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Abstract

This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of
the same data set. The criterion, called variation of information (VI), measures the amount of information
lost and gained in changing from clustering C to clustering C′. The basic properties of VI are presented
and discussed. We focus on two kinds of properties: (1) those that help one build intuition about the new
criterion (in particular, it is shown the VI is a true metric on the space of clusterings), and (2) those that
pertain to the comparability of VI values over different experimental conditions. As the latter properties have
rarely been discussed explicitly before, other existing comparison criteria are also examined in their light.
Finally we present the VI from an axiomatic point of view, showing that it is the only “sensible” criterion
for comparing partitions that is both aligned to the lattice and convexely additive. As a consequence, we
prove an impossibility result for comparing partitions: there is no criterion for comparing partitions that
simultaneously satisfies the above two desirable properties and is bounded.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Clustering, or finding partitions 1 in data, has become an increasingly popular part of data anal-
ysis. Each day new data are clustered, new clustering criteria are introduced and new algorithms
are published. Clustering as a field and its connection to statistics can be traced some decades
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back [1,5,7,9,10,15]. However, judged by its maturity, clustering is a young domain of research,
where rigorous methodology is still striving to emerge.

In particular, to empirically assess the performance of a clustering algorithm by comparing its
output to a given “correct” clustering, one needs to define a “distance” on the space of partitions
of a data set. This paper introduces the variation of information (VI), a function that measures
the distance between two partitions of the same data set. In accordance to existing terminology,
such a function is called a criterion for comparing partitions. The VI is not the first criterion for
comparing clusterings, and Section 2 presents several previously used criteria discussing some of
their shortcomings, which motivated the present approach.

A related reason to consider VI, that should be kept in mind throughout the reading of the
paper, is that distances like it are rarely used alone. For instance, one may use the VI or another
“distance” d to compare clustering algorithms. A likely scenario is that one has a data set D,
with a given “correct” clustering. Algorithm A is used to cluster D, and the resulting clustering is
compared to the correct one via d. If the algorithm A is not completely deterministic (e.g. the result
may depend on initial conditions), the operation may be repeated several times, and the resulting
distances to the correct clustering may be averaged to yield the algorithm’s average performance.
Moreover, this average may be compared to another average distance obtained in the same way
for another algorithm A′. Thus, in practice, distances between clusterings are subject to addition,
subtraction and even more complex operations as will be seen shortly. This is why we want to
have a clustering comparison criterion that will license such operations, inasmuch as it makes
sense in the context of the application.

Here is another scenario involving complex operations with distances. Many clustering algo-
rithms produce partitions that depend on the algorithm’s initialization. For such algorithms it is
customary to repeat the procedure many times, with different initial conditions. Thus, the end
result is a set of clusterings instead of a single one. Passing the whole set to the human expert for
examination would defeat the purpose of data exploration. It is helpful in this context to select a
subset of “most diverse” clusterings; or, alternatively, to further “cluster” the similar clusterings
into groups and to then choose a representative clustering or a “consensus” clustering from each
group. For such operations, a distance between clusterings is required.

We define the new distance in Section 3. The VI is based on the concepts of entropy and
information. These have a long standing as vehicles for formalizing intuitive notions related to
uncertainty. By approaching the relationship between two clusterings from the point of view
of the information exchange—loss and gain—between them, we are exploiting once again the
intuitive appeal of information theoretic concepts. This is much needed, since the space of all
possible clusterings of a set, although finite, has a structure complex enough to challenge human
intuition. 2 As it will be shown, the choice is also fortunate from other points of view. In particular,
the VI is provably a metric on the space of clusterings.

To address the ill-posedness of the search for a “best” criterion, Section 4 presents a variety of
properties of the VI and discusses their meaning from the point of view of comparing clusterings.
We will check whether the properties of the new criterion are “reasonable” and “desirable” in a
generic setting. The reader with a particular application in mind has in these properties a precise
description of the criterion’s behavior.

The properties themselves, although elementary (like “convex additivity”), have rarely, if ever,
been discussed in the literature on comparing clusterings. Therefore, Sections 5 and 6 examine
other metrics and criteria of similarity between clusterings in light of these properties.

2 The number of partitions of n elements into K groups is the Stirling number of the second kind S(n, K) [17].
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In Section 7 we derive the VI from axioms and examine related criteria via alterations of the
axioms. On this occasion, an interesting impossibility result is obtained. The discussion in Section
8 concludes the paper.

2. Related work

A clustering C is a partition of a set of points, or data set D into mutually disjoint subsets
C1, C2, . . . , CK called clusters. Formally,

C = {C1, C2, . . . , CK} such that Ck ∩ Cl = ∅ and
K⋃

k=1

Ck = D.

Let the number of data points in D and in cluster Ck be n and nk , respectively. We have, of course,
that

n =
K∑

k=1

nk. (1)

We also assume that nk > 0; in other words, that K represents the number of non-empty clusters.
Let a second clustering of the same data set D be C′ = {C′

1, C′
2, . . . , C′

K ′ }, with cluster sizes
n′

k′ . Note that the two clusterings may have different numbers of clusters.
Virtually all criteria for comparing clustering can be described using the so-called confusion

matrix, or association matrix or contingency table of the pair C, C′. The contingency table is a
K × K ′ matrix, whose kk′th element is the number of points in the intersection of clusters Ck of
C and C′

k′ of C′.

nkk′ = |Ck ∩ C′
k′ |.

2.1. Comparing clusterings by counting pairs

An important class of criteria for comparing clusterings is based on counting the pairs of points
on which two clusterings agree/disagree. A pair of points from D can fall under one of four cases
described below.

N11 the number of point pairs that are in the same cluster under both C and C′
N00 number of point pairs in different clusters under both C and C′
N10 number of point pairs in the same cluster under C but not under C′
N01 number of point pairs in the same cluster under C′ but not under C
The four counts always satisfy

N11 + N00 + N10 + N01 = n(n − 1)/2.

They can be obtained from the contingency table [nkk′ ]. For example 2N11 = ∑
k,k′ n2

kk′ − n.
See [4] for details.

Wallace [20] proposed the two asymmetric criteria WI, WII below:

WI(C, C′) = N11∑
k nk(nk − 1)/2

, (2)

WII(C, C′) = N11∑
k′ n′

k′(n′
k′ − 1)/2

. (3)
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They represent the probability that a pair of points which are in the same cluster under C (respec-
tively, C′) are also in the same cluster under the other clustering.

Fowlkes and Mallows [4] introduced a criterion which is symmetric, and is the geometric mean
of WI, WII:

F(C, C′) = √
WI(C, C′)WII(C, C′). (4)

It can be shown that this index represents a scalar product [2].
The Fowlkes–Mallows index F has a base-line that is the expected value of the criterion under

a null hypothesis corresponding to “independent” clusterings [4]. The index is used by subtracting
the base-line and normalizing by the range, so that the expected value of the normalized index is
0 while the maximum (attained for identical clusterings) is 1. Note that some pairs of clusterings
may theoretically result in negative indices under this normalization.

A similar transformation was introduced by [6] for Rand’s [15]

R(C, C′) = N11 + N00

n(n − 1)/2
. (5)

The resulting adjusted Rand index has the expression

AR(C, C′) = R(C, C′) − E[R]
1 − E[R]

=
∑K

k=1
∑K ′

k′=1

(
nkk′

2

)
−

[∑K
k=1

(
nk

2

)][∑K ′
k′=1

(
n′

k′
2

)]/(
n

2

)
[∑K

k=1

(
nk

2

)
+∑K ′

k′=1

(
n′

k′
2

)]/
2−

[∑K
k=1

(
nk

2

)][∑K ′
k′=1

(
n′

k′
2

)]/(
n

2

)
(6)

The main motivation for adjusting indices like R and F is the observation that the unadjusted R,
F do not range over the entire [0, 1] interval (i.e. min R > 0, min F > 0). In practice, the R
index concentrates in a small interval near 1; this situation was well illustrated by [4].

But the use of adjusted indices is not without problems. First, some researchers [20] have
expressed concerns at the plausibility of the null model. Second, the value of the base-line for F
varies sharply between near 0.6 and near 0 for n/K > 3. The useful range of the criterion thus
varies from approximately (0,1] to approximately (0.6 1] [4]. The base-line for the adjusted Rand
index, as shown by the simulations of [4], varies even more: from 0.5 to 0.95. If the base-line of
a criterion varies so much over the domain where most interesting clusterings are, it makes one
wonder whether any linearity can be assumed for the remaining range of this criterion, even after
the appropriate normalization. In other words, is a value F = 0.7 at a base-line of 0.4 the same
as a value of F = 0.6 at a base-line of 0.2? Note that both values, after normalization, yield 0.5
so theoretically they should be equal.

There are other criteria in the literature, to which the above discussion applies. For instance,
the Jaccard [2] index

J (C, C′) = N11

N11 + N01 + N10
(7)

and the Mirkin [13] metric

M(C, C′) =
∑

k

n2
k +

∑
k′

n′2
k′ − 2

∑
k

∑
k′

n2
kk′ . (8)
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The latter is obviously 0 for identical clusterings and positive otherwise. In fact, this metric
corresponds to the Hamming distance between certain binary vector representations of each
partition [13]. This metric can also be rewritten as

M(C, C′) = 2(N01 + N10) = n(n − 1)[1 − R(C, C′)]. (9)

Thus the Mirkin metric is another adjusted form of the Rand index.

2.2. Comparing clusterings by set matching

A second category of criteria is based on set cardinality alone and does not make any assumption
about how the clusterings may have been generated.

Meilă and Heckerman [12] computed the criterion H: first, each cluster of C is given a “best
match” in C′. Then, H is computed as the total “unmatched” probability mass in the confusion
matrix. More precisely,

H(C, C′) = 1 − 1

n
max

�

K∑
k=1

nk,�(k). (10)

In the above, it is assumed w.l.o.g. that K �K ′, � is an injective mapping of {1, . . . , K} into
{1, . . . , K ′}, and the maximum is taken over all such mappings. In other words, for each � we
have a (partial) correspondence between the cluster labels in C and C′; now looking at clustering
as a classification task with the fixed label correspondence, we compute the classification error
of C′ w.r.t. C. The minimum possible classification error under all correspondences is H. The
index is symmetric and takes value 1 for identical clusterings. Further properties of this index are
discussed in [11,18].

Larsen and Aone [8] use

L(C, C′) = 1

K

∑
k

max
k′

2nkk′

nk + n′
k′

. (11)

This is an asymmetric criterion that is 1 when the clusterings are identical. The asymmetry of L
raises some difficulties. Take for example the situation where C = {D} (a single cluster) and C′
is obtained from C by splitting off two clusters of size nf (where 0 < f>1) from the initial large
cluster. Then,

L(C, C′) = 1 − 2f

1 − f
,

which is reasonable, but

L(C′, C) = 1

3

(
f

1 + f
+ 1 − 2f

1 − f

)
.

The above value converges to 1
3 when f → 0 against our intuition that the difference should be

negligible for small enough f. H which is normalized by n not by the number of clusters K, does
not suffer from the above problem, yielding the intuitively acceptable value of 1 − 2f .

A symmetric criterion that is also a metric was introduced by van Dongen [19]

D(C, C′) = 2n −
∑

k

max
k′ nkk′ −

∑
k′

max
k

nkk′ . (12)

Hence, D is 0 for identical clusterings and strictly smaller than 2n otherwise.
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Fig. 1. Clustering C′ is obtained from C by moving a small fraction of the points in each cluster to the next cluster; C′′
is obtained from C by reassigning the same fraction of each cluster equally between all other clusters. The set matching
criteria D, H, L declare C′, C′′ equidistant from the original clustering C.

All three above criteria, however, suffer from the “problem of matching” that we discuss now.
One way or another, L, H, D all first find a “best match” for each cluster, then add up the
contributions of the matches found. In doing so, the criteria completely ignore what happens to
the “unmatched” part of each cluster. To make things clear, let us look at the example depicted
in Fig. 1. Suppose C is a clustering with K equal clusters. The clustering C′′ is obtained from C
by moving a fraction f of the points in each Ck to the cluster Ck+1(modK). The clustering C′ is
obtained from C by reassigning a fraction f of the points in each Ck evenly between the other
clusters. If f < 0.5 then L(C, C′) = L(C, C′′), H(C, C′) = H(C, C′′), D(C, C′) = D(C, C′′).
This contradicts the intuition that C′ is a less disrupted version of C than C′′.

3. The variation of information

Now we introduce the VI, the criterion we propose for comparing two clusterings. This criterion
does not fall in any of the two categories discussed above. Therefore, we present VI from two
perspectives: in this section, we motivate the selection of VI from a purely information theoretical
perspective; in the next section, by describing its properties. The properties we focus on are
mainly “geometric” properties; we show that VI is a metric, then we show this metric behaves
in an intuitive and “desirable” way on clusterings that are related by elementary operations like
splitting/merging of clusters.

We start by establishing how much information is there in each of the clusterings, and how
much information one clustering gives about the other. For more details about the information
theoretical concepts presented here, the reader is invited to consult [3].

Imagine the following game: if we were to pick a point of D, how much uncertainty is there
about which cluster is it going to be in? Assuming that each point has an equal probability of
being picked, it is easy to see that the probability of the outcome being in cluster Ck equals

P(k) = nk

n
. (13)

Thus we have defined a discrete random variable taking K values, that is uniquely associated to
the clustering C. The uncertainty in our game is equal to the entropy of this random variable

H(C) = −
K∑

k=1

P(k) log P(k). (14)
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We call H(C) the entropy associated with clustering C. Entropy is always non-negative. It takes
value 0 only when there is no uncertainty, namely when there is only one cluster. Entropy is
measured in bits. The uncertainty of 1 bit corresponds to a clustering with K = 2 and P(1) =
P(2) = 0.5. Note that the uncertainty does not depend on the number of points in D but on the
relative proportions of the clusters.

We now define the mutual information between two clusterings, i.e. the information that one
clustering has about the other. Denote by P(k), k = 1, . . . , K and P ′(k′), k′ = 1, . . . , K ′ the
random variables associated with the clusterings C, C′. Let P(k, k′) represent the probability that
a point belongs to Ck in clustering C and to C′

k′ in C′, namely the joint distribution of the random
variables associated with the two clusterings:

P(k, k′) = |Ck

⋂
C′

k′ |
n

. (15)

We define I (C, C′) the mutual information between the clusterings C, C′ to be equal to the mutual
information between the associated random variables

I (C, C′) =
K∑

k=1

K ′∑
k′=1

P(k, k′) log
P(k, k′)

P (k)P ′(k′)
. (16)

Intuitively, we can think of I (C, C′) in the following way: we are given a random point in D. The
uncertainty about its cluster in C′ is measured by H(C′). Suppose now that we are told which
cluster the point belongs to in C. How much does this knowledge reduce the uncertainty about
C′? This reduction in uncertainty, averaged over all points, is equal to I (C, C′).

The mutual information between two random variables is always non-negative and symmetric:

I (C, C′) = I (C′, C) � 0. (17)

Also, the mutual information can never exceed the total uncertainty in a clustering, so

I (C, C′) � min(H(C), H(C′)). (18)

Equality in the above formula occurs when one clustering completely determines the other. For
example, if C′ is obtained from C by merging two or more clusters, then

I (C, C′) = H(C′) < H(C).

When the two clusterings are equal, and only then, we have

I (C, C′) = H(C′) = H(C).

We propose to use as a comparison criterion for two clusterings C, C′ the quantity

VI (C, C′) = H(C) + H(C′) − 2I (C, C′). (19)

At a closer examination, this is the sum of two positive terms

VI (C, C′) = [H(C) − I (C, C′)] + [H(C′) − I (C, C′)]. (20)

By analogy with the total variation of a function, we call itVI between the two clusterings. The two
terms represent the conditional entropies H(C|C′), H(C′|C). The first term measures the amount
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Fig. 2. The variation of information (represented by the sum of the shaded areas) and related quantities.

of information about C that we loose, while the second measures the amount of information about
C′ that we have to gain, when going from clustering C to clustering C′ (Fig. 2).

From the above considerations it follows that an equivalent expression for the VI is

VI (C, C′) = H(C|C′) + H(C′|C). (21)

Noting that

I (C, C′) = H(C) + H(C′) − H(C, C′),

where H(C, C′) is the entropy of P(k, k′), or the joint entropy of the two clusterings [3], we obtain
a third equivalent expression for the VI

VI (C, C′) = 2H(C, C′) − H(C) − H(C′). (22)

4. Properties of the VI

We now list some basic properties of the VI with the goal of better understanding the structure
it engenders on the set of all clusterings. These properties will also help us decide whether this
comparison criterion is appropriate for the clustering problem at hand. Here we will not be focusing
on a specific application, but rather we will try to establish whether the properties are “reasonable”
and in agreement with the general intuition of what “more different” and “less different” should
mean for two clusterings of a set.

Most of the properties below have elementary proofs that are left as an exercise to the reader.
The other proofs are given in Appendix.

4.1. The VI is a metric

Property 1. The VI satisfies the metric axioms:
Non-negativity: VI (C, C′) is always non-negative and VI (C, C′) = 0 if and only if C = C′.
Symmetry: VI (C, C′) = VI (C′, C).
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Triangle inequality: For any three clusterings C1, C2, C3 of D

VI (C1, C2) + VI (C2, C3) � VI (C1, C3). (23)

Hence the VI is a metric (or distance) on clusterings. The space of all clusterings is finite, so
this metric is necessarily bounded. A comparison criterion that is a metric has several important
advantages. The properties of a metric—mainly the symmetry and the triangle inequality—make
the criterion more understandable. Human intuition is more at ease with a metric than with an
arbitrary function of two variables.

Second, the triangle inequality tells us that if two elements of a metric space (i.e. clusterings)
are close to a third they cannot be too far apart from each other. This property is extremely useful
in designing efficient data structures and algorithms. With a metric, one can move from simply
comparing two clusterings to analyzing the structure of large sets of clusterings. For example,
one can design algorithms á la K-means [9] that cluster a set of clusterings, one can construct
ball trees of clusterings for efficient retrieval, or one can estimate the speed at which a search
algorithm (e.g. simulated annealing type algorithms) moves away from its initial point.

4.2. Upper bounds for VI

As mentioned before, the VI metric is necessarily bounded, since there are only a finite number
of clusterings of any data set D. The following set of properties give some intuition of scale in
this metric space.

Property 2 (n-invariance). The value of VI (C, C′) depends only on the relative sizes of the clus-
ters. It does not directly depend on the number of points in the data set.

Property 3. The following bound is attained for all n:

VI (C, C′) � log n. (24)

For example, C = {{1}, {2}, {3}, . . . , {n}} and C′ = {D} always achieve VI (C, C′) = log n.
We have said before that theVI distance does not depend on n. The bound in the above inequality,

however, depends on n. This does not show a contradiction, but merely the fact that with more
data points more clusterings are possible. For example, if two data sets D1, D2 have, respectively,
n1, n2 points, with n1 < n2 then no clustering of D1 will have more than n1 clusters, while for
the set D2 there can be clusterings with K > n1 clusters.

If the number of clusters is bounded by a constant K∗ we can derive a bound that is dependent
on K∗ only.

Property 4. If C and C′ have at most K∗ clusters each, with K∗ �√
n, then VI (C, C′) � 2 log K∗.

For any fixed K∗ the bound is approached arbitrarily closely in the limit of large n and is attained
in every case where n is an exact multiple of (K∗)2. This shows that for large enough n, clusterings
of different data sets, with different numbers of data points, but with bounded numbers of clusters
are really on the same scale in the metric VI.

The above consequence is extremely important if the goal is to compare clustering algorithms
instead of clusterings of one data set only. The previous three properties imply that, everything
else being equal, distances obtained from data sets of different sizes are comparable. For example,
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Fig. 3. Two maximally separated clusterings C and C′, having each K = 3 clusters, and their meet C × C′, having 9
clusters.

if one ran a clustering algorithm with the same parameters on three data sets produced by the
same generative process, then one could compare the clusterings obtained by the algorithm with
the gold standard for each of the three data sets and average the resulting three distances to obtain
the average “error” of the algorithm. Other less restrictive comparisons are also possible and are
being often done in practice, but their results should be regarded with caution. To summarize, if
it makes sense to consider the clustering problems on two data sets as equivalent, then there is
nothing intrinsic to the VI to prevent one from comparing, adding, subtracting VI distances across
clustering spaces independently of the sizes of the underlying data sets (Fig. 3).

4.3. The local neighborhood

A consequence of having a bounded metric with a known bound is that we can define �-radius
balls around any clustering. The upper bound on the metric gives an absolute upper bound on
�. Let us now look at the range of small � values. Since the space is discrete, for fixed n, the
balls with radius below a certain limit will contain only one clustering, the one around which
they are centered. The following properties give the distances at which the nearest neighbors of
a clustering C will lie. Note that these distances will always depend on C.

In addition, we will also be concerned with characterizing the nearest clusterings to a given
one. Or in other words, we will investigate the question: what changes to a clustering are small
according to the VI distance?

Property 5 (Splitting a cluster). Assume C′ is obtained from C by splitting Ck into clusters C′
k1

,
. . . , C′

km
. The cluster probabilities in C′ are

P ′(k′) =
{

P(k′) if C′
k′ ∈ C,

P (k′|k)P (k) if C′
k′ ⊆ Ck ∈ C.

(25)

In the above P(k′|k) for k′ ∈ {k1, . . . , km} is

P(kl |k) = |C′
kl
|

|Ck| (26)

and its entropy, representing the uncertainty associated with splitting Ck , is

H|k = −
∑

l

P (kl |k) log P(kl |k).
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Then,

VI (C, C′) = P(k)H|k. (27)

The same value is obtained when performing the reverse operation, i.e. when a set of clusters
is merged into a single one. Eq. (27) shows that the distance achieved by splitting a cluster is
proportional to the relative size of the cluster times the entropy of the split. Hence, splitting
(or merging) smaller clusters has less impact on the VI then splitting or merging larger ones.
Note also that the VI at splitting or merging a cluster is independent of anything outside the
cluster involved. This is a desirable property; things that are equal in two clusterings should not
be affecting the distance between them.

Following from Property 5 we have that: (1) if C′ is obtained from C by splitting Ck into q equal
clusters, then VI (C, C′) = P(k) log q, and (2) if C′ is obtained from C by splitting one point off
Ck and making it into a new cluster, then

VI (C, C′) = 1

n
[nk log nk − (nk − 1) log(nk − 1)]. (28)

Since splitting off one point represents the lowest entropy split for a given cluster, it follows
that splitting one point off the smallest non-singleton cluster results in the nearest C′ with K ′ >

K to a given C. This suggests that the nearest neighbors of a clustering C in the VI metric are
clusterings obtained by splitting or merging small clusters inC. In the following we prove that this is
indeed so.

First some definitions. We shall say that a clustering C′ refines another clustering C if for each
cluster C′

k′ ∈ C′ there is a (unique) cluster Ck ∈ C so that C′
k′ ⊆ Ck . In other words, a refinement

C′ is obtained by splitting some clusters of the original C. If C′ refines C it is easy to see that
K ′ �K , with equality only if C′ = C.

We define the meet of clusterings C and C′ by

C × C′ = {Ck ∩ C′
k′ | Ck ∈ C, C′

k′ ∈ C′, Ck ∩ C′
k′ 
= ∅}.

Hence, the meet of two clusterings is the clustering formed from all the non-empty intersections
of clusters from C with clusters from C′. The meet C × C′ contains all the information in C and
C′, i.e. knowing a point’s cluster in the meet uniquely determines its cluster in C and C′. If C′ is a
refinement of C, then C × C′ = C′.

Property 6 (Collinearity of the meet). The triangle inequality holds with equality for two clus-
terings and their meet:

VI (C, C′) = VI (C, C × C′) + VI (C′, C × C′). (29)

The proof, elementary, is given in Appendix.
Thus, the meet of two clusterings is “collinear” with and “in between” the clusterings in this

metric space, as depicted in Fig. 4. Finally, this leads us to the following property, which implies
that the nearest neighbor of any clustering C is either a refinement of C or a clustering whose
refinement is C.

Property 7. For any two clusterings we have

VI (C, C′) � VI (C, C × C′) (30)

with equality only if C′ = C × C′.
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Fig. 4. Illustration of Property 6.

From the above, we conclude that the nearest neighbor of C, with K ′ < K is obtained by merging
the two smallest clusters in C. We now have, due to Eq. (28) and Property 7, a lower bound
on the distance between a clustering C and any other clustering of the same data set. The lower
bound depends on C. Taking its minimum for all clusterings, which is attained when two singleton
clusters are merged (or conversely, a cluster consisting of two points is split) we obtain

VI (C, C′) � 2

n
for all C 
= C′.

The above equation implies that the minimum distance between two clusterings decreases when
the total number of points increases. In other words, the space of clusterings has not only a larger
diameter for larger n but it also has finer granularity. This is natural, since a larger n allows
clusterings not possible with smaller n’s. If we multiply n by an integer m, obtaining n′ = m × n

and a new data set D′ that has m points for each point of D, then it is easy to see that all the
clusterings of D are possible in D′ and that their respective distances in D are preserved by the
metric in D′. In addition, D′ will have clusterings not possible in D, that will be interspersed
between the clusterings from D.

4.4. Convex additivity

Looking at Property 5 (splitting a cluster) from a different angle we can derive another inter-
esting property of the VI.

Property 8 (Additivity of composition). Let C = {C1, . . . , CK} be a clustering and C′, C′′ be two
refinements of C. Denote by C′

k (C′′
k) the partitioning induced by C′ (respectively, C′′) on Ck . Let

P(k) represent the proportion of data points that belong to cluster Ck . Then

VI (C′, C′′) =
K∑

k=1

P(k)VI (C′
k, C′′

k). (31)

This property is illustrated in Fig. 5 forK = 2. The property can be interpreted in a way reminiscent
of hierarchical clusterings. If two hierarchical clusterings have exactly two levels and they coincide
on the higher level but differ on the lower level, then the VI distance between the two clusterings
(regarded as flat clusterings) is a weighted sum of the VI distances between the second level
partitions of each of the common first level clusters.

Property 8 can be seen in yet another way. If two disjoint clustered data sets are merged, they
induce a clustering on their union. If there are two ways of clustering each of the data sets, the
VI distance between any two induced clusterings of the union is a linear combination of the VI
distances at the level of the component data sets.
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Fig. 5. Illustration of linearity. If C = C1 ∪ C2 and C′ = C′
1 ∪ C′

2 then V I (C, C′) = n1
n1+n2

V I (C1, C′
1) +

n2
n1+n2

V I (C2, C′
2).

5. Comparing VI with other criteria—scaling issues

Here we consider some of the other indices and metrics for comparing clusterings, and examine
whether they can be made invariant with n (of the criteria discussed in Section 2 only the H and L
criteria are). We compare the invariant versions that we obtain in order to better the understanding
of these criteria. We give invariance with n particular attention because, in any situation where
comparisons are not restricted to a single data set, a criterion that is not n-invariant would have
little value without being accompanied by the corresponding n.

The Rand, adjusted Rand, Fowlkes–Mallows, Jaccard, and Wallace indices are asymptotically
n-invariant in the limit of large n. For finite values of n the dependence on n is weak. It is also
non-linear, and we do not see a natural way of making these criteria exactly n-invariant.

A more interesting case is represented by the two metrics: the Mirkin metric M, which is
related to the Rand index and thus to counting pairs, and the van Dongen metric D based on set
matching. Their dependence on n is strong: both metrics grow unboundedly with n. However,
both metrics can be easily scaled to become n-invariant. We denote the n-invariant versions of
D, M by Dinv, Minv:

Dinv(C, C′) = D(C, C′)
2n

,

Minv(C, C′) = M(C, C′)
n2 .

Since the Mirkin distance is related to the Rand index, by inspecting (9) we see that the Rand
index is asymptotically equivalent to an n-invariant metric.
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It is instructive to compare the behavior of the three invariant metrics VI, Minv, Dinv and of
the widely used adjusted Rand index AR for two clusterings with K clusters that are maximally
separated under the VI distance. Such a situation is depicted in Fig. 3. The two clusterings have
nk = n′

k = n/K and nkk′ = n/K2 for all k, k′ = 1, . . . , K . It is assumed that n is a multiple
of K2 for simplicity. As random variables, these two clusterings are uniformly distributed and
mutually independent. This pair of clusterings is also maximizing Dinv under the constraint that
K = K ′ but not Minv (and consequently also not minimizing AR).

We compute now the values VI 0, D0
inv, M0

inv and AR0 for this particular pair, as a function
of K:

VI 0 = 2 log K,

D0
inv = 1 − 1

K
,

M0
inv = 2

K
− 1

K2 ,

AR0 = −K − 1

n − K
−→ 0 asymptotically for n −→ ∞.

It follows that while the VI distance grows logarithmically with K, the other two metrics have
values bounded between 0 and 1 for any value of K. The Dinv metric grows with K toward the
upper bound of 1, while the Minv metric decreases toward 0 approximately as 1/K . As for the
adjusted Rand index AR, note that the above is not its minimum value, and that the index can
take negative values for other pairs of clusterings.

5.1. Adjusting the VI distance

In this context, note that it would be easy to normalize the VI by log n in order to obtain a
distance that varies between 0 and 1:

V(C, C′) = 1

log n
VI (C, C′).

This is possible and convenient if we limit our comparison to one data set only. Normalizing by
log n is, however, not recommended if we are to make comparisons between distances obtained
on different data sets.

Another possibility is to normalize by the upper bound 2 log K∗ when the number of clusters
is bounded by the same constant K∗ in all experiments:

VK∗(C, C′) = 1

2 log K∗ VI (C, C′).

Such a normalization will preserve comparability of distances across data sets, independently of
the number of data points in each set. Therefore it can be considered as a further simplification
of the criterion. This simplification, however, has a drawback: while VI is always measured in
bits, VK∗ will be measured in arbitrary units. Values of VK∗ obtained in different experiments,
say by different authors using different values for K∗ will not be comparable without knowing
the respective K∗ and renormalizing.
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Hence, the adjusted forms of the VI distance lose one of the most valuable properties of the VI;
that is, comparability across many different conditions.

6. Comparing VI with other criteria—convex additivity and locality

Now we compare the scaled metrics with the VI distance from the point of view of convex
additivity. The following proposition can be easily proved.

Property 9 (Convex additivity of composition for Dinv, Minv). Let C={C1, . . . , CK} be a clus-
tering and C′, C′′ be two refinements of C. Denote by C′

k (C′′
k) the partitioning induced by C′

(respectively, C′′) on Ck . Let nk represent the number of data points that belong to cluster Ck .
Then

Dinv(C′, C′′) =
K∑

k=1

nk

n
Dinv(C′

k, C′′
k),

Minv(C′, C′′) =
K∑

k=1

n2
k

n2 Minv(C′
k, C′′

k).

Hence, the Dinv metric behaves like the VI metric in that the resulting distance is a convex
combination of the distances between the subclusterings. The Minv metric is linear too, but the
coefficients depend quadratically on nk/n so that the resulting distance is smaller than the convex
combinations of distances between subclusterings. This is in agreement with Eq. (32) showing that
the Mirkin metric can decreases rapidly with the number of clusters. Note also that the unscaled
versions of D, M are additive.

Additivity for a metric entails the following property, called locality: If C′ is obtained from C by
splitting one cluster, then the distance between C and C′ depends only on the cluster undergoing
the split. Metrics that are additive are also local. For example, for the Mirkin metric in the case
of splitting cluster Ck into C1

k , C2
k , locality is expressed as

Minv(C, C′) = n2
k

n2 Minv({Ck}, {C1
k , C2

k }). (32)

The r.h.s. of the above formula depends only on quantities related to Ck and its split. It is invariant
to the configuration of the other clusters in the partition. Locality for the VI distance is reflected
by Property 5.

The VI distance as well as the D and M metrics and their n-invariant versions are local. It can
be easily shown that the Rand and the classification error H indices are also local. The Larsen
index is not local. For the split Ck → C1

k , C2
k we have

L(C, C′) = 1

K

[
K − 1 + 2 max

i=1,2

|Ci
k|

|Ck| + |Ci
k|

]
,

L(C′, C) = 1

K + 1

⎡
⎣K − 1 + 2

∑
i=1,2

|Ci
k|

|Ck| + |Ci
k|

⎤
⎦ .

The above expressions depend on K so are not local.
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For the Fowlkes–Mallows and Jaccard indices we obtain

F(C, C′) =
√√√√1 − 2|C1

k ||C2
k |

n2
k − n + ∑

l 
=k n2
l

,

J (C, C′) = 1 − 2|C1
k ||C2

k |
n2

k − n + ∑
l 
=k n2

l

.

The common fraction on the r.h.s. of both expressions depends on
∑

l 
=k n2
l so the indices depend

strongly on how the rest of the points are clustered.
We will analyze now the asymptotic, n-invariant expression of the adjusted Rand index. This is

AR(C, C′) =
∑K

k=1
∑K ′

k′=1 P(k, k′)2−
(∑K

k=1 P(k)2
) (∑K ′

k′=1 P ′(k′)2
)

∑K
k=1 P(k)2+ ∑K ′

k′=1 P ′(k′)2

2
−

(∑K
k=1 P(k)2

) (∑K ′
k′=1 P ′(k′)2

) . (33)

We assume as before that C′ is obtained from C by splitting Ck , into C1
k , C2

k with respective cluster
probabilities P 1

k , P 2
k , P 1

k +P 2
k = P(k). Denote also Qk = (P 1

k )2 +(P 2
k )2 and S = ∑

j 
=k P (j)2

After calculations we obtain

AR(C, C′) = 1 − P 1
k P 2

k

Qk + P(k)2

2
− QkP (k)2 − [Qk + P(k)2 − 1]S − S2

. (34)

The denominator of the fraction above depends, through the expression S = ∑
j 
=k n2

j /n2, on the
way the rest of the data is partitioned. Hence, the asymptotic expression of the AR index is not
local. This implies (by contradiction) that the AR itself is not local.

Whether a criterion for comparing clusterings should be local or not depends ultimately on the
specific requirements of the application. A priori, however, a local criterion is more intuitive and
easier to understand.

7. The axioms of VI

Constructing a quantity axiomatically highlights which of its properties, taken together, rep-
resent defining properties for it, from which all others follow. This is what we do now with
the VI.

Property 10. The VI is the unique cluster comparison criterion d that satisfies the axioms:
A1. Vertical collinearity: Denote by 0̂ and 1̂ the unique clusterings having K = n, respectively,

K = 1 clusters. For any clustering C

d(1̂, C) + d(C, 0̂) = d(1̂, 0̂).

A2. Horizontal collinearity: For any two clusterings C, C′

d(C, C′) = d(C, C × C′) + d(C′, C × C′).
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Fig. 6. The lattice of partitions of D ={a,b,c,d}. Note that 1̂ ={{a,b,c,d}}, 0̂ ={{a},{b},{c},{d}}; the clusterings 1̂,
{{a},{b, c, d}}, {{a},{b},{c, d}}, 0̂ are collinear according to A1; the clusterings {{a},{b, c, d}}, {{a},{b},{c, d}},
{{a,b},{c, d}} are collinear according to A2; and there are three straight lines from {{d},{a, b, c}} to 0̂.

A3. Convex additivity: Let C = {C1, . . . , CK} be a clustering and C′ be a refinement of C.
Denote by C′

k the partitioning induced by C′ on Ck . Then

d(C, C′) =
K∑

k=1

nk

n
d(1̂nk

, C′
k).

A4. Scale: Denote by CU
K the “uniform” clustering, i.e. the clustering with K equal clusters,

K �1. If CU
K exists, then

d(1̂, CU
K) = log K.

The proof is constructive and is given in Appendix. Note that the axioms do not require d to be a
metric or to be n-invariant; these properties follow implicitly.

One can represent all clusterings of D as the nodes of a graph; in this graph an edge between
C, C′ will be present if C′ is obtained by splitting a cluster of C into two parts. The set of all
clusterings of D forms a lattice and this graph is known as the Hasse diagram 3 of the lattice
of partitions [17]. Conventionally 1̂ is represented at the top of the diagram and 0̂ at the bottom.
Axioms A1 and A2 show that the VI metric is “aligned” with the lattice of partitions and embeds
it into a metric space. Axiom A1 implies that the clusterings along a vertical chain of lattice edges
are collinear under the VI metric; in addition, by A2, two vertical chains that meet in their lowest
vertex also represent a “straight line” according to VI.

Note that, if C′ is a refinement of C, then each of the possible ways of subdividing C to obtain
C′ generates a straight line in the lattice. Unless C, C′ are connected by a single edge, there will
be multiple “straight lines” between the two clusterings. Fig. 6 illustrates these properties on a
simple example.

Finally, axioms A3 and especially A4 set the scale of d. They are inspired by the postulates
III and IV of entropy as given in [16]. Axiom A3 is a rewrite of Property 5, which states that if
one cluster is split, then the distance from the new clustering to the original equals the distance
induced by the split scaled by the size of the cluster.

3 The emphasized terms in this section represent standard lattice terminology. Their precise definitions can be found in
e.g. [17].
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It is interesting to see what happens if these last axioms are changed. In other words, if one
maintains that the distance has to be aligned with the lattice of partitions, but allows the scale to
differ.

For example, one can compute the distance between 1̂ and CU
K under the invariant van Dongen

and Mirkin metrics and plug it into A4. We have

Dinv(1̂, CU
K) = 1

2

(
1 − 1

K

)
,

Minv(1̂, CU
K) = 1 − 1

K
.

Property 11. There is no cluster comparison criterion that satisfies axioms A1–A3 and

A4.M d(1̂, CU
K) = 1 − 1/K .

We can, however, recover the Mirkin metric by modifying the convex additivity axiom in accor-
dance to Eq. (32).

Property 12. The unique cluster comparison criterion d that satisfies axioms A1, A2, A4.M and
A3.M Let C′ be a refinement of C and denote by C′

k the clustering induced by C′ on Ck ∈ C.
Then

d(C, C′) =
K∑

k=1

n2
k

n2 d(1̂nk
, C′

k)

is the invariant Mirkin metric Minv.

Thus, the invariant Mirkin metric is also aligned with the lattice of partitions. It is worth recalling
that all these properties of the Mirkin metric are readily translated into similar properties of the
unadjusted Rand index. From the above, it follows that the Rand index is approximately aligned
with the partitions lattice as well.

In [14], the Mirkin metric is constructed from a different set of axioms, which we transcribe
here in terms of the Minv metric.

M1. d is a metric.
M2. d(1̂, {{i}, D \ {i}}) = 2(n − 1)/n2.

M3. Let C′ = {C1, . . . , Cm, C′
m+1, . . . , C

′
K ′ } and C′′ = {C1, . . . , Cm, C′′

m+1, . . . ,

C′′
K ′′ } be two clusterings which have some clusters in common. Denote by E = D \ (

⋃m
k=1 Ck)

and by C′
E, (C′′

E) the clustering that C′, (C′′) induces on E. Then d(C′, C′′) = d(C′
E, C′′

E).
M4. d(1̂, 0̂) = (n − 1)/n.
One can see that the last axiom is a weaker form of the scale axiom A4.M, and that axiom M3

is a stronger form of locality, most similar to our A3 axiom. The remaining axioms M1 and M2
are entirely different from ours; in particular, M1 requires that d be a metric.

Property 11 prompts the question: what kind of scalings in A4 are compatible with A1–A3? To
answer this question, we change A4 to the weaker A4.H:

A4.H d(1̂, CU
K) = h(K) where h is a non-decreasing function of K, K �1.

The result below shows that A4 is essentially superfluous.

Property 13. Any clustering comparison criterion satisfying A1–A3 and A4.H is identical to VI
up to a multiplicative constant.
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In other words, theVI is the only sensible (i.e. n-invariant, with d(1̂, CU
K) non-decreasing), criterion

that is convexely additive and aligned to the lattice of partitions.

8. Concluding remarks

This paper has presented a new criterion for comparing two clusterings of a data set, that is
derived from information theoretic principles.

The criterion is more discriminative than the previously introduced criteria that are based on set
matching. In particular, for the example in Fig. 1 we have VI (C, C′′) = VI (C, C′)+2f log(K−1)

implying that C′ is closer to C than C′′ for all K > 2.
In contrast to the comparison criteria based on counting pairs, the VI is not directly concerned

with relationships between pairs of points, or with triples like [6]. One could say that the VI is
based on the relationship between a point and its cluster in each of the two clusterings that are
compared. This is neither a direct advantage, nor a disadvantage w.r.t. the criteria based on pair
counts.

The vast literature on the subject suggests that criteria like R, F , K, J need to be shifted and
rescaled in order to allow their values to be compared. However, the existing rescaling methods
are based on a null model which, although reasonable, is nevertheless artificial. By contrast, the
VI makes no assumptions about how the clusterings may be generated and requires no rescaling
to compare values of VI (C, C′) for arbitrary pairs of clusterings of a data set.

Moreover, the VI does not directly depend on the number of data points in the set. This gives
a much stronger ground for comparisons across data sets, something we need to do if we want
to compare clustering algorithms against each other. It may also pave the way to comparing the
“finite sample” results of standard clustering with “population values” based on theoretically
infinite data.

As K grows, the VI distance between two clusterings can grow as large as 2 log K . This sets the
VI distance apart from all other indices and metrics discussed here. The scaled metrics Minv, Dinv
as well as the indices R, F, J , W, H are bounded between 0 and 1. Hence they carry the implicit
assumption that clusterings can only get negligibly more diverse if at all as the number of clusters
increases. Whether a bounded or unbounded criterion for comparing clusterings is better depends
on the clustering application at hand. This paper’s aim in this respect is to underscore the possible
choices.

In the practice of comparing clusterings, one deals more often with clusterings that are close
to each other than with clusterings that are maximally apart. For example, one often needs to
compare partitions obtained by several clustering algorithms to a gold standard. It is reasonable to
expect that the clusterings so obtained are somewhat similar to each other. The results on locality
and the local neighborhood in Section 4.3 help one understand the behavior of VI in this context.
Note for example that the fact that the maximum VI distance grows like log K does not affect the
local properties of the VI.

It has been shown here that VI is a metric. This is extremely fortunate as it allows one to see
past simple pairwise comparisons between clusterings into the global structure of the space of
clusterings. A metric also entails the existence of local neighborhoods, and this in turn allows us to
apply to clusterings a vast array of already existing algorithmic techniques. One could for example
cluster a set of clusterings obtained by different algorithms. This has already been suggested as a
tool for results summarization but so far no existent metric has been used for this problem.

Just as one cannot define a “best” clustering method out of context, one cannot define a criterion
for comparing clusterings that fits every problem optimally. This paper has strived to present a
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comprehensible picture of the properties of the VI criterion, in order to allow a potential user to
make informed decisions.

Some of the properties of the VI are shared with other criteria. For example, the VI between
two clusterings with K clusters each cannot be higher than 2 log K . Hence, for K small, no two
clusterings can be too far apart. This behavior is reflected in both the Fowlkes–Mallows and the
Jaccard indices. For two clusterings with K = 2 that are maximally separated under the VI metric
F = 0.5 and J = 0.13; these values become F = 0.16 and J = 0.02 if K = 5. The effect is due
to an intrinsic property of the space of partitions: for K small, no matter how a set is partitioned,
there will be large overlaps between clusters of different partitions.

The axiomatic approach has not only characterized the VI but has also highlighted interesting
impossibility results pertaining to any clustering comparison criterion. Thus, the properties of VI
presented here, beyond enabling us to understand the VI metric, represent a tool that will help us
think about the space of clusterings in a precise way and will sharpen our intuitions about it.
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Appendix. Proofs

Proof of Property 1. As non-negativity and symmetry are evident from the definition, here we
focus on the triangle inequality. We prove that for any clusterings C1, C2, C3

H2|1 + H3|2 − H3|1 � 0. (35)

In the above we used the shorthand notation Hp|q for H(Cp|Cq):

H2|1 + H3|2 − H3|1 � H2|1 + H3|2,1 − H3|1 (36)

= H2,3|1 − H3|1 (37)

� 0.

The first inequality is true because conditioning always decreases entropy, the second because the
joint entropy is always larger than the marginal entropy. For more detail, see [3].

From (35) by swapping indices 1 and 3 and then adding the two inequalities, we obtain

H2|1 + H1|2 + H3|2 + H2|3 − H3|1 − H1|3 � 0 (38)

which is the triangle inequality for the VI. �

Proof of Property 6. First we prove that

H(C|C′) = H(C × C′|C′). (39)

Let C∗
l be a cluster in C × C′ and let C∗

lkk′ = Ck ∩ C′
k′ if it is non-empty. Note that for all clusters

Ck that intersect C′
k′

P(k|k′) = P(lkk′ |k′).
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Then,

H(C × C′|C′) = −
∑
k′

P ′(k′)
∑

l

P (l|k′) log P(l|k′)

= −
∑
k′

P ′(k′)

⎡
⎢⎣ ∑

C∗
l ⊆C′

k′

P(l|k′) log P(l|k′) +
∑

C∗
l �C′

k′

0

⎤
⎥⎦

= −
∑
k′

P ′(k′)
∑

Ck∩C′
k′ 
=∅

P(k|k′) log P(k|k′)

= H(C|C′).

Noting that H(C|C × C′) = H(C′|C × C′) = 0 we get

VI (C, C × C′) + VI (C′, C × C′) = H(C × C′|C) + H(C × C′|C′)

= H(C′|C) + H(C|C′)

= VI (C, C′). �

Proof of Property 10. From A3 and A4 we have that

d(C, 0̂) =
∑

k

nk

n
d(1̂, CU

nk
) (40)

=
∑

k

nk

n
log nk (41)

=
∑

k

nk

n

(
log

nk

n
+ log n

)
(42)

= log n − H(C). (43)

From A1 we get d(1̂, C) = log n − d(C, 0̂) = H(C). For any two clusterings C, C′ define by
Ck the clustering induced by C′ on Ck ∈ C

d(C, C × C′) =
K∑

k=1

nk

n
d(1̂, Ck) (44)

=
K∑

k=1

nk

n
H(Ck) (45)

= H(C|C′). (46)

Therefore, by A2, d(C, C′) = H(C|C′) + H(C′|C). �
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Proof of Property 11.

d(0̂, C) =
∑

k

nk

n
d(1̂, CU

nk
) (47)

=
∑

k

nk

n

(
1 − 1

nk

)
(48)

= 1 − K

n
. (49)

Therefore d(1̂, C) = (1 − 1/n) − (1 − K/n) = (K − 1)/n if |C| = K . This contradicts A4
according to which d(1̂, CU

K) = (K − 1)/K . �

Proof of Property 12. This proof follows the same steps as the proof of Property 10 and is

therefore left to the reader. �

Proof of Property 13. We have consecutively:

d(1̂, 0̂) = h(n) by A5.H, (50)

d(1̂, C) = h(n) − d(C, 0̂) by A1, (51)

d(C, 0̂) =
∑

k

nk

n
h(nk) by A3, (52)

d(1̂, CU
K) = h(n) − d(CU

K, 0̂) = h(n) − K
1

K
h

( n

K

)
= h(n) − h

( n

K

)
. (53)

Since n/K = M is an integer, and recalling A4.H we can rewrite the last equality as

h(K) = h(KM) − h(M)

or equivalently

h(KM) = h(K) + h(M) (54)

for any positive integers K, M . By Lemma 14, this implies that h(n) = C log n for all n =
1, 2, 3, . . . .

It follows that A1–A3 together with A4.H imply essentially the original A4 (up to the multi-
plicative constant C) and therefore d cannot be but proportional to the VI. �

Lemma 14. Let h : {1, 2, . . .} → [0, ∞) be a non-decreasing function satisfying (54) for any
positive integers K, M . Then h(n) = C log n for any n.

Proof (Thanks to Pavel Krivitzky and Nilesh Dalvi for providing each a proof). Let h(2) = C.
We prove that h(n) = C log n. Let a = log(nq) = q log n with q a large positive integer. Then

h(2a�) � h(2a) = h(nq) � h(2�a�), (55)

a�C � qh(n) � �a�C, (56)

a�
a

� h(n)

C log n
� �a�

a
. (57)
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The middle term does not depend on q, while the left and right tend to 1 for q increasing to infinity,
which implies h(n) = C log n. �
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[12] M. Meilă, D. Heckerman, An experimental comparison of modelbased clustering methods, Mach. Learning 42 (1/2)
(2001) 9–29.

[13] B.G. Mirkin, Mathematical Classification and Clustering, Kluwer Academic Press, Dordrecht, 1996.
[14] B.G. Mirkin, L.B. Cherny, Measurement of the distance between distinct partitions of a finite set of objects, Automat.

Remote Control 31 (5) (1970) 786.
[15] W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Amer. Statist. Assoc. 66 (1971) 846–850.
[16] A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970.
[17] R.P. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, 1997.
[18] D.L. Steinley, Properties of the Hubert–Arabie adjusted Rand index, Psychological Methods 9 (3) (2004) 386–396

(simulations of some adjusted indices and of misclassification error).
[19] S. van Dongen, Performance criteria for graph clustering and Markov cluster experiments, Technical Report INS-

R0012, Centrum voor Wiskunde en Informatica, 2000.
[20] D.L. Wallace, Comment, J. Amer. Statist. Assoc. 78 (383) (1983) 569–576.


