
Billion-Scale Similarity Search with GPUs
Jeff Johnson , Matthijs Douze, and Herv�e J�egou, Senior Member, IEEE

Abstract—Similarity search finds application in database systems handling complex data such as images or videos, which are typically

represented by high-dimensional features and require specific indexing structures. This paper tackles the problem of better utilizingGPUs

for this task.While GPUs excel at data parallel tasks such as distance computation, prior approaches in this domain are bottlenecked by

algorithms that expose less parallelism, such as k-min selection, or make poor use of thememory hierarchy.We propose a novel design

for k-selection.We apply it in different similarity search scenarios, by optimizing brute-force, approximate and compressed-domain search

based on product quantization. In all these setups, we outperform the state of the art by largemargins. Our implementation operates at up

to 55 percent of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5 × faster than prior GPU state of the

art. It enables the construction of a high accuracy k-NN graph on 95million images from the YFCC100Mdataset in 35minutes, and of a

graph connecting 1 billion vectors in less than 12 hours on 4Maxwell Titan XGPUs.We have open-sourced our approach for the sake

of comparison and reproducibility.

Index Terms—Similarity search, multimedia databases, indexing methods, graphical processing units

Ç

1 INTRODUCTION

IMAGES and videos constitute a newmassive source of data
for indexing and search. Traditional media management

systems are based on relational databases built on structured
data. For example, an image is indexed bymetadata like cap-
ture time and location, with possible manual additions like
the names of people represented within. Images can thus be
queried by name, date or location. This metadata canmake it
possible to automatically organize photo albums.

For large media collections, such metadata is harder to
come by; producing content is so easy that data annotation is
a significant bottleneck. A variety of machine learning and
deep learning algorithms are being used to automatically
interpret and annotate these complex, real-world entities.
They produce representations or embeddings, typically real-
valued, high-dimensional vectors of 50 to 1000+ dimensions.
Popular examples include the text representations word2-
vec [43] and FastText [34], image representations extracted
from convolutional neural networks [25], [49], and image
descriptors for instance search [7], [26], [53]. A traditional
relational database cannot effectively deal with these
descriptors, as they require machine learning tools like fuzzy
matching, classifiers and similarity search.

Many of these vector representations can only effectively
be produced on GPU systems, as the underlying processes
either have high arithmetic complexity and/or high data
bandwidth demands [36], or cannot be effectively parti-
tioned due to communication overhead or representation

quality [48]. Once produced, their manipulation is itself
arithmetically intensive. How to utilize GPU assets is not
straightforward. More generally, how to exploit new hetero-
geneous disk/CPU/GPU/FPGA architectures is a key sub-
ject for the database community [11].

In this context, searching by numerical similarity rather
than via structured relations is more suitable. This could be
to find themost similar content to a picture, or to find vectors
that have the highest response to a linear classifier. One of
the most expensive operations to be performed on large col-
lections is to compute a k-NN graph, a directed graph where
each vector of the database is a node and each edge connects
a node to its k nearest neighbors. This is our flagship applica-
tion. State of the art methods like NN-Descent [18] for this
task have a large memory overhead on top of the dataset
itself and cannot readily scale to the billion-sized databases
we consider.

Such applications must deal with the curse of dimensional-
ity [57], rendering both exhaustive search and exact index-
ing for non-exhaustive search impractical on billion-scale
databases. This is why there is a large body of work on
approximate search and/or graph construction. To handle
huge datasets that do not fit in RAM, several approaches
employ compressed representations of the vectors using an
encoding. This is especially convenient for memory-limited
devices like GPUs. It turns out that accepting a minimal
accuracy loss can result in orders of magnitude of compres-
sion [28]. The most popular vector compression methods
can be classified into either binary codes [24], [29], or quan-
tization methods [32], [47]. Both have the desirable property
that searching neighbors does not require reconstructing
the vectors.

Traditional relational databases are stored on disk. How-
ever, we aim at response times of around 10 ms for opera-
tions that access hundreds of megabytes of data. Therefore,
we will consider only databases that are stored in RAM.

� J. Johnson is with Facebook AI Research, New York, NY 10003 USA.
E-mail: jhj@fb.com.

� M. Douze and H. J�egou are with Facebook AI Research, Paris, France.
E-mail: {matthijs, rvj}@fb.com.

Manuscript received 30 Oct. 2017; revised 18 Apr. 2019; accepted 23 May
2019. Date of publication 7 June 2019; date of current version 29 June 2021.
(Corresponding author: Jeff Johnson.)
Recommended for acceptance by Y. Xia.
Digital Object Identifier no. 10.1109/TBDATA.2019.2921572

IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021 535

2332-7790 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2743-0521
https://orcid.org/0000-0003-2743-0521
https://orcid.org/0000-0003-2743-0521
https://orcid.org/0000-0003-2743-0521
https://orcid.org/0000-0003-2743-0521
mailto:
mailto:

Modern servers routinely have tens to hundreds of giga-
bytes of memory, feasible for datasets of billions of entries,
or trillions when distributed across multiple servers. There-
fore, in the following we are concerned with search speed,
for a given memory budget. Disk I/O performance is not
relevant.

This paper focuses on methods based on product quanti-
zation (PQ) codes. They were shown to be more effective
than Locality Sensitive Hashing (LSH) [15] or other variants
producing binary codes [24], [37]. The binary coding variant
of LSH is sub-optimal because it discards the norm of the
vector components, in contrast to PQ, which satisfies Lloyd’s
conditions of optimality for a quantizer. LSH is also used as a
partitioning technique. In particular E2LSH provides a set of
hash functions adapted to euclidean search [2]. However,
this approach requires encoding the full dataset into several
tables, with significant memory overhead. In contrast, PQ
variants use a single code per vector. Side-by-side compari-
sons of LSH and PQ have validated PQ’s superiority [27],
[45]. PQ is particularly effective when query vectors are not
encoded. There is a natural extension of the algorithm that
does non-exhaustive search [32].

Several improvements were proposed over the original
PQ-based technique, but most are difficult to implement effi-
ciently on GPU. The inverted multi-index [5], useful for
high-speed/low-quality operating points, depends on a
complicated “multi-sequence” algorithm. The optimized
product quantization or OPQ [23] is a linear transformation
on the input vectors that improves the accuracy of the prod-
uct quantization; it can be applied as a pre-processing. The
SIMD-optimized implementation fromAndr�e et al. [3] oper-
ates only with sub-optimal parameters (few coarse quantiza-
tion centroids). Many other methods, like LOPQ and the
Polysemous codes [20], [35] are too complex to be imple-
mented efficiently on GPUs.

There are many implementations of similarity search on
GPUs, but mostly with binary codes [46], small datasets [55],
or exhaustive search [17], [50], [51]. To the best of our knowl-
edge, only the work by Wieschollek et al. [58] appears suit-
able for billion-scale datasets with quantization codes. This
is the prior state of the art on GPUs, which we compare
against in Section 6.4 on the largest (billion-scale) public
benchmarks for similarity search.

This paper makes the following contributions:

� a GPU k-selection algorithm, operating in fast regis-
ter memory and flexible enough to be fusable with
other kernels, for which we provide a complexity
analysis. Hitherto this has been the limiting factor
for similar GPU database applications;

� a near-optimal algorithmic layout for exact and
approximate k-nearest neighbor search on GPU;

� a range of experiments that show that these improve-
ments outperform previous art by a large margin on
mid- to large-scale nearest-neighbor search tasks, in
single or multi-GPU configurations.

A carefully engineered implementation of this paper’s
algorithms can be found in the open-source Faiss library. It
implements many state-of-the-art indexing methods, and
the most relevant algorithms are translated to the GPU. The
Faiss repository (https://github.com/facebookresearch/

faiss) contains the source scripts that reproduce most results
of this paper.

The designs presented in this paper as implemented in
Faiss have been applied to a wide variety of tasks. In a recent
natural language processing work[38], k-NN search is used
to match word embeddings, providing for translation
between different languages without parallel texts. Caron
et al. [14] employ the GPU clustering methods to unsuper-
vised training of embeddings. In [19], [21], huge k-NN
graphs are used for image classification. These applications
are possible thanks to the order-of-magnitude performance
improvement brought by the GPU implementation.

The paper is organized as follows. Section 2 introduces
the context and notation. Section 3 reviews GPU architec-
ture and discusses problems appearing when using it for
similarity search. Section 4 introduces one of our main con-
tributions, i.e., our GPU k-selection method, while Section 5
covers overall algorithm implementation. Finally, Section 6
provides extensive experiments for our approach, compares
it to the state of the art, and shows concrete use cases for
image collections.

2 PROBLEM STATEMENT

We are concerned with similarity search in vector collec-
tions. Given a query vector x 2 Rd and a database vector col-
lection1 ½yi�i¼0:‘ ðyi 2 RdÞ, we search the k nearest neighbors
of x in terms of L2 (euclidean) distance:

L ¼ k-argmini¼0:‘kx� yik2: (1)

L2 distance is used most often, as it is optimized by design
when learning several embeddings [26], due to its attractive
linear algebraic properties.

The minimum distances are collected by k-selection. For
a scalar array ½ai�i¼0:‘, k-selection finds the k lowest valued
elements ½asi �i¼0:k, asi � asiþ1 , along with the indices ½si�i¼0:k,
0 � si < ‘, of those elements from the input array. The ai
will be 32-bit floating point values; the si are 32- or 64-bit
integers. Other comparators are sometimes desired; for
cosine similarity we search for highest values. The order
between equivalent values asi ¼ asj is not specified.

2.1 Exact Search with Batching

Typically, searches are performed in batches of nq query
vectors ½xj�j¼0:nq ðxj 2 RdÞ in parallel, which allows for more
flexibility when executing on multiple CPU threads or on
GPU. Batching for k-selection entails selecting nq � k ele-
ments and indices from nq separate arrays, where each
array is of a potentially different length ‘i � k.

The exact solution computes the full pairwise distance
matrix D ¼ ½kxj � yik

2
2�j¼0:nq;i¼0:‘ 2 Rnq�‘. In practice, we use

the decomposition

kxj � yik
2
2 ¼ kxjk

2 þ kyik
2 � 2hxj; yii: (2)

The two first terms are precomputed in one pass over the
matrices X and Y whose rows are the ½xj� and ½yi�. The

1. To avoid clutter in 0-based indexing, we use the Python array
notation 0 : ‘ to denote the range f0; . . . ; ‘� 1g inclusive.

536 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

bottleneck is to evaluate hxj; yii, equivalent to the matrix
multiplication XY >. The k-nearest neighbors for each of the
nq queries are k-selected along each row ofD.

2.2 Compressed-Domain Search

From now on, we focus on approximate nearest-neighbor
search. We consider, in particular, the IVFADC indexing
structure [32]. The IVFADC index relies on two levels of
quantization, and the database vectors are encoded. The
database vector y is approximated as:

y � qðyÞ ¼ q1ðyÞ þ q2 y� q1ðyÞð Þ; (3)

where q1 : R
d ! C1 	 Rd and q2 : R

d ! C2 	 Rd are quan-
tizers; i.e., functions that output an element from a finite set.
Since the sets are finite, qðyÞ is encoded as the index of q1ðyÞ
and that of q2ðy� q1ðyÞÞ. The first-level quantizer is a coarse
quantizer and the second level a fine quantizer that encodes
the residual vector after the first level.

The Asymmetric Distance Computation (ADC) search
method returns an approximate result:

LADC ¼ k-argmini¼0:‘kx� qðyiÞk2: (4)

For IVFADC the search is not exhaustive. Vectors for
which the distance is computed are preselected depending
on the first-level quantizer q1:

LIVF ¼ t-argminc2C1kx� ck2: (5)

The multi-probe parameter t is the number of coarse-level
centroids we consider. The quantizer operates a nearest-
neighbor search with exact distances, in the set of reproduc-
tion values. Then, the IVFADC search computes

LIVFADC ¼ k-argmin
i¼0:‘ s.t. q1ðyiÞ2LIVF

kx� qðyiÞk2: (6)

Hence, IVFADC relies on the same distance estimations as
the two-step quantization of ADC, but computes them only
on a subset of vectors.

The corresponding data structure, the inverted file, groups
the vectors yi into jC1j inverted lists I1; . . . ; IjC1j with homo-
geneous q1ðyiÞ. Therefore, the most memory-intensive oper-
ation is computing LIVFADC, and amounts to linearly
scanning t inverted lists.

The Quantizers. q1 and q2 have different properties. The
quantizer q1 needs to have a relatively low number of repro-
duction values so that the number of inverted lists does not
explode. We typically use jC1j �

ffiffi
‘
p

, trained via k-means.
For q2, we can afford more memory for a more extensive
representation. The vector index (a 4- or 8-byte integer) is
also stored in the inverted lists, so it makes no sense to have
shorter codes than that; i.e., log 2jC2j > 4� 8.

Product Quantizer.We use a product quantizer (PQ) [32] for
q2, providing a large number of reproduction values for a
limited memory and computational cost. It interprets y as b
sub-vectors y ¼ ½y1:::yb�, where b is an even divisor of the
dimension d. Each sub-vector is quantized with its own
quantizer, yielding ðq1ðy1Þ; ..., qbðybÞÞ. The sub-quantizers
typically have 256 reproduction values to fit in one byte.
The quantization value of the product quantizer is then

q2ðyÞ ¼ q1ðy1Þ þ 256� q2ðy2Þ þ :::þ 256b � qbðybÞ, which from
a storage point of view is just the concatenation of the bytes
produced by each sub-quantizer. Thus, the product quan-

tizer generates b-byte codes with jC2j ¼ 256b reproduction
values. The k-means dictionaries of the quantizers are small
and quantization is computationally cheap.

3 GPU: OVERVIEW AND K-SELECTION

This section reviews salient details of Nvidia’s GPU archi-
tecture and programming model [40]. We then focus on less
GPU-compliant parts involved in similarity search, namely
k-selection, and discuss the literature and challenges.

3.1 Architecture

GPU Lanes and Warps. The Nvidia GPU is a general-purpose
computer that executes instruction streams using a 32-wide
vector of CUDA threads (the warp). The individual threads in
the warp are referred to as lanes, with a lane ID in the range
0 – 31. Lanes within a single warp share a single warp-wide
instruction counter. When warp lanes wish to take different
execution paths despite the shared instruction counter, warp
divergence occurs, reducing performance. Each lane has up to
255 32-bit registers in a shared register file. A CPU analogy is
that each warp is a separate CPU hardware thread, with up
to 255 SIMD vector registers of width 32, with warp lanes as
SIMD vector lanes.

Collections of Warps. A configurable collection of 1 to 32
warps comprises a block or a co-operative thread array (CTA).
Each block has a high speed shared memory, up to 48 KiB in
size. Individual CUDA threads have a block-relative ID,
called a thread id, which can be used to partition and assign
work. Each block is run on a single core of the GPU called a
streaming multiprocessor (SM), with functional units such as
ALUs for execution. A GPU hides execution latencies by
having many operations in flight on warps across all SMs.
Each individual warp lane instruction throughput is low
and latency is high, but the aggregate arithmetic throughput
of all SMs together is 5 – 10× higher than typical CPUs.

Grids and Kernels. Blocks are organized in a grid of blocks
in a kernel. Each block is assigned a grid relative ID. The ker-
nel is the unit of work (instruction stream with arguments)
scheduled by the host CPU for the GPU to execute. After a
block runs through to completion, new blocks can be sched-
uled. Blocks from different kernels can run concurrently.
Ordering between kernels is controllable via ordering prim-
itives such as streams and events.

Resources and Occupancy. The number of blocks executing
concurrently depends upon shared memory and register
resources used by each block. CUDA thread register usage is
determined at compilation time,while sharedmemory usage
can be chosen at runtime. This affects occupancy on the GPU;
greater register or shared memory resources in use will
reduce execution concurrency.

Memory Types. Different blocks and kernels communicate
through global memory, typically 4 – 32GB in size, with 5 – 10 ×
higher bandwidth than CPU main memory. Shared memory
is analogous to CPU L1 cache in terms of speed. GPU register
file memory is the highest bandwidth memory. In order to
maintain the high number of instructions in flight on a GPU, a

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 537

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

vast register file is also required: 14 MB in the latest Pascal
P100, in contrast with a few tens of KB on CPU. A ratio of
250 : 6.25 : 1 for register to shared to global memory aggregate
cross-sectional bandwidth is typical on GPU, yielding 10 –
100s of TB/s for the register file [12].

3.2 GPU Register File Usage

Structured Register Data. Shared and register memory usage
involves efficiency tradeoffs. They lower occupancy but
increase overall performance by retaining a larger working
set in a faster memory. Making heavy use of register-resi-
dent data at the expense of occupancy or instead of shared
memory is often profitable [54].

As the GPU register file is very large, storing structured
data (not just temporary operands) is useful. A single lane
can use its (scalar) registers to solve a local task, but with
limited parallelism and storage. Instead, lanes in a warp can
exchange register data using warp shuffles, enabling warp-
wide parallelism and storage. A wide variety of access pat-
terns (shift, any-to-any) are provided. In particular, we use
the butterfly permutation [39] extensively.

Lane-stride Register Array. Warp shuffles are frequently
used tomanipulate lane-stride register arrays. That is, given ele-
ments ½ai�i¼0:‘, each successive value is held in a register by
neighboring lanes. The array is stored in ‘=32 registers per
lane, with ‘ a multiple of 32. Lane j stores faj; a32þj; . . . ;
a‘�32þjg, while register r holds fa32r; a32rþ1; . . . ; a32rþ31g.

For manipulating the ½ai�, the register in which ai is
stored (i.e., i=32b c) and ‘ must be known at assembly time,
while the lane (i.e., imod 32) can be runtime knowledge.
Thus, all configurations must be handled at compile time
with extensive C++ templatization.

3.3 k-Selection on CPU versus GPU

k-selection has been a limiting performance factor for prior
GPU similarity search applications (see Section 6), thus it
deserves some discussion. Common CPU k-selection algo-
rithms, often for arbitrarily large ‘ and k, can be translated
to a GPU, including radix selection and bucket selection [1],
probabilistic selection [44], quickselect [17], and truncated
sorts [50]. Their performance is dominated by multiple
passes over the input. For similarity search, input distances
are typically computed on-the-fly or stored only in small
blocks, not in their entirety. The full distance array may be
too large to fit into any memory, and its size could be
unknown at the start of the processing, making multiple
pass algorithms impractical. Furthermore, algorithms that
partition elements in global memory based on their value
such as Quickselect result in excessive memory transactions
as the warp-wide data access pattern is not uniform. Radix
selection has no partitioning but multiple passes are still
required.

Heap Parallelism. For similarity search, one is usually inter-
ested in a small number (k < 1000) of results. In this regime,
selection via max-heap is a typical on CPU, but heaps do not
expose much data parallelism due to serial tree update, and
cannot saturate SIMD execution units. The ad-heap [41] takes
better advantage of parallelism in heterogeneous systems,
but still attempts to partition serial and parallel work
between appropriate execution units. Despite the serial
nature of heap update, for small k a CPU can maintain all of

its state in the L1 cache with little effort, and L1 cache latency
and bandwidth remains a limiting factor. Other similarity
search components, like PQ code manipulation, tend to have
greater impact on CPU performance [3].

GPUHeaps.Heaps can be implemented on aGPU [9], yet a
straightforward GPU implementation has high warp diver-
gence and irregular, data-dependent memory movement,
since the path taken for each inserted element depends upon
other values present in the heap.

GPU parallel priority queues [31] improve over serial
heap update by allowing multiple concurrent updates, but
they require a potential number of small sorts for each insert
and data-dependent memory movement. They also require
a significant coordination with the CPU host.

Other more novel GPU algorithms are available for small
k, namely the selection algorithm in the fgknn library [51].
This is a complex algorithm that may suffer from too many
synchronization points, greater kernel launch overhead,
usage of slower memories, excessive use of hierarchy, parti-
tioning and buffering. However, we take inspiration from
this particular algorithm through the use of parallel merges
as seen in theirmerge queue structure.

4 FAST K-SELECTION ON THE GPU

For any CPU or GPU algorithm, either memory or arithme-
tic throughput should be the limiting factor as per the roof-
line performance model [59]. For input from global memory,
k-selection cannot run faster than the time required to scan
the input once at peak memory bandwidth. We aim to get
as close to this limit as possible. Thus, we wish to perform a
single pass over the input data.

Wewant to keep intermediate state in the fastest memory,
namely the register file. The main drawback of doing so is
the lane-stride register array indexing constraint mentioned
in Section 3.2, providing limitations on algorithm feasibility.

4.1 In-Register Sorting

We use an in-register sorting primitive as a building block.
Sorting networks are commonly used on SIMD architec-
tures [16], as they exploit vector parallelism. They are easily
implemented on the GPU, and we build sorting networks
with lane-stride register arrays.

We use a variant of Batcher’s bitonic sorting network [10],
which is a set of parallel merges on an array of size 2k. Each
merge takes s arrays of length t (s and t a power of 2) to s=2
arrays of length 2t, using log 2ðtÞ parallel steps. A bitonic
sort applies this merge recursively: to sort an array of length
‘, merge ‘ arrays of length 1 to ‘=2 arrays of length 2, to ‘=4
arrays of length 4, successively to 1 sorted array of length ‘,
leading to 1

2 ðlog 2ð‘Þ2 þ log 2ð‘ÞÞ parallel merge steps.
Odd-size Merging and Sorting Networks. If some input data

is already sorted, we can modify the network to avoid merg-
ing steps. If we do not have a full power-of-2 set of data, we
efficiently shortcut to deal with the smaller size.

Algorithm 1 is an odd-sizedmerging network that merges
already sorted left and right arrays, each of arbitrary length.
While the bitonic network merges bitonic sequences, we start
with monotonic sequences: sequences sorted monotonically.
A bitonic merge is made monotonic by reversing the first
comparator stage.

538 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Odd-Size Merging Network

function MERGE-ODDð½Li�i¼0:‘L ; ½Ri�i¼0:‘RÞ
parallel for i 0 : minð‘L; ‘RÞ do

" inverted 1st stage; inputs are already sorted
COMPARE-SWAPL‘L�i�1; Ri

end for
parallel do

" If ‘L ¼ ‘R and a power-of-2, these are equivalent
MERGE-ODD-CONTINUE(½Li�i¼0:‘L , left)
(MERGE-ODD-CONTINUE(½Ri�i¼0:‘R , right)

end do
end function
function MERGE-ODD-CONTINUE(½xi�i¼0:‘; p)
if ‘ > 1 then
h 2 log 2‘d e�1 " largest power-of-2 < ‘
parallel for i 0 : ‘� h do

" Implemented with warp shuffle butterfly
COMPARE-SWAP(xi; xiþh)

end for
parallel do
if p = left then " left side recursion

MERGE-ODD-CONTINUE(½xi�i¼0:‘�h; left)
MERGE-ODD-CONTINUE(½xi�i¼‘�h:‘; right)

else " right side recursion
MERGE-ODD-CONTINUE(½xi�i¼0:h; left)
MERGE-ODD-CONTINUE(½xi�i¼h:‘; right)

end if
end do

end if
end function

The odd size algorithm is derived by considering arrays to
be padded to the next highest power-of-2 size with dummy
elements that are never swapped (the merge is monotonic)
and are already properly positioned; any comparisons with
dummy elements are elided. A left array is considered to be
padded with dummy elements at the start; a right array has
them at the end. A merge of two sorted arrays of length ‘L
and ‘R to a sorted array of ‘L þ ‘R requires log 2ðmaxð‘L;d
‘RÞÞe þ 1 parallel steps. Fig. 1 shows Algorithm 1’s merging
network for arrays of size 5 and 3, with 4 parallel steps.

The COMPARE-SWAP is implemented using warp shuffles on
a lane-stride register array. Swaps with a stride a multiple of
32 occur directly within a lane as the lane holds both ele-
ments locally. Swaps of stride � 16 or a non-multiple of 32
occur with warp shuffles. In practice, used array lengths are
multiples of 32 as they are held in lane-stride arrays.

Algorithm 2 extends themerge to a full sort. Assuming no
structure present in the input data, it requires 1

2 ð log 2ð‘Þd e2þ
log 2ð‘Þd eÞ parallel steps for sorting a data array of length ‘.

Algorithm 2. Odd-Size Sorting Network

function SORT-ODD(½xi�i¼0:‘)
if ‘ > 1 then
parallel do

SORT-ODD(½xi�i¼0: ‘=2b c)
SORT-ODD(½xi�i¼ ‘=2b c:‘)

end do
MERGE-ODD(½xi�i¼0: ‘=2b c; ½xi�i¼ ‘=2b c:‘)

end if
end function

4.2 WarpSelect

Our k-selection implementation,WARPSELECT,maintains state
entirely in registers and requires only a single pass over
input. It uses MERGE-ODD and SORT-ODD as primitives. Since the
register file provides much more storage than shared mem-
ory, it supports k � 1024. Each warp is dedicated to k-selec-
tion to a single one of the n arrays ½ai�. If n is large enough, a
single warp per each ½ai� will result in full GPU occupancy.
Large ‘ per warp is handled by recursive decomposition, if ‘
is known in advance.

Overview. Our approach (Algorithm 3 and Fig. 2) oper-
ates on values, with associated indices carried along (omit-
ted from the description for simplicity). It selects the k least
values that come from global memory, or from intermediate
value registers if fused into another kernel providing the
values. Let ½ai�i¼0:‘ be the sequence provided for selection.

The elements (on the left of Fig. 2) are processed in
groups of 32, i.e., the warp size. Lane j is responsible for
processing the elements faj; a32þj; :::g. Thus, if the elements
come from global memory, the reads are contiguous and
coalesced into a minimal number of memory transactions.
Each time one of the lanes becomes full (WARP-BALLOT is trig-
gered) the merging routine is called on all lanes, and the
thread queue is flushed.

Algorithm 3.WARPSELECT Pseudocode for Lane j

functionWARPSELECT(a)
if a < Wk then " each lane j does this independently
Tj
Cj
 a

Cj Cj þ 1
end if
if WARP-BALLOT(Cj ¼ tÞ then

" Reinterpret thread queues as lane-stride array
½ai�i¼0:32t castð½Tj

i �i¼0:t;j¼0:32Þ
" Warp sorts thread queues together,Wi updated
SORT-ODD(½ai�i¼0:32t)
MERGE-ODD(½Wi�i¼0:k; ½ai�i¼0:32t)
½Tj

i �i¼0:t;j¼0:32 þ1
½Cj�j¼0:32 0

end if
end function

Data Structures. The warp shares a lane-stride register
array of k smallest seen elements, ½Wi�i¼0:k, called the warp

Fig. 1. Odd-size network merging arrays of sizes 5 and 3. Bullets indicate
parallel compare/swap. Dashed lines are elided elements or comparisons.

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 539

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

queue. It is ordered from smallest to largest (Wi �Wiþ1); if
the requested k is not a multiple of 32, we round it up.

Each lane j maintains a small set of t elements in regis-
ters, called the thread queues ½Tj

i �i¼0:t, along with a count of
the number of elements Cj (0 � Cj � t) currently valid. All
elements in the thread queues with index < Cj are guaran-
teed to be �Wk�1. Other elements are initialized to maxi-
mum sentinel values, e.g., þ1.

The thread queue is a first-level filter for new values com-
ing in; only new potential min-k elements are retained dur-
ing a scan, until we have collected a set of t elements in any
lane that need to be considered as possible true min-k ele-
ments. The choice of t is made relative to k, see Section 4.3.
The warp queue is a second level that maintains all of the
min-kwarp-wide observed values. Thewarp queue is initial-
ized tomaximum sentinel values as well.

Update. The three invariants maintained are:

� all Tj
i �Wk�1 for i < Cj, T

j
i ¼ þ1 otherwise;

� no thread will accumulate more than t elements in
their thread queue (Cj � t);

� all ai seen so far in the true min-k are contained in
either some lane’s thread queue (½Tj

i �i¼0:Cj;j¼0:32), or
in the warp queue.

Lane j receives a new a32iþj, and we compare against the
currentWk. If a32iþj > Wk, then the new element is by defini-
tion not in the min-k, and is rejected. Otherwise, we add it to
the thread queue, overwriting the sentinel value previously
atWj

Cj . If any lane has accumulated t values, then we cannot
process any new ai without being able to determine if it is in
the min-k for all elements seen so far, as we have no place to
keep the element if it is < Wk. Using the warp ballot instruc-
tion, we determine if any lane has accumulated t values, in
which case the ballot is “won”. If not, we are free to continue
processing new elements.

Maintaining the Invariants. Some or all elements in the
thread queues may now be in the true min-k. In order to
make Wk the true kth lowest element seen so far, the warp
uses ODD-MERGE to merge and sort the thread and warp
queues together. The new warp queue will be the min-k ele-
ments across the merged, sorted queues, and the thread
queues are reinitialized to the maximum sentinel value. We
are then free to continue processing subsequent elements
without violating the invariants.

The warp queue is already sorted, but the thread queues
are not. The thread queues are sorted together, and the set

of 32t sorted elements are merged with the sorted warp
queue of length k. Supporting odd-sizedmerges is important
because Batcher’s formulation would require that 32t ¼ k
and is a power-of-2. Thus if k ¼ 1024, tmust be 32.We found
that the optimal t is way smaller (see below), which means
that we aremerging two different sizes.

Handling the Remainder. If there are remainder elements
because ‘ is not a multiple of 32, those are considered for the
thread queues for the lanes covering the remainder, after
whichwe proceed to the output stage.

Output.After handling all elements, a final sort andmerge
is made of the thread andwarp queues, after which the warp
queue holds themin-k of all ai.

4.3 Complexity and Parameter Selection

For each incoming group of 32 elements, WARPSELECT per-
forms 1, 2 or 3 constant-time operations, all happening in
warp-wide parallel time:

1) read 32 elements, compare to Wk, cost C1, happens
N1 times;

2) insert in thread queue, cost C2, happensN2 times;
3) if 9j such that Cj ¼ t, sort and merge queues, cost

C3 ¼ Oðt log ð32tÞ2 þ k log ðmaxðk; 32tÞÞÞ, happens N3

times.
Thus, the total cost isN1C1 þN2C2 þN3C3.N1 ¼ ‘=32. For

N2, because we retain the ½Tj
i � in registers which requires

compile-time indexing, we use an unrolled loop over t to
find the proper register to overwrite the current Cj value, so
N2 ¼ OðtÞ. For N3, we derive an estimate for random data
drawn independently.

Let the input to k-selection be a sequence fa1; a2; . . . ; a‘g
(1-based indexing), a randomly chosen permutation of a set
of distinct elements. Elements are read sequentially in c
groups of size w (the warp, so w ¼ 32). Assume ‘ is a multi-
ple of w, so c ¼ ‘=w. Recall that t is the maximum thread
queue length. We call elements prior to or at position n in
the min-k seen so far the successive min-k (at n). The likeli-
hood that an is in the successive min-k at n is:

aðn; kÞ :¼ 1 if n � k
k=n if n > k

�
; (7)

as each an, n > k has a k=n chance as all permutations are
equally likely, and all elements in the first k qualify.

Counting the Thread Queue Insertions. In a given lane, an
insertion is triggered if the incoming value is in the successive

Fig. 2. Overview of WARPSELECT. The input values stream in on the left, and the warp queue on the right holds the output result.

540 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

min-kþ t values, but the lane has “seen” only wc0 þ ðc� c0Þ
values, where c0 is the previous won warp ballot. The proba-
bility of this happening is:

a wc0 þ ðc� c0Þ; kþ tð Þ � kþ t

wc
for c > k: (8)

The approximation considers that the thread queue has seen
all the wc values, not just those assigned to its lane. The
probability of any lane triggering a queue insertion is then:

1� 1� kþ t

wc

� �w

� kþ t

c
: (9)

Here the approximation is a first-order Taylor expansion.
Summing up the probabilities over c gives an expected
number of insertions ofN2 � ðkþ tÞlog ðcÞ ¼ Oðk log ð‘=wÞÞ.

Counting Full Sorts. We seek N3 ¼ pð‘; k; t; wÞ, the
expected number of full sorts required for WARPSELECT.

Single Lane. For now, we assume w ¼ 1, so c ¼ ‘. Let
gð‘;m; kÞ be the probability that in an sequence fa1; . . . ; a‘g,
exactly m of the elements as encountered by a sequential
scanner (w ¼ 1) are in the successive min-k. Given m, there
are ‘

m

� �
places where these successive min-k elements can

occur. It is given by a recurrence relation:

gð‘;m; kÞ :¼

1 ‘ ¼ 0 and m ¼ 0
0 ‘ ¼ 0 and m > 0
0 ‘ > 0 and m ¼ 0
ðgð‘� 1;m� 1; kÞ
 að‘; kÞþ
gð‘� 1;m; kÞ
 ð1� að‘; kÞÞÞ otherwise:

8>>>><>>>>:
(10)

The last case is the probability of encountering the fol-
lowing situation: there is a ‘� 1 sequence with m� 1 suc-
cessive min-k elements preceding us, and the current
element is in the successive min-k, or the current element is
not in the successive min-k,m ones are before us.

We then develop a recurrence relationship for pð‘; k; t; 1Þ.
We first note that

dð‘; b; k; tÞ :¼
Xminððbtþmaxð0;t�1ÞÞ;‘Þ

m¼bt
gð‘;m; kÞ; (11)

for bwhere 0 � bt � ‘ is the fraction of all sequences of length
‘ that will force b sorts of data by winning the thread queue
ballot, as there have to be bt to ðbtþmaxð0; t� 1ÞÞ elements
in the successive min-k for these sorts to happen (as the min-
k elements will overflow the thread queues). There are at
most ‘=tb c won ballots that can occur, as it takes t separate
sequential current min-k seen elements to win the ballot.
pð‘; k; t; 1Þ is thus the expectation of this over all possible b:

pð‘; k; t; 1Þ ¼
X‘=tb c

b¼1
b
 dð‘; b; k; tÞ: (12)

This quantity can be computed by dynamic programming.
Analytically, note that for t ¼ 1, k ¼ 1, pð‘; 1; 1; 1Þ is the har-
monic number H‘ ¼ 1þ 1

2þ 1
3þ :::þ 1

‘, which converges to
lnð‘Þ þ g (the Euler-Mascheroni constant g) as ‘!1.

For t ¼ 1; k > 1; ‘ > k, pð‘; k; 1; 1Þ ¼ kþ kðH‘ �HkÞ or
Oðk log ð‘ÞÞ, as the first k elements are in the successive min-
k, and the expectation for the rest is k

kþ1þ k
kþ2þ :::þ k

‘.

For t > 1; k > 1; ‘ > k, note that there are some number
D, k � D � ‘ of successive min-k determinations D made
for each possible fa1; . . . ; a‘g. The number of won ballots for
each case is by definition D=tb c, as the thread queue must
fill up t times. Thus, pð‘; k; t; 1Þ ¼ Oðk log ð‘Þ=tÞ.

Multiple Lanes. The w > 1 case is complicated by the fact
that there are joint probabilities to consider (if more than one
of the w workers triggers a sort for a given group, only one
sort takes place). However, the likelihood can be bounded.
Let p0ð‘; k; t; wÞ be the expected won ballots assuming no
mutual interference between the w workers for winning bal-
lots (i.e., wewin b ballots if there are b � wworkers that inde-
pendently win a ballot at a single step), but with the shared
min-k set after each sort from the joint sequence. Assume
that k � w. Thenwe have

p0ð‘; k; 1; wÞ � w

k

w

� 	
þ

X‘=wd e� k=wd e

i¼1

k

wð k=wd e þ iÞ

!
� wpð ‘=wd e; k; 1; 1Þ ¼ Oðwk log ð‘=wÞÞ;

(13)
where the likelihood of the w workers seeing a successive
min-k element has an upper bound of that of the first worker
at each step. As before, the number of won ballots is scaled
by t, so p0ð‘; k; t; wÞ ¼ Oðwk log ð‘=wÞ=tÞ. Mutual interference
can only reduce the number of ballots, so we obtain the same
upper bound for pð‘; k; t; wÞ. Assuming w fixed for the warp
size, we haveN3 ¼ pð‘; k; t; 32Þ ¼ Oðk log ð‘Þ=tÞ.

Selection of t. The trade-off is to balance a cost in N2C2 and
one inN3C3. The practical choice for t given k and ‘wasmade
by experimenting on a variety of k-NN data. For k � 32, we
use t ¼ 2, k � 128 uses t ¼ 3, k � 256 uses t ¼ 4, and k � 1024
uses t ¼ 8, all irrespective of ‘.

5 IMPLEMENTING THE INDEX ON A GPU

This section explains efficient GPU implementation of
Section 2’s similarity search methods, devoting particular
attention to IVFADC which targets the largest databases. It
is one of the indexing methods originally built upon prod-
uct quantization [32]. Details on distance computations and
articulation with k-selection are the key to understanding
why this method can outperform recent GPU approximate
nearest neighbor strategies [58].

5.1 Exact Search

We briefly come back to the exhaustive search method, often
referred to as exact brute-force. It is interesting on its own for
exact nearest neighbor search in small datasets. It is also a
component of many indexes in the literature; we use it for
the IVFADC coarse quantizer q1.

As stated in Section 2, the distance computation boils
down to a matrix multiplication. We use optimized GEMM
routines in the cuBLAS library to calculate the �2hxj; yii
term with respect to L2 distance, resulting in a partial dis-
tancematrixD0. To complete the distance calculation, we use
a fused k-selection kernel that adds the kyik

2 term to each
partial distance result and immediately submits the value to
k-selection in registers. The kxjk2 term needs not be taken
into account before k-selection. k-selection that can be fused
with other GPU computations allows for only 2 passes

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 541

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

(GEMMwrite, k-select read) over the matrixD0, compared to
other implementations that typically require 3 or more.

As the matrix D0 does not fit in GPU memory for realistic
problem sizes, the problem is tiled over the batch of queries,
with tq � nq queries being run in a single tile.

5.2 IVFADC Indexing

PQ Lookup Tables. IVFADC requires computing the distance
from a vector to a set of PQ reproduction values. By devel-
oping Equation (6) for a database vector y, we obtain:

kx� qðyÞk22 ¼ kx� q1ðyÞ � q2ðy� q1ðyÞÞk22: (14)

If we decompose the residual vectors left after q1 as:

y� q1ðyÞ ¼ ½ ey1

 eyb� and (15)

x� q1ðyÞ ¼ ½ ex1

 exb�; (16)

then the distance is rewritten as:

kx� qðyÞk22 ¼ k ex1 � q1ð ey1Þk22 þ :::þ kexb � qbð eybÞk22: (17)

Each quantizer q1; . . . ; qb has 256 reproduction values, so
when x and q1ðyÞ are known, all distances can be precom-
puted and stored in tables T1; . . . ; Tb each of size 256 [32].
Computing the sum (17) consists of b look-ups and addi-
tions. Comparing the cost to compute n distances:

� Explicit computation: n� dmutiply-adds;
� With lookup tables: 256� d multiply-adds and n� b

lookup-adds.
This is the key to PQ efficiency. In our GPU implementa-

tion, b is any multiple of 4 up to 64. The codes are stored as
sequential groups of b bytes per vector within lists.

IVFADC Lookup Tables. When scanning over inverted list
elements IL, the lookup table method can be applied, as the
query x is known and by definition q1ðyÞ is constant. More-
over, the computation of the tables T1. . .Tb is further opti-
mized [6]. The expression of kx� qðyÞk22 in Equation (14) is
decomposed as:

kq2ð:::Þk22 þ 2hq1ðyÞ; q2ð:::Þi|ffl{zffl}
term 1

þkx� q1ðyÞk22|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
term 2

�2 hx; q2ð:::Þi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
term 3

:

(18)

The objective is to minimize inner loop computations.
The computations we can do in advance and store in lookup
tables are as follows:

� Term 1 is independent of the query. It can be pre-
computed from the quantizers, and stored in a table
T of size jC1j � 256� b;

� Term 2 is the distance to q1’s reproduction value. It is
thus a by-product of the first-level quantizer q1;

� Term 3 is computed independently of the inverted
list. Its computation costs d� 256multiply-adds.

This decomposition is used to produce the lookup tables
T1. . .Tb used during the scan of the inverted list. For a single
query, computing the t � b tables from scratch costs t � d�
256 multiply-adds, while this decomposition costs 256� d
multiply-adds and t � b� 256 additions. On the GPU, the

memory usage of T can be prohibitive, so we enable the
decomposition onlywhenmemory is a not a concern.

5.3 GPU Implementation

Algorithm 4 summarizes the process as one would imple-
ment it on a CPU. The inverted lists are stored as two sepa-
rate arrays, for PQ codes and associated IDs. IDs are
resolved only if k-selection determines k-nearest member-
ship. This lookup is a few sparse memory reads in a large
array, thus for the GPU the IDs can optionally be stored on
CPU for tiny performance cost.

Algorithm 4. IVFPQ Batch Search Routine

function IVFPQ-SEARCH(½x1; :::; xnq �, I1; . . . ; IjC1j)
for i 0 : nq do " batch quantization of Section 5.1
Li
IVF t-argminc2C1kx� ck2

end for
for i 0 : nq do
L ½� " distance table
Compute term 3 (see Section 5.2)
for L in Li

IVF do " t loops
Compute distance tables T1; . . . ; Tb

for j in IL do
" distance estimation, Equation (17)

d kxi � qðyjÞk22
Append ðd; L; jÞ to L

end for
end for
Ri k-select smallest distances d from L

end for
return R
end function

List Scanning.A kernel scans the t closest inverted lists for
each query, and calculates per-vector pair distances using
the lookup tables Ti. The Ti are stored in shared memory: up
to nq � t �maxijI ij � b lookups are required for a query set
(trillions of accesses in practice), and are random access. This
limits b to at most 48 (32-bit floating point) or 96 (16-bit float-
ing point) with current GPU architectures. In case we do not
use the decomposition of Equation (18), the Ti are calculated
by a separate kernel before scanning.

Multi-Pass Kernels. Each nq � t pairs of query against
inverted list can be processed independently. At one extreme,
a block is dedicated to each of these, resulting in up to
nq � t �maxijI ij partial results being written back to global
memory, which is then k-selected to nq � k final results. This
yields high parallelism but can exceed available GPU global
memory. As with exact search, we choose a tile size tq � nq to
reduce memory consumption, bounding its complexity by
Oð2tqt maxijI ijÞwithmulti-streaming.

End-to-end Performance. For our IVFADC + PQ implemen-
tation, Table 1 shows global memory bandwidth and arith-
metic utilitization relative to the roofline model peak of a
Maxwell Titan X GPU. It is evaluated on the YFCC100M
index (Section 6.4) for a query of 4096 vectors, with t ¼ 32
and k ¼ 100, without the decomposition of the Ti.The end-
to-end workload is quite heterogeneous, with both high
arithmetic (IVFADC q1) and memory bandwidth demands
(list scanning). k-selection is only 20.6 percent of the total

542 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

time of 1.3 s, but both the k-select q1 and k-select list kernels
take advantage of kernel fusion. Otherwise, multiple passes
in global memory would be required, leaving the workload
to be dominated by k-selection.

5.4 Multi-GPU Parallelism

Modern servers can support several GPUs. We employ this
capability for both speed and memory.

Replication. If an index fits in the memory of a single GPU,
it can be replicated acrossR different GPUs. To query nq vec-
tors, each replica handles a fraction nq=R of the queries. Rep-
lication has near linear speedup, except for a potential loss in
efficiency for small nq.

Sharding. If an index does not fit in the memory of a sin-
gle GPU, an index can be sharded across S different GPUs.
For adding ‘ vectors, each shard receives ‘=S of the vectors,
and for query, each shard handles the full query set nq,
joining the partial results (an additional round of k-selection
is still required) on a single GPU or in CPU memory. For a
given index size ‘, sharding will yield a speedup (sharding
has a query of nq against ‘=S versus replication with a
query of nq=R against ‘), but is usually less than pure
replication due to fixed overhead and cost of subsequent
k-selection.

Replication and sharding can be used together (S shards,
each with R replicas for S �R GPUs in total). Sharding or
replication are both fairly trivial, and the same principle can
be used to distribute an index across multiple machines.

6 EXPERIMENTS AND APPLICATIONS

This section compares our GPU k-selection and nearest-
neighbor approach to existing libraries. Unless stated other-
wise, experiments are carried out on a 2×2.8GHz Intel Xeon
E5-2680v2 with 4 Maxwell Titan X GPUs on CUDA 8.0.

6.1 k-Selection Performance

We compare against two other GPU small k-selection imple-
mentations: the row-based Merge Queue with Buffered
Search and Hierarchical Partition extracted from the fgknn
library of Tang et al. [51] and Truncated Bitonic Sort (TBiS)
from Sismanis et al. [50]. Both were extracted from their
respective exact search libraries. These implementations
were chosen because they do not require multiple passes
over the input data. Any implementation that requires more
than one pass over the input data will be largely bound by
global memory bandwidth, and in the cases where our utili-
zation exceeds 50 percent, cannot win. Both fgknn and TBiS

require additional temporary global memory for intermedi-
ate calculations unlike our implementation.

We evaluate k-selection for k = 100 and 1000 of each row
from a row-major matrix nq � ‘ of random 32-bit floating
point values on a single Titan X. The batch size nq is fixed
at 10000, and the array lengths ‘ vary from 1000 to 128000.
Inputs and outputs to the problem remain resident in GPU
memory, with the output being of size nq � k, with corre-
sponding indices. Thus, the input problem sizes range
from 40 MB (‘ = 1000) to 5.12 GB (‘ = 128k). TBiS requires
large auxiliary storage and is limited to ‘ � 48k in our
tests.

Fig. 3 shows our relative performance against TBiS and
fgknn. It also includes the peak possible performance given
by the memory bandwidth limit of the Titan X. The relative
performance ofWARPSELECT over fgknn increases for larger k;
even TBiS starts to outperform fgknn for larger ‘ at k ¼ 1000.
We look especially at the largest ‘ ¼ 128000. WARPSELECT is
1:62� faster at k ¼ 100, 2:01� at k ¼ 1000. Performance
against peak possible drops off for all implementations at
larger k. WARPSELECT operates at 55 percent of peak at k ¼ 100
but only 16 percent of peak at k ¼ 1000. This is due to addi-
tional overhead assocated with bigger thread queues and
merge/sort networks for large k.

Differences from fgknn. WARPSELECT is influenced by fgknn,
but has several improvements: all state is held in registers
(no shared memory), no inter-warp synchronization, multi-
ple kernel launches or buffering is used, no “hierarchical
partition”, and odd-size networks provide more efficient
merging and sorting. These improvements allow k-selection
to be fused directly into other GPU kernels, a significant per-
formance advantage for exact similarity search (Section 5.1)
and IVFADC list traversal (Section 5.2).

6.2 k-Means Clustering

Exact search with k ¼ 1 can be used by a k-means clustering
method in the assignment stage, to assign nq training vec-
tors to jC1j centroids. Despite the fact that it does not use
IVFADC and k ¼ 1 selection is trivial (a parallel min-reduc-
tion, not WARPSELECT), k-means is a good benchmark for the
clustering used to train the quantizer q1.

We apply the algorithm on MNIST8m images. The
8.1M images are graylevel digits in 28x28 pixels, linear-
ized to vectors of 784-d. In Table 2 we compare this

TABLE 1
GPU IVFADC + PQ End-to-End Performance

% of time
(1.3s total) kernel

arithmetic
(% peak)

gmem
(% peak)

limiting
factor

19.4% IVFADC q1 95% 44% arithmetic
5.9% k-select q1 40% 64% gmem b/w
23.4% Ti distance 60% 66% gmem b/w
34.5% list scanning 26% 87% gmem b/w
14.7% k-select lists 55% 52% arithmetic
2.1% ID lookup 23% 13% inst latency

weighted average 52.4% 65.7% gmem b/w

Fig. 3. Runtimes for different k-selection methods, as a function of array
length ‘. Simultaneous arrays processed are nq ¼ 10000. k ¼ 100 for full
lines, k ¼ 1000 for dashed lines.

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 543

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

k-means implementation to the GPU k-means of BIDM-
ach [13], which was shown to be more efficient than sev-
eral distributed k-means implementations that require
dozens of machines.2 Both algorithms were run for 20
iterations. Our implementation is more than 2× faster,
although both are built upon cuBLAS. Our implementa-
tion receives some benefit from the k-selection fusion into
L2 distance computation. For multi-GPU execution via
replicas, the speedup is close to linear for large enough
problems (3.16× for 4GPUs with 4096 centroids). Note that
this benchmark is somewhat unrealistic, as one would
typically sub-sample the dataset randomly when so few
centroids are requested.

Large Scale. We also compare to the approximate method
of Avrithis et al. [4]. It clusters 108 128-d vectors to 85K
centroids. Their clustering method runs in 46 minutes, but
requires 56 minutes at least of pre-processing to encode the
vectors. Our method performs exact k-means on 4 GPUs in
52 minutes without any pre-processing.

6.3 Exact Nearest Neighbor Search

We consider a classical dataset used to evaluate nearest
neighbor search: SIFT1M [32]. Its characteristic sizes are ‘ ¼
106, d ¼ 128, nq ¼ 104. Computing the partial distancematrix
D0 costs nq � ‘� d ¼ 1:28 Tflop, which runs in less than one
second on current GPUs. Fig. 4 shows the cost of the distance
computations against the cost of our tiling of the GEMM for
the �2< xj; yi > term of Equation (2) and the peak possible
k-selection performance on the distance matrix of size nq � ‘,
which additionally accounts for reading the tiled result
matrixD0 at peakmemory bandwidth.

In addition to our method from Section 5, we include
times from the two GPU libraries evaluated for k-selection
performance in Section 6.1. We make several observations:

� for k-selection, the naive algorithm that sorts the full
result array using thrust::sort_by_key is more
than 10� slower than comparison methods;

� L2 distance and k-selection cost is dominant for all
but our method, which has 85 percent of the peak
possible performance, assuming GEMM usage and
our tiling of the partial distance matrix D0 on top of
GEMM is close to optimal. The cuBLAS GEMM itself
has low efficiency for small reduction sizes (d ¼ 128);

� Our fused L2 and k-selection kernel is important.
The same exact algorithm without fusion (requiring
an additional pass through D0) is at least 25 percent
slower.

Efficient k-selection is even more important in situations
where approximate methods are used to compute distances,
because the relative cost of k-selection with respect to dis-
tance computation increases.

6.4 Billion-Scale Approximate Search

There are few studies on approximate nearest-neighbor
search on large datasets (‘� 106). We report a few compari-
son points here on index search, using standard datasets
and evaluation protocol in this field. The statistics of these
datasets are provided in Table 3. We are most interested in
SIFT1B and DEEP1B, which are to the best of our knowl-
edge the largest datasets publicly available for the task of
similarity search.

SIFT1M. For the sake of completeness, we first compare
our GPU search speed on SIFT1Mwith the implementation of
Wieschollek et al. [58]. They obtain a nearest neighbor recall
at 1 (fraction of queries where the true nearest neighbor is in
the top 1 result) of R@1 = 0.51, and R@100 = 0.86 in 0.02 ms
per query on a Titan X. For the same time budget, our imple-
mentation obtains R@1 = 0.80 and R@100 = 0.95.

SIFT1B. We compare again with Wieschollek et al., on the
SIFT1B dataset [33] of 1 billion SIFT image features at nq ¼ 104.
We compare the search performance in terms of same mem-
ory usage for similar accuracy (more accurate methods may
involve greater search time or memory usage). On a single
GPU, withm = 8 bytes per vector, R@10 = 0.376 in 17.7 ms per
query vector, versus their reported R@10 = 0.35 in 150 ms per
query vector. Thus, our implementation is more accurate at a
speed 8.5×faster.

DEEP1B. We also experimented on the DEEP1B dataset [8]
of ‘ = 1 billion CNN representations for images at nq ¼ 104.
The paper that introduces the dataset reports CPU results
(1 thread): R@1 = 0.45 in 20 ms search time per vector. We

TABLE 2
MNIST8m k-Means Performance

centroids

method # GPUs 256 4096

BIDMach [13] 1 320 s 735 s
Ours 1 140 s 316 s
Ours 4 84 s 100 s

Fig. 4. Exact search k-NN time for the SIFT1M dataset with varying k on
1 Titan X GPU.

TABLE 3
Properties of the Datasets in Our Evaluation

dataset
dataset
vectors

query
vectors

training
vectors dims data size

SIFT1M 1000000 10000 100000 128 128 MiB
SIFT1B 1000000000 10000 100000000 128 128 GiB
DEEP1B 1000000000 10000 350000000 96 384 GiB
YFCC100M 95074575 n/a n/a 128 48.6 GiB2. BIDMach numbers from https://github.com/BIDData/

BIDMach/wiki/Benchmarks#KMeans

544 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

https://github.com/BIDData/BIDMach/wiki/Benchmarks#KMeans
https://github.com/BIDData/BIDMach/wiki/Benchmarks#KMeans

use a PQ encoding of m = 20, with d = 80 via OPQ [23], and
jC1j = 218, which uses a comparable dataset storage as the
original paper (20 GB). This requires multiple GPUs as it is
too large for a single GPU’s global memory, so we consider
4 GPUs with S = 2, R = 2. We obtain a R@1 = 0.4517 in
0.0133 ms per vector. While the hardware platforms are
different, it shows that making searches on GPUs is a
game-changer in terms of speed achievable on a single
machine.

YFCC100M. This dataset [52] contains 99.2 million images
and 800,000 videos. We could download 95 million of the
images. We compute CNN descriptors as the one-before-last
layer of a ResNet [30], reduced to d = 128 with PCA. Since we
use it only for the k-NN graph experiments, we do not distin-
guish a training and a query set.

6.5 The k-NN Graph

An example usage of our similarity search method is to con-
struct a k-nearest neighbor graph of a dataset via brute force
(all vectors queried against the entire index).

Experimental Setup. We evaluate the trade-off between
speed, precision and memory on the YFCC100M and DEEP1B
datasets:

� Speed: How much time it takes to build the IVFADC
index from scratch and construct the whole k-NN
graph (k ¼ 10) by searching nearest neighbors for all
vectors in the dataset. Thus, this is an end-to-end test
that includes indexing as well as search time;

� Quality: We sample 10,000 images for which we
compute the exact nearest neighbors. We measure
the fraction of 10 returned nearest neighbors that are
within the ground-truth 10 nearest neighbors.

For YFCC100M, we use a coarse quantizer (216 centroids),
and consider m ¼ 16, 32 and 64 byte PQ encodings for each
vector. For DEEP1B, we pre-process the vectors to d ¼ 120
via OPQ, use jC1j ¼ 218 and consider m ¼ 20, 40. For a given
encoding, we vary t from 1 to 256, to obtain trade-offs
between efficiency and quality, as seen in Fig. 5. For the k-
NN graph experiments on Deep1B, we did not use the train-
ing set and the query vectors, we sampled them from the
main dataset. We experimented with two fairly common
multi-GPU workstation configurations for data-intensive
applications: 4Maxwell-class Titan X GPUs or 8M40 GPUs.

Discussion. For YFCC100M we used S = 1, R = 4. An accu-
racy of more than 0.8 is obtained in 35 minutes. For DEEP1B, a
lower-quality graph can be built in 6 hours, with higher qual-
ity in about half a day. We also experimented with more
GPUs by doubling the replica set, using 8Maxwell M40s (the
M40 is roughly equivalent in performance to the Titan X).
Performance is improved sub-linearly (� 1:6� for m = 20,
� 1:7� form = 40).

For comparison, the largest k-NN graph construction we
are aware of used a dataset comprising 36.5 million 384-d
vectors, which took a cluster of 128 CPU servers 108.7 hours
of compute [56], using NN-Descent [18]. Note that NN-
Descent could also build or refine the k-NN graph for the
datasets we consider, but it has a large memory overhead
over the graph storage, which is already 80 GB for DEEP1B.
Moreover it requires random access across all vectors
(384 GB for DEEP1B).

The largest GPU k-NN graph construction we found is a
brute-force construction using exact search with GEMM, of
a dataset of 20 million 15,000-d vectors, which took a cluster
of 32 Tesla C2050 GPUs 10 days [17]. Assuming computa-
tion scales with GEMM cost for the distance matrix, this
approach for DEEP1B would take an impractical 200 days of
computation time on their cluster.

6.6 Using the k-NN Graph

When a k-NN graph has been constructed for an image data-
set, we can find paths in the graph between any two images,
provided there is a single connected component (this is the
case). For example, we can search the shortest path between
two images of flowers, by propagating neighbors from a
starting image to a destination image. Denoting by S and D
the source and destination images, and dij the distance
between nodes, we search the path P ¼ fp1; . . . ; png with
p1 ¼ S and pn ¼ D such that:

min
P

max
i¼1::n

dpipiþ1 ; (19)

i.e., we want to favor smooth transitions. An example result
is shown in Fig. 6 from YFCC100M3. It was obtained after
20 seconds of propagation in a k-NN graph with k ¼ 15
neighbors. Since there are many flower images in the data-
set, the transitions are smooth.

Fig. 5. Speed/accuracy trade-off of brute-force 10-NN graph construc-
tion for the YFCC100M and DEEP1B datasets.

3. The mapping from vectors to images is not available for DEEP1B

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 545

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION

The arithmetic throughput andmemory bandwidth of GPUs
are well into the teraflops and hundreds of gigabytes per sec-
ond. However, implementing algorithms that approach
these performance levels is complex and counter-intuitive.
In this paper, we presented the algorithmic structure of simi-
larity search methods that achieves near-optimal perfor-
mance on GPUs.

This work enables applications that needed complex
approximate algorithms before. For example, the appro-
aches presented here make it possible to do exact k-means
clustering or to compute the k-NN graph with simple brute-
force approaches in less time than a CPU (or a cluster of
them) would take to do this approximately.

The limitations of this work are inherent to GPU architec-
tures. The throughput oriented, non-latency optimized execu-
tion model of GPUs are efficient for brute-force computations
or linear scans of memory arrays (as with IVFADC). Other
approximate k-NN approaches like the recent graph-based
methods HNSW [42] and NSG [22] depend upon pointer
chasing and sparse memory accesses, and will likely not map
as efficiently toGPUhardware.Aswith ourwork here for effi-
cient k-selection on the GPU SIMD architecture, clever ways
to extract parallelism from apparently serial algorithms
should be explored to see if HNSW and NSG are worthwhile
on GPUs. Also, GPUs still have an order of magnitude less
memory than the RAM of a typical CPU server. Additional
quantization and compression techniques to expand the tool-
box of memory/speed tradeoffs available would also prove
useful in thismemory-constrained environment.

GPU hardware is now very common on scientific work-
stations, due to their popularity for machine learning algo-
rithms. We believe that our work further demonstrates their
interest for Big Data applications.

REFERENCES

[1] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach, “Fast
k-selection algorithms for graphics processing units,” ACM J. Exp.
Algorithmics, vol. 17, pp. 4.2:4.1–4.2:4.29, Oct. 2012.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
near neighbor problem in high dimensions,” in Proc. Symp. Foun-
dations Comput. Sci., 2006, pp. 459–468.

[3] F. Andr�e, A.-M. Kermarrec, and N. L. Scouarnec, “Cache locality is
not enough: High-performance nearest neighbor searchwith prod-
uct quantization fast scan,” in Proc. Int. Conf. Very Large DataBases,
2015, pp. 288–299.

[4] Y. Avrithis, Y. Kalantidis, E. Anagnostopoulos, and I. Z. Emiris,
“Web-scale image clustering revisited,” in Proc. IEEE Int. Conf.
Comput. Vis., 2015, pp. 1502–1510.

[5] A. Babenko and V. Lempitsky, “The inverted multi-index,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 3069–3076.

[6] A. Babenko and V. S. Lempitsky, “Improving bilayer product
quantization for billion-scale approximate nearest neighbors in
high dimensions,” CoRR, abs/1404.1831, Apr. 2014.

[7] A. Babenko and V. Lempitsky, “Aggregating local deep features for
image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 1269–1277.

[8] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale
datasets of deep descriptors,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., Jun. 2016, pp. 2055–2063.

[9] R. Barrientos, J. G�omez, C. Tenllado, M. Prieto, and M. Marin,
“knn query processing in metric spaces using GPUs,” in Proc. Int.
Eur. Conf. Parallel Distrib. Comput., Sep. 2011, pp. 380–392.

[10] K. E. Batcher, “Sorting networks and their applications,” in Proc.
Spring Joint Comput. Conf., 1968, pp. 307–314.

[11] P. Boncz, W. Lehner, and T. Neumann, “Special issue: Modern
hardware,” VLDB J., vol. 25, no. 5, pp. 623–624, 2016.

[12] J. Canny, D. L. W. Hall, and D. Klein, “A multi-teraflop constitu-
ency parser using GPUs,” in Proc. Empirical Methods Natural Lan-
guage Process., 2013, pp. 1898–1907.

[13] J. Canny and H. Zhao, “Bidmach: Large-scale learning with zero
memory allocation,” inProc. BigLearnWorkshop, 2013. [Online]. Avail-
able: https://nips.cc/Conferences/2013/Schedule?showEvent=3698

[14] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep cluster-
ing for unsupervised learning of visual features,” CoRR, abs/
1807.05520, Jul. 2018.

[15] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. ACM Symp. Theory Comput., May 2002,
pp. 380–388.

[16] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient imple-
mentation of sorting on multi-core simd CPU architecture,” Proc.
VLDB Endow., vol. 1, no. 2, pp. 1313–1324, Aug. 2008.

[17] A. Dashti, “Efficient computation of k-nearest neighbor graphs for
large high-dimensional data sets on GPU clusters,” Master’s the-
sis, Engineering, Univ. Wisconsin Milwaukee, Milwaukee, WI,
Aug. 2013.

[18] W. Dong, M. Charikar, and K. Li, “Efficient k-nearest neighbor
graph construction for generic similarity measures,” in Proc. Int.
Conf. World Wide Web, Mar. 2011, pp. 577–586.

[19] M. Douze, H. J�egou, and J. Johnson, “An evaluation of large-scale
methods for image instance and class discovery,” in Proc. Thematic
Workshops ACMMultimedia, 2017, pp. 1–9.

[20] M. Douze, H. J�egou, and F. Perronnin, “Polysemous codes,” in
Proc. Eur. Conf. Comput. Vis., Oct. 2016, pp. 785–801.

[21] M.Douze, A. Szlam, B.Hariharan, andH. J�egou, “Low-shot learning
with large-scale diffusion,”CoRR, abs/1706.02332, Jun. 2017.

[22] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” Proc.
VLDB Endowment, vol. 12, no. 5, pp. 461–474, 2019.

[23] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744–755,
Apr. 2014.

[24] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2011, pp. 817–824.

[25] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless
pooling of deep convolutional activation features,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 392–407.

Fig. 6. Path in the k-NN graph of 95 million images from YFCC100M. The first and the last image are given; the algorithm computes the smoothest
path between them.

546 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

[26] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “Deep image
retrieval: Learning global representations for image search,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 241–257.

[27] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik, “Asymmetric
distances for binary embeddings,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 1, pp. 33–47, Jan. 2014.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” CoRR, abs/1510.00149, Oct. 2015.

[29] K.He, F.Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2938–2945.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2016, pp. 770–778.

[31] X. He, D. Agarwal, and S. K. Prasad, “Design and implementation
of a parallel priority queue on many-core architectures,” in Proc.
IEEE Int. Conf. High Perform. Comput., 2012, pp. 1–10.

[32] H. J�egou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, Jan. 2011.

[33] H. J�egou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in
one billion vectors: Re-rank with source coding,” in Proc. Int. Conf.
Acoust., Speech Signal Process., May 2011, pp. 861–864.

[34] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks
for efficient text classification,” arXiv:1607.01759, 2016.

[35] Y. Kalantidis and Y. Avrithis, “Locally optimized product quanti-
zation for approximate nearest neighbor search,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2329–2336.

[36] A. Krizhevsky, I. Sutskever, andG. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proc. Advances
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[37] B. Kulis and T. Darrell, “Learning to hashwith binary reconstructive
embeddings,” in Proc. Advances Neural Inf. Process. Syst., Dec. 2009,
pp. 1042–1050.

[38] G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. J�egou,
“Word translation without parallel data,” CoRR, abs/1710.04087,
Oct. 2017. [Online]. Available: https://iclr.cc/Conferences/2018/
Schedule?showEvent=336

[39] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Array, Trees, Hypercubes, San Francisco, CA, USA: Morgan Kauf-
mann, 1992.

[40] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A unified graphics and computing architecture,” IEEE
Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

[41] W. Liu and B. Vinter, “Ad-heap: An efficient heap data structure
for asymmetric multicore processors,” in Proc. Workshop Gen. Pur-
pose Process. Using GPUs, 2014, pp. 54:54–54:63.

[42] Y. A. Malkov and D. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs,” CoRR, abs/1603.09320, Mar. 2016.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Advances Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[44] L. Monroe, J. Wendelberger, and S. Michalak, “Randomized selec-
tion on the GPU,” in Proc. ACM Symp. High Perform. Graph., 2011,
pp. 89–98.

[45] M. Norouzi and D. Fleet, “Cartesian k-means,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3017–3024.

[46] J. Pan and D. Manocha, “Fast GPU-based locality sensitive hash-
ing for k-nearest neighbor computation,” in Proc. ACM Int. Conf.
Advances Geographic Inf. Syst., 2011, pp. 211–220.

[47] L. Paulev�e, H. J�egou, and L. Amsaleg, “Locality sensitive hashing:
A comparison of hash function types and querying mechanisms,”
Pattern Recognit. Lett., vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[48] O. Shamir, “Fundamental limits of online and distributed
algorithms for statistical learning and estimation,” in Proc. Advan-
ces Neural Inf. Process. Syst., 2014, pp. 163–171.

[49] A. Sharif Razavian , H. Azizpour, J. Sullivan, and S. Carlsson,
“CNN features off-the-shelf: An astounding baseline for recog-
nition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work-
shops, 2014, pp. 512–519.

[50] N. Sismanis, N. Pitsianis, and X. Sun, “Parallel search of k-nearest
neighbors with synchronous operations,” in Proc. IEEE High Per-
form. Extreme Comput. Conf., 2012, pp. 1–6.

[51] X. Tang, Z. Huang, D. M. Eyers, S. Mills, and M. Guo, “Efficient
selection algorithm for fast K-NN search on GPUs,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2015, pp. 397–406.

[52] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li, “YFCC100M: The newdata inmulti-
media research,”Commun. ACM, vol. 59, no. 2, pp. 64–73, Jan. 2016.

[53] G. Tolias, R. Sicre, and H. J�egou, “Particular object retrieval with
integral max-pooling of CNN activations,” CoRR, abs/1511.05879,
Nov. 2015. [Online]. Available: https://iclr.cc/archive/www/doku.
php%3Fid=iclr2016:accepted-main.html

[54] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proc. ACM/IEEE Conf. Supercomputing, 2008,
pp. 31:1–31:11.

[55] A. Wakatani and A. Murakami, “GPGPU implementation of near-
est neighbor search with product quantization,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process. Appl., 2014, pp. 248–253.

[56] T. Warashina, K. Aoyama, H. Sawada, and T. Hattori, “Efficient
k-nearest neighbor graph construction using mapreduce for large-
scale data sets,” Efficient k-Nearest Neighbor Graph Construction
Using MapReduce Large-Scale Data Sets Trans., vol. 97-D, no. 12,
pp. 3142–3154, 2014.

[57] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces,” inProc. Int. Conf. Very LargeDataBases, 1998, pp. 194–205.

[58] P.Wieschollek, O.Wang, A. Sorkine-Hornung , andH. P. A. Lensch,
“Efficient large-scale approximate nearest neighbor search on the
GPU,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 2027–2035.

[59] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insight-
ful visual performancemodel for multicore architectures,”Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

Jeff Johnson received the BSE degree in
computer science from Princeton University, in
1998. He is a research engineer at Facebook AI
Research (FAIR) since 2014, and at Facebook
since 2013. From 2001-2012 he worked on per-
formance-sensitive, real-time physics simulation
algorithms and low-latency distributed computing
techniques for video games and interactive media.
At Facebook prior to joining FAIR, he developed
novel distributed database systems for web-scale
applications. He is the author of many internal

GPU systems in use at Facebook, and external GPU systems as found in
the PyTorch deep learning framework. He currently performs research on
hardware, software and algorithmic co-design formachine learning.

Matthijs Douze received the MS degree in com-
puter science from the ENSEEIHT, and the PhD
degree in computer vision from the University of
Toulouse, in 2004. He is a research scientist at
Facebook AI Research (FAIR) since 2015. From
2005-2015 he was an engineer on the LEAR proj-
ect-team at INRIA Grenoble. His main research
topics are large-scale algorithms for computer
vision and similarity search.

Herv�e J�egou received the PhD degree from the
University of Rennes, in 2005, for his thesis on
error-resilient compression and joint source chan-
nel coding after attending the �Ecole Normale
Sup�erieure de Cachan. He is a research scientist
at FacebookAI Research (FAIR) since 2015. Since
then he has worked primarily in computer vision
and pattern recognition. He joined INRIA as a per-
manent researcher in 2006, where he was involved
in or led several projects for large image and video
collections. In 2018, he received the ECCV Koen-
derink Test of Time Prize. He is a senior member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

JOHNSON ET AL.: BILLION-SCALE SIMILARITY SEARCHWITH GPUS 547

Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 25,2023 at 15:11:23 UTC from IEEE Xplore. Restrictions apply.

https://iclr.cc/Conferences/2018/Schedule?showEvent=336
https://iclr.cc/Conferences/2018/Schedule?showEvent=336
https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:accepted-main.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

