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Abstract – Many real systems are made of strongly interacting networks, with profound
consequences on their dynamics. Here, we consider the case of two interacting social networks
and, in the context of a simple model, we address the case of political elections. Each network
represents a competing party and every agent, on the election day, can choose to be either active
in one of the two networks (vote for the corresponding party) or to be inactive in both (not vote).
The opinion dynamics during the election campaign is described through a simulated annealing
algorithm. We find that for a large region of the parameter space the result of the competition
between the two parties allows for the existence of pluralism in the society, where both parties
have a finite share of the votes. The central result is that a densely connected social network is
key for the final victory of a party. However, small committed minorities can play a crucial role,
and even reverse the election outcome.

Copyright c© EPLA, 2013

Introduction. – Interacting and interdependent net-
works have recently attracted great attention [1–10]. Here,
the function of a node in one network depends on the
operational level of the nodes it is dependent on in
the other networks. Investigated examples range from
infrastructure networks as the power grid and the Inter-
net [1] to interacting biological networks in physiology [10].
Understanding how critical phenomena [11,12] are affected
by the presence of interactions or interdependent networks
is crucial to control and monitor the dynamics of and on
complex systems. In this context it was shown that inter-
dependent networks are more fragile than single networks,
and that the percolation transitions can be first order [1].

Interesting, but so far less explored, is the case of inter-
acting social networks, describing individuals that manage
their personal relationships in different social contexts
(e.g., work, family, friendship, etc.). Taking into account
these multiple layers is crucial, as proven recently for
community detection methods in social networks [13–15],
but the effect of their presence is still not understood in
many respects. For example, there is considerable current
interest in opinion models [16], among which we cite the
the Sznajd model [17], the voter model [18], the naming

game [19,20] and Galam models [21,22]. But the influence
of more than one network has gathered less attention [23].

Here we propose a simple model for opinion dynamics
that describes two parties competing for votes during a
political campaign. Every opinion, i.e., party, is modeled
as a social network through which a contagion dynamics
can take place. Individuals, on the other hand, are
represented by a node on each network, and can be active
only in one of the two networks (vote for one party) at
the moment of the election. Each agent has also a third
option [19,20,24–26], namely not to vote, and in that case
she will be inactive in both networks. Crucially, agents are
affected by the opinion of their neighbors, and the nodes
tend to be active in the networks where their neighbors
are also active. Moreover, the chance of changing opinion
decreases as the decision moment approaches, in line
with the observation that vote preferences stabilize as the
election day comes closer [27].

Our aim is to provide insights in the role of multiple
social networks in the voting problem through a simple
and clear mathematical model, in the spirit, for example,
of recent work concerning the issue of ideological con-
flict [26]. We describe the dynamics of social influence in
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the two networks, and we model the uncertainty reduction
preceding the vote through a simulated annealing process.
Long before the election the agents change opinions and
can sustain a small fraction of antagonistic relations, but
as the election approaches their dynamics slows down,
until they reach the state in which the dynamics is frozen,
at the election day. At that moment, the party winning
the elections is the one with more active nodes. Finally,
we focus on the case in which the networks sustaining each
party are represented by two Poisson graphs, and address
the role of different average connectivities. This choice is
consistent for example with the data on social networks of
mobile phone communication, which are characterized by
a typical scale in the degree (being fitted with a power-law
distribution of exponent γ = 8.4) [28].

We observe a rich phase diagram of the opinion dy-
namics. The results are that in the thermodynamic limit
the most connected network wins the election independent
of the initial condition of the system, in agreement with
recent results on the persuasive role of a densely connected
social network [29]. However, for a large region of the
parameters the voting results of the two parties are very
close and small perturbations could alter the results.
In this context, we observe that a small minority of
committed agents can reverse the outcome of the election
result, thus confirming the results obtained in very recent
and different models [20,26].

Parties as antagonistic social networks. – We
consider two antagonistic networks A, B representing the
social networks of two competing political parties. Each
agent i is represented in each network and can choose to be
active in one of the networks. In particular σA

i = 0 if agent
i is inactive in network A and σA

i = 1 if agent i is active in
network A. Similarly σB

i = 0, 1 indicates if a node is active
or inactive in network B. Since ultimately the activity of
an individual in a network corresponds to the agent voting
for the corresponding party, each agent can be active only
on one network on the election day (i.e., if σA

i = 1 then
σB

i = 0 and if σB
i = 1 then σA

i = 0). Nevertheless we
leave to the agent the freedom not to vote, in that case
σA

i = σB
i = 0. Moreover, agents are influenced by their

neighbors. Therefore, we assume that, on the election day,
if at least one neighbor of agent i is active in network A,
the agent will be active in the same network (network A)
provided that it is not already active in network B. We
assume that a symmetrical process is occurring for the
opinion dynamics in network B. Hence, the mathematical
constraints that our agent opinions need to satisfy at the
election day are

σA
i =

[
1 − ∏

j∈NA(i)
(1 − σA

j )
]
(1 − σB

i ),

σB
i =

[
1 − ∏

j∈NB(i)
(1 − σB

j )
]
(1 − σA

i ),

(1)

where NA(i) (NB(i)) are the set of neighbors of node
i in network A (network B). Therefore at the election
day people cannot anymore change their opinion. On the
contrary before the election we allow for some conflicts
in the system, and in general the constraints provided by
eqs. (1) will not be satisfied.

Evolution dynamics during the election cam-
paign. – To model how agents decide on their vote
during the pre-election period we consider the following
algorithm. We consider a Hamiltonian that counts the
number of the constraints in eqs. (1) that are violated.
Therefore, we take a Hamiltonian H of the following form:

H =
∑

i

{
σA

i −
[
1 −

∏
j∈NA(i)

(1 − σA
j )

]
(1 − σB

i )

}2

+
∑

i

{
σB

i −
[
1 −

∏
j∈NB(i)

(1 − σB
j )

]
(1 − σA

i )

}2

.

(2)

The terms in the brackets can take on the values ±1, 0,
therefore a natural choice of Hamiltonian to count the
number of constraint violations involves squares of these
terms.

We start from an initial condition where the active
nodes in networks A and B are distributed uniformly
randomly, and we consider the fact that long before the
election the agents are free to change opinion. Therefore,
we model their dynamics as a Monte Carlo dynamics
which equilibrates following the Hamiltonian H starting
from a relatively high initial temperature, i.e. initially
some conflicts are allowed in the system. Therefore,
initially the active nodes in networks A and B are
distributed according to the high-temperature Gibbs mea-
sure, mimicking an effectively “unbiased” population at
the beginning of the campaigning process. Moreover,
we note here that since we start with a sufficiently
high temperature, the dynamics is not affected by the
specific initial conditions of the system. As the election
day approaches, the effective temperature of the opinion
dynamics decreases and the agents tend to reduce to zero
the number of conflicts with their neighbors. The opinion
dynamics described in this way is implemented with a
simulated annealing algorithm. We start at a temperature
T = 1 and we allow the system to equilibrate by 2N Monte
Carlo steps where a node is picked randomly in either
one of the networks with equal probability and is changed
from active to inactive or vice versa. Subsequently, the
Hamiltonian, or the number of conflicts, is recalculated.
If the opinion flip results in a smaller number of conflicts,
it is accepted. Else, it is accepted with probability
e−ΔH/kT . This Monte Carlo process is repeated by slowly
reducing the temperature by a multiplicative factor of
0.95 until we reach the temperature state T = 0.01
where the Hamiltonian is H = 0, there are no more
conflicts in the network, and the probability of one spin
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Fig. 1: (Color online) The two competing political parties are
represented by two networks. Each agent is represented in both
networks but can either be active (green node) in only one of
the two or inactive (red node) in both networks. Moreover, the
activity of neighbor nodes influences the opinion of any given
node.

flip is about e−1/0.01 � 10−44. The choice of increment
in the temperature reduction is such that the overall
simulation time is compatible with the dynamics of social
systems. The Monte Carlo sweeps that are performed,
each of which corresponds to one campaigning day, span
a total number of log 0.01/ log 0.95 ≈ 90 days. It turns
out that the Hamiltonian H has in general multiple
fundamental states and the simulated annealing algorithm
always find one of these states. The final configuration
for the model just described is depicted in fig. 1. In
fig. 2 we report the result of this opinion dynamics
for two antagonistic networks A, B with Poisson degree
distributions and different average connectivities zA, zB,
respectively. In particular we plot the size SA of the
giant component of the percolating cluster in network
A, i.e., the largest connected component of active nodes
in network A. Additionally we have characterized the
finite-size effects (see fig. 3) and concluded that the phase
diagram of the model is consistent with the following
scenario valid in the limit of large network sizes:

– Region (I): zA < 1, zB < 1. In this region both giant
components in network A (SA) and network B (SB)
are zero, SA = 0, SB = 0, and therefore essentially
agents never vote.

– Region (II) in fig. 2: In this region the giant compo-
nent in network B emerges, SB > 0, SA = 0.

– Region (III) in fig. 2: In this region the giant
component in network A emerges, SA > 0, SB = 0.

– Region (IV) in fig. 2: In this region we have the
pluralism solution of the opinion dynamics and both
giant components in networks A and B are different
from zero, SA > 0, SB > 0.

A

B

Fig. 2: (Color online) Panel A: the size of the largest connected
component SA in network A at the end of the simulated
annealing calculation as a function of the average connectivity
of the two networks: zA and zB, respectively. The data is
simulated for two networks for N = 500 nodes and averaged
60 times. The simulated annealing algorithm is independent
of initial conditions. The white line represents the boundary
between the region in which network A is percolating and the
region in which network A is not percolating. Panel B: the
schematic representation of the different phases of the proposed
model. In region I none of the networks is percolating, in
region II network B is percolating, in region III network A
is percolating, in region IV both networks are percolating.

In regions II (III) the active agents in party B (party A)
percolate the system while agents in party A (party B)
remain concentrated in disconnected clusters. Neverthe-
less, if the average connectivity of the two antagonistic
parties is comparable (region IV), the system can sustain
an effective pluralism of opinions with both parties per-
colating in the system. Therefore, we find the interesting
result that if the connectivity of the two parties is large
enough, i.e. we are in region IV of the phase diagram
(fig. 2(B)) the pluralism can be preserved in the model
and there will be two parties with a high number of votes.
In order for a party to win the election, it is necessary that
the active agents percolate in the corresponding network.
The election outcome, nevertheless, depends crucially on
the total number of votes in network A, mA and the total
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Fig. 3: (Color online) We represent the fraction of nodes in the
giant component SA of network A and in the giant component
SB of network B in different regions of the phase space. In
region II (zA = 1.5, zB = 4) the giant component in network A
(SA ) disappears in the thermodynamic limit while in region IV
(zA = 2.5, zB = 4) it remains constant. The giant component
in network B remains constant in the thermodynamic limit
both in region II and in region IV. Each data point is simulated
for the two networks for N nodes and averaged 200 times.
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Fig. 4: (Color online) The contour plot for the difference
between the total number of votes mA in party A (total number
of agents active in network A) and the total number of votes
mB in party B (total number of agents active in network B).
The data is simulated for two networks for N = 500 nodes and
averaged 90 times. It is clear that the larger the difference
in average connectivity of the two networks, the larger the
advantage of the more connected political party.

number of votes in network B, mB. In fig. 4 we plot
the difference between the number of votes in network A
and the number of votes in network B. Very interestingly,
we observe that the more connected party (network) has
the majority of the votes. It is also worth noting that the
final outcome of the election does not depend on the initial
conditions. Overall, this result supports the intuition that
if a party has a supporting network that is more connected
it will win the elections, and is coherent with recent results
concerning the role of densely connected social networks
on the adoption of a behavior [29].
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Fig. 5: (Color online) We represent the role of a fraction f of
committed agents in reverting the outcome of the election. In
particular we plot the histogram of the difference between the
fraction of agents mB/N voting for party B and the fraction of
agents mA/N voting for party A for a fraction fA of committed
agents to party A, with fA = 0 and fA = 0.1 and average
connectivities of the networks zA = 2.5, zB = 4. The histogram
is performed for 1000 realizations of two networks of size N =
1000. In the inset we show the average number of agents in
network A (mA) and agents in network B (mB) as a function
of the fraction of committed agents fA. A small fraction of
agents (fA � 0.1) is sufficient to reverse the outcome of the
elections. The data in the inset is simulated for two networks
for N = 1000 nodes and averaged 10 times.

Committed agents. – Different opinion-dynamics
models have recently considered the role of committed
agents [20,26,30]. Here we explore the effect of committed
individuals during the election campaign by considering a
situation in which a fraction of the nodes always remain
active in one of the two networks, never changing their
opinion. Figure 5 shows that in region IV a small fraction
of agents f � 0.1 in the less connected network can
reverse the outcome of the election. Indeed the probability
distribution P = P (mA − mB) in different realization
of the dynamics is shifted towards the party supported
by the committed minority. Remarkably, this finding fits
perfectly with the results of the radically different models
proposed in [20,26], and generalizes them to the case of
political elections. The crucial role potentially played by
committed minorities is thus suggested by different models
in different aspects of social dynamics, suggesting the need
for future work exploring these findings.

Conclusions. – In conclusion, we have put forth a sim-
ple model for the opinion dynamics taking place during an
election campaign. We have modeled parties (or opinions)
in terms of a social networks, and individuals in terms of
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nodes belonging to these social networks and connecting
them. We have considered the case of antagonistic agents
who have to decide for a single party, or for none of them.
We have described the quenching of the opinions preceding
the voting moment as a simulated annealing process where
the temperature is progressively lowered till the voting
moment, when the individuals minimize the number of
conflicts with their neighbors. We have shown that there is
a wide region in the phase diagram where two antagonistic
parties survive gathering a finite fraction of the votes, and
therefore the existence of pluralism in the election system.
Moreover, we have pointed out that a key quantity to get
a finite share of the overall votes is the connectivity of the
networks corresponding to different parties. Nevertheless,
connectivity is not sufficient to win the elections, since a
small fraction of committed agents is sufficient to invert
the results of the voting process.

Though deliberately basic, the model provides insights
into different aspects of the election dynamics. More-
over, from a broader perspective, our work proposes a
general framework for the description of any opinion
formation process involving different contexts/networks,
where opinions are frozen at some point in time, and where
the agents’ behavior reflects the approach of that point
such that they are initially less susceptible to influence
from their neighborhoods (high initial temperatures) and
attempt to reduce the level of frustration/conflict more
strongly later (low temperatures). In future works we plan
to generalize the model by studying antagonistic networks
with different topologies, such as competing scale-free and
Poisson networks or two competing scale-free networks.
Other extensions of this model could describe several
competing parties, consider a threshold dynamics as the
one triggering the opinion formation of the agents in [29],
or relax the hypothesis of purely antagonistic interactions,
thus allowing the agents to express multiple preferences in
a multi-layered opinion space.
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