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Abstract. Recent theoretical work on the modeling of network structure has focused primarily on networks
that are static and unchanging, but many real-world networks change their structure over time. There exist
natural generalizations to the dynamic case of many static network models, including the classic random
graph, the configuration model, and the stochastic block model, where one assumes that the appearance
and disappearance of edges are governed by continuous-time Markov processes with rate parameters that
can depend on properties of the nodes. Here we give an introduction to this class of models, showing
for instance how one can compute their equilibrium properties. We also demonstrate their use in data
analysis and statistical inference, giving efficient algorithms for fitting them to observed network data
using the method of maximum likelihood. This allows us, for example, to estimate the time constants of
network evolution or infer community structure from temporal network data using cues embedded both in
the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of
edge appearance and disappearance. We illustrate these methods with a selection of applications, both to
computer-generated test networks and real-world examples.

1 Introduction

Networked systems, such as social, technological, and bi-
ological networks, have been the subject of a vigorous re-
search effort over the last decade [1], but most of this work
has focused on static networks that do not change over
time. In reality, almost all networks do in fact change, with
nodes or edges appearing or disappearing as the system
evolves, and a body of new work aimed at quantifying,
modeling, and understanding such temporal or dynamic
networks has recently emerged, driven in part by the in-
creasing availability of relevant data [2,3].

Data on dynamic networks comes in a variety of forms,
but the most common form, and the one we consider in
this paper, is that of a set of snapshots of network struc-
ture taken at successive times, usually (though not always)
evenly spaced. Such sets are a special case of a more gen-
eral “multiplex” network, meaning a set of different net-
works defined on the same set of nodes [4,5]. Multiplex
networks include many non-dynamic kinds, such as social
networks with different types of interactions between the
same set of actors. Our focus in this paper, however, is
solely on dynamic networks. We also limit ourselves to
networks defined on a fixed and unchanging set of nodes,
so that only edges appear and disappear, not nodes.

In many early analyses of dynamic networks, re-
searchers treated snapshots as independent measurements
of network structure, analyzing each one separately using
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conventional static network methods [3]. This, however,
ignores the often strong correlations between snapshots,
and thereby also ignores a potential rich source of infor-
mation hidden in the data. In a friendship network, for in-
stance, one expects to still be friends next week with most
of the same people one is friends with this week. More-
over, it could be the case that two edges in a network are
each present in half the snapshots, but that one of these
edges flickers on and off rapidly, while the other varies
more slowly. Treating snapshots independently would ac-
curately measure the overall probability that such edges
exist, but would be completely insensitive to their rate of
appearance and disappearance.

A better approach is to employ methods where the fun-
damental unit of analysis is not an individual snapshot
but the entire history of the network, and a number of
researchers have followed this line of reasoning in recent
years. Grindrod and coworkers [6–8], for instance, con-
struct models in which the appearance and disappearance
of edges in a network obeys a continuous-time Markov pro-
cess, meaning that edges appear and disappear by making
transitions from present to absent or vice versa at certain
rates. Crucially, these rates can differ from edge to edge,
which can induce complex structure in the network. In [6],
for example, the authors considered rates that depend on
the “range” of an edge, i.e., its length in some latent space,
while [7,8] focus on local properties such as the current de-
gree (the number of neighbors of a node) or transitivity
(the number of common neighbors of a node pair).
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The models we study in this paper are a special case
of models in this class, chosen so that they precisely gen-
eralize some of the best known static network models. In
particular we do the following. (1) We spell out explic-
itly dynamic generalizations of the classic random graph,
the configuration model, and the widely used stochastic
block model, specifically its degree-corrected variant. The
models we describe are contained within the larger class
defined in [6–8] but are simpler than their more general
cousins, making possible certain calculations that would
be harder, or even impossible, in the general case. (2) We
give calculations of the equilibrium properties of these
models and demonstrate explicitly the sense in which they
generalize the static models. (3) The bulk of our pre-
sentation is given over to the derivation and application
of methods for fitting the models to observed network
data, which allows us to infer large-scale structure, in-
cluding (but not limited to) community structure, using
maximum-likelihood techniques akin to those developed
previously for the static case.

In addition to the work of [6–8], a number of other au-
thors have considered dynamic generalizations of network
models, including the random graph [9] and especially the
stochastic block model [8,10–17]. The ordinary static ver-
sion of the stochastic block model divides network nodes
into groups or communities and then places edges between
them with probabilities that depend on group member-
ship. Dynamic variants of the model have been investi-
gated in which nodes can change their community mem-
bership over time, which can cause edge probabilities also
to change and hence edges to appear or disappear from one
snapshot to the next. Versions of this idea include the dy-
namic mixed-membership model of Xing et al. [10] and the
multi-group membership model studied by Yang et al. [11]
and Kim and Leskovec [12]. In Matias and Miele [13] and
Ghasemian et al. [14], group memberships can change but
edges at successive times are independent conditioned on
the groups. Xu [16] has studied a dynamic block model
with edge dynamics controlled by a Markov process, which
has some elements in common with our approach. An-
other model similar to ours (but without degree correc-
tion) was defined in [8], though in contrast to our approach
the authors did not use maximum likelihood to jointly in-
fer the dynamical parameters and the block memberships.
Matias et al. [17] have considered “longitudinal” networks
where contacts between nodes are governed by a Poisson
process. And Perra et al. [18] and Liu et al. [19] have
proposed “activity driven” network models, also employ-
ing Markov processes, to model heterogeneous activities
in dynamic networks, while Ogura and Preciado [20] have
considered spreading processes on networks with Markov
processes on the edges.

A little further from our focus in this paper are the
multilayer stochastic block models studied for instance in
references [21,22]. As with dynamic models, these mod-
els generate a set of different networks or “layers” built
upon the same set of nodes, but there is now no order-
ing of the layers or any assumption that adjacent lay-
ers are more similar than distant ones. Han et al. [21]

have used such multilayer models to derive more consis-
tent estimation of community structure for certain data
sets than those derived from standard stochastic block
models. Stanley et al. [22] studied a variant in which dif-
ferent layers (“strata” in their terminology) are generated
from different underlying parameters. Finally, a number of
authors have considered heuristic methods for link predic-
tion in networks [23–25], which can be viewed as methods
for estimating the future evolution of a network.

In the following section, we describe the models studied
in this paper, and derive a range of properties and methods
for their application.

2 Dynamic network models

Each of the models we study has a fixed number n of
nodes, plus edges between them that appear and dis-
appear as the network evolves over time. Starting from
some initial condition at time t = 0, our models gener-
ate continuous-time network histories, where edges ap-
pear and disappear at a sequence of real-valued times.
In some data sets, events like these can be observed di-
rectly, for instance in a network of telephone calls where
we are given the time and duration of each call. Here,
however, we assume that the network is only observed
at a set of T further snapshots, evenly spaced at inte-
ger times t = 1, . . . , T . Including the initial state there
are, thus, a total of T + 1 distinct snapshots. Note that
the network is assumed to exist and to continue to evolve
unobserved between the snapshots. Note also that since
we assume the number of nodes to be fixed our models
are not appropriate for networks that are rapidly growing
or shrinking over time, such as the world wide web for
example.

The fundamental idea behind all of the models we con-
sider is that the connection between every pair of nodes
obeys a continuous-time Markov process, edges appearing
and disappearing with constant rates, though the rates
can differ from one node pair to another depending on
various latent properties of the nodes. By choosing this
dependence appropriately we can model various kinds of
dynamic network structure, including fluctuating densi-
ties, degree distributions, and community structure. (The
assumption of a Markov process does however exclude net-
works with bursty or intermittent dynamics, for which our
models would not be appropriate).

To make our discussion more concrete, consider a par-
ticular pair of nodes in the network. Let us define λ to
be the rate (in continuous time) at which an edge appears
between these two nodes where previously there was none,
and let us define μ to be the rate at which an existing edge
disappears. If we denote by p1(t) and p0(t) respectively the
probabilities that there is and is not an edge between our
nodes at time t then

p1(t + dt) = p1(t) + λp0(t) dt − μp1(t) dt, (1)
p0(t + dt) = p0(t) − λp0(t) dt + μp1(t) dt, (2)
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and hence p1 satisfies the master equation

dp1

dt
= −dp0

dt
= λp0(t) − μp1(t), (3)

which has the solution

p1(t) =
λ

μ + λ
− c e−(μ+λ)t, (4)

where c is an integration constant and we have made use
of p0 = 1 − p1.

Now suppose that there is no edge between our two
nodes at time t = 0, i.e., that p1(0) = 0, which corresponds
to the choice c = λ/(μ+λ). Then the probability of having
an edge between our nodes at the next snapshot of the
network, at time t = 1, is equal to p1(1), which takes the
value

α =
λ

μ + λ

[
1 − e−(μ+λ)

]
. (5)

This is the probability of appearance of an edge between
one snapshot and the next. Similarly we can show that
the probability of disappearance of an edge is

β =
μ

μ + λ

[
1 − e−(μ+λ)

]
, (6)

and the equilibrium probability of an edge in the limit of
long time is

p = lim
t→∞ p1(t) =

λ

μ + λ
=

α

α + β
. (7)

It will be more convenient to define our models in terms of
probabilities such as these, which can always be calculated
if necessary from the continuous-time rates λ and μ.

2.1 Dynamic random graph

The random graph G(n, p), famously studied by Erdős
and Rényi in the 1950s and 60s [26,27], is perhaps the
most fundamental of all network models. In this model
edges are placed between node pairs independently with
probability p (or not with probability 1−p). In this section
we define the first and simplest of our dynamic network
models as a direct dynamic counterpart to the random
graph.

The definition of the model is straightforward. Starting
from some initial state at time t = 0, at every snapshot t
each node pair not connected by an edge in the previous
snapshot gains an (undirected) edge with probability α,
or not with probability 1−α. Similarly each existing edge
disappears with probability β or not with probability 1−β.
The net result after T time-steps is a sequence of T + 1
snapshots which can be represented by a set of symmetric
adjacency matrices A(t) having elements Aij(t) = 1 if
nodes i and j are connected by an edge in snapshot t and
Aij(t) = 0 otherwise.

In the limit of long time T → ∞, the average proba-
bility of an edge between two nodes in this model is given
by equation (7) to be p = α/(α + β), the same for every

node pair. Hence the stationary distribution of the model
is simply the random graph G(n, p). It is in this sense
that the model is a dynamic generalization of the random
graph.

This is a particularly simple example of the class of
models we study – we will look at more complex ones
shortly – but even so there are various reasons to be in-
terested in a model of this kind. One could use it for in-
stance to compute the time variation of network properties
such as connectivity or component sizes, or the density of
specific subgraphs – computations akin to the classic cal-
culations of Erdős and Rényi and others for the static
case [26,27]. Our primary interest in this paper, however,
is in the use of this and other models as tools for under-
standing observed network data, using methods of statis-
tical inference: we fit the model to the data by the method
of maximum likelihood and the parameters of the fit tell
us about our data in much the same way that fitting a
straight line through a set of points can tell us about their
slope.

Suppose that we have a set of T +1 observed snapshots
of some network, measured at uniform intervals over time.
If we hypothesize that the data were in fact generated from
our dynamic random graph model, then the probability, or
likelihood, that we observe this particular set of snapshots,
given the parameters α, β of the model, has the form

P ({A(t)}|α, β) =
∏

i<j

[
P (Aij(0)|α, β)

×
T∏

t=1

P
(
Aij(t)|α, β, Aij(t − 1)

)]
. (8)

Note that we have separate terms in this expression for
the first snapshot and all succeeding snapshots. The first
snapshot differs from the others because it has no pre-
ceding snapshots, so its probability is not conditioned on
those before it. The probabilities of all later snapshots, on
the other hand, depend on the previous state of the net-
work. Because of the assumption that network evolution
follows a Markov process, each snapshot only depends di-
rectly on the immediately preceding snapshot, hence the
inclusion of Aij(t − 1) in the second product.

The two probabilities P (Aij(0)|α, β) and
P

(
Aij(t)|α, β, Aij(t − 1)

)
are straightforward to write

down. With the assumption that the first snapshot is
drawn from the stationary distribution of the Markov
process, the first probability, which represents the proba-
bility of observing Aij(0) given no information about the
previous history of the network, is equal to the stationary
probability of an edge or non-edge within the model,
which as we have said is p = α/(α + β) for an edge, or
1 − p for a non-edge. Hence

P (Aij(0)|α, β) = pAij(0)(1 − p)1−Aij(0). (9)

The second probability is only a little more complicated,
taking one of four values for edges that appear or not and
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ones that disappear or not:

P (Aij(t)|α, β, Aij(t − 1)) = α[1−Aij(t−1)]Aij(t)

× (1 − α)[1−Aij(t−1)][1−Aij(t)]

× βAij(t−1)[1−Aij(t)](1 − β)Aij(t−1)Aij(t). (10)

Substituting (9) and (10) into equation (8) then gives us
the full likelihood for our data. In fact, as is often the
case, it is more convenient to work with the logarithm L of
the likelihood, which has its maximum in the same place.
Taking the log of equation (8) and applying (9) and (10),
we have

L = log P ({A(t)}|α, β)

=
∑

ij

{
Aij(0) log p + [1 − Aij(0)] log(1 − p)

+
T∑

t=1

[
[1 − Aij(t − 1)]Aij(t) log α

+ [1 − Aij(t − 1)][1 − Aij(t)] log(1 − α) + Aij(t − 1)

× [1 − Aij(t)] log β + Aij(t − 1)Aij(t) log(1 − β)
]}

.

(11)

Given the likelihood, we can estimate the parameters α
and β by maximizing, which gives

α =

∑
ij

[
Aij(0) − p +

∑T
t=1[1 − Aij(t − 1)]Aij(t)

]

∑
ij

[
Aij(0) − p +

∑T
t=1[1 − Aij(t − 1)]

] ,

(12)

β =

∑
ij

[
p − Aij(0) +

∑T
t=1 Aij(t − 1)[1 − Aij(t)]

]

∑
ij

[
p − Aij(0) +

∑T
t=1 Aij(t − 1)

] .

(13)

Note that these expressions differ from the naive estimates
of α and β given by Laplace’s rule of succession [6], i.e., the
number of times an edge appeared or disappeared divided
by the number of times it could potentially have done
so. The difference arises because the initial state of the
network is chosen from the stationary distribution, and
the probability p that Aij(0) = 1 in this initial state itself
depends on α and β. As T → ∞ the effect of the initial
state becomes progressively diluted relative to the effect of
the other snapshots and equations (12) and (13) converge
to their naive values.

Because p appears on the right-hand side of (12)
and (13), calculating the rates α and β requires us to find
self-consistent solutions to the equations. In fact, it is pos-
sible to eliminate the dependence on p on the right-hand
side and derive explicit closed-form equations, but the ex-
pressions are somewhat complicated. In practice we have
found it simpler just to solve equations (12) and (13) by
iteration from a suitable initial condition.

What do these equations tell us? For a given data set,
they give us an optimal estimate – better than the naive
estimate – of the rate at which edges appear and disappear

in our network. This gives us information about the corre-
lation between adjacent snapshots. The combined values
of α and β also give us the maximum-likelihood estimate of
the average density of the network, via the average prob-
ability p = α/(α + β) of an edge.

This model, however, while illustrative, is not, in prac-
tice, very useful. Like the static random graph which in-
spired it, it is too simple to capture most of the interesting
structure in real networks, and in particular it generates
networks with Poisson degree distributions, wholly unlike
those of real-world networks, which typically have broad
and strongly non-Poisson distributions. In the world of
static network models, this latter shortcoming is remedied
by the configuration model, a more sophisticated random
graph that can accommodate arbitrary degree distribu-
tions [28,29]. In the next section, we show how to define a
dynamic equivalent of the configuration model.

2.2 Dynamic random graphs with arbitrary
expected degrees

The configuration model is a model of a random graph
with a given degree sequence [28,29]. One fixes the de-
gree di of each node i = 1, . . . , n, then places edges at
random subject to the constraints imposed by the degrees.
This can be achieved in practice by endowing each node i
with di “half-edges” and choosing a matching of half-edges
uniformly at random from the set of all possible match-
ings. In the limit n → ∞ the expected number of edges
falling between nodes i and j in this model is didj/2m,
where m = 1

2

∑
i di is the total number of edges in the

network, and the actual number of edges between each
pair of nodes is Poisson distributed with this mean. There
is nothing in this model to stop a pair of nodes having
two or more edges connecting them – a so-called multi-
edge – and in general there will be some multiedges in
networks generated using the configuration model. Self-
loops – edges connecting a node to itself – can and do also
appear. Although this is not realistic behavior for most
real-world networks, versions of the configuration model
that explicitly forbid multiedges and self-loops are much
harder to work with than those that do not. Moreover, if
the degree distribution has finite mean and variance, the
expected number of multiedges and self-loops in the net-
work is constant, independent of n, so they have vanishing
density as n → ∞. For these reasons, one normally puts
up with the presence of a few multiedges and self-loops for
the sake of simplicity.

A commonly studied variant of the configuration
model, which is easier to treat in some ways, involves
explicitly placing between each node pair a Poisson-
distributed number of edges with mean didj/2m. In this
variant, sometimes called the Chung–Lu model after two
of the first authors to study it [30], the numbers of edges
between node pairs are independent random variables,
making analysis simpler. The price one pays for this sim-
plicity is that the degrees of individual nodes are no longer
fixed, themselves being Poisson-distributed (and asymp-
totically independent) with mean di. Thus di in this case
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represents not the actual degree but the expected degree
of a node. (The random graph of Erdős and Rényi, with
mean degree c, is then the special case of this model where
di = c for all i).

In this section we define a dynamic analog of the
Chung–Lu model in the sense of this paper: its edges
have a dynamics chosen so that their stationary distri-
bution is precisely that of the Chung–Lu model. (A dy-
namic network model where the edge rates depend on the
current degrees of their endpoints was proposed in [7]. In
our model, by contrast, each node has a given average de-
gree in the limit T → ∞.) Since the Chung–Lu model can
contain multiedges, we consider a process for adding and
removing edges slightly different from that of the previ-
ous section, such that each pair of nodes can have any
nonnegative number k of edges connecting it. Specifically,
for each node pair we consider the Poisson process where
edges are added at rate λ, and each of the existing edges is
removed independently at rate μ. Thus k is incremented
at rate λ, and decremented at rate kμ.

Let pk(t) denote the probability that a node pair has
k edges at time t. Then pk satisfies the master equation

dpk

dt
= λpk−1(t) + (k + 1)μpk+1(t) − (λ + kμ)pk(t). (14)

We can solve this equation by defining a generating
function g(z, t) =

∑∞
k=0 pk(t) zk, multiplying both sides

of (14) by zk, and summing over k to get

∂g

∂t
= (z − 1)

[
λg − μ

∂g

∂z

]
. (15)

The general solution to this equation is

g(z, t) = eλ(z−1)/μf
(
(z − 1)e−μt

)
, (16)

where f(x) is any once-differentiable function of its argu-
ment satisfying f(0) = 1, the latter condition being nec-
essary to fulfill the normalization requirement g(1, t) =∑

k pk(t) = 1 for all t.
In the limit of long time we have g(z, t) → eλ(z−1)/μ,

which is the generating function of a Poisson-distributed
variable with mean λ/μ. Hence the number of edges
between any pair of nodes in this model is Poisson-
distributed in the stationary state. If we make the choice

λ = μ
didj

2m
(17)

for some set of values di, with m = 1
2

∑
i di as previously

and any value of μ, then the mean number of edges be-
tween nodes i and j is λ/μ = didj/2m. In other words, the
stationary state of this model is precisely the Chung–Lu
model with expected degrees di.

This then defines our model: to generate a dynamic
network with n nodes, we specify the expected degree di

for each node and the parameter μ. We generate the
initial state of the network from the Chung–Lu model
with these expected degrees, and then generate future
states by adding edges between each node pair i, j at rate

λij = μdidj/2m and removing existing edges at rate μ.
We sample T snapshots of the resulting network at integer
intervals t = 1, . . . , T which, along with the initial state
at t = 0, comprise the T + 1 total snapshots generated
by the model. We represent these snapshots by adjacency
matrices A(t).

One could use this model for various purposes, such as
making calculations of expected structural properties, but
our principal interest here is again in fitting the model to
observed network data. As before we achieve this by max-
imizing a likelihood function, which has the same basic
form as previously:

P ({A(t)}|{di}, μ) =
∏

i<j

[
P (Aij(0)|di, dj , μ)

×
T∏

t=1

P
(
Aij(t)|di, dj , μ, Aij(t − 1)

)
]
.

(18)

The first probability on the right-hand side is straightfor-
ward to write down, since we know that the stationary
distribution places a Poisson-distributed number of edges
between nodes i and j with mean didj/2m. Thus

P (Aij(0)|{di}, μ) =
(didj/2m)Aij(0)

Aij(0)!
e−didj/2m, (19)

which is independent of μ.
The second probability P (Aij(t)|di, dj , μ, Aij(t−1)) is

more involved, but the calculation is simplified by noting
that even though the model can possess multiedges, the
observed network data will normally have at most a single
edge between any pair of nodes, so that the only allowed
edge transitions are the appearance and disappearance of
single edges.

Suppose that a given node pair is connected by zero
edges at time t = 0. Then, setting t = 0 in equation (16),
we find that f(x) = e−λx/μ, which implies that one
timestep later at t = 1 we have

g(z, 1) = eλ(z−1)(1−e−µ)/μ = e(z−1)βdidj/2m, (20)

where we have made use of equation (17) and for conve-
nience defined the quantity

β = 1 − e−μ, (21)

which (by analogy with our use of the same symbol β in
Sect. 2.1) is equal to the total probability that an existing
edge disappears during a single unit of time, i.e., between
two successive snapshots.

The probabilities p0→0 and p0→1 of a transition from
zero edges to, respectively, zero or one edges in a sin-
gle timestep are then equal to the probabilities p0(1) and
p1(1) of having zero or one edges at t = 1. These are
given by the zeroth and first coefficients in the expansion
of g(z, 1) in powers of z:

p0→0 = e−βdidj/2m, (22)

p0→1 = β
didj

2m
e−βdidj/2m. (23)
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By a similar method we also have

p1→0 = βe−βdidj/2m, (24)

p1→1 = (1 − β)e−βdidj/2m, (25)

where we have ignored terms of second and higher order
in 1/m in (25). Equations (22)–(25) give the expressions
for the probabilities of a transition from zero edges to zero
edges, from zero edges to one edge, from one edge to zero
edges, and from one edge to one edge respectively. This
specifies the full transition matrix for a network that has
single edges only and no multiedges. We can now write
down the transition probability P

(
Aij(t)|di, dj , μ, Aij(t−

1)
)

as a function of β:

P
(
Aij(t)|di, dj , β, Aij(t−1)

)
=(βdidj/2m)[1−Aij(t−1)]Aij(t)

× βAij(t−1)[1−Aij(t)](1 − β)Aij(t−1)Aij(t)e−βdidj/2m. (26)

Substituting this into equation (18) and taking logs, we
get the following expression for the log-likelihood in our
model:

L =
∑

ij

(
Aij(0) +

T∑

t=1

[
1 − Aij(t − 1)

]
Aij(t)

)
log

didj

2m

+2
(
m0→1+m1→0

)
log β+2m1→1 log (1 − β)−2m(1+Tβ),

(27)

where we have ignored constant terms and

m0→1 =
1
2

T∑

t=1

∑

ij

[1 − Aij(t − 1)]Aij(t)

is the total number of newly appearing edges in the ob-
served data, and similarly

m1→0 =
1
2

T∑

t=1

∑

ij

Aij(t − 1)[1 − Aij(t)],

m1→1 =
1
2

T∑

t=1

∑

ij

Aij(t − 1)Aij(t). (28)

Maximizing the log-likelihood with respect to the edge
disappearance rate β, we then find that the optimal value
of β is the positive solution of the quadratic equation

mTβ2−(mT+m0→1+m1→0+m1→1)β+m0→1+m1→0 = 0.
(29)

Similarly, maximizing with respect to di and bearing in
mind that m = 1

2

∑
i di, we find that di obeys

2
di

∑

j

[
Aij(0) +

T∑

t=1

[1 − Aij(t − 1)]Aij(t)
]
− 1

∑
j dj

×
∑

ij

[
Aij(0) +

T∑

t=1

[1−Aij(t− 1)]Aij(t)
]
− (1 + Tβ) = 0,

(30)

which has the solution

di =
1

1 + Tβ

∑

j

[
Aij(0)+

T∑

t=1

[1−Aij(t−1)]Aij(t)
]
. (31)

The sum in this expression is the number of edges initially
connected to node i plus the number that later appear.
The divisor 1+Tβ is the effective number of independent
measurements of an edge that we make during our T snap-
shots. If β = 0, so that edges never appear or disappear,
then in effect we only have one measurement of each edge
– the initial snapshot at t = 0. Conversely, if β = 1, so
that every observed edge immediately disappears on the
next snapshot, then all snapshots are independent and the
number of independent measurements is T +1. Thus equa-
tion (31) measures the number of observed edges between
node pairs divided by the number of independent obser-
vations of each node pair.

Equations (29) and (31) give us the maximum-
likelihood estimates of the rate parameter β and the ex-
pected degrees of the nodes. We note two points. First,
these equations have to be solved self-consistently, since
the first equation depends on di via m = 1

2

∑
i di and the

second depends on β. Second, neither β nor di are equal
to their naive estimates from the data. One might imag-
ine, for instance, that di would be given by the average of∑

j Aij(t) over all snapshots, but our results indicate that
the maximum-likelihood estimate differs from this value.

Both of these effects arise, as in the previous section,
because of the information provided by the initial state.
Because the initial state is drawn from the stationary dis-
tribution, which depends on the model parameters, we can
make a better estimate of those parameters by taking it
into account than not. On the other hand, the advantage
of doing so dwindles as T becomes large and vanishes in
the T → ∞ limit.

We could use these results, for example, to define in
a principled fashion an equivalent of the “degree” for a
node in a dynamic network. The actual degree of a node
in such a network is a fluctuating quantity, but using our
results one can define a single number di for each node
that, like the degree in a static network, is a measure of
the propensity of that node to connect to others. We give
some examples in Section 3.

2.3 Dynamic block models

The stochastic block model is a random graph model of
a network that incorporates modules or community struc-
ture – groups of nodes with varying densities of within-
and between-group edges. The standard stochastic block
model, first proposed by Holland et al. in 1983 [31], is
the community-structured equivalent of the random graph
of Erdős and Rényi, but like the latter it has shortcom-
ings as a model of real-world networks because the net-
works it generates have Poisson degree distributions. The
degree-corrected stochastic block model [32] is a variant
on the same idea that is analogous to the model of Chung
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Eur. Phys. J. B (2017) 90: 200 Page 7 of 14

and Lu [30], allowing us to choose any set of values for
the expected degrees of nodes, while also generating a
community-structured network.

A number of dynamic versions of block models have
been proposed previously, as discussed in the introduc-
tion [8,10–17]. In this section we define a dynamic equiva-
lent of the degree-corrected model and show how it can be
used to infer community structure from dynamic network
data using maximum likelihood.

The standard (static) degree-corrected block model di-
vides a network of n nodes into k nonoverlapping groups
labeled by integers 1, . . . , k. Let us denote by gi the
group to which node i belongs. Then we place a Poisson-
distributed number of edges between each node pair i, j
with mean equal to ωgigj θiθj , where θi is a degree-like
parameter and ωrs is a further set of parameters which
control the density of edges within and between each pair
of groups. If the diagonal elements ωrr are greater than
the off-diagonal ones, the model generates networks with
conventional “assortative” community structure – dense
in-group connections and sparser between-group ones –
although other choices of ωrs are also possible and are
observed in real-world situations.

This description does not completely fix the param-
eters of the model: they are arbitrary to within a mul-
tiplicative constant, since one can multiply all the θi in
any group by a constant and divide the same constant
out of ωrs without affecting the behavior of the model.
This is why we refer to θi as a “degree-like parameter” –
it plays a role similar to degree in the configuration model
but is arbitrary to within a group-dependent multiplica-
tive constant. Following [32], we remove this ambiguity by
making a specific choice of normalization, that the sum of
θi within any group should be 1:

∑

i

θiδgi,r = 1, (32)

where δij is the Kronecker delta. This gives us k con-
straints, one for each of the k groups, and hence fixes all
the remaining degrees of freedom.

To generalize this model to the dynamic case we again
divide our n nodes into k groups and assign to each of
them a degree-like parameter θi satisfying (32). We gener-
ate an initial state drawn from the static degree-corrected
block model with these parameters. We then generate a
history for the network by adding edges between each node
pair i, j at rate

λij = μrsωrsθiθj (33)

and removing existing edges independently at rate μrs,
where r = gi and s = gj are respectively the groups to
which i and j belong. Note the similarity between equa-
tions (17) and (33), the primary differences being that the
parameter μrs now depends on the group memberships
and that the factor 1/2m has been replaced by the quan-
tity ωrs, which also depends on the group memberships.
By the same argument as before, the number of edges be-
tween i and j in the stationary state is Poisson distributed

with mean
λij

μrs
= ωrsθiθj , (34)

which makes the stationary state of this model equivalent
to the degree-corrected stochastic block model as desired.

Also by the same argument as before, we can calculate
the transition rates for edges to appear and disappear be-
tween one snapshot and the next, which are

p0→0 = e−βrsωrsθiθj , (35)

p0→1 = βrsωrsθiθje
−βrsωrsθiθj , (36)

p1→0 = βrse
−βrsωrsθiθj , (37)

p1→1 = (1 − βrs)e−βrsωrsθiθj . (38)

Here
βrs = 1 − e−μrs (39)

is the total probability for an existing edge between nodes
in groups r and s to disappear in the unit of time be-
tween successive snapshots. (Also as before we have in
equation (38) discarded terms beyond leading order in the
small quantities ωrs).

By fitting this model to observed network data, we
can determine the parameters βrs, ωrs, and θi, along with
the group assignment parameters gi. The likelihood as a
function of the four sets of parameters {βrs}, {ωrs}, {θi},
and {gi} takes the form

P ({A(t)}|{βrs}, {ωrs}, {θi}, {gi})

=
∏

i<j

[
P (Aij(0)|βgigj , ωgigj , θi, θj)

×
T∏

t=1

P
(
Aij(t)|βgigj , ωgigj , θi, θj , Aij(t − 1)

)
]
. (40)

The first probability on the right is straightforward, taking
the value

P (A(0)
ij |βgigj , ωgigj , θi, θj) =

(ωgigj θiθj)Aij(0)

Aij(0)!
e−ωgigj

θiθj

(41)
by definition (which is independent of βgigj ), while the
second can be expressed in terms of the transition proba-
bilities, equations (35)–(38). The resulting expression for
the log-likelihood is

See equation (42) next page.

where
mrs(0) =

∑

ij

Aij(0)δr,giδs,gj , (43)

and

m0→1
rs =

∑

ij

[
1 − Aij(t − 1)

]
Aij(t)δr,giδs,gj , (44)
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L =
∑

ij

{
Aij(0) log(ωgigj θiθj) − ωgigj θiθj +

T∑

t=1

[
[
1 − Aij(t − 1)

]
Aij(t) log(βgigj ωgigj θiθj)

+ Aij(t − 1)
[
1 − Aij(t)

]
log βgigj + Aij(t − 1)Aij(t) log(1 − βgigj ) − βgigj ωgigj θiθj

]}

=
∑

ij

∑

rs

δgi,rδgj ,s

{
Aij(0) log(ωrsθiθj) − ωrsθiθj +

T∑

t=1

[
[
1 − Aij(t − 1)

]
Aij(t) log(βrsωrsθiθj)

+ Aij(t − 1)
[
1 − Aij(t)

]
log βrs + Aij(t − 1)Aij(t) log(1 − βrs) − βrsωrsθiθj

]}

=
∑

ij

[
Aij(0) +

T∑

t=1

[
1 − Aij(t − 1)

]
Aij(t)

]
log(θiθj) +

∑

rs

{
mrs(0) log ωrs

+ m0→1
rs log(βrsωrs) + m1→0

rs log βrs + m1→1
rs log(1 − βrs) − (1 + Tβrs)ωrs

]}
, (42)

which is the total number of edges that appear between
groups r and s in the observed data. Similarly,

m1→0
rs =

∑

ij

Aij(t − 1)
[
1 − Aij(t)

]
δr,giδs,gj , (45)

m1→1
rs =

∑

ij

Aij(t − 1)Aij(t)δr,giδs,gj , (46)

Differentiating equation (42) with respect to ωrs now
gives us

ωrs =
mrs(0) + m0→1

rs

1 + Tβrs
, (47)

and differentiating with respect to βrs gives a quadratic
equation again:

Tωrsβ
2
rs − (Tωrs + m0→1

rs + m1→0
rs + m1→1

rs )βrs

+ m0→1
rs + m1→0

rs = 0. (48)

(Note that in order to perform the derivatives correctly,
one must take into account the fact that ωrs = ωsr and
βrs = βsr, although it turns out that the end result is the
same as would be derived by naive differentiation, ignoring
these equalities.)

Differentiating (42) with respect to θi and normalizing
appropriately gives us

θi =

∑
j

{
Aij(0) +

∑T
t=1

[
1 − Aij(t − 1)

]
Aij(t)

}

∑
s(1 + Tβgis)ωgis

. (49)

The self-consistent solution of equations (47), (48),
and (49), now gives us the parameters of the model.

If we want to convert the degree-like parameter θi into
a true degree, we can do this by noting that the expected
degree di of node i in the stationary state of this model
is equal to the sum of the expected number of edges be-
tween i and every other node, which is

di =
∑

j

ωgigj θiθj = θi

∑

rj

ωgirθjδgj ,r = θi

∑

r

ωgir, (50)

where we made use of equation (32) in the final equality.
Hence the degrees are simply proportional to θi, with a
constant of proportionality that can be easily calculated
once we have the values of ωrs from equation (47).

This still leaves us to calculate the maximum-
likelihood estimates of the group assignments gi. To do
this, we substitute our estimates of the parameters back
into the log-likelihood, equation (42), to get the so-called
profile likelihood, which is then maximized over the group
assignments gi. Note that there is no need to calculate
the last term

∑
rs(1+Tβrs)ωrs in the likelihood since, by

equation (47), it is equal to
∑

rs[mrs(0) + m0→1
rs ], which

is independent of the group assignments and hence has no
effect on the position of the maximum.

Maximization of the profile likelihood over the val-
ues of gi is harder than maximizing with respect to the
other parameters, since the values of the gi are discrete.
We perform the maximization numerically, using a heuris-
tic algorithm analogous to that used for the static block
model in [32], which was in turn inspired by the clas-
sic Kernighan–Lin algorithm for graph partitioning [33].
Starting from a random group assignment, we move a sin-
gle node to a different group, choosing from among all
possible such moves the one that most increases (or least
decreases) the profile likelihood. We repeat this process,
making a chain of successive single-node moves, but with
the important qualification that each node is moved only
once. When all nodes have been moved once, we reex-
amine every state passed through during the process to
find the one with the highest profile likelihood, then take
that state as the starting point for a new repetition of the
same algorithm. We continue repeating until no further
improvement in the profile likelihood is found. As with
many other optimization algorithms, the results can vary
from one run to another because of the random initial con-
dition, so one commonly performs several complete runs
with different initial conditions, taking as the final answer
the output of the run that gives the highest overall value
of the profile likelihood.

An alternative way to fit our model would be to use an
expectation-maximization (EM) algorithm in which the
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model parameters are assigned their maximum-likelihood
values but one computes an entire posterior distribution
over divisions of the network into groups. The latter dis-
tribution, being a large object, is normally evaluated only
approximately, either by Monte Carlo sampling or using
a belief propagation algorithm [34] in which nodes pass
each other estimates of their marginal probabilities of be-
longing to each group. A belief propagation algorithm
was used previously for a different dynamic block model
in [14], where each node sends messages both along “spa-
tial” edges to its neighbors in each snapshot and along
“temporal” edges to its past and future selves in adjacent
snapshots. A similar approach could work in the present
case, although our model differs from that of [14] in assum-
ing unchanging group memberships but correlated edges
where [14] makes the opposite assumption of time-varying
group memberships but independent edges between
snapshots.

3 Applications

In this section we give examples of fits of dynamic network
data to the dynamic configuration model of Section 2.2
and the dynamic block model of Section 2.3.

3.1 Synthetic networks

Our first set of examples make use of synthetic data sets –
computer-generated networks with known structure that
we attempt to recover using the maximum-likelihood fit.
We demonstrate this approach using the dynamic block
model of Section 2.3 and the test networks we use are
themselves generated using the same model. Our code for
performing the fit, along with an example set of test net-
works, is available online1.

We look in particular at the case where the expected
degree parameters di for all nodes are the same, equal to
a constant c. For the tests reported here we use c = 16.
At the same time we vary the strength of the community
structure, encapsulated in the parameters ωrs, according
to

ωrs = δωplanted
rs + (1 − δ)ωrandom (51)

Here ωplanted
rs is diagonal (all elements with r �= s are zero),

ωrandom is a flat matrix (all elements are the same), and
δ ∈ [0, 1] is an interpolating parameter. Thus by varying
δ we span the range from a uniform random graph with
no community structure (δ = 0) to a network in which
all edges lie within communities and none between com-
munities (δ = 1), so that the communities are completely
disconnected components.

We similarly vary the rate constants βrs according to
a second parameter η, also lying in [0, 1], such that

βrs = ηβplanted
rs + (1 − η)βuniform, (52)

1 Code for fitting the dynamic degree-corrected block model
to network data is available online for download at http://

www.umich.edu/~mejn/dynamic.zip.

which interpolates between values that are the same for
all groups and the heterogeneous choice βplanted

rs , which
can be anything we choose. Note that while varying βrs

does not change the expected degree or average density
of edges in the network, it does change how rapidly edges
appear and disappear. Thus η controls the extent to which
the dynamics of the network, as opposed to merely its
average behavior, gives additional information about the
community structure.

Once the parameters are fixed, we generate a set of
networks, which in our tests have n = 500 nodes divided
into two groups of equal size. For each network we gener-
ate an initial state followed by up to five further snapshots.
The initial state is generated from the stationary distribu-
tion (i.e., from a traditional degree-corrected block model)
and the following snapshots are generated according to the
prescription of Section 2.3.

We now apply the fitting method of Section 2.3 to
these networks to test whether it is able to successfully
recover the community structure planted in them. Suc-
cess, or lack of it, is quantified using the normalized mu-
tual information [35,36], an information-theoretic metric
that measures the agreement between two sets of group
assignments. A normalized mutual information of 1 in-
dicates exact recovery of the planted groups while 0 indi-
cates complete failure – zero correlation between recovered
and planted values.

Figure 1 shows the results of our tests. In panel (a) we
fix η = 0, so that βrs is uniform and block structure is
indicated only by the relative abundance of edges within
and between groups. We use a value of βuniform = 0.4,
meaning that 40% of extant edges disappear at each time-
step. The different curves in the figure show the normal-
ized mutual information as a function of the parameter δ
which measures the strength of the community structure,
for different numbers of snapshots from T = 0 to T = 5.
As we can see, our ability to recover the planted structure
diminishes, and eventually fails completely, as the struc-
ture becomes weaker, but this effect is partly offset (as we
might expect) by increasing the number of snapshots – the
more snapshots we use the better we are able to infer the
community structure. For larger numbers of snapshots,
the algorithm is able to surpass the known “detectability
threshold” below which community detection is impossi-
ble for single, static networks [34], which is indicated by
the vertical dashed line in the plot. In other words the
algorithm is able to integrate information about the net-
work over time in order to better determine the shape of
the communities.

In Figure 1b we set η = 1, so that βrs = βplanted
rs ,

choosing the value of βplanted
rs to be βin = 0.3 along the

diagonal and βout = 0.5 off the diagonal, meaning that
within-group edges are somewhat more persistent – more
likely to be conserved from one snapshot to the next – than
between-group edges. This behavior provides another sig-
nal of community structure, in addition to the differing
time-averaged edge probabilities, which the algorithm can
in principle use to determine group memberships. And in-
deed the results of Figure 1b reflect this, showing that the
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Fig. 1. The normalized mutual information for runs of the community finding algorithm described here on computer-generated
networks themselves created using the dynamic block model. T represents the number of transitions between snapshots, so that
the total number of snapshots is T + 1, the parameter δ measures the strength of the community structure, and η measures the
extent to which community structure and edge dynamics are correlated. (a) Networks with η = 0, βuniform = 0.4, and varying
δ. (b) Networks with η = 1 and βplanted

rs equal to βin = 0.3 along the diagonal and βout = 0.5 off the diagonal. (c) Networks
with δ = 0, βuniform = 0.4, βin = 0, and βout = 0.8, and varying η. The vertical dashed line in panels (a) and (b) represents
the theoretical detectability threshold for single networks generated from the standard stochastic block model with the same
parameters [34]. Panel (b) shows that the dynamics of the network can give us additional information, allowing us to find the
community structure even below this static threshold. Each data point is an average over 30 networks with n = 500 nodes each
and average degree c = 16 for all nodes.

algorithm is able to determine group memberships even
well below the detectability threshold, but only when T
is large. If T is small, then it becomes difficult to deter-
mine the values of βrs from the data, and hence difficult
to determine group membership for small δ. This point is
discussed further below.

In Figure 1c we fix δ = 0 and vary η between zero and
one using values βuniform = 0.4 as previously, and βin = 0,
βout = 0.8. With δ = 0 there is now no signal whatso-
ever of community structure present in the positions of
the edges. The only clue to the group assignments lies in
the rate of appearance and disappearance of edges within
and between groups. As we would expect, the algorithm
is unable to identify the communities at all when T = 0
or η = 0, but as η grows for T ≥ 1 the algorithm as-
signs a larger and larger fraction of nodes to the correct
groups, with better performance for larger values of T .
These results suggest the existence of a new detectability
threshold as a function of η, with location tending to zero
as T → ∞. (A threshold like this was observed, for in-
stance, by Ghasemian et al. [14] in their model, discussed
in Sect. 2.3, which has a transition as a function of both
the strength of community structure and the relevant rate
parameters.)

3.2 Real-world examples

We have also tested our models against a number of em-
pirical data sets representing the structure of real-world
dynamic networks. We give three examples representing
networks drawn from technological and social domains,

finding in each case that our dynamic models and their
associated algorithms perform better than static methods.

3.2.1 Internet graph

Our first example is a network representation of the struc-
ture of the Internet at the level of autonomous systems
(ASes), the fundamental units of global packet routing
used by the Internet’s Border Gateway Protocol. The
structure of the Internet changes constantly and is well
documented: a number of ongoing projects collect snap-
shots of the structure at regular intervals and make them
available for research. Here we use data from the CAIDA
AS Relationships Dataset2, focusing on four snapshots
of the network’s structure taken at three-month intervals
during 2015. The spacing of the snapshots is chosen with
an eye to the rate of growth of the network. The Internet
has grown steadily in size over the several decades of its
existence, and it is still growing today, but this growth is
not captured by our models. To ensure better fits, there-
fore, we first restrict our data to the set of nodes that are
present in all of our snapshots, and second choose snap-
shots that span a relatively short total time. Thus our
four snapshots were chosen to be sufficiently far apart in
time that the network sees significant change between one
snapshot and the next, but close enough that the size of
the network does not change greatly.

We fit our Internet data to the dynamic version of
the configuration model described in Section 2.2, which

2 The CAIDA AS relationships dataset. http://www.caida.
org/data/as-relationships.
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Fig. 2. Degree distribution of the Internet at the autonomous
system level, estimated in two different ways, first using a naive
average of the degrees of our four snapshots (squares) and sec-
ond using the maximum likelihood method of this paper (cir-
cles). The points are a histogram of estimated degrees using
logarithmic (constant ratio) bins. Note that the expected de-
grees are not necessarily integers, so the positions of the points
are not integers either.

gives us a way to determine the parameter β that con-
trols the rate of appearance and disappearance of edges
as well as the effective degrees di of nodes i in the net-
work. For the rate parameter we find a maximum likeli-
hood value of β = 0.0896, which indicates a fairly slow
rate of turnover of the edges in the network. Recall that
β is the average probability that an edge will vanish from
one snapshot to the next, so this value of β implies that
over 90% of edges remain intact between snapshots. As
discussed in Section 2.2, one could make a naive estimate
of the rate at which edges vanish simply by counting the
number that do, but that estimate would be less accurate
than the maximum-likelihood one.

Our fit also gives us estimates of the degree parame-
ters di from equation (31). Again, we could make naive
estimates of the degrees, for instance by assuming snap-
shots to be independent and averaging the raw degrees
of their nodes across snapshots. Figure 2 shows a com-
parison between the frequency distribution of estimated
degrees for the Internet derived from the two methods. As
the figure shows, there is in this case relatively little differ-
ence between the results from the two methods for most
of the degree distribution, although there is some devia-
tion for very high and low degrees. The dynamic method
appears to produce a somewhat smoother distribution in
these regions, suggesting that departures from the smooth
distribution in the naive estimate may be due to transient
effects.

The similarity between the maximum likelihood and
naive estimates in Figure 2 is not entirely surprising, since
the naive average is a correct estimator of the di in the
limit of a large number of snapshots – it will tend to the
correct answer eventually. Even so, it is less than ideal.

For instance, while it may give a correct estimate of the
degrees, the estimate of the error on the values it gives
would still be wrong. By assuming the snapshots to be in-
dependent, we effectively assume that we have more mea-
surements of the network than we really do and hence
underestimate the variance. For instance, if we observe
that the naive degree of a node is unchanging for many
snapshots in a row, we may conclude that the average of
those values has a very small statistical error, because the
fluctuations are small. This, however, would be erroneous
if the small fluctuations are actually just a result of the
fact that the network is only changing rather slowly.

And error estimates are not the only thing that will be
affected by improperly using a naive degree estimate. The
values of the degrees themselves can also be affected if the
snapshots are strongly correlated, which they are in this
case because of the small value of β. Strongly correlated
snapshots will tend to give a node the same or similar
degree on successive snapshots, but equation (31) implies
that in this case our estimate of di should actually decrease
over time (as T becomes larger in the denominator while
the numerator remains constant). A naive estimate on the
other hand would remain unchanged. At first sight the
decrease in the maximum-likelihood estimate may appear
counterintuitive, but it has a simple physical interpreta-
tion: for a node that truly has a constant value of di, we
would expect additional edges to appear occasionally, at
a rate dependent on that value. If we do not see any edges
appearing, therefore, it implies our initial estimate of the
degree was too high and we should revise it downward.

The maximum-likelihood estimator can, on the other
hand, also have problems of its own if the model we are
fitting is not a perfect description of the data. In the case
of the Internet we see two possible sources of disagreement
between data and model. First, even though the number
of nodes in the network is held fixed, the number of edges
is observed to grow over time – the network is becoming
more dense. This effect is not included in our model, which
assumes constant expected density. Second, we see some
evidence that the removal of edges is not uniform as our
model assumes, but that edges connected to high-degree
nodes disappear at a higher rate than those connected to
low-degree ones. Both of these behaviors could potentially
affect our results. (It is interesting to ask whether and how
the model could be generalized to include them, though
we leave pursuit of that question for future work.)

3.2.2 Friendship network

Our second example focuses on a set of social networks
from a study by Michell and West of friendship patterns
and behaviors among school students in the UK [37]. High-
school students at a school in the west of Scotland were
polled about their friendship patterns, each student being
allowed to name up to twelve friends, and they were also
asked about their drinking, smoking, and drug use habits.
The entire exercise was conducted a total of three times,
at yearly intervals, with the same group of students. The
study looked at all students in the school, but the most
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detailed data were collected for a subset of 50 girls within
the larger population and it is on this subset that we focus
here.

The researchers were interested in the extent to which
substance use behaviors correlated with friendship pat-
terns. They found that although there was no single factor
that would completely explain the friendships of the stu-
dents, the network of friendships did display homophily
according to substance use, meaning that students with
similar use patterns were more likely to be friends [38,39].

In our analysis we divide the students into three
groups: those who do not drink, smoke, or take drugs on
a regular basis; those who exhibit one of these three be-
haviors; and those who exhibit two or more. We then ask
whether it is possible to detect this division into groups
based on network structure alone, without any knowledge
of student behaviors. We find that when using the dynamic
version of the degree-corrected block model described in
Section 2.3 it is indeed possible to determine the groups,
and to do so with better accuracy than can be achieved by
standard static methods. Specifically, we compare results
from our dynamic block model to those from the static
degree-corrected block model fitted to an aggregate net-
work formed from the union of the three snapshots. The
aggregated network is allowed to contain multiedges if two
students are connected in more than one snapshot.

Figure 3 shows three pictures of the overall aggregate
network of friendships. Each picture is laid out identically,
but with different coloring. In panel (a) the three colors
represent the ground truth, with green, yellow, and red de-
noting students who engaged in zero, one, or two or more
of the behaviors studied respectively. Panel (b) shows the
communities found in the network by fitting to the dy-
namic block model. Though not perfect, this fit places
64% of the nodes in their correct groups. A random color-
ing, for comparison, would get only 33% right (since each
node would have a 1

3 probability of assignment to the cor-
rect group). Panel (c) shows the results from the standard
static algorithm applied to the aggregated network. This
fit places only 52% of the nodes in their correct groups.

3.2.3 Proximity network

Our third example is another social network, a network
of physical proximity between students in a high school in
France [40]. The data were collected using electronic prox-
imity detectors worn by the participants, which recorded
the presence and identity of other detectors in their vicin-
ity at intervals of 20 s. The data were collected over five
consecutive days, but on the last day only a half day’s
worth of data were collected, which we discard, leaving
four full days to work with. We construct one snapshot
for each day and consider there to be an edge between
two participants in a snapshot if three or more contacts
between them were recorded during the relevant day. Re-
quiring a minimum number of contacts in this way helps to
remove spurious signals from the data, as discussed in [41].
We also restrict our study to those nodes that are present
in all snapshots.

(a)

(b)

(c)

Fig. 3. Communities within the friendship network of UK
high-school students described in the text. (a) Node colors and
shapes indicate ground-truth data on substance use, divided
into students who used no substances (green circles), one (yel-
low squares), or two or more substances (red triangles). (b) Col-
ors and shapes indicate group assignments inferred by fitting
the network to the dynamic block model of this paper using
all three snapshots. (c) Colors and shapes indicate the group
assignments inferred by fitting an aggregate of the three snap-
shots to the static degree-corrected stochastic block model.

The students in the study were divided among
three subject specialties: mathematics/physics,
physics/chemistry, and biology. Each specialty was
further divided into three classes, so there are a total of
nine classes in the data. We attempt to recover these
classes from the network data alone, without other
information, using both the dynamic model of this paper
and a traditional static degree-corrected block model
applied to the aggregated network. In this case both
methods do well, which is perhaps unsurprising, given
that the edges within each group are significantly denser
than those between groups. Figure 4 shows the results
for the dynamic model in panel (a) and the static model
in panel (b). As we can see, both models achieve good
classification of the nodes into their classes, although the
dynamic model performs slightly better. The error rate
– the fraction of incorrectly labeled nodes – is 4.1% for
the dynamic model of panel (a) and 5.7% for the static
model of panel (b).

The primary benefit of the dynamic model in this case,
however, lies not in its ability to recover the communities
but in what it reveals about the dynamics of the network.
In addition to the communities themselves, the dynamic
model also returns values for the rate parameters that can
reveal features of the data not seen in the simple static fit
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BIO

MP

PC

BIO

MP

PC

(a)

(b)

Fig. 4. Student proximity network. The nine groups of nodes
in each panel represent the nine classes and the colors and
shapes represent the community structure found using (a) the
dynamic model of this paper applied to the four snapshots and
(b) the standard static degree-corrected block model applied to
the aggregate of the snapshots. Note that classes in the same
row belong to the same subject specialty, where PC stands
for physics/chemistry, MP stands for math/physics and BIO
stands for biology. Classes within the same subject specialty
tend to have more inter-class edges than classes in different
specialties.

to the aggregate network. Of particular interest in this
case are the parameters βrs, which measure the relative
rates at which edges change within and between groups.
Our fit gives estimates of

βrs �

⎧
⎪⎨

⎪⎩

0.51 ± 0.05 within classes,
0.75 ± 0.19 different classes but same specialty,
0.94 ± 0.19 different specialties,

(53)

where the errors indicate the standard deviation among
classes.

In other words, connections are not only more likely
between participants in the same class or specialty, but
they are also more persistent, in some cases by a wide
margin – only about 6% of connections persist from one
snapshot to the next between individuals in the differ-
ent specialties for example, but almost 50% persist within
classes.

4 Conclusions

In this paper we have introduced dynamic generaliza-
tions of some of the best-known static network models, in-
cluding the Erdős-Rényi random graph, the configuration
model, and the degree-corrected stochastic block model.
We have also derived and implemented algorithms for fit-
ting these models to network data that allow us to infer
maximum-likelihood estimates of rates of change, node
degrees, and community structure. We have tested the
performance of our dynamic versions of the configuration
model and the block model on synthetic benchmark net-
works as well as on a selection of data sets representing
real-world dynamic networks.

There are a number of directions in which this work
could be extended. First, we have focused exclusively on
edge dynamics here, but there are also networks in which
nodes appear and disappear and it would be a natural
generalization to study the dynamics of nodes also, or
of both edges and nodes together. We could also allow
node properties, such as expected degrees or community
memberships, to change over time, as some other au-
thors have done. Second, the assumption of an equilib-
rium continuous-time Markov processes for the edge dy-
namics is a particularly simple one, which could be re-
laxed to encompass more complicated situations, such as
those in which the distribution from which snapshots are
drawn is non-stationary or out of equilibrium. Third, in
our community detection calculations we assume we know
the number of communities the network contains, but in
many cases we do not have this information. Methods have
been developed for determining the number of communi-
ties in static networks and it is an interesting question
whether those methods can be extended to the dynamic
case as well.
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2. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)
3. P. Holme, Eur. Phys. J. B 88, 1 (2015)
4. S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio,

J. Gomez-Gardenes, M. Romance, I. Sendina-Nadal,
Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

5. M. De Domenico, C. Granell, M.A. Porter, A. Arenas, Nat.
Phys. 12, 901 (2016)

6. P. Grindrod, D.J. Higham, Proc. R. Soc. Lond. A 466, 753
(2010)

7. P. Grindrod, D.J. Higham, IMA J. Manage. Math. 23, 1
(2012)

8. P. Grindrod, D.J. Higham, M.C. Parsons, Internet Math.
8, 402 (2012)

9. J. Ugander, L. Backstrom, J. Kleinberg, Subgraph
frequencies: Mapping the empirical, extremal geogra-
phy of large graph collections, in Proceedings of the
22nd International Conference on World Wide Web,
Association of Computing Machinery, New York (2013),
pp. 1307–1318

10. E.P. Xing, W. Fu, L. Song et al., Ann. Appl. Stat. 4, 535
(2010)

11. T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, Mach. Learn.
82, 157 (2011)

12. M. Kim, J. Leskovec, Nonparametric multi-group mem-
bership model for dynamic networks, in Proceedings of
the 2013 Conference on Neural Information Processing
Systems, edited by C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, K.Q. Weinberger (MIT Press, Cambridge,
MA, 2013), pp. 1385–1393

13. C. Matias, V. Miele, J. R. Stat. Soc. B (2016)
14. A. Ghasemian, P. Zhang, A. Clauset, C. Moore, L. Peel,

Phys. Rev. X 6, 031005 (2016)
15. K.S. Xu, A.O. Hero III, Dynamic stochastic blockmod-

els: statistical models for time-evolving networks, in Social
Computing, Behavioral-Cultural Modeling and Prediction
(Springer, Berlin, 2013), pp. 201–210

16. K.S. Xu, Stochastic block transition models for dy-
namic networks, in Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics, edited
by G. Lebanon, S.V.N. Vishwanathan (2015), pp. 1079–
1087

17. C. Matias, T. Rebafka, F. Villers, A semiparametric ex-
tension of the stochastic block model for longitudinal net-
works, arXiv:1512.07075 (2015)
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