core group, possessing a high average degree, which is also

internally connected [25]. Although being maximally robust

against random failure, this core-periphery topology is minimally

robust against targeted attacks, since the removal of the few core

node immediately leads to the vanishing of the giant component.

This robustness-fragility duality is a common feature of real

networks with heterogeneous structure; a famous example of

which is the Internet [31].

In order to investigate this multi-objective optimization

scenario, we follow Ref. [25] and focus on large-scale topological

features, as parametrized by a stochastic block model [32,33]. This

parametrization allows for arbitrary large-scale mixing patterns,

such as assortativity, dissortativity, community structure, core-

peripheries, etc., as well as arbitrary local degree distributions.

This model is also convenient, since it allows the exact

computation of the percolation properties of the system in the

limit of large networks [25,34].

By analyzing the Pareto-optimal fronts according to the two

robustness criteria, we observe that a minimal number of three

blocks is sufficient to obtain the optimal fronts, and that in most

cases the best trade-off is realized by a hybrid structure composed

of a core-periphery and a third ‘‘secluded’’ group, which is

strongly connected internally and marginally connected to the core

nodes. The two-block core-periphery of Ref. [25] and the fully

random network are recovered at the two extremes of the Pareto

fronts, for maximum robustness against random and targeted node

removal, respectively.

This paper is organized as follows. In Sec. 1, we define the

stochastic block model and in Sec. 2 our robustness criteria. In

Sec. 3, the evolutionary multi-objective optimization algorithm is

described briefly. Sec. 3 presents the results of the optimization for

several parameter choices, including the Pareto-optimal fronts and

the resulting topologies. In Sec. 5.3, we finalize with an overall

discussion.

Materials and Methods

1 Stochastic block model
The stochastic block model defines an ensemble of random

networks, in which nodes belong to different groups (also called

‘‘blocks’’), and the probability of an edge existing between nodes is

a function of the block membership of each node. Each block

holds a fraction nr of the N nodes of the whole network, where

r [ ½1,B� enumerates these blocks and B is the total number of

blocks, such that
PB

r~1 nr~1. Following Ref. [33], each of the B

blocks is characterized by an independent degree distribution pr
k,

which specifies the fraction of nodes with degree k in block r.

The connections between the blocks are described with a matrix

e, where the elements ers specify the number of half-edges per

node in block r connecting to nodes in block s. For simplicity of

notation, the diagonal elements err encode twice the number of

edges per node within block r.

In the framework of the stochastic block model, the network

structure becomes locally tree-like when the number of nodes Nnr

inside each block is sufficiently large. Since the probability of an

edge existing between any two nodes of groups r and s scales as is

Eers=NnrNns*O(1=N), with nr*1=B and ers*1=B2, the prob-

ability of an edge existing between any two chosen neighbours will

become vanishingly small as N??. Therefore, since local

substructures such as triangles are not generated by the model,

predictions based on block model calculations can only be

accurate for (large) locally tree-like networks without these local

substructures. However, global and meso-scale properties such as

community structure [33], assortativity [35], bipartite, core-

periphery structures [25], or any other arbitrary mixing pattern

are well captured.

Each block of the network can in principle have an arbitrary

degree distribution pr
k. However, in this work we restrict the

degree distribution of each block to be a modified Poisson degree

distribution,

pMP
k ~(1{dk,0)

kk

(ek{1)k!
, ð1Þ

where dij is the Kronecker delta function. Thereby nodes with

zero degree (k~0) are explicitly excluded, since they can never

belong to the giant component. In contrast to a regular Poisson

distribution pP
k~kke{k=k!, where the mean degree is directly

given by k, the mean degree of the modified Poisson distribution is

given by SkTMP~k=(1{e{k), which always is greater than k. In

particular, the mean degree cannot be less than one, SkTMP§1.

It is important to note that although the use of the modified

Poisson distribution as displayed in Eq. (1) may seem like a strong

imposition on the network structure, in reality it is not. A large

variety of nearly-arbitrary degree distributions of the complete

network can be obtained by composing many blocks with different

sizes and average degrees.

The percolation properties of a random network with the

modified Poisson degree distribution of Eq. (1) differ slightly from

an Erdős-Rényi network, i.e. a random network with a regular

Poisson distribution. In the Erdős-Rényi network the percolation

transition where a macroscopic connected component emerges as

a function of the mean degree occurs at SkTC
P ~1. In the case of

the modified Poisson distribution, the transition is shifted to

SkTC
MP~e=(e{1)&1:58, as can be seen in Fig. 1. This is a direct

consequence of the fact that no nodes with degree k~0 are

allowed in the later case. For a modified Poisson network to have

low mean degree, SkTMP &
> 1, a large fraction of nodes needs to

have degree one. In order to achieve this, many of the k{1 nodes

form pairs and are thus isolated from the rest of the network.

Additionally, the number of nodes with degree greater than one is

strongly reduced compared to the regular Poisson distribution (see

inset of Fig. 1). This prohibits the existence of a macroscopic

connected component if the mean degree is close to one

(SkTMP &
> 1). Only when the fraction of nodes with k~1

diminishes, a macroscopic giant component can form. In this

case, the nonexistence of disconnected k~0 nodes results in larger

connected components in general and leads to the stronger

increase of the size of the giant components as can be seen in

Fig. 1.

Apart from the degree distribution of each block, pr
k, more

parameters need to be specified in order to define a realization of a

block model ensemble. These are the total number of blocks B, the

relative size of each block nr, the mean degree of each block SkTr,

as well as the edges connecting the blocks given by ers. These

parameters are, however, not completely independent as the

relative sizes nr of all blocks must add up to one,
P

r nr~1, and

the sum of all the edges incident to one block is related to its mean

degree, SkTr~
P

s ers=nr. Since we will always consider networks

with a given total mean degree SkT, the following constraint will

need to be fulfilled, SkT~
P

r nrSkTr.

2 Node removal and robustness
Failure in networks is modeled by removing a finite fraction q of

nodes from the network. We will consider two different strategies

for selecting which nodes are removed. The first is random removal
where the nodes to be removed are selected purely randomly. The
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second is targeted removal where nodes with higher degree are

more likely to be removed.

Both types of failures are inspired by real-world technical

networks. Random removal is considered to model fatigue of parts

or other random influences. Targeted removal is inspired by the

fact that highly loaded nodes are more likely to fail or, in the

context of critical infrastructure, malicious damage is preferably

brought to important nodes.

In the context of block models, where we only model

representative nodes in an statistical ensemble, we employ a slight

variation of the targeted removal which was also used in Ref. [25].

The targeted criterion is only applied to the selection of blocks

where the fraction of nodes to be removed from block r is

proportional to eSkTr and thus increases with the mean degree of

the block. However, within each block no further targeted removal

of nodes is performed and nodes are removed at random. In case

of all blocks having the same mean degree targeted removal is

identical to random node removal.

As a measure of robustness of a network we use the size of the

macroscopic component S(q) after a finite fraction q of nodes has

been removed. Instead of focusing on the robustness when

removing a single fraction q, all possible values 0ƒqƒ1 are

considered to obtain a sensible measure for the overall robustness

of a network. Therefore, we define the robustness as it was

proposed in Ref. [11] as

R~2

ð1

0

S qð Þ dq, ð2Þ

where the factor of 2 serves to adjust the range of R to be 0,1½ �.
The limiting case R~0 is achieved by networks without a

macroscopic component, even when no nodes are removed at all.

The opposite limiting case of R~1 requires a fully connected

network where S(q)~1{q.

Following Ref. [25] using the generating function formalism

[36] the size of the macroscopic component is calculated using ur,

which is the probability that a node in block r is not connected to

the macroscopic component via one of its neighbors. These

probabilities for all blocks have to fulfill a system of B self-

consistent coupled equations:

ur~
X

s

mrs 1z
ws

ks

g’0,s usð Þ{1
� �� �

, ð3Þ

where mrs:
ers

nrkr

is the fraction of edges in block r leading to block

s, nr and SkTr are the relative number of nodes and mean degree

of block r, respectively, and g0,r(z)~
P

k pr
kzk is the generating

function of the degree distribution of block r and

g’0,r(z)~
L
Lz

g0,r(z) is its derivative. wr [ ½0,1� is the fraction of

nodes not removed from block r. The wr have to be chosen in

accordance with the node removal strategy, for example, wr~w for

random removal or wr!e{SkTr for targeted removal. Since the

total fraction of removed nodes is given by q, the wr need to satisfy

the relation q~1{
P

s wsns. Due to this requirement, the wr for

targeted removal need to be determined by numerically solving

0~1{q{
P

r nr exp ({SkTr(1{x)=x) for x and using the

solution x� to get wr~ exp ({SkTr(1{x�)=x�).
The solutions of these equations ur allows for the calculation of

the size of the giant connected component S(q),

S(q)~
X

1{ uð Þ½ �: ð4Þ

At this point, a few remarks about the interpretation of the value

of S(q) should be made. Since we are parametrizing the system

with intensive quantities (ers, nr, ur, etc.) which specify fractions of

nodes and edges in infinitely large systems, we cannot differentiate

between the existence of single or multiple macroscopic compo-

nents for a given value of S(q). In other words, if two macroscopic

components are connected by a single edge (or more generally,

any intensive number of edges) the probability of edges between

them vanishes in the infinite size limit. Thus, this situation cannot

be distinguished from two truly disconnected macroscopic

components where no edges exists between the two components.

For the purposes of this work, we consider this issue to be

unimportant, and we focus on the existence of macroscopic

components in the more abstract sense as given by the value of

S(q) directly.

For each node removal strategy, Eqs. (3) have to be solved for all

q in order to calculate the robustness R of a specific block model

ensemble. In our case, this leads to two different measures of

robustness, RRandom and RTargeted, for random and targeted node

removal, respectively.

3 Evolutionary optimization
In order to consider both robustness measures, RTargeted and

RRandom, at once, we utilize a multi-objective [27–30] evolutionary

optimization [37,38] algorithm. Unlike in the optimization of a

single objective, where it is always possible to state if a certain

solution A is better, worse or equally good compared to a solution

B, this is not necessarily possible in multi-objective optimization. If

a solution A performs better than a different solution B in one

objective, but worse in a second objective, no statement is possible

which of the solutions is better. Only if solution A is better than B
in at least one objective and not worse in any objective it can be

considered generally better and it is then said that A dominates B.

Sets in which no solution dominates any other solution are called

Figure 1. Giant connected component of a Erdős-Rényi random
network with a Poisson (dashed green) and modified Poisson
(solid red) degree distribution (excluding nodes with k~0) as
function the average mean degree of the network. The inset
shows the regular and modified Poisson distribution for a mean degree
of SkT~1:2 with the same color coding.
doi:10.1371/journal.pone.0108215.g001
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non-dominating. In general, a multi-objective optimization will not

result in a single best solution but in a set of non-dominating

solutions which ideally is close to the best possible set of non-

dominating solutions, the Pareto-optimal front. These non-

dominating sets are very useful to study the trade-off relation

between the robustness RTargeted and RRandom and their relation to

the structure of optimal networks.

The algorithm we use here is the so called S-metric selection
evolutionary multi-objective optimization algorithm (SMS-EMOA)

[39]. It is a population based evolutionary stochastic search

algorithm which does not utilize any gradient information and is

well suited for non-convex and noisy optimization problems. The

algorithm does not optimize the objectives directly but instead

maximizes the hypervolume in objective-space dominated by the

population and bound by a reference point. In the present case of

two objectives, the hypervolume is given by the area under the

Pareto-curves as, for example, shown in Fig. 2. At each iteration

the solution whose removal leads to the lowest decrease in the

dominated hypervolume is removed from the population and a

new solution is generated by recombination and mutation (for

more details see [40]).

Repeating the steps of removing the least contributing solution

and generating a new solution not only shifts the solution set closer

to the Pareto-optimal front but also leads to a broad distribution

along the front, two desired properties of an optimal set of

solutions. For completeness, we state the parameters used for the

SMS-EMOA: A population size of 50 is used, the crossover

probability is pc~1, the crossover distribution parameter is

gm~20, the mutation probability is pm~1, and the mutation

distribution parameter is gc~15.

For each optimization run, we fix the number of blocks B and

the mean degree of the complete network, SkT. Each block has a

modified Poisson distribution as its degree distribution (cf. Eq. (1)),

but the average mean degree of each block can vary. Therefore,

the free variables subject to optimization, i.e. the search

parameters, are the relative size of each block, nr, the mean

degree of each block, kr, and the entries in the matrix containing

edges within and between the blocks, ers. With the sum rules and

constraints stated at the end of Section 1, this results in
1

2
B(Bz1)zB{2 independent search parameters.

Results

4 Trade-off curves
In Fig. 2 we show robustness values obtained from different

optimizations for several numbers of blocks (B~2,3,4,5), but all

with a fixed mean degree of SkT~2:5. The Pareto-optimal fronts

for optimizations with B~3, 4, and 5 blocks match exactly. Only

the B~2 result deviates and yields lower robustness over large

parts of the Pareto-optimal front.

The network structures corresponding to the Pareto-optimal

solutions for B~3, 4, and 5 blocks (not shown) are also identical.

(Two structures with different B values are considered identical

when their structural entropy is the same. See Sec. 5 for more

details.) The same behavior was found for other values of the mean

degree SkT, where the results for B§3 were identical and

deviations were only observed for B~2.

This leads to the conclusion that three blocks are sufficient to

describe networks which are maximally robust against random

and targeted node removal. At both extremes of the Pareto-

optimal fronts all curves coincide, which means that for optimizing

only with respect to one objective (i.e. single-objective optimiza-

tion), Bƒ2 is sufficient to achieve maximal robustness (see Section

5). This is in accordance with the results of Ref. [25], where single-

objective optimization was performed, and a B~2 core-periphery

and a B~1 fully random structures were found as optimum for

random and targeted node removal, respectively. This is also

consistent with the findings of Valente et al. [26] who showed two-

and three-peak degree distributions to be optimal when minimiz-

ing percolation thresholds of networks subject to random and

targeted removal of nodes.

The Pareto-optimal fronts of optimized block model networks

with three blocks (B~3) and a mean degree SkT between 1:5 and

Figure 2. Pareto-optimal fonts of robustness against targeted
and random removal of nodes for mean degree SkT~2:5 and
various number of blocks. For three, four and five blocks the curves
match exactly which implies that no more than three blocks are
necessary to achieve the best robustness values. Since at the and of the
curves all of them match only two or even one block is enough to
achieve best robustness.
doi:10.1371/journal.pone.0108215.g002

Figure 3. Pareto-optimal fronts of RRandom versus RTargeted for
optimal block model networks with B~3 and for various mean
degrees (colored symbols). For SkTw2, the smaller gray symbols to
the left of each Pareto front indicate solutions which maximize RRandom

for fixed RTargeted but which are not Pareto-optimal (see main text).
doi:10.1371/journal.pone.0108215.g003
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3:5 are shown in Fig. 3. As intuitively expected, the general trend

where the robustness increases with the mean degree is observed.

For small values of the mean degree, SkT=2:5, the two types of

robustness are in strong trade-off relation: Increasing the

robustness against targeted removal strongly decreases the

robustness against random removal (and vice-versa).

Pareto-optimal solutions of networks with SkT=2 and with the

highest robustness against random removal are always found to be

most fragile with respect to targeted removal, i.e. at RTargeted~0.

But for SkTw2, networks with the maximal value of RRandom shift

to have a finite robustness against targeted removal, RTargetedw0.

In this case, networks with lower robustness against targeted

removal are not accessible via the multi-objective optimization,

since they are not Pareto-optimal (i.e. they are dominated by the

solutions with maximal RRandom, see Refs. [27–30]). However,

they can be found by performing an optimization with the value of

RTargeted fixed, and such results are shown as the smaller gray

symbols in Fig. 3. The Pareto optimal front together with these

additional solutions form the whole trade-off curve for each SkT.

With increasing mean degree, the trade-off curves become very

flat, indicating that a slight sacrifice on the robustness with respect

to random removal yields a great enhancement in the robustness

against targeted removal. Additionally, the curves increasingly

approach the diagonal where RRandom~RTargeted, which means

that there are solutions which are equally good in both measures.

In general RRandom is always greater or equal to RTargeted, and

for SkT>2:5, the Pareto-optimal fronts extend to the diagonal. In

random networks, nodes with high degree are important for the

size of the giant component since they naturally are more likely to

connect different components. Due to this, a removal mechanism

targeting high degree nodes is able to degrade the giant

component easily by removing a relatively small amount of high

degree nodes. Therefore, making the degree distribution of a

network narrow should increase the robustness against targeted

removal since there are less high-degree nodes. In a block model

with several blocks a narrow degree distribution implies that all

blocks have the same mean degree SkTr~SkT. Since, in this

work, targeted removal only differentiates between blocks but not

between nodes inside the block, targeted and random removal are

identical if all blocks have the same mean degree. As a

consequence, the robustness values are then equal,

RRandom~RTargeted.

In contrast, for SkT=2:0, the Pareto-optimal fronts do not

extend to the diagonal, which is a consequence of the percolation

properties of fully random B~1 networks (cf. Section 1). For low

mean degrees, the giant connected component of a fully random

network is very small even without node removal (q~0). Due to

the steep increase of the giant component with increasing mean

degree (cf. Fig. 1), it is beneficial to have two blocks with differing

mean degree, one higher and the other lower than the total

average mean degree SkT. The block having a mean degree

greater than SkT, also has a substantial larger giant component,

while the giant component of the other block is still small (or even

zero). Therefore, the argument presented above for SkT>2:5,

where a finite giant component at q~0 always exists, is not

effective for SkT=2. It is always beneficial to have (at least) two

blocks in order to have increase the size of the giant component for

q~0.

5 Network structures
In our approach, the number of blocks B is set a priori and kept

fixed during a single optimization procedure. However, networks

with different values of B could have equivalent topologies. This

can happen if one or more blocks have a vanishing size nr and

mean degree SkTr, or when two or more blocks can be merged

together without altering the ensemble of generated networks.

For a clearer visualization and analysis of block model

structures, we reduce the number of blocks by removing

insignificant blocks and by merging multiple blocks into one if

they are equivalent. For two blocks to be equivalent, we require

that the entropy of the merged and the original network ensembles

differ by a very small amount. The entropy of the stochastic block

model ensemble is simply the logarithm of the total number of

networks which can be generated given a specific parametrization,

i.e. choices of nr and ers. The entropy is a signature of the

ensemble, and determines how random it is. If the entropy

remains the same after two blocks are merged into one, this means

that these two groups correspond simply to an arbitrary

subdivision of a larger group, and they do not in fact constrain

the topology in any way. The entropy of block model networks is

calculated as described in Ref. [41]. We emphasize that, since the

topologies in this case are in fact equivalent, the effect of the

merging process on the robustness values was found to be

negligible.

We now consider the Pareto fronts separately for different

values of the mean degree.

5.1 Networks with intermediate mean degree

SkT~2:5. In Figure 4, the structure and parameters of opti-

mized networks for SkT~2:5 are depicted. The merging

procedure is reflected in the fact that the number of blocks

indicated by the number indices on the axis and the number of

possible squares in the top-row Hinton-plots varies between one

and three.

For RTargeted?0 we recover the core-periphery structure found

in Ref. [25] where the optimal solution consists of only two blocks.

One block is the very large periphery block which contains nearly

all the nodes (nperiphery&1) and which has the lowest mean degree

possible in this kind of structure SkTperiphery&SkT=2~1:25. The

core block contains only very few (ncore*10{3) but very high-

degree nodes (SkTcore*103). Almost all of the edges are between

the core and the periphery.

The core is central for forming the giant component, but takes

up only a very small fraction of the network. Therefore, random

removal will almost always affect periphery nodes and the giant

component will shrink approximately linearly with the number of

removed nodes, which is as slow as possible.

On the other hand, the core-periphery structure is maximally

fragile with respect to targeted removal, since removing the core

completely removes the giant component.

With increasing robustness against targeted removal, a third

block emerges for SkT>0:07 in addition to the core and periphery

block. This new block, which we will call the secluded block is first

of medium size (nsecluded&0:16) and has a mean degree of

SkTsecluded&4. In contrast to the core and the periphery block, it

has a substantial amount of edges internally, i.e. edges between

nodes within this block (green square in the Hinton plots). The

secluded block is only lightly connected to the core block and no

edges exist between secluded and periphery block.

Increasing RTargeted further, the mean degree of the secluded

block slightly decreases, while it grows in size. The number of

nodes in the periphery continuously decreases and around

RTargeted&0:24 the secluded block is larger than the periphery.

For very high RTargeted>0:52 the secluded block dominates and

the core periphery structure vanishes. The result is a single block

network with a modified Poisson degree distribution, as it was

already mentioned in the discussion at the end of Section 4 in

connection with Fig. 3.
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Considering the complete Pareto-optimal set of solutions, the

dominant structure is a three-block structure with a small but very

high degree core, a large but low degree periphery and an

additional secluded block which has a medium mean degree.

Connections only exist between the core and the periphery, and

between the core and the secluded block. The structure is best

qualified as a modified core-periphery with a regular Erdős-Rényi

network attached to the core. The relative size of the secluded

Erdős-Rényi block compared to the core-periphery structure

grows with an increased robustness against targeted node removal.

5.2 Networks with low mean degree SkT~2. The struc-

tures of Pareto-optimal networks with a low mean degree of

SkT~2 are shown in Figure 5. The resulting structures are overall

quite similar to the previously discussed case with SkT~2:5. For

RTargeted?0 a core-periphery structure results, with an additional

secluded Erdős-Rényi block emerging as RTargeted is increased.

However, a striking difference to the situation for SkT~2:5 is

that the number of edges within the periphery does not vanish but

is finite for all structures.

The periphery block always has a mean degree very close to

one, SkTperiphery>1, which implies that the majority of nodes has

exactly degree one. Therefore, most edges within the periphery

produce an isolated pair of two nodes not connected to any

macroscopic component (cf. discussion of the modified Poisson

distribution in Section 1).

At first glance, this seems contradictory as the giant component

is already reduced without any node removal (q~0). However,

this is beneficial for the overall robustness as it allows for the rest of

the nodes to have a higher mean degree putting it further above

the percolation threshold. As can be seen from Fig. 1, this is

especially effective for increasing the macroscopic component of

the secluded block as its mean degree of SkTsecluded&2:3 is close to

the steep increase in the size of the giant component. This may be

viewed simply as an artifact of the specific constraints we have

imposed. Perhaps a more realistic scenario would be to impose

additionally that the size of the largest component cannot decrease

for any value of q after the optimization. However, this would

make the analysis significantly more complicated, and would only

affect the outcome of very sparse networks.

Interestingly, this holds for the two-block core-periphery

structure as well for RTargeted~0. A pure core-periphery structure

is especially expected for SkT~2, since then the extreme topology

of a star can be realized (the corresponding Hinton plot is not

shown in Fig. 5). However, a very slight increase in the robustness

against targeted removal to RTargeted&0:006, leaves the two-block

core-periphery structure intact, but produces a significant amount

of pairs in the periphery (see leftmost Hinton plot of Fig. 5). The

size of the core jumps from ncore&7|10{5 to ncore&20|10{5

while its mean degree is reduced from SkTcore&14|103 to

SkTcore&4:6|103. With this structural change, a little robustness

against random removal is lost, but the a finite number of edges is

realized within the core which provides a finite robustness against

targeted removal.

As expected from the discussion at the end of Section 4, the

structure with a maximal RTargeted consists of two blocks, one with

a mean degree SkT0wSkT and another with SkT1vSkT. Both

blocks in fact form largely independent components since there are

very few connections between them. This is a situation similar to

the ‘‘onion-like’’ structure found in Ref. [11] when optimizing

against targeted node removal while preserving a heterogeneous

degree sequence. There, the nodes with higher degree are kept

isolated from the rest of the network, hence effectively functioning

simply as ‘‘bait’’ for the targeted removal, whereas the rest of the

system remains intact.

It is very remarkable that for SkT~2 the mean degree of the

three blocks stay constant over the complete range of the Pareto-

Figure 4. Parameters of the optimized networks as a function of RTargeted obtained from a three-block optimization with SkT~2:5.
The upper row shows the elements of the edge matrix ers, where the areas of the squares is proportional to the logarithm of the element. The
positions for which these Hinton plots are shown are marked with dashed lines in the other panels. The second row shows the trade-off curve already
displayed in Fig. 2, while the third and fourth display the mean degree of the blocks, on a logarithmic and a linear scale, respectively. The last row
shows the relative sizes of the blocks. The coloring of the blocks and their index is determined by their mean degree, where the block with the
highest mean degree is shown in blue and always has index r~0, followed by green with r~1 (second highest) and red (r~2, lowest degree).
doi:10.1371/journal.pone.0108215.g004
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optimal front (apart from the far extremes). The optimal trade-off

between the two robustness measures can be achieved by only

changing the connection matrix and the relative sizes of the blocks.

5.3 Networks with high mean degree SkT~3:5. The

network structures for a higher mean degree of SkT~3:5 is

shown in Fig. 6. The Pareto-optimal part of the front, that is for

RTargeted>0:48, displays the same three-block structures as for

SkT~2:5 and also reduces to a single block for maximal RTargeted

where RTargeted~RRandom (cf. Fig. 4).

For the part of the trade-off curve to the left of the maximum of

RRandom (i.e. for RTargeted=0:42), the structures change signifi-

cantly. A three-block structure prevails but the secluded block

ceases to exist. No block has a significant amount of internal edges

and all edges connect different blocks. The largest block

incorporates most of the nodes, n>0:9, and has the lowest mean

Figure 5. Parameters of the networks along the trade-off curve for the five block optimization with SkT~2:0. The rows show the
elements of the edge matrix ers , the trade-off curve already displayed in Fig. 2, the mean degree of the blocks on a logarithmic and on a linear scale,
as well as the relative sizes of the blocks, from top to bottom, respectively. See caption of Fig. 4 for more details on the coloring and box sizes.
doi:10.1371/journal.pone.0108215.g005

Figure 6. Parameters of the networks along the trade-off curve for the five block optimization with SkT~3:5. The rows show the
elements of the edge matrix ers , the trade-off curve already displayed in Fig. 2, the mean degree of the blocks on a logarithmic and on a linear scale,
as well as the relative sizes of the blocks, from top to bottom, respectively. See caption of Fig. 4 for more details on the coloring and box sizes.
doi:10.1371/journal.pone.0108215.g006
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degree of SkT&2. A second block is very small with

10{5
vnv10{2 and has a high degree 102

vSkTv104 and

therefore strongly resembles the core block. The third block is of

intermediate size and degree, 10{2
vnv10{1 and

10vSkTv102, respectively. The mid-sized and the small block

are only connected via the largest block since there are no direct

edges between them.

For very low robustness against targeted removal, RTargeted>0,

most of the edges are between the core and the largest block with

SkT~2. With increasing robustness against targeted removal the

number of edges between core and the SkT~2 block decreases

while more edges emerge between the SkT~2 block and the mid-

sized block. At around RTargeted&0:19 the same number of edges

exist from the SkT~2 block to both of the other two blocks. For

higher RTargeted more edges exist between the SkT~2 block and

the mid-sized block.

This structural evolution can be understood by noting that the

largest part of the network always has a mean degree very close to

two and acts a connecting layer between the core and the mid-

sized block. For low RTargeted, very few edges are between the

block with SkT~2 and the mid-sized block, so that a connecting

path between two different nodes of the mid-sized block is very

likely to traverse one of the few core nodes. Therefore, removing

the core quickly fragments the network into small components. On

the other hand, increasing the number of edges between the

SkT~2 and the mid-sized block, a connecting path between nodes

within the mid-sized block is more likely to involve no nodes from

the core. The core becomes increasingly unimportant and

therefore the robustness with respect to targeted removal increases.

Discussion

In this paper we investigated the trade-offs between topological

robustness of networks against random and targeted node

removals. We used the stochastic block model to parametrize

arbitrary mixing patterns, and a multi-objective optimization

algorithm to obtain the Pareto-optimal fronts. It was found that in

order to achieve a Pareto-optimal combination of robustness

against random and targeted removal, a network composed of at

most three different blocks is sufficient. In many cases the networks

along the Pareto-optimal fronts are composed of a hybrid

topology, comprised of a core-periphery structure, in addition to

a secluded group, which is only sparsely connected to the core of

the network, and not at all with the periphery.

At the edges of the Pareto-fronts, where one of the two

robustness criteria is maximized, one or two blocks suffice to

obtain optimal networks: A two-block structure is maximally

robust against random failure, and a fully random network with

one block is sufficient in the case of targeted removal. This

reproduces the results of Ref. [25], and is also consistent with the

earlier findings of Valente et al. [26] who found two- or three-peak

degree distributions to be optimal when minimizing percolation

thresholds, with networks which are otherwise fully random.

For low mean degrees of the overall network, the optimal

robustness values are generally lower than for higher mean degrees

and a significant trade-off exists between robustness against

random and targeted removal. With increasing mean degree the

strong trade-off diminishes and it is increasingly possible to obtain

a high robustness with respect to both criteria. This implies that a

network optimized against one type of failure does not necessarily

lose much of its robustness when it is subsequently optimized

against the other type of failure or attack. Hence this shows that

increasing the overall connectivity of the network not only has the

expected trivial effect of increasing each robustness criterion

individually, but to a large extent also allows for them to be

fulfilled simultaneously. This suggests that the simple strategy of

increasing the total number of edges in the network, if combined

with the optimal large-scale structures present in the Pareto-

optimal front, can be much more beneficial than could be

expected otherwise.

A comparison of the large-scale structures we find with the ones

observed in empirical systems [31,42,43] is a natural and

important extension of this work, and one we intend to pursue

in the future. The most appropriate approach is to search for

precisely the same type of model we are using in the analysis,

which can be done by inferring the parameters of the stochastic

block model itself from empirical data, which is a very active field

of research [32,33,44,45]. In fact, core-periphery structures have

already been detected, such as the topology of the Internet at the

autonomous systems level presented recently in [46]. However, to

our knowledge, an empirical verification of the specific structures

we have found has not yet been made.

In this work we have considered maximally robust networks that

are obtained when very few constraints are imposed. This gives us

fundamental limits on the multi-objective optimization against

random failures and targeted attacks. However, in empirical

systems, exogenous constraints are almost always present, such as

geographical confinement, and restrictions due to functional

performance. In previous studies [11,47], the optimization against

targeted node removal was considered when the degree sequence

of an empirical network is preserved. It was found that an

assortative structure emerges as the optimum in this case, where

nodes become connected with other nodes with similar degree.

This has been obtained as well by imposing similar constraints

with the block model approach in Ref [25]. However, it is still

unknown how the multi-objective optimization would behave

when these constraints (and other more realistically motivated

ones) are simultaneously imposed. We leave these questions for

future work.

Supporting Information

Dataset S1 Compressed file containing the final results of all

optimizations shown here. The name of each file contains the

respective number of blocks and the mean degree of the network.

The columns inside each file are aranged in the following order:

both robustness values, mean degree of each block, relative sizes of

the blocks, elements of the connection matrix.
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