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Abstract. The study of complex systems is limited by the fact that only a few
variables are accessible for modeling and sampling, which are not necessarily the
most relevant ones to explain the system behavior. In addition, empirical data
typically undersample the space of possible states. We study a generic framework
where a complex system is seen as a system of many interacting degrees of
freedom, which are known only in part, that optimize a given function. We show
that the underlying distribution with respect to the known variables has the
Boltzmann form, with a temperature that depends on the number of unknown
variables. In particular, when the influence of the unknown degrees of freedom
on the known variables is not too irregular, the temperature decreases as the
number of variables increases. This suggests that models can be predictable only
when the number of relevant variables is less than a critical threshold. Concerning
sampling, we argue that the information that a sample contains on the behavior of
the system is quantified by the entropy of the frequency with which different states
occur. This allows us to characterize the properties of maximally informative
samples: within a simple approximation, the most informative frequency size
distributions have power law behavior and Zipf’s law emerges at the crossover
between the under sampled regime and the regime where the sample contains
enough statistics to make inferences on the behavior of the system. These ideas
are illustrated in some applications, showing that they can be used to identify

c© 2013 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/13/P09003+21$33.00

mailto:marsili@ictp.trieste.it
mailto:Iacopo.Mastromatteo@cfm.fr
mailto:yasserroudi@gmail.com
http://stacks.iop.org/JSTAT/2013/P09003
http://dx.doi.org/10.1088/1742-5468/2013/09/P09003


J.S
tat.M

ech.(2013)
P

09003

On sampling and modeling complex systems

relevant variables or to select the most informative representations of data, e.g. in
data clustering.

Keywords: critical phenomena of socio-economic systems, protein function and
design (theory), clustering techniques, statistical inference

ArXiv ePrint: 1301.3622

Contents

1. Introduction 2

2. The setup 4

2.1. Gibbs distribution on s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Learning from sampling a complex system 7

3.1. Most informative samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Criticality and Zipf’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Applications 12

4.1. Protein sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2. Clustering and correlations of financial returns . . . . . . . . . . . . . . . . 14

4.3. Keywords in a text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Discussion 17

Acknowledgments 18

Appendix. When are models predictive? The Gaussian case 18

References 20

1. Introduction

Complex systems such as cells, the brain, the choice behavior of an individual or the
economy can generally be regarded as systems of many interacting variables. Their
distinguishing feature is that, contrary to generic random systems, they perform a specific
function and exhibit non-trivial behaviors. Quantitative science deals with collecting
experimental or empirical data that reveal the inherent mechanisms and organizing
principles that suffice to reproduce the observed behavior within theoretical models. The
construction of machines or the design of intervention which achieve a desired outcome,
such as for example in drug design [25] or for the regulation of financial markets [26],
crucially depend on the accuracy of the models.

This endeavor has intrinsic limits: our representations of complex systems are not
only approximate, they are incomplete. They take into account only a few variables—that
are at best the most relevant ones—and the interactions among these. By necessity they
neglect a host of other variables that also affect the behavior of the system, even though
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on a weaker scale. These are not only variables we neglect, but unknown unknowns we do
not even know exist and have an effect.

This is not necessarily a problem as long as (i) the phenomenon depends on a few
relevant variables and (ii) one is able to identify and to probe them5. Yet, even if advances
in IT and experimental techniques have boosted our ability to probe complex systems to
an unprecedented level of detail, we are typically in the situation where the state space of
the system at hand is severely under sampled and relevant variables (e.g. the expression
of a gene) are in many cases inferred from indirect measurements.

In addition, there are intriguing statistical regularities that arise frequently when
probing complex systems. Frequency counts in large samples often exhibit the so-called
Zipf’s law, according to which the kth most frequent observation occurs with a frequency
that is roughly proportional to 1/k, an observation that has attracted considerable interest
over several decades now6. Model systems in physics, e.g. for ferromagnetism, exhibit
similar scale-free behavior only at special ‘critical’ points, where the system undergoes a
phase transition. This leads one to wonder about mechanisms by which nature would
self-organize to a critical point [3] or on the generic features of systems that share
this property [4]. Yet, the fact that Zipf’s law occurs in a wide variety of different
systems suggests that it does not convey specific information about the mechanism of
self-organization of any of them.

Here we address the general problem of modeling and sampling a complex system from
a theoretical point of view. We focus on a class of complex systems which are assumed to
maximize an objective function depending on a large number of variables. Only some of
the variables are known, whereas the others are unknown. Accordingly, only the part of the
function that depends solely on the known variables is known, for the rest one can at best
know its statistics. The assumption that complex systems optimize some function, even if
it is widely used in modeling (e.g. utility/fitness maximization in economics/biology), may
be debatable. Still, it allows us to address two related issues: first, under what conditions
do models based on a subset of known variables reproduce systems behavior? How many
variables should our models account for and how relevant should they be? Second, can
we quantify how much information a given sample contains on the behavior of a complex
system? What is the maximal amount of information that a finite data set can contain and
what are the properties of optimally informative samples in the strongly under sampled
regime?

In section 2, after constructing a mathematically well defined set up, we first discuss
the issue of model’s predictability: given some knowledge about how the objective function
depends on the observed variables, what is the probability that we correctly predict the
behavior of these variables? We show that, under very broad conditions, the dependence
of the probability to observe a given outcome on the (observable part of the) objective
function takes a Gibbs–Boltzmann form. In particular, if the dependence on unknown
variables is not too irregular—i.e. if the distribution of the unknown part of the objective
function has thin tails—then the ‘temperature’ parameter decreases with the number of
unknown variables. This suggests that models are predictable only when the number of

5 Indeed, as Wigner argues: ‘It is the skill and ingenuity of the experimenter which show him phenomena which
depend on a relatively narrow set of relatively easily realizable and reproducible conditions’ [1].
6 The literature on this finding is so vast that a proper account would require a treatise of its own. We refer to
recent reviews [2] and papers [4, 11, 15] and references therein.
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unknown variables is large enough. This is illustrated for a particular case, drawing from
results on the Random Energy Model [5], which is worked out in the Appendix. There we
find that models are predictable only when the number of known variables is less than a
critical threshold. This suggests a general argument for the non-trivial fact that ‘in spite
of the baffling complexity of the world, [· · ·] phenomena which are independent of all but
a manageably small set of conditions’ exist, which makes science possible [1].

In section 3 we will then be concerned with what can be called an inverse problem:
if we choose some variables to observe, and collect a number of samples, how much do
we learn about the objective function? We argue that (i) the information that the sample
contains on the behavior of the system is quantified by the entropy of the frequency with
which different states occur. On the basis of this, (ii) we characterize most informative
samples and we find that their frequency size distributions, in the under sampled regime,
have power law behavior. Within our approximated treatment, we find that the under
sampling regime can be distinguished from the regime where the sample contains enough
statistics to make inferences on the underlying distribution. Finally, (iii) the distribution
with the highest information content coincides with Zipf’s law, which is attained at the
crossover between these two regimes.

Finally section 4 gives evidence, based on concrete applications in proteins, finance
and language, that these insights can be turned into practical criteria for studying
complex systems, in particular for selecting relevant variables and/or the most informative
representation of them.

2. The setup

We consider a system which optimizes a given function U(~s) over a certain number of
variables ~s = (s, s̄). Only a fraction of the variables—the ‘knowns’ s—are known to the
modeler, as well as that part of the objective function us that depends solely on them. The
objective function also depends on other variables s̄—the ‘unknowns’—in ways that are
unknown to the modeler. Formally, we can define us = Es̄[U(~s)], where Es̄[· · ·] stands for
the expected value over a prior distribution on the dependence of U(~s) on the unknown
variables, which encodes our ignorance on them. In other words,

U(~s) = us + vs̄|s (1)

where vs̄|s = U(~s) − Es̄[U(~s)] is an unknown function of s̄ and s, which we assume to
be drawn randomly and independently for each ~s = (s, s̄) from a given distribution p(v).
Hence Es̄[· · ·] denotes the expectation with respect to this distribution. The fact that
vs̄|s are independent draws from p(v) here translates into the fact that knowledge of s̄
does not provide any information on s as long as vs̄|s is unknown. This is what would
be dictated by the maximum entropy principle [6], in the absence of other information
on the specific dependence of U on ~s.7 This also corresponds to the most complex model
we could think of for the unknown part of the system, as its full specification requires a
number of parameters that grows exponentially with the number of unknown variables.

7 Indeed, if the variables were not independent, we should have some information on their mutual dependence
and if they were not identical we should have some clue of how they differ.
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Figure 1. Sketch of the setup: s are the known variables. The behavior of the
system is encoded in the optimal choice s∗. This results from the maximization
of a function U(s, s̄), which also depends on unknown variables s̄. Assuming it is
possible to model the dependence of the objective function on the known variables
s, i.e. that us = Es̄[U(s, s̄)] is known, what is the probability that the model’s
prediction s0 matches the observed behavior of the system? How relevant and
how many should the known variables be?

Therefore, the behavior of the system is given by the solution

~s∗ = (s∗, s̄∗) ≡ arg max
~s
U(~s) (2)

whereas the behavior predicted by the model, on the known variables, is given by

s0 ≡ arg max
s
us. (3)

Within this simplified description, the predictability of the model is quantified by the
probability

ps0 = P{s0 = s∗} ≡ Es̄[δs0,s∗ ] (4)

that the model reproduces the behavior of the system. This setup is sketched in figure 1.
Let us give a few examples:

• The choice of the city (i.e. s) in which individuals decide to live, does not only depend
on the characteristics of the city—which may be encoded in some index us of city’s
living standards—but also on unobserved factors (s̄) in unknown individual specific
ways. Here vs̄|s is a different function for each individual—encoding the value of other
things s̄ he/she cares about (e.g. job and leisure opportunities, personal relations, etc),
in the particular city s.

• A plant selects its reproductive strategy depending on the environment where it lives.
This ends up in measurable phenotypic characteristics, e.g. of its flowers, that can be
classified according to a discrete variables s. The variables the species is optimizing
over ~s = (s, s̄), also include unobserved variables s̄ that influence other traits of the
phenotype in unknown ways.

• A text is made of words s in a given language. Each word s in the text has been
chosen by the writer, depending on the words s̄ that precede and follow it, in order to
efficiently represent concepts in the most appropriate manner. We assume that this
can be modeled by the writer maximizing some function U(~s).
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• Proteins are not random hetero-polymers. They are optimized to perform a specific
function, e.g. transmit a signal across the cellular membrane. This information is
encoded in the sequence ~s of amino acids; however, only a part of the chain (s) is
directly involved in the function (e.g. binding of some molecules at a specific site).
The rest (s̄) may have evolved to cope with issues that have nothing to do with the
function, and that depend on the specific cellular environment the protein acts in.

Within this set up, in section 2.1 we address the following question: if we only have
access to s, how well can we predict the behavior of the system? More precisely: what is
the functional dependence of the probability for a configuration s to be the true maximum
s∗?

2.1. Gibbs distribution on s

The functional dependence of the probability for a generic configuration s to be the true
maximum s∗, which we have denoted as ps = P{s = s∗}, can be derived under very general
conditions. We focus here on the case where all the moments are finite: Es̄[v

m
s̄|s] < +∞ for

all m > 0. Without loss of generality, we can take s = (s1, . . . , sn) and s̄ = (sn+1, . . . , sN),
with the variables si = ±1 taking two values for i = 1, . . . , N . The system would not be
that complex if n and N were small, so we focus on the limit where both n and N are
very large (ideally n,N →∞).

For all s, extreme value theory [7] shows that

max
s̄
vs̄|s ∼= a+

ηs
β
, (5)

where a is a constant, ηs are i.i.d. Gumbel distributed, i.e. P{ηs < x} = e−e−x and β
depends on the tail behavior of the distribution of vs̄|s (see later). Therefore

ps ≡ P{s = s∗} = P{βus + ηs ≥ βus′ + ηs′ ,∀s′ 6= s} (6)

=

∫ ∞
−∞

dηs e−ηs−e−ηs
∏
s′ 6=s

∫ ηs+β(us−us′ )

−∞
dηs′ e

−ηs′−e
−ηs′

(7)

=
1

Z(β)
eβus , Z(β) =

∑
s′

eβus′ (8)

which is the Boltzmann distribution, also called Logit model in choice theory. The
derivation of the Logit model from a random utility model under the assumption of
Gumbel distributed utilities is well known [8, 9]. Limit theorems on extremes dictate
the form of this distribution for the whole class of models for which vs̄|s have all finite
moments. This result extends to the case where vs̄|s are weakly dependent, as discussed
in [7].

The result of equation (8) could have been reached on the basis of maximum entropy
arguments alone: on the true maximum, s∗, the model’s utility attains a value us∗ that
will generally be smaller than us0 . Without further knowledge, the best prediction for ps
is given by the distribution of maximal entropy consistent with E[us] = us∗ . It is well
known that the solution of this problem yields a distribution of the form (8). While this
is reassuring, maximum entropy alone does not predict how the value of β depends on
the number of unknown unknowns. By contrast, extreme value theory implies that if the
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asymptotic behavior of p(v) for large v is given by log p(v) ∼ −|v|γ, then one can take

β = [(N − n) log 2]1−1/γ . (9)

One may näıvely expect that the predictability of the model ps0 gets smaller when the
number N − n of unknown variables increases. This is only true for γ < 1, as indeed β
decreases as the number of unknown unknowns increases in this case. When p(v) decays
faster than exponential (γ > 1), which includes the case of Gaussian variables, β diverges
with the number of unknowns. If the number n of observed variables stays finite, we expect
that ps0 → 1 in the limit of an infinite number of unknown variables.

A manifestation of this non-trivial behavior is illustrated by the Gaussian case (γ = 2),
where also us are assumed to be i.i.d. draws from a Gaussian distribution with variance8

σ2. There, as shown in the appendix, for a given value of σ, the prediction of the model is
reliable only as long as the fraction f = n/N of known variables is smaller than a critical
value fc = σ2/(1 + σ2).

Summarizing, in this section we have shown that, given the form of us, the probability
to correctly predict a certain state s follows a Gibbs–Boltzmann form with a ‘temperature’
that depends on the number of unknown variables. A natural question one may ask at
this point is the inverse problem to this: how much can we tell about us by observing the
system? This is the question that we will address in section 3.

3. Learning from sampling a complex system

Given a sample (s(1), . . . , s(M)) of M observations of the state of a system, what can we
learn on its behavior? As before, our working hypothesis is that s(i) is the outcome of an
optimization of an unknown function U(~s) on a set of variables ~s that we observe only in
part. In order to connect to the direct problem discussed in section 2.1, we note that one
can also define us, as us = Es̄[U(~s)], where the expected value, now, is an average over
experiments carried out under the same experimental conditions, as far as the variables s
are concerned. Therefore, the function us, while unknown, is the same across the sample.
The part of the objective function that depends on the unknown variables can again be
defined as vs̄|s = U(~s) − us. However, since by definition there is no way to control the
unknown variables, we cannot assume, a priori, that the influence of the unknowns on
the observed variables is the same across the sample. Rather, this is consistent with the
function vs̄|s being a different independent draw from some distribution p(v), for each ~s

and for each point of the sample9. Thus we shall think of the sample (s(1), . . . , s(M)) as
being M independent configurations drawn from a distribution of the Gibbs–Boltzmann
form as in equation (8).

8 σ quantifies the relevance of the known variables. Note indeed that the typical variation ∆U of the objective
function when a known variable is flipped is

√
1 + σ2 times larger than the change ∆U due to flipping an unknown

variable. Hence known variables are also the most relevant ones.
9 Therefore we shall think of the sample as being the solution of the maximization problem: s(i) = arg maxs[us +

maxs̄v
(i)

s̄|s] for i= 1, . . . ,M . For example, the choice of the city where Mr i decides to live, also depends on individual

circumstances, captured by the function v
(i)

s̄|s. Note furthermore that the number of unknown variables is assumed

to be the same for all points of the sample. This implies that the unknown parameter β in equation (5) is the
same for all i = 1, . . . ,M .

doi:10.1088/1742-5468/2013/09/P09003 7
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Let Ks be the number of times s was observed in the sample, that is

Ks =
M∑
i=1

δs(i),s. (10)

In view of the discussion of section 2.1, the relation between the distribution ps that our
data is sampling and the function us is given by the Gibbs–Boltzmann form of equation (8).
This has two consequences:

(1) Since the observed frequency Ks/M samples the unknown distribution ps ∼ eβus , it
also provides a noisy estimate of the unknown function

us ≈ c+
1

β
logKs (11)

for some c and β > 0.

(2) Even without knowing what us is, we know that ps is the maximal entropy distribution
subject to an unknown constraint Es[u] = ū, or the distribution of maximal Es[u] =∑

spsus with a given information content H[s] = H̄.

The first observation highlights the fact that the information that we can extract from
the sample on the function the system performs is given by the information contained in
Ks and not in s itself. In order to make this observation more precise in information
theoretic terms, we remark that, a priori all of the M points i in the sample should be
assigned the same probability P{i} = 1/M . With respect to this measure, the random
variables s and Ks acquire distributions, respectively, given by P{s(i) = s} = Ks/M and
P{Ks(i) = k} = kmk/M where

mk =
∑
s

δk,Ks (12)

is the number of states s that are sampled exactly k times. Therefore their associated
entropies are:

Ĥ[s] = −
∑
s

Ks

M
log

Ks

M
= −

∑
k

kmk

M
log

k

M
(13)

Ĥ[K] = −
∑
k

kmk

M
log

kmk

M
= Ĥ[s]−

∑
k

kmk

M
logmk (14)

where the notation Ĥ denotes empirical entropies. Since Ks is a noisy observation of the
function us, we conclude that the information that the data contains on the function

us that the system optimizes is quantified by Ĥ[K]. This conclusion is consistent with

the fact that Ĥ[K]/ log 2 is the (minimal) number of bits per state that is necessary to
optimally encode the output of the experiment (see [12] chapter 5).

In order to gain intuition, it is instructive to consider the case of extreme under
sampling, where each state is sampled at most once, i.e.Ks = 1 for all states s in the sample
and Ks = 0 otherwise. This corresponds to considering the regime β ≈ 0 in equation (8),
where the data does not allow us to distinguish different observations in the sample and
yields a uniform distribution on s. At the other extreme, when the same state s0 is observed
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M times, i.e. Ks = Mδs,s0 , the data samples the function us in just one point s0. In both
cases the statistical range of the observed Ks does not allow us to learn much about the

function us that is optimized. Notice that Ĥ[K] = 0 in both these extreme cases, whereas

Ĥ[s] = logM in the first case and Ĥ[s] = 0 in the latter. Our intuition that in both these
extreme cases we do not learn anything about the behavior of the system is precisely
quantified by the value of Ĥ[K].10 For intermediate cases, Ĥ[s] will take an intermediate
value in [0, logM ] and we expect that different distributions are possible, which might

provide a positive amount of information Ĥ[K] > 0 on the system’s behavior. Notice
that, Ks > Ks′ suggests that state s is optimal under broader conditions than s′. But if

Ks = Ks′ the sample does not allow one to distinguish the two states. In this sense, Ĥ[K]
quantifies the number of states that the sample allows us to distinguish.

3.1. Most informative samples

Observation (2) above states that the distribution ps can be seen as a distribution of
maximal Es[u] =

∑
spsus with a given H[s] = H̄. The choice of which and how many

variables to model, effectively fixes the number of unknown variables, which controls the
inverse temperature parameter β in equation (8), and ultimately tunes the entropy H̄ to

different values between zero and n log 2. Since11 Ĥ[s] ≤ H[s], we should look at empirical

distributions with bounded Ĥ[s] ≤ H̄. Among these, those with maximal information

content are those whose distribution m = {mk, k > 0} is such that Ĥ[K] is maximal12:

m∗ = arg max
m:Ĥ[s]≤H̄

Ĥ[K] (15)

subject to the additional constraint
∑

kkmk = M . The solution to this problem is made
non-trivial by the fact that mk should be a positive integer. Here we explore the solution
within a very rough approximation where we consider mk a positive real number. This

10 To get an intuitive understanding of the information content of the two variables, imagine you want to find
Mr X in a population of M individuals (this argument parallels the one in Ki Baek et al [11]). Without any
knowledge, this requires logM bits of information. But if you know that Mr X lives in a city of size k, then your
task is that of finding one out of k ·mk individuals, which requires log(kmk) bits. Averaging over the distribution
of K, we find that the information gain is given by Ĥ[K]. How informative is the size of the city? Clearly if all
individuals live in the same city, e.g. mk = δk,M , then this information is not very useful. At the other extreme, if
all cities are formed by a single individual, i.e. mk = Mδk,1, then knowing the size of the city where Mr X lives is
of no use either. In both cases log[kmk] = logM . Therefore there are distributions mk of city sizes that are more
informative than others. Notice that, in any case, the size k of the city cannot provide more information than
knowing the city s itself, i.e. Ĥ[K] ≤ Ĥ[s].
11 This follows from the asymptotic equipartition property (AEP) [12] that derives from the law of large numbers
and states that, when M � 1 is large

− 1

M
logP{s(1), . . . , s(M)} = − 1

M

M∑
i=1

log p
s(i)
' H[s].

Using P{s(1), . . . , s(M)} = p
s(1) · · · ps(M) , this leads to

Ĥ[s] +DKL(p̂ ‖ p) ' H[s],

where p̂s = Ks/M and DKL(p̂ ‖ p) =
∑
sp̂s log(ps/p̂s) is the Kullback–Leibler divergence. Note that Ĥ[s] ≤ logM ,

so if M is not large enough Ĥ[s] is not a good estimate of H[s]. Since DKL(p̂ ‖ p) ≥ 0, then Ĥ[s] ≤ H[s].
12 A similar argument can be found in Baek et al [11], though the analysis and conclusions presented here differ
substantially from those [11].
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Figure 2. (Left) Maximal entropy Ĥ[K] plotted as a function of the system
entropy Ĥ[s] for M = 105 and 106. The under sampled regime corresponds to the
right region, while the left region for which Ĥ[K] ≈ Ĥ[s] represents the regime in
which the distribution ps is well sampled. The peak separating the two regimes is
associated with a Zipf distribution for mk. (Right) Exponent µ as a function of
M within the approximated solution presented in the text, with H[s] = 10. In the
inset we represent Ĥ[K] as a function of M . The vertical dashed line corresponds
to logM = H[s].

provides an upper bound to the entropy Ĥ[K] that we combine with the upper bound

Ĥ[K] ≤ Ĥ[s] implied by the data processing inequality [12], which arises from the fact
that the random variable Ks is a function of s.

In the region where Ĥ[K] < Ĥ[s], the solution to the approximated problem is readily
found by maximizing

Ĥ[K] + µĤ[s] + λ
∑
k>1

kmk (16)

over mk ∈ R+, where µ and λ are Lagrange multipliers that are used to enforce the
constraints Ĥ[s] = H̄ and

∑M
k=1kmk = M . The solution reads:

m∗k = ck−1−µ, 1 ≤ k ≤M (17)

where c > 0 is a constant that is adjusted in order to enforce normalization. As µ varies,
the upper bound draws a curve in the Ĥ[K] versus Ĥ[s] plane, as shown in figure 2 (left)
for two values of M . In particular, the slope of the curve is exactly given by −µ. Therefore
we see that at the extreme right, Ĥ[K]→ 0 as Ĥ[s]→ logM with infinite slope µ→∞,
corresponding to a distribution mk = Mδk,1. As µ decreases, the distribution mk spreads

out and Ĥ[K] increases accordingly.

There is a special point where the upper bound Ĥ[K] derived from the solution with

mk ∈ R matches the data processing inequality line Ĥ[s] = Ĥ[K]. We find that the slope
of the line at this point (see figure 2) approaches µ = 1 from above, which corresponds to
a distribution mk ∼ k−2.

In the regime where Ĥ[K] < Ĥ[s], the true distribution ps is undersampled and a

number of states s are all sampled an equal number of times. When Ĥ[K] = Ĥ[s], instead,
almost all states are sampled a different number of times. Therefore knowing the frequency
Ks/M of a state is equivalent to knowing the state s itself. Notice that, in this regime, mk
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Figure 3. Distribution in cities for subsamples of M households of the IPUM
database (http://usa.ipums.org). Main figure: Ĥ[s] and Ĥ[K] as a function
of M . Inset: cumulative distribution N (>k) =

∑
q>kmq of city distribution

for subsamples of M = 1721, 6452, 96 118 and 1535 956 (from left to right,
corresponding to the arrows in the main figure.

is not given by the solution of the above optimization problem, since Ĥ[K] is bound by the
data processing inequality. Indeed, in this regime, the empirical distribution converges to
whatever the underlying distribution is13, with mk = 0 or 1 for almost all the values of k.

These results provide a picture of how most informative samples behave as the sample
size M increases, and the curve in the left part of figure 2 moves upward (see figure 2
right). As long as logM is smaller than the entropy H̄ of the unknown distribution,

we expect that all states in the sample will occur at most once, i.e. Ĥ[K] = 0. When

M ≈ eH̄ , we start sampling states more than once. Beyond this point, Ĥ[K] will increase
and mk ∼ k−1−µ will take a power law form, with an exponent that decreases with M (see

figure 2 right). When M is large enough the entropy Ĥ[K] will saturate to the value H̄ of
the underlying distribution and µ will draw closer to one. Further sampling will provide
closer and closer approximations of the true distribution ps (see figure 3).

The above argument suggests that power law distributions are the frequency
distributions with the largest information content in the undersampled regime (i.e. to
the right of the cusp in figure 2 left). The value of the exponent µ can be read from
the slope of the curve. The maximum, which corresponds to a cusp, has µ ' 1, hence a
distribution that is close to the celebrated Zipf’s law mk ∼ k−2. Actually, the plot of µ
versus M in figure 2 suggests that there is a broad range of M over which µ takes values
very close to one.

3.2. Criticality and Zipf’s law

The results above suggest that Zipf’s law (µ = 1) emerges as the most informative
distribution which is compatible with a fixed value of the entropy H[s]. Here we want to

13 There is an interesting duality between the distribution of s and that of K: when the former is under sampled
(e.g. all states are seen only a few times) the distribution mk is well sampled (i.e. mk ∝M), whereas when s is
well sampled, mk is under sampled, i.e. mk = 0 or 1.
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show how this is consistent with the approach in [4]. Mora and Bialek [4] draw a precise
relation between the occurrence of Zipf’s law and criticality in statistical mechanics. In
brief, given a sample and an empirical distribution p̂s = Ks/M , it is always possible
to define an energy function Es = − log p̂s and a corresponding entropy, Σ(E) through
the usual relation eΣ(E) = dN (E)/dE with the number dN (E) of energy states between
energy E and E + dE. For E = − log(k/M), dN (E) = mk |dk/dE| = kmk. Therefore,
Σ(E) = log(kmk), which means that Zipf’s law mk ∼ k−2 corresponds to linear relation
Σ(E) ' Σ0 + βE with slope β = 1. The relation with criticality in statistical mechanics
arises because the vanishing curvature in Σ(E) corresponds to an infinite specific heat [4].

The linearity of the Σ(E) relation is not surprising. Indeed, the range of variation of
entropy and energy in a sample of M points is limited by δΣ, δE ≤ logM . For intensive
quantities σ = Σ/n and ε = E/n, this corresponds to a linear approximation of the
σ(ε) ' σ0 + βε relation over an interval δσ, δε ∼ (logM)/n that can be relatively small.
The fact that the coefficient takes the particular value β ≈ 1 is, instead, non-trivial and
it corresponds to the situation where the entropy versus energy relation enjoys a wider
range of variation.

The results of section 3.114 provide an alternative perspective on the origin of Zipf’s
law: imagine a situation where we can choose the variables s with which to probe the
system. Each choice corresponds to a different function us or to a different σ(ε) relation,
of which the sample probes a small neighborhood of size (logM)/n. For each choice of s,
this relation will likely look linear σ(ε) ' σ0 +βε with a different coefficient β. How should
one choose the variables s? It is clear that probing the system along variables for which
β � 1 results in a very noisy dataset, whereas if β � 1 one would be measuring constants.
In contrast, probing the system on ‘critical’ variables, i.e. those for which β ≈ 1, provides
more information on the system’s behavior. Zipf’s law, in this perspective, is a consequence
of choosing the known variables as those that reveal a wider range of variability in the
σ(ε) relation.

4. Applications

Are the findings above of any use?
As we have seen, the distribution mk conveys information on the internal self-

organization of the system. In the case of city size distribution, the occurrence of a broad
distribution suggests that the city s is a relevant variable that enters in the optimization
problem that individuals solve. Indeed, individuals could be clustered according to
different criteria (electoral districts, population living in areas of equal size, etc) and we do
not expect broad distributions in general. Furthermore, we expect that if we progressively
sample a population of individuals, the resulting city size distribution would ‘evolve’
approximately as described above. Figure 3 shows the result of such an exercise for a
data set of US citizens (see caption). Interestingly, we find that for small samples the
distribution takes a power law form mk ∼ k−µ−1 with exponent µ > 1, and as M increases

14 We remark an interesting formal analogy between the picture above and the statistical mechanics analogy of [4],
within the simplified picture provided by our approximation. Upon defining Zµ =

∑
kk
−µ, it is easy to check that

Ĥ[s] = logM + ∂µ logZµ and Ĥ[K] = logZµ − µ∂µ logZµ. Thus, identifying Zµ with a partition function, Ĥ[s]
and Ĥ[K] stand precisely in the same relation as the energy and the entropy of a statistical mechanical system.
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the distribution gets broader (i.e. µ decreases) and converges to the city size distribution,
when only 0.5% of the individuals are sampled15.

In most applications the relevant variables are not known. In this case, the
maximization of Ĥ[K] can be used as a guiding principle to select the most appropriate
variables or to extract them from the data. We illustrate the problem with three examples.

4.1. Protein sequences

A protein is defined in terms of its amino-acid sequence16 ~s but its functional role in
the cell, as well as its 3d structure, is not easily related to it. The sequences ~s of
homologous proteins—i.e. those that perform the same function—can be retrieved from
public databases [13]. Mutations across sequences of homologous proteins are such that
they preserve that function but otherwise might be optimized in order to cope with their
particular cellular environment. This suggests that there may be relevant amino acids s
that are optimized for preserving the function and less relevant ones.

How to find relevant variables? One natural idea is to look at the subsequence of the
n evolutionarily most conserved amino acids17. Figure 4 shows the information content
Ĥ[K] as a function of Ĥ[s] as the number n of ‘relevant’ amino acids varies for the family
PF000072 of response regulator receiver proteins18 [13]. For n large, most of the sequences

are seen only once (small Ĥ[K]), and Ĥ[s] ∝ logM , whereas for n < 25 the entropy

Ĥ[s] decreases steeply as n decreases. Correspondingly, Ĥ[K] exhibits a maximum at

n = nc = 22 and then approaches Ĥ[s].
Even if the empirical curve does not saturate the theoretical bound, the frequency

distribution exhibits Zipf’s law around the point nc where Ĥ[K] is maximal. Figure 5
shows that for n ≈ nc the number mk of sequences that are sampled k times falls off
as mk ∼ k−2, characteristic of a Zipf’s law, whereas for n ≈ N it falls off faster and for
n ∼ O(1) it is dominated by one large value of k ≈M .

Alternatively, one may use the maximization of Ĥ[K] as a guide for identifying the
relevant variables. We do this by an agglomerative algorithm, where we start from a
sequence s of length zero and iteratively build subsequences of an increasing number n
of sites. At each step, we add the site i that makes the information content Ĥ[K] of
the resulting subsequence as large as possible19. The result, displayed in figure 4, shows
that this procedure yields subsequences with a higher Ĥ[K], which are also shorter. In

particular, the maximal Ĥ[K] is achieved for subsequences of just three amino acids.

15 Cristelli et al [15] have shown that Zipf’s law does not hold if one restricts the statistics to a subset of cities
which is different from the set over which self-organization takes place. This points to a notion of coherence of
the sample, which is consistent with our framework, where the sample is thought of being the outcome of an
optimization problem. Note that our subsampling differs from the one in [15], as we are sampling individuals
rather than cities.
16 Each si takes 21 values rather than 2, but that is clearly an non-consequential difference with respect to the
case where si = ±1.
17 For any given subset s of the ~s variables, the frequency p̂s can computed and, from this the entropies Ĥ[s] and

Ĥ[K]. As a measure of conservation, we take the entropy of the empirical distribution of amino acids in position i.
18 Our analysis is based on M = 62 074 sequences, that after alignment, are N = 112 amino acids long. The same
data was used in [14].
19 Notice that the algorithm is not guaranteed to return the subset of sites that maximizes Ĥ[K] for a given n > 1.
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Figure 4. Entropy Ĥ[K] as a function of Ĥ[s] for the protein family PF000072.
Subsequence of the n most conserved positions (red +); subsequences of
n positions with maximal Ĥ[K] (blue �) and with minimal Ĥ[s] − Ĥ[K]
(pink ©). n increases from left to right in all cases.

Figure 5. Frequency distribution mk for n = N = 112 (left), n = 22 ≈ nc (center)
and n = 2 (right). Lines are proportional to k−3 (left) and k−2 (center).

Interestingly, if one looks at the subsequence of sites that are identified by this
algorithm one finds that the first two sites of the subsequence are among the least
conserved ones: they are those that allow one to explain the variability in the dataset
in the most compact manner—loosely speaking, they are ‘high temperature’ variables
(β � 1). The following ten sites identified by the algorithm are instead ‘low temperature’
variables, as they are the most conserved ones. This hints at the fact that relevant variables
should not only encode a notion of optimality, but also account for the variability within
the data set, under which the system is (presumably) optimizing its behavior.

4.2. Clustering and correlations of financial returns

In many problems data is noisy and high dimensional. It may consist of M observations
x̂ = (~x(1), . . . , ~x(M)) of a vector of features ~x ∈ RT of the system under study. Components
of ~x may be continuous variables, so the analysis of previous sections is not applicable.
In these cases a compressed representation s(i) of each point ~x(i) would be desirable,
where s takes a finite number of values and can be thought of as encoding a relevant
description of the system. There are several ways to derive a mapping s = F (~x), such as
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quantization [12] or data clustering. The general idea is that of discretizing the space of
~x in cells, each labeled by a different value of s, so ‘similar’ points ~x(i) ≈ ~x(j) fall in the
same cell, i.e. s(i) = s(j). The whole art of data clustering resides in what ‘similar’ exactly
means, i.e. on the choice of a metrics in the space of ~x. Different data clustering algorithms
differ on the choice of the metrics, as well as on the choice of the algorithm which is used
to group similar objects in the same cluster, and on the resolution, i.e. on the number
of clusters. Correspondingly, different clustering algorithms extract a different amount of
information on the internal structure of the system. In practice, how well the resulting
cluster structure reflects the internal organization of the data depends on the specific
problem, but there is no unambiguous way, to the best of our knowledge, to compare
different methods.

The point we want to make here is that the discussion of section 4.1 allows us to suggest
a universal method to compare different data clustering algorithms and to identify the one
that extracts the most informative classification. The idea is simple: for any algorithm A,
compute the variables KA

s and the corresponding entropies Ĥ[sA] and Ĥ[KA] and plot the
latter with respect to the former, as the number n of clusters varies from 1 to M . If such
curve for algorithm A lies above the corresponding curve for algorithm B, we conclude
that A extracts more information on the systems behavior and hence it is to be preferred
to B.

This idea is illustrated by the study of financial correlations of a set of M = 4000
stocks in the NYSE in what follows20. Financial markets perform many functions, such as
channeling private investment to the economy, allowing inter-temporal wealth transfer and
risk management. Time series of the price dynamics carry a signature about such complex
interactions, and have been studied intensively [16]–[18]: the principal component in the
singular value decomposition largely reflects portfolio optimization strategies whereas the
rest of the correlations exhibit a structure which is highly correlated with the structure
of economic sectors, down to a scale of 5 min [18]. Since we are borrowing this example
to make a generic point, we shall not enter into further details, and refer the interested
reader to [16]–[18]. Several authors have applied single linkage data clustering method to
this problem [16], which consists in building minimal spanning trees (MST) where the
links between the most correlated stocks, which do not close loops, are iteratively added
to a forest. Clusters are identified by the disconnected trees that, as links are sequentially
added, merge one with the other until a single cluster remains. The resulting curve Ĥ[K]

versus Ĥ[s] is shown in figure 6.
A different data clustering scheme has been proposed in [19, 18] based on a parametric

model of correlated random walks for stock prices. The method is based on maximizing
the likelihood with a hierarchical agglomerative scheme [19]. The curve Ĥ[K] versus Ĥ[s]
lies clearly above the one for the MST (see figure 6). Reference [18] has shown that the
structure of correlation is revealed more clearly if the principal component dynamics is
subtracted from the data21. This is reflected by the fact that the resulting curve Ĥ[K]

versus Ĥ[s] shifts further upward. In the present case, it is possible to compare these
results with the classification given by the US Security and Exchange Commission (SEC),

20 Here ~x(i) = (x
(i)
1 , . . . , x

(i)
T ) consists of daily log returns x

(i)
t = log(p

(i)
t /p

(i)
t−1), where p

(i)
t is the price of stock i on

day t, and t runs from 1 January 1990 to 30 April 1999.
21 If x0

t is the principal component in the singular value decomposition of the data set, this amount to repeating
the analysis for the modified dataset x̃

(i)
t = x

(i)
t − x0

t .
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Figure 6. Entropy Ĥ[K] as a function of Ĥ[s] as the number n of clusters
increases (from left to right), for different data clustering schemes. From bottom
to top, single linkage (MST), maximum likelihood with (MLDC) and without
(MLDC IM) the principal component. The SEC classification at two and three
digits of the stocks is also shown as black squares.

which is given by the black squares in figure 6 for two and three digits SEC codes. This
classification codifies the information on the basis of which agents trade, so it enters into
the dynamics of the market. The curve obtained removing the principal component draws
remarkably close to these points, suggesting that the clustering method extracts a large
fraction of the information on the internal organization of the market. Again, the rank
plot of cluster sizes reveals that Zipf’s law occurs where Ĥ[K] is close to its maximum,
whereas marked deviations are observed as one moves away from it.

4.3. Keywords in a text

A written text can be thought of as the result of a design, by the writer: there are tens
of thousands of words in the vocabulary of a given language, but in practice the choice
is highly constrained by syntax and semantics, as revealed by the fact that the frequency
distribution in a typical text is highly peaked on relatively few words, and it roughly
follows Zipf’s law.

The frequency with which a given word w occurs in a given section s of a manuscript
should contain traces of the underlying optimization problem. This insight has been
exploited by Montemurro and Zanette [20] in order to extract keywords from a text.
The idea in [20] is: (i) split the text into parts s of L consecutive words; (ii) compute the
fraction p̂(w)

s of times word w appears in part s; (iii) compute the difference ∆H[s] between

the entropy Ĥ[s] of a random reshuffling of the words in the parts and the actual word
frequency. Keywords are identified with the least random words, those with the largest
∆H[s].

From our perspective, for each choice of L and each word w, one can compute Ĥw[K]

and Ĥw[s]. Figure 7 shows the resulting curve as L varies for Darwin’s ‘On the Origin of
Species ’. Among all words that occur at least 100 times, we select those that achieve a
maximal value of Ĥ[K] as well as some of those whose maximal value of Ĥ[K] (on L) is
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Figure 7. Entropy Ĥ[K] as a function of Ĥ[s] for the occurrence of different words
(see legend) of Darwin’s ‘On the Origin of Species’ in segments of L consecutive
words (L increasing from right to left).

the smallest. The latter turn out to be generic words (‘and’, ‘that’) whereas among the
former we find words (e.g. ‘generation’, ‘seed’, ‘bird’) that are very specific of the subject
discussed in the book. Whether this observation can be used to derive a more efficient
extractor of keywords than the one suggested in [20] or not, is a question that we leave

for future investigations. For our present purposes, we merely observe that Ĥ[K] allows
us to distinguish words that are ‘mechanically’ chosen from those that occur as a result
of a more complex optimization problem (the keywords).

5. Discussion

Advances in IT and experimental techniques have boosted our ability to probe complex
systems to unprecedented levels of detail. Increased performance in computing, at the
same time, has paved the way for reproducing in silico the behavior of complex systems,
such as cells [21], the brain [22] or the economy [23].

However, it is not clear whether this approach will ultimately deliver predictive models
of complex systems. Interestingly [24] observes that efforts in Artificial Intelligence to
reproduce ab initio human capabilities in intelligent tasks have completely failed: search
engines, recommendation systems and automatic translation [24] have been achieved by
unsupervised statistical learning approaches that harvest massive data sets, abandoning
altogether the ambition to understand the system or to model it in detail. At the same
time, problems such as drug design [25] and the regulation of financial markets [26] still
remain elusive, in spite of the increased sophistication of techniques deployed.

This calls for understanding the limits of modeling complex systems and devising
ways to select relevant variables and compact representations. The present contribution
is an attempt to address these concerns. In doing that, we uncover a non-trivial relation
between ‘criticality’, which in this context is used to refer to the occurrence of broad
distributions in the frequency of observations (Zipf’s law), and the relevance of the
measured variables. We make this relation precise by quantifying the information content
of a sample: most informative data, which sample relevant variables, exhibit power law
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frequency distributions, in the undersampling regime. Conversely, a description in terms of
variables which are not the ones the system cares about will not convey much information.
Mostly, informative data sets are those for which the frequency of observations covers the
largest possible dynamic range, providing information on the system’s optimal behavior
in the wider range of possible circumstances. This corresponds to a linear entropy–energy
relation, in the statistical mechanics analogy discussed in [4].

Our results point in the same direction as the recent finding that inference of high
dimensional models is likely to return models that are poised close to ‘critical’ points [28].
This builds on the observation [27] that the mapping between the parameter space
of a model and the space of distributions can be highly nonlinear. In particular, it
has been shown in simple models [28] that regions of parameter space of models that
have a vanishing measure (critical points) concentrate a finite fraction of the possible
(distinguishable) empirical distributions. This suggests that ‘optimally informative
experiments’ that sample uniformly the space of empirical distributions are likely to return
samples that look ‘close to a critical point’ when we see them through the eyes of a given
parametric model.

Our findings are also consistent with the observation [15] that Zipf’s law entails some
notion of ‘coherence of the sample’ in the sense that typical subsamples deviate from it.
In our setting, the characteristic that makes the sample homogeneous is that it refers to
systems ‘doing the same thing’ under ‘different conditions’.

As shown in section 4, the ideas in this paper can be turned into a criterion for
selecting mostly informative representations of complex systems. This, we believe, is the
most exciting direction for future research. One particular direction in which our approach
could be useful is that of the identification of hidden variables, or unknown unknowns. In
particular, the identification of relevant classification of the data can be turned into the
specification of hidden variables, whose interaction with the observed ones can be inferred.
This approach would not only predict how many hidden variables one should consider,
but also how they specifically affect the system under study. Progress along these lines
will be reported in future publications.
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Appendix. When are models predictive? The Gaussian case

In this appendix, we consider the setup of section 2 in the case of a Gaussian distribution
of vs̄|s, for which β =

√
2N(1− f) log 2. Here, and in the rest of the appendix, f = n/N

is the fraction of known variables, and we shall focus on the asymptotic behavior in the
limit n,N →∞ with f = n/N finite.

We assume that the dependence of the objective function us on known variables
s = (s1, . . . , sn) is known and we concentrate on the specific example where us are also
i.i.d. draws from a Gaussian distribution with zero mean and variance σ2. This is the most
complex system one could think of, as its specification requires an exponential number
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of parameters. As argued in section 2.1, this is also a particular case where the subset
of known variables coincides with the subset of the most relevant ones. The question we
address is: does the knowledge of the function us allow us to predict the optimal behavior
s∗?

As a prototype example, consider the problem of reverse engineering the choice
behavior of an individual that is optimizing an utility function U(~s). For a consumer, ~s
can be thought of as a consumption profile, specifying whether the individual has bought
good i (si = +1) or not (si = −1) for i = 1, . . . , N . However, consumer behavior can be
observed only over a subset s = (s1, . . . , sn) of the variables, and only the part us of the
utility function that depends solely on the observed variables can be modeled22. Under
what conditions the predicted choice s0 is informative on the actual behavior s∗ of the
agent? Put differently, how relevant and how many (or few) should the relevant variables
be in order for s0 to be informative on the optimal choice s∗?

In light of the result of section 2.1, the answer depends on how peaked is the
distribution ps. For β → ∞ the probability distribution concentrates on the choice s0

that maximizes us, whereas for β → 0 it spreads uniformly over all 2n possible choices s.
Our problem, in the present setup, reverts to the well known REM, which is discussed in
detail, e.g. in [5, 10]. We recall here the main steps.

The entropy of the distribution ps is given by:

H[s] = −
∑
s

ps log ps = logZ(β)− β d

dβ
logZ(β), Z(β) =

∑
s

e−βus (A.1)

where the above equality is easily derived by a direct calculation.
In order to estimate Z(β) let us observe that 2−nZ(β) is an average and the law of

large numbers suggests that it should be close to the expected value of eβus

1

2n
Z(β) ' E

[
eβus

]
= eβ

2σ2/2 ≡ 1

2n
Zann(β) (A.2)

which depends on the fact that us is a Gaussian variable with zero mean and variance σ2.
Therefore, if we use Zann instead of Z in equation (A.1), we find

H[s] ' n log 2− β2σ2

2
= N

[
f − (1− f)σ2

]
log 2. (A.3)

One worrying aspect of this result is that if

σ ≥ σc =

√
f

1− f
(A.4)

the entropy is negative. The problem lies in the fact that the law of large number does
not hold for σ ≥ σc due to the explicit dependence of β on N , in the limit N →∞. In
order to see this, notice that the expected value of us over ps is given by

u
(ann)
s∗ =

∑
s

psus =
d

dβ
logZ ' βσ2 = σ2

√
2N(1− f) log 2 (A.5)

22 This setup is the one typically considered in random utility models of choice theory in economics [8].

doi:10.1088/1742-5468/2013/09/P09003 19

http://dx.doi.org/10.1088/1742-5468/2013/09/P09003


J.S
tat.M

ech.(2013)
P

09003

On sampling and modeling complex systems

where the second relation holds when the law of large numbers holds. However, this cannot
be larger than the maximum of us, which, by extreme value theory of Gaussian variables,
is given by

us0 = max
s
us ' σ

√
2Nf log 2. (A.6)

Indeed the estimate in equation (A.5) gets larger than the maximum given in
equation (A.6) precisely when σ ≥ σc, i.e. when H[s] becomes negative. It can be shown
that the law of large numbers, and hence the approximation used above, holds only for
σ < σc [5, 10]. The basic intuition is that for σ < σc the sum in Z is dominated by
exponentially many terms (indeed eH[s] terms) whereas for σ ≥ σc the sum is dominated
by the few terms with us ' maxus.

For σ < σc we can use equations (A.2) and (A.6) to compute

ps0 = P{s0 = s∗} ' e−N(1−f)(σ−σc)2

, σ2 < σ2
c , (A.7)

which is exponentially small inN . Therefore the model prediction s0 carries no information
on the systems’ behavior s∗ for σ < σc.

On the other hand, for σ > σc, Z(β) is dominated by us0 and it can be estimated by

expanding the number N (u) = 2ne−u
2/(2σ2)/

√
2πσ2 of choices s with us = u around us0 .

Simple algebra and asymptotic analysis reveals that

ps0 ' 1− σc

2
√
πf log 2(σ − σc) + σc

+O(N−1). (A.8)

In words, the transition from the region ps0 ' 0 to the region where ps0 ' 1 is rather

sharp, and it takes place in a region of order |σ − σc| ∼ 1/
√
N .

The most remarkable aspect of this solution is that σc increases with f : for a given
value of σ the correct solution s∗ is recovered only if the fraction of known variables is
less than a critical value

fc = σ2/(1 + σ2). (A.9)

This feature is ultimately related to the fact that the effect of unknown unknowns is a
decreasing function of the number N(1− f) of them (see equation (5)). This, in turn, is a
consequence of the Gaussian nature of the variables vs̄|s or in general of the fact that the
distribution of u and v falls off faster than exponential.
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