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The discovery of community structure is a common challenge in the analysis of network data. Many
methods have been proposed for finding community structure, but few have been proposed for determining
whether the structure found is statistically significant or whether, conversely, it could have arisen purely as a
result of chance. In this paper we show that the significance of community structure can be effectively
quantified by measuring its robustness to small perturbations in network structure. We propose a suitable
method for perturbing networks and a measure of the resulting change in community structure and use them to
assess the significance of community structure in a variety of networks, both real and computer generated.
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I. INTRODUCTION

Many networks of scientific interest decompose naturally
into communities or modules, densely connected subsets of
nodes with only sparser connections between them. In many
cases communities have been found to correspond to behav-
ioral or functional units within networks, such as functional
modules in biochemical networks or social groups within
social networks. This finding suggests that in networked sys-
tems whose function is less well understood we may be able
to gain insight by discovering and examining their commu-
nities �if any�, and methods for community discovery have,
as a result, attracted a substantial amount of attention in the
recent literature in many disciplines �1–3�.

Communities are of interest for other reasons as well.
Their presence can, for example, dramatically alter the be-
havior of dynamical processes on networks �4� �and indeed
the observation of dynamical processes has been proposed as
one possible method of community detection �5��. Commu-
nities can also be used as a basis for the reduction or coarse-
graining of networks for visualization or other purposes
�6,7�. And communities frequently display different statistics
from the network as a whole, indicating that global network
statistics such as degree moments or correlation functions
may potentially fail to register important heterogeneities �8�.

A large number of methods for finding communities have
been proposed in recent years, including divisive methods
based on betweenness and similar measures �9,10�, methods
based on searching for small cliques �11,12�, information-
theoretic techniques �13�, statistical inference through belief
propagation �14� or maximum likelihood �15�, and many oth-
ers.

Perhaps the most widely used technique, however, and the
one on which we focus in this paper, is the maximization of
the benefit function known as modularity �6,16–22�, which is
�to within a multiplicative constant� the difference between
the number of edges within communities and the expected
number of such edges under an appropriate null model. Vari-
ous null models have been used but the commonest by far is
the standard configuration model �23,24�, which preserves
the degree sequence of the original network but otherwise

randomizes edge positions. The modularity is then maxi-
mized over possible divisions of the network, the optimal
division being taken to be the correct partition of the network
into communities.

The modularity maximization method appears, in prin-
ciple, to work well �2�, although it also has some limitations,
notably its inability to detect small communities embedded
in large networks �25,26� �though variants of the method
have been proposed to circumvent this limitation �21,27��. A
more fundamental problem, however, is that maximization of
modularity is an NP-complete task �28� and hence is essen-
tially intractable for all but the smallest of networks. In prac-
tical implementations of the modularity method, therefore,
approximate heuristics are usually employed, such as greedy
algorithms �16,17�, extremal optimization �18�, simulated an-
nealing �19–21�, or spectral methods �22�. These methods
vary in their effectiveness and speed, the faster algorithms
tending to give poorer results while the slower ones can only
be applied to smaller networks if running time is to be kept
to reasonable levels. In this paper we employ the spectral
optimization method introduced in �22�, which displays a
reasonable balance between accuracy and speed, but the cal-
culations we describe are not tied to this method. Indeed our
approach is not even tied to modularity maximization in gen-
eral, and could be applied to any community detection
scheme with only minor modifications. For concreteness,
however, we concentrate on modularity maximization in this
paper.

Despite the large volume of work on community detection
and its applications, one important question remains largely
unaddressed, that of the significance of the results. How can
we tell when the communities detected by one method or
another are truly significant and when they could be merely
the consequence of a chance coincidence of edge positions in
the network? Clear answers to this question are crucial if the
results of community analyses are to carry any real weight.

The modularity itself was originally proposed as a way of
answering this question �6�: a network with strong commu-
nity structure will have high modularity and hence the value
of the modularity can be used as a quality function for com-
munities. More recently, however, it has been realized that
this approach is insufficient. Although it is true that networks
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with strong community structure have high modularity, it
turns out that not all networks with high modularity have
strong community structure. Indeed, there exist networks that
most observers would consider to have no community struc-
ture at all that nonetheless have high modularity. Guiméra
et al. �29� showed numerically that divisions exist of ordi-
nary random graphs that have high modularity, even in the
limit of large network size, and subsequent analytic calcula-
tions by Reichardt and Bornholdt �30,31� produced similar
results. The reason for this at first peculiar finding is actually
quite straightforward: the number of possible divisions of a
network increases extremely fast with network size �faster
than any exponential�, so that although it is highly improb-
able that any one division will, purely by chance, have high
modularity, it is, in the limit of large size, very likely that
such a division will exist among the enormous number of
possible candidates. As a result, high modularity is only a
necessary but not sufficient condition for significant commu-
nity structure.

Several authors have suggested that instead we should
look for divisions of a network that have significantly higher
modularity than the random graph �29,31�. For example, one
could optimize the modularity for a large number of net-
works drawn from the random graph ensemble, calculate the
mean � and standard deviation � of those modularity values,
and then compare the modularity Q of the optimal division
of the real network to those values, calculating, for instance,
a z score,

z =
Q − �

�
, �1�

which measures how many standard deviations the real
modularity is above the mean for the random graph. If
z�1 then Q is, in a precise sense, significantly greater than
the modularity of the random graph.

This approach, however, has a number of problems. First,
it can generate both false positives and false negatives. Some
networks that do not have strong community structure in the
traditional sense nonetheless have modularity significantly
above that of the random graph, as shown for example in
�32�. Conversely, there are also some networks that are
widely agreed to show strong community structure but
whose modularity is not significantly greater than the ran-
dom graph. We give some examples of this type of behavior
later in this paper. �To be fair, such examples appear to be
rare, so that a large difference in modularities may in some
situations be considered supporting, though not conclusive,
evidence of community structure.�

More importantly, however, the difference in modularities
does not really address the question we want to answer. In
this paper we argue that the defining property of significant
community structure is not a high modularity, but a commu-
nity structure that is robust against small perturbations of the
network. If a small change in the network—an edge added
here, another deleted there—can completely change the out-
come of our community finding calculations then, we argue,
the communities found should not be considered trustworthy.
The z score is not, in general, a good measure of this type of

robustness or fragility in a network, but there exist other
measures that, as we will show, appear to work well.

II. ROBUSTNESS OF COMMUNITY STRUCTURE

An interesting approach to testing the significance of
community assignments has been proposed by Massen and
Doye �33�, who investigated the distribution of modularity
values for a variety of networks, both real and computer
generated, using a simulated annealing technique similar to
that of Reichardt and Bornholdt �21� combined with a paral-
lel tempering scheme of the type commonly used to equili-
brate simulations of glassy systems �34�. As a function of the
annealing temperature they investigated �among other
things� the average modularity of divisions found, with
higher temperatures favoring poor divisions �low modular-
ity� and lower temperatures favoring better ones �high modu-
larity�.

In low-temperature systems, where only states of high
modularity are sampled, they found two distinct behaviors.
In most real networks they found that the states sampled
correspond to roughly the same division of the network into
communities, while in random graphs the states sampled cor-
respond to a variety of quite different divisions. This sug-
gests that real-world networks typically have a clear global
modularity maximum with no other competitive maxima,
while random graphs have many competing maxima. In the
language of physics, the distribution of maxima has a band
gap between the ground and excited states in the real net-
works, but no band gap in the random graph. �One can also
think of the system’s behavior by analogy with glassy sys-
tems, which have many competing energy minima, and non-
glassy ones, which typically do not. Indeed, ideas from the
theory of spin glasses, in particularly replica symmetry, have
proved useful in the study of modularity �31�, suggesting that
the difference between the community structure of random
and real-world networks may be connected with the phenom-
enon of replica symmetry breaking.�

One can make use of this observation to identify commu-
nity structure of the kind found in random graphs that occurs
purely as a result of chance fluctuations: if we observe mul-
tiple modularity maxima in a network, corresponding to dis-
tinct community assignments and having roughly equal
height, we can conclude that the assignments in question are
not trustworthy. This approach will reliably rule out random
graphs themselves—a basic task that any significance test
must certainly be capable of—but it can in principle also rule
out other cases and does so in a natural way, since any net-
work that has many different community assignments of
roughly equal merit can reasonably be said not to show clear
community structure.

This approach provides only a way to rule out candidate
assignments. It allows us firmly to reject some possibilities
because of the structure of the modularity maxima, but we
can never guarantee that an observed community assignment
is significant solely on the basis of this test. Having multiple
competing modularity maxima is a good indicator that the
community structure given by the highest of those maxima is
not trustworthy, but it is also possible that chance fluctua-
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tions could produce a network in which the highest maxi-
mum is substantially higher than any other even if the net-
work has no underlying community structure. In this respect,
the method is similar to other significance tests in statistics.
Significance tests typically only reject hypotheses �or fail to
reject them� but cannot absolutely confirm a hypothesis to be
correct.

Massen and Doye proposed to implement tests of this
kind by using their simulated annealing method to find all or
a representative subset of the assignments having greatest
modularity in a network and then see if they have similar
community structure. Simulated annealing, however, is com-
putationally costly and is usually not the optimization
method of choice. And the approach of Massen and Doye
cannot easily be generalized to other optimization methods,
such as the spectral method. We therefore adopt a different
approach based on network perturbations.

Small changes to a network—the addition or removal of a
few edges, for example—will in general result in small
changes to the value of the modularity for particular parti-
tions of the network. In a network with many closely com-
petitive modularity maxima, this can change the relative
heights of the maxima with the result that the global opti-
mum may shift from one maximum to another. In a network
with only a single optimum, on the other hand, this cannot
happen, prevented in effect by the presence of the band gap.
Thus, a simple way to determine whether the network we are
looking at has just a single optimum is to perturb the network
slightly and observe the resulting change in the optimal par-
tition.

This idea is the basis for our proposed method. In effect
we turn the question of the significance of a division of a
network into a question about the robustness of that division
against perturbations, and the latter question can in practice
be answered more easily. Our method also has the substantial
advantage of being entirely agnostic about the way we dis-
cover our communities. We are not even required to use a
modularity optimization technique—any technique that reli-
ably finds community structure where present will do.

We are not the first to investigate the effects of perturba-
tions on community structure. Wu and Huberman �35�, for
example, examined the effect on community structure of in-
troducing randomness into a community finding algorithm,
effectively perturbing the algorithm, in this case, rather than
the network. An approach closer to our own was adopted by
Gfeller et al. �36�, who examined weighted networks and
added noise to the edge weights, observing the resulting
change in community structure. Perturbing the network in-
stead of the algorithm frees us of the constraint of working
with any one particular algorithm. In our work we are inter-
ested in unweighted networks and we perturb the network
topology rather than edge weights, but the approach is con-
ceptually similar to that of Gfeller et al.

III. QUANTIFICATION OF NETWORK ROBUSTNESS

Our approach has two key components: perturbation of
the network and quantification of the resulting change in the
community structure. We describe these two components in
turn.

A. Network perturbation

We wish to specify a method for perturbing an arbitrary
network by an arbitrary amount. In order to make compari-
son of communities straightforward, we restrict our per-
turbed networks to having the same numbers of vertices and
edges as the original unperturbed network—only the posi-
tions of the edges will be perturbed. Furthermore, we desire
that a network perturbed only a small amount has just a few
edges moved, while a maximally perturbed network becomes
completely random and uncorrelated with the original.

There are a number of ways in which this could be
achieved but one of the simplest is the following. We define
a random graph with n vertices and m edges in standard
fashion by distributing the edges between vertex pairs such
that the probability of any particular edge falling between
vertices i and j is eij /m. This implies that the expected num-
ber of edges between i and j will be equal to eij. �Techni-
cally, the diagonal elements of eij are different: they are
equal to twice the expected number of edges—the extra fac-
tor of 2 allows for the fact that there are two ways of choos-
ing a vertex pair if i and j are distinct, but only one way if i
and j are equal.�

This definition still leaves us a good amount of freedom
since we have not chosen the form of eij. Except for the
constraint that the total number of edges equals m so that
1
2�ijeij =m, we are at liberty to make any choice we wish, but
the obvious candidate is the so-called configuration model,
which is also the null model normally used in the definition
of the modularity �6� and the random graph model against
which values of the modularity are usually compared �31�.
The expected number of edges between vertices in the con-
figuration model is

eij =
kikj

2m
, �2�

where ki is the degree of vertex i in the original network.
Now we interpolate stochastically between our original

network and this random graph by “rewiring” �i.e., moving�
edges. Specifically, we go through each edge in the original
network in turn and with probability � we remove it and
replace it with a new edge between a pair of vertices �i , j�
chosen randomly with probability eij /m. Otherwise, with
probability 1−�, we leave the edge as it is.

If �=0, no edges are moved and this process preserves
our original network. If �=1 all edges are moved and the
process generates a random graph drawn from the model
ensemble. And for values of � in between it generates net-
works in which some of the edges retain their original posi-
tions while others are moved to positions drawn from the
random ensemble.

With the choice �2� for eij, the expected number of edges
between vertices i and j in our perturbed network is

eij� = �1 − ��Aij + �
kikj

2m
, �3�

where Aij is an element of the adjacency matrix
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Aij = �1, if an edge connects node i and j ,

0, otherwise.
� �4�

Then the expected degree of vertex i is

�ki	 = �
j

eij� = �1 − ���
j

Aij + �
ki

2m�
j

kj

= �1 − ��ki + �
ki

2m
2m = ki, �5�

where we have made use of � jAij =ki and � jkj =2m.
Thus our perturbation scheme generates networks that not

only have the same number of edges as the original, but in
which the expected degrees of vertices are the same as the
original degrees �52�.

B. Quantifying differences in community structure

The second component of our calculation is the compari-
son of the optimal division of the perturbed network to the
optimal division of the original network, to see if the com-
munity structure has changed significantly. A number of
methods for measuring similarities or differences between
partitions of a network have been proposed in the past. They
can be divided roughly into three groups: methods based on
pair counting, methods based on cluster matching, and infor-
mation theoretic methods. We begin by reviewing some of
these before we discuss our choice, the variation of informa-
tion. Our discussion follows that of Meila �37�.

Let C and C� be two divisions of the same network into
communities. We will refer to such divisions as community
assignments.

Measures of the similarity or difference between two
community assignments based on pair counting focus on the
number of pairs of vertices that are in the same or different
communities in both assignments. Such measures include the
Jaccard coefficient and the Rand index. We define the fol-
lowing four numbers:

a00 = pairs in different communities in both C and C�,

a11 = pairs in the same communities in both C and C�,

a01 = pairs in different �same� communities in C�C�� ,

a10 = pairs in same �different� communities in C�C�� .

Then, for example, the unadjusted Rand index �38� is defined
to be the ratio of the number of pairs clustered in the same
way in both assignments to the total number of pairs thus:

R�C,C�� =
a11 + a00

a10 + a01 + a00 + a11
. �6�

The Rand index is also sometimes used in an adjusted form
in which a null-model expectation value is subtracted from
the unadjusted index to give a value that is axiomatically
zero in the null model. Such adjusted indices have the dis-
advantage, however, of nonlocality �39�: the distance be-
tween two community assignments that differ only in one

region of the network depends on how the rest of the net-
work is partitioned.

An alternative approach is cluster matching, as embodied
in measures such as the van Dongen metric and the classifi-
cation error. These measures attempt to determine the best
match for each cluster in C to one of the clusters in C�.
Suppose our two community assignments C and C� are com-
posed of K and K� communities, respectively. The individual
communities we will denote C1 . . .CK and C1� . . .CK�

� . Then let
nk and nk�

� be the sizes of communities Ck and Ck�
� and nkk� be

the number of vertices common to communities Ck and Ck�
�

�i.e., nkk�= 
Ck�Ck�
� 
�. Then the normalized van Dongen met-

ric is defined by �40�

D�C,C�� = 1 −
1

2n��
k=1

K

max
k�

nkk� + �
k�=1

K�

max
k

nkk�� . �7�

Note that such measures ignore any subdivisions of a com-
munity that is never chosen as a match to a community in the
other assignment. For example, suppose

C = a,b,c�,d,e, f ,g�� , �8a�

C� = a,b,c�,d,e�,f ,g�� , �8b�

C� = a,b,c�,d�,e�,f ,g�� . �8c�

Under the van Dongen scheme D�C ,C��=D�C ,C��, al-
though many would claim �and most other measures agree�
that C is more similar to C� than to C�.

A third class of measures for comparing community as-
signments is based on information theoretic ideas �41�. In
measures such as these, we regard our community assign-
ments as “messages” and consider the Shannon information
content of these messages. The most common way to do this
is to define xi to be the label of the community that vertex i
belongs to in C and yi to be the community it belongs to in
C�. Then the messages consist simply of the ordered sets xi�
and yi�. If one knows the joint distribution from which the
x’s and y’s are drawn one can then calculate various standard
information measures. The usual assumption is that the joint
distribution is equal simply to that of the observed commu-
nity assignments. In other words, x and y are assumed to be
values of random variables X and Y with joint distribution
P�X=x ,Y =y�=nxy /n, where n is the total number of
vertices in the network. This immediately implies also that
P�X=x�=nx /n and P�Y =y�=ny� /n.

In a slight abuse of terminology, we can then define the
mutual information between the assignments C and C� to be
equal to the mutual information between the corresponding
random variables:

I�C;C�� = I�X;Y� = �
x=1

K

�
y=1

K�

P�x,y�log
P�x,y�

P�x�P�y�
, �9�

where we use the shorthand notation P�x� to denote
P�X=x� and similarly for the other distributions. �Within
physics, researchers have traditionally used the natural loga-
rithm in expressions such as Eq. �9�, while in computer sci-
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ence the logarithm base 2 is more common. The choice
makes only the difference of a multiplicative constant, how-
ever, and has no effect on any of our results.�

The mutual information measures how much information
we learn about C� if we know C. If C and C� are identical,
then we learn everything about C� from C. If they are en-
tirely uncorrelated then we learn nothing. One way to ex-
press this is to make use of P�x ,y�= P�x 
y�P�y� to write

I�X;Y� = �
xy

P�x,y�log P�x
y� − �
x

P�x�log P�x�

= H�X� − H�X
Y� , �10�

where H�X� is the information �or entropy� of X and H�X 
Y�
is the conditional entropy, i.e., the additional information
needed to describe X once we know Y. Thus if Y tells us
nothing about X the two terms are equal and I�X ;Y� is zero.
In essence the mutual information tells us the same thing as
the conditional entropy, but the mutual information is sym-
metric in X and Y where the conditional entropy is not,
which makes the former a more attractive measure of dis-
tance than the latter.

The mutual information alone, however, is not a good
measure of the difference between our community assign-
ments. Consider, for example, the three assignments of Eq.
�8�. In this case the conditional entropies H�C 
C�� and
H�C 
C�� are both zero, because given the community assign-
ments C� and C� �and the appropriate mapping of commu-
nity labels from one assignment to the other� we can deduce
the assignment C. �The mapping of labels must be given,
since the labels are arbitrary and we do not want our measure
to register a difference between two assignments that in fact
differ only in a permutation of the labels.� Therefore
I�C ,C��= I�C ,C��=H�C� in this case, which is clearly not a
useful answer. This problem is usually dealt with by normal-
izing the mutual information. There are a number of ways of
accomplishing this but, for example, one can define

Inorm�C,C�� =
2I�C,C��

H�C� + H�C��
. �11�

A variant of this measure has been used by Danon et al. �42�
to define standardized tests for the performance of commu-
nity finding algorithms. Although the measure works, it is
quite difficult to interpret, particularly in the normalized
form, which makes it hard to give a simple statement about
what the values mean �other than to say they get larger as
community assignments become more similar�.

C. Variation of information

In our work we make use of a different information theo-
retic measure, the variation of information �37,39,43�. The
variation of information is defined by

V�C,C�� = V�X,Y�

= H�X� + H�Y� − 2I�X;Y�

= H�X
Y� + H�Y
X�

= − �
xy

P�x,y�log
P�x,y�
P�y�

− �
xy

P�x,y�log
P�x,y�
P�x�

.

�12�

The variation of information is the sum of the information
needed to describe C given C� and the information needed to
describe C� given C. It has a number of desirable properties
that other measures lack. It is a true metric on the space of
community assignments, having all the properties of a proper
distance measure. It is also a local measure in the sense
described above and it returns the intuitively correct answer
for the example of Eq. �8�, that V�C ,C���V�C ,C��.

The maximum value of the variation of information is
log n, which is achieved when the community assignments
are as far apart as possible, which in this case means that one
of them places all the nodes together in a single community
while the other places each node in a community on its own.
The maximum value increases with n because larger data
sets contain more information, but if this property is unde-
sirable one can simply normalize by 1 / log n, as we do in the
calculations presented here. In fact, since we will always be
comparing networks of the same size, the normalization is
irrelevant anyway.

IV. METHODS

We now have all the components we need to describe our
method as applied to a given network. First, we find the
community assignment C that maximizes the modularity of
the network, or the best approximation to it given the opti-
mization algorithms available. Second, we perturb the net-
work as described in Sec. III A to create a new network, find
the optimal community assignment C� for that perturbed net-
work, and measure the variation of information between C�
and C. We repeat this second step many times to derive an
average value for the variation of information, and repeat the
entire calculation for a range of different values of the per-
turbation parameter �. For comparison, we also perform the
same sequence of calculations on a set of random graphs
drawn from a configuration model with the same degree se-
quence as the original network.

The time required to complete the calculations depends on
the method used to optimize the modularity, the number of
random graph samples taken, and the number of different
values of �. In our calculations, as mentioned above, we use
the spectral optimization method of �22�, which is reasonably
fast, though certainly not the fastest available, and average
over 10 or 100 random graphs depending on network size for
each of 40 different values of � from 0 to 1. The complete
calculation for the largest network studied here, with nearly
5000 vertices, took about a day on a standard desktop com-
puter.

For applications to larger networks there are a number of
approaches one might take to reduce running time. First, we
note that the method is trivially parallelizable, since it in-
volves independent repetitions of the same calculations. Thus
a linear speedup could be achieved on a parallel or distrib-
uted computer. Second, significant speed gains could be
achieved by replacing the spectral modularity maximization
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used here with a faster method such as the near-linear greedy
algorithm of Clauset et al. �17,44�. And third, if neither of
these approaches is acceptable, improvements in running
time could also be achieved by examining fewer values of �.
For the sake of clarity in presentation we have used a gen-
erous set of � values in our calculations, but this is not
strictly necessary. The majority of the interesting information
in most cases is contained in the low end of the curve of
variation of information against �. In an extreme case, even
just a single value of � can yield significant insight.

V. RESULTS

As a first demonstration of the method, we have applied it
to a set of computer generated networks of a type proposed
in �9� and used widely in the evaluation of community de-
tection algorithms. These networks consist of 128 vertices
divided into 4 communities of 32 nodes each. Each vertex
pair is connected by an edge with one of two different prob-
abilities, one for pairs in the same group and one for pairs in
different groups, with values chosen so that the expected
degree of each vertex remains fixed at 16. As the average
number b of between-group connections per vertex is in-
creased from zero, the community structure in the network,
stark at first, becomes gradually obscured until, at the point
where between- and within-group edges are equally likely,
the network becomes a standard Poisson random graph with
no community structure at all.

Figure 1 shows the results of the application of our analy-
sis method to graphs of this type. The figure shows the value
of the normalized variation of information as a function of
the parameter � that measures the amount of perturbation. As
we can see, the variation of information starts at zero when
�=0, as we would expect for an unperturbed network, rises
rapidly, then levels off as � approaches its maximum value
of 1. Also shown is the curve for a random graph null model
of the type described above.

For large values of b, such as b=10, the curve of the
variation of information is essentially identical to that of the
null model, indicating that whatever community structure

has been found by the algorithm is no more robust against
perturbation than that of a random graph. But as b becomes
smaller the variation of information increases slower as a
function of � and the curves depart significantly from the
null model, indicating that the community structure discov-
ered by the algorithm is relatively robust against perturba-
tion.

As an aid to the interpretation of the results, we have also
included in the figure �and in all subsequent similar figures�
horizontal lines corresponding to the value the variation of
information would take if we were to randomly assign 10%
and 20% of the vertices to different communities. The fact
that the curves of variation of information cross these lines at
larger values of � in some cases than others indicates that the
community structure is more or less robust to perturbation.
Indeed, one could simply quote the values of � at which the
crossings occur as a single scalar measure of robustness, but
to do so can mean missing interesting structure present in the
full curves, so we have avoided this approach in our calcu-
lations.

Turning now to real-world networks, we have tested our
method on a variety of examples including social, techno-
logical, and biological networks. A selection of results are
shown in Fig. 2. Some summary statistics for the same net-
works are given in Table I.

Figure 2�a� shows the curve of variation of information as
a function of � for one of the best studied examples of com-
munity structure in a social network, the “karate club” net-
work of Zachary �45�. �The karate club has become so com-
mon an example in this context that it has almost come to the
point where no publication about community structure could
be complete if it failed to discuss this network.� The vertices
in this network represent members of a karate club at a US
university in the 1970s and the edges represent friendship
between members based on independent observations by the
experimenter. The network is widely believed to show strong
community structure and repeated studies have upheld this
view.

The black points �squares� in the figure show the variation
of information for the real network while the red points �tri-
angles� show the results for the equivalent random graph. It
is clear in this case that the community structure discovered
in the real network is substantially more robust against per-
turbation than that of the random graph. For example, the
curve for the real network crosses the line representing reas-
signment of 20% of the vertices close to the point where �
=0.2. Speaking loosely, we can say that about 20% of the
edges must be rewired before 20% of the vertices move to
different communities. For the random graph, on the other
hand, only about 5% of the edges need be rewired to reach
this point.

A contrasting situation is seen in Fig. 2�b�, which shows
results for another social network, a network of friendships
among a group of first-year university students at the Uni-
versity of Groningen in the Netherlands �46�. Data for this
network were collected by circulating questionnaires among
members of the group; edges between pairs of students indi-
cate that at least one member of the pair stated either that
they were friends or that they had a “friendly relationship.”
Despite the similar nature of this network and the karate club

FIG. 1. �Color online� The variation of information as a function
of the perturbation parameter � for the 128-node four-community
test networks described in the text �100 networks per point�.
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network �both are networks of friendship among university
students�, the results of the analyses are quite different. In the
Groningen network, as Fig. 2�b� shows, there is essentially
no difference between the variation of information for the
real network and the corresponding random graph. The com-
munity structure algorithm does detect some structure in the
network, finding four communities of sizes 5, 7, 9, and 11
vertices, respectively, and a respectable modularity score of
0.368, but our robustness analysis indicates that this structure
is not significant and therefore should probably not be taken
as indicative of the presence of any real communities in the
network.

Our next two examples are both biological networks. The
first �Fig. 2�c�� represents the structure of a protein �an im-

munoglobin�, with the vertices representing � helices and �
sheets and an edge between any two that are less than 10 Å
apart �47�. The second �Fig. 2�d�� represents known portions
of the metabolic network of the nematode C. elegans, with
vertices representing metabolites and edges representing
metabolic reactions �48�. Again the two networks show con-
trasting behaviors. The community structure in the protein
network displays substantial robustness against perturba-
tions, with a wide gap between the variation of information
curves for the true network and the random graph. A value of
the variation of information equivalent to the randomization
of 20% of the vertices is not reached until a perturbation
strength of around �=0.3. The metabolic network by con-
trast reaches the same point around �=0.05, not much better

FIG. 2. �Color online� The variation of information as a function of the perturbation parameter � for six real-world networks as described
in the text �black squares�, along with equivalent results for the corresponding random graphs �red triangles�. The figures are �a� Zachary’s
karate club, �b� social network of positive sentiments, �c� protein structure network, �d� metabolic network of C. elegans, �e� electronic
circuit, and �f� power grid.
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than the equivalent random graph. The curve of variation of
information for the metabolic network does however remain
distinct from that of the corresponding random graph for
higher values of �, indicating that some portion of the com-
munity structure found is relatively robust.

Our last two examples are technological networks, an
electronic circuit �49,50� and a network representation of the
power grid of the western United States �51�. Both of these
networks show weak community structure similar to that of
the metabolic network, with a variation of information that
increases rapidly with � at first, indicating that much of the
observed structure is quite fragile to perturbation, though the
curves again remain distinct; we conclude that the networks
show some community structure, even if the effects are not
strong.

Now compare these results with those given in Table I.
The final column of the table gives a z score for each net-
work calculated as described in the introduction �see Eq.
�1��. The comparison with the curves for variation of infor-
mation is an interesting one. Five of the six networks have
positive z scores, but not all of the scores are large enough to
make the results statistically significant. The most common
rule of thumb is that measurements are significant if they lie
more than two standard deviations from the mean of the null
model, i.e., if z�2. By this rule, neither of our social net-
works have significant community structure, a surprising
conclusion given that it is universally accepted that the ka-
rate club network has strong community structure, confirmed
by repeated studies using many methods, and our variation
of information calculation confirms this also. For the net-
work of university students, on the other hand, the z score

and our calculations concur, both indicating that the commu-
nity structure found is not significant, also a troubling result,
since it implies that a low z score may correspond either to
strong community structure or to none at all.

The remaining four networks all have very large z scores;
the smallest of them is 24.5 and an observation 24 standard
deviations from the mean will be considered significant by
essentially any standard. Curiously, however, there seems to
be little correlation between the z scores and the robustness
of the community structure. The highly robust protein struc-
ture network, for instance, has the lowest z score of the four,
while the power grid—one of the networks we concluded to
have only rather weak community structure—has a spectacu-
lar z=100.8. Overall, therefore, it appears that while z scores
for modularity values probably do give some indication of
the strength of community structure, they are in general un-
reliable and should not be trusted unless backed up by other
calculations, such as those presented here.

VI. CONCLUSIONS

In this paper we have examined measures of significance
for network community structure that address the question of
when communities found in a network can be considered
believable, and could not reasonably have been the result of
chance fluctuations in network structure. We have argued
that high modularity scores, the conventional measure of sig-
nificance, have less discriminatory power than measures that
quantify the robustness of community assignments to net-
work perturbation. We have proposed a method for perturb-
ing networks and a measure of robustness under such pertur-
bations based on the information-theoretic distance metric
known as the variation of information. In applications to
both real and computer-generated example networks, our
method appears able to distinguish successfully and clearly
between examples that show strong community structure and
examples that do not.

In considering future directions for research, we note that
all of the calculations presented here focus on the quality of
partitions of an entire network. It is possible that there might
be significant community structure in one part of a network
and not in another, and were this the case one would like to
be able to detect it. The methods described here could poten-
tially be useful for this type of investigation: one can ask
whether some communities in a network are robust under
perturbation while others are not, although the global varia-
tion of information would not be suitable for this purpose
and more detailed local measures would be needed. Some
work along these lines has been pursued by Gfeller et al. �36�
and it is possible that an approach similar to theirs would
work in the present case.

We look forward to further developments in this area.

TABLE I. Maximum modularity and z scores for each of the
networks studied here. The first five lines of results are averages
over computer-generated random networks as described in the text.
The final six are real-world examples.

Network Modularity z score

Test b=6 0.373 21.0

Test b=7 0.311 11.1

Test b=8 0.248 2.63

Test b=9 0.217 −2.04

Test b=10 0.210 −2.99

Karate club 0.419 1.77

University students 0.368 −0.19

Protein structure 0.763 24.5

C. elegans metabolic 0.434 25.4

Electronic circuit 0.805 31.2

Power grid 0.925 100.8
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