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Abstract—Multilayer networks are a useful data structure for
simultaneously capturing multiple types of relationships between
a set of nodes. In such networks, each relational definition gives
rise to a layer. While each layer provides its own set of informa-
tion, community structure can be collectively utilized to discover
and quantify underlying relational patterns. To most concisely
extract information from a multilayer network, we propose to
identify and combine sets of layers with meaningful similarities
in community structure. In this paper, we describe the strata
multilayer stochastic block model (sMLSBM), a probabilistic
model for multilayer community structure. The assumption of
the model is that there exist groups of layers, that we call
“strata”, with community structure described by a common
stochastic block model (SBM). That is, layers in a stratum
exhibit similar node-to-community assignments as well as SBM
probability parameters. Fitting the sMLSBM to a multilayer
network provides a joint clustering of nodes and layers with
node-to-community and layer-to-strata assignments interactively
aiding each other in inference. We describe an algorithm for
separating layers into their appropriate strata and an inference
technique for estimating the stochastic block model parameters
describing each stratum. We demonstrate that our method works
on synthetic networks and in a multilayer network inferred from
human microbiome project data.

Keywords—Stochastic Block Models, Clustering, Multilayer
Networks, Strata, Probabilistic Models

I. INTRODUCTION

Modeling relational information between a set of entities
can often be successfully achieved through a network repre-
sentation. Here, entities correspond to nodes and edges reflect
a specific type of link between them. In many cases, there
are multiple ways to define an edge that can be collectively
analyzed for a more thorough understanding of the data.
Multilayer networks provide a framework to do this, in that
each relational definition leads to a layer in the network [1].
Such data and corresponding networks have shown to be
useful in many contexts, such as, in the comparison of genetic
and protein-protein interactions in a cell [2], in understanding
underlying relationships and community structure across social
networks [3], and in the analysis of temporal networks [4].
Thus, given the inherent mulitiplexity of network data across
fields, there exists a need for the development of appropriate
tools that can leverage information from all layers to elucidate
structural patterns.

Each layer in the network provides its own information

about interactions between nodes and it is useful to ask whether
sets of layers are providing redundant information. Addressing
this question requires the development of an approach to
aggregate networks into a reduced-layer representation that still
effectively conveys all of the information from the original
multilayer network. Aggregating layers can potentially result
in a loss of information, but can also successfully corroborate
the existence of underlying structural patterns. This idea of
reducibility in multilayer networks was previously explored in
[5]; using an information theoretic notion of distance between
pairs of networks, the authors performed hierarchical clustering
of layers and chose the partition that maximized a quality
function reflecting information loss due to aggregation of
layers. While this approach reflects the validity and usefulness
of combining layers, it does not result in a generative model
describing the clusters of redundant layers. To further this
intuition to a probabilistic framework, we have developed the
strata multilayer stochastic block model (sMLSBM), which
seeks to address this reducibility question by agglomerating
sets of layers into structurally similar groups that we refer to
as strata. Moreover, sMLSBM assumes that network layers in
a given stratum have the same underlying generative model
for community structure.

A. Similarities in Community Structure for Network Compar-
ison

There are numerous ways to characterize and compare
structure within and between networks, including motifs
([6],[7]), community structure [8], and network summary
statistics ([9],[10]). In this work, we wish to analyze the layers
in a multilayer network based on their community structure.
Community detection in single-layer networks is an essential
tool for understanding the organization and functional relat-
edness between nodes in a graph. Identifying communities in
networks requires the identification of the best partitioning of
nodes into groups to maximize number of within-community
edges, which can be quantified by multiple approaches, in-
cluding, modularity maximization [11], spectral methods [12],
and through generative probabilistic models [13]. Because
each of these approaches present computational challenges for
efficiently detecting communities, numerous heuristics exist to
accomplish these tasks ([14],[15],[16],[17]).

Here we consider the stochastic block model (SBM) [18], a
popular generative model for community structure in networks.
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The assumption of the SBM is that nodes in a particular com-
munity are related to nodes within and between communities
in the same way. The inference procedure for fitting classical
SBMs to an undirected network with n nodes and k communi-
ties involves learning the two parameters; π and z: π is a k×k
symmetric matrix, where πij gives the probability of an edge
existing between nodes in communities i and j. Further, z is an
n-length array indicating the community memberships for each
node. These parameters are often inferred through a maximum
likelihood approach and once learned, provide information
about the within and between community relatedness. Given
the usefulness of this model for the understanding of node
organization in single-layer networks, it is natural to extend the
intuition to multilayer networks. In this context, the assumption
is that there are shared patterns in community structure across
the layers of a multilayer network and the goal is to define a
stochastic block model that captures this. We define the general
notion of a probabilistic model characterizing a multilayer
network as a multilayer stochastic block model (MLSBM).

B. Related Work in Multilayer SBMs

Providing an alternative to other methods for identify-
ing communities in multilayer networks (e.g., maximizing
multilayer modularity [4]), there have been many recent
developments in related multilayer stochastic block models
([19],[20],[21],[22],[23]). Common to all of these approaches
is that combining layers in the network in a principled way
makes inference more accurate.

In [20], the authors define a version of MLSBM, where
layers can be aggregated with different rules, such as through
AND and OR conditions. They also provide an inference
procedure for assessing whether or not a single-layer network
is actually a projection of a multilayer network.

In [19], the authors explore asymptotic properties for in-
ferring stochastic block model parameters in individual layers,
by using information from all of the other layers, as the
number of layers goes to infinity. As expected, as the number
of layers increases, so does the quality of inference. Fitting
their model to an n-node network with k communities requires
learning an n-length vector z of community assignments across
layers and a k × k matrix of block model probabilities, πl
for each individual layer, l. So, for a multilayer network
with L layers, and k communities, there are k(k + 1)L/2
total parameters to learn due to each π(l), l ∈ {1, 2, . . . , L}.
Particularly, the authors extend the variational approximation
for approximating the maximum likelihood estimates of SBM
parameters introduced in single-layer SBMs introduced in [24]
to the multilayer setting.

The authors of [23] refer to the model in [19] as MLSBM
(multilayer stochastic model) and point out the problems with
this approach as the number of communities grows quickly
or if layers are sparse overall. To address these problems,
they proposed a modification to the model, known as restricted
multilayer stochastic block model (RMLSBM). In this model
instead of learning a set of L πij components for each i,
j pair, each entry in π is fully layer-dependent. In other
words, to determine the probability of an edge between a node
from community i and a node from community j in layer l,
they use a logistic link function and model the probability
as logit(π(l)

ij ) = πzizj + βl. The βl is an offset parameter
representing the particular layer or type of edge. In this model

it is necessary in an L layer graph with k communities to learn
k(k+1)/2+L total parameters. Thus, the maximum likelihood
estimate for RMLSBM is a regularized estimator.

The approach in [21] is similar to [19] and [23] in that
the authors seek to leverage information in all layers by
considering the joint distribution of layers. Using this, they can
estimate quantities such as the marginal probabilities of node
assignments to communities and the edge probabilities within
and between groups. An interesting aspect of their approach is
that they introduce a covariate capturing the coupling between
pairs of nodes. For a network with k communities and L layers,
this requires the estimation of (2L−1)k2+(k−1) parameters.
They demonstrate the usefulness of their model for analysis of
a collaboration network of French cancer researchers.

Finally, Peixto [22] describes two possible generative pro-
cesses for multilayer networks, named edge covariate and
independent model, respectively. In the edge covariate model,
he defines a collapsed graph, where certain edges appear in
particular layers. Collapsing the multilayer network combines
all of the edges from each of the layers. Thus, turning this into
a generative model involves choosing a layer membership for
each edge and sampling edges with a probability conditioned
on adjacent nodes. In the independent case, layers are gener-
ated independently from each other and the only constraint is
that group membership of the nodes are the same across all
layers. The models were defined using a Bayesian framework
and hence lend themselves to the opportunity for statistically
rigorous model selection.

C. Contributions

While the literature regarding multilayer stochastic block
models for multilayer networks has recently grown quickly,
there is still a need for a probabilistic generative model where
there are multiple stochastic block models underlying the
observed network. In this paper, we develop a novel strata
multilayer stochastic block model, sMLSBM, that assigns
individual layers to strata, where a collection of layers in a
stratum is assumed to be derived from the same underlying
generative model. Our method can be viewed as a joint
clustering procedure, where we seek to group layers into strata
with similar node-to-community assignments and stochastic
block model probability parameters. Thus, using community
membership information of nodes in all of the layers within
a stratum helps to more accurately estimate the underlying
stochastic block model probability parameters and vice versa.
Given the large combinatorial challenge of choosing a stratum
assignment and community assignment for each layer and
node within a layer, respectively, we describe an algorithm
that effectively partitions layers into strata and an inference
procedure to learn the stochastic block model parameters for
each stratum’s stochastic block model.

To describe the model, the algorithm for fitting the model
and its performance, the rest of this paper is organized as
follows. In section II, we define the model and an algorithm
for fitting it. In section III, we perform numerical experiments
on synthetic networks, and in section IV, we test the model on
correlation networks constructed from data from the human
microbiome project.



II. SMLSBM: STRATA MULTILAYER STOCHASTIC
BLOCK MODEL

A. Network Definition

Let G(N, E) define a single network with N nodes and
a set of undirected edges, E = {(i, j)}. Further, we define a
multiplex network, which is one kind of multilayer network,
Gl(N, E l), for a particular layer l, where l ∈ {1, 2, · · · , L}.
We denote the collection of all L layers as a set, G, such that
G = {G1,G2, · · · ,GL}

B. Model Definition

For a network with n nodes and k communities, the
objective in a traditional (single-layer) stochastic block model
is to is to learn a k × k matrix, π, and an n × k binary
matrix Z. Here, the parameters π and Z provide information
about the distribution of edges within and between groups and
the community memberships of each node, respectively. In
particular, πqt represents the probability of an edge between
a node in community q and one in community t. Zim is
an indicator variable for whether or not node i belongs to
community m and

∑
m Zim = 1.

Under the sMLSBM, the network layers, Gl(N, E l) are
generated by a set of S different stochastic block models,
where stratum s is parameterized by πs and Zs. Note that
here the parameters πs and Zs for a single stratum are
analogous in meaning to their respective parameters in the
single-layer SBM case. However, since a stratum is composed
of multiple networks, the parameters represent a consensus
for that group. Thus, our objective during inference is to
identify the stratum assignment of each layer and to learn the
collection of strata parameters, Π = {π1,π2, . . . ,πS} and
Z = {Z1,Z2, . . .ZS}. The learned SBM parameters for a stra-
tum represent a consensus for the associated layers, and so in
that sense can be interpreted as reducing the effective number
of layers (cf. [5]). However, strata can also be interpreted as a
way to simply identify layers with similarities in community
structure. Figure 1 shows a toy example of a multilayer
network with 3 strata, where each layer has 36 nodes and 3
communities. Each graph in this figure represents a layer in the
network. The nodes in the layers belonging to each stratum are
colored according to their stratum membership; moreover, it is
easy to see that members of a stratum exhibit high similarities
in community structure. Thus, during inference, we would like
to be able to take all of the layers in the network and partition
them into their appropriate strata.

As part of our procedure, we specify another parameter
that we refer to as the adjacency probability matrix, θs, which
can be computed from πs and Zs. Further, θs is the n × n
matrix, such that θsij gives the probability of an edge between
the communities of nodes i and j in stratum s. That is,
θsij = πszsi zsj , where zsi specifies the community number for
node i in stratum s. Finally, we define the matrix Y = {yls}
to be a binary matrix of indicators specifying whether or not
layer l has been assigned to stratum s, such that

∑
s yls = 1.

C. Inference for sMLSBM

The procedure for fitting sMLSBM requires finding the
layer-to-strata memberships and node-to-community member-
ships that best describe the multilayer network. In other words,

Fig. 1. Objective of MLSBM. Each of the 9 graphs here represents a layer
in the network. Each graph has 36 nodes that are consistent across layers.
The color of nodes in the network represents the stratum membership for that
particular layer. Clearly, graphs within a stratum exhibit strong similarities in
community structure. We would like to partition each layer into its appropriate
stratum, and learn the associated parameters, π and Z.

we can write down the marginal likelihood for the collection
of graph layers, G, as,

p(G | Π) =
∑
Z

∑
Y

p(G,Z,Y | Π). (1)

We assume the probability of an edge between two nodes in
layer l belonging to stratum s can be modeled as a Bernoulli
random variable, based on the community membership of the
nodes. In particular, p(Glij = 1) ∼ Bernoulli(πszizj ). Since the
Y and Z are both latent quantities, summing over all of their
possible values quickly becomes intractable. Thus, we have
developed a two step approach to reduce the problem to only
have the latent variable, Z . In particular, we use clustering to
come up with an estimate for Y that we can further use to
infer Z . We break this learning process in to two phases.

1) Phase I: Phase I for the fitting of sMLSBM to a network
is comprised of two parts. First, a stochastic block model is fit
to each individual layer, and then layers are clustered based on
the similarities of their inferred block model parameters and
node-to-community memberships, as specified by π and Z,
respectively. For the single-layer stochastic block model fits,
we use the the inference method described in [24]. Here, the
authors used a variational inference technique to approximate
the maximum likelihood estimates for the stochastic block
model parameters. For the set of L layers, this produces
π and Z parameters for each layer, as denoted by Π =
{π1,π2, . . . ,πL} and Z = {Z1,Z2, . . .ZL} (that is, at this
stage of the procedure, each layer is temporarily treated as its
own stratum). Using the fitted πl and Zl for a given layer, l, we
can construct the corresponding adjacency probability matrix,
θl. Doing this for each layer results in a collection of adjacency
probability matrices, Θ = {θ1,θ2, · · · ,θL}. Now, we seek an
initial partition of layers into strata, based on the adjacency
probability matrices, where the total distance across strata
between the stratum consensus adjacency probability matrix



and the adjacency probability matrices of stratum member
layers is as small as possible. This is accomplished by treating
each θ as a feature vector and applying k-means clustering
with S centers. S can be known a priori, or approximated
with a measure such as the gap statistic [25]. This gives us
an initial estimate for Y. While this procedure initially treated
each layer as a separate stratum, but provides a principled
agglomeration of multiple layers into (ideally) fewer than L
strata.

2) Phase II: After a first-pass approach for assigning layers
to strata, we begin our iterative phase to more effectively esti-
mate model parameters and the correct layer-to-strata assign-
ments. Now, we would like to find the consensus parameters,
πs, and Zs that maximize the likelihood of the graphs in a
particular stratum. We let As = {A1,A2, . . . ,Am} denote
the collection of networks corresponding to the m graphs in
stratum s, where each A is the corresponding n×n adjacency
matrix.

We now proceed to maximize the likelihood in each stra-
tum, extending the framework of [24] to a multilayer context.
Note that this is similar to [19], except that we are not aiming
to infer an SBM probability matrix for each layer, individually.
In particular, the complete data-log-likelihood for stratum s can
be written as,

p(As,Zs) = p(As | Zs)p(Zs). (2)

We now introduce a parameter αsq for stratum s and
community q, representing the probability that a node in a layer
in stratum s belongs to community q. So, αsq is p(Zsiq) = 1,
with the constraint that

∑
q α

s
q = 1. Further, we let Ls be the

set of layers belonging to stratum s. Then,

p(Zs) =
∏
i

∏
q

αsq
(Zs

iq). (3)

Also,

p(As | Zs) =
∏
l∈Ls

∏
i<j

∏
qt

πsqt
Al

ij (1− πsqt)(1−A
l
ij). (4)

Then, the complete-data log-likelihood for the graphs in
stratum s can be expressed as,

logP (As,Zs) = log(P (Zs)) + log(P (As | Zs))
=

∑
i

∑
q

Zsiq log(α
s
q)

+
∑
l∈Ls

∑
i<j

∑
qt

Alij log(π
s
qt)

+
∑
l∈Ls

∑
i<j

∑
qt

(1−Alij) log(1− πsqt).

(5)

Problems of this variety involving the need to compute
maximum likelihood estimates with incomplete data are typ-
ically addressed with the expectation maximization (EM)
framework [26]. Doing so requires the ability to compute

P (Zs | As); however, [24] showed calculating the conditional
distribution is intractable on the single-layer network case. To
address this challenge, we can use a variational approximation,
as shown in ([24],[19],[21]). In general, the variational approx-
imation seeks to optimize a lower bound on the log-likelihood.
To do this, we first approximate the conditional distribution,
P (Zs | As), with RAs , where,

RAs(Zs) =
∏
i

h(Zsi·; τ i·). (6)

Here, τ s = {τsiq} represents an approximation of the probabil-
ity that node i belongs to community q in stratum s. Further,
h(·) represents the multinomial distribution, with parameters,
τ si·. Using this, we define the variational approximation as ,

J (RAs) = ``(As)− KL(RAs(Zs), P (Zs | As)). (7)

Here, `` represents log likelihood and KL is the Kullback-
Leibler divergence.

Through maximizing J (RAs), we minimize the KL diver-
gence between the true conditional distribution, P (Zs | As),
and its approximation, RAs(Zs). Moreover, we follow the
derivation in [24] and rewrite J (RAs) as,

J (RAs) =
∑
i

∑
q

τsiq log(α
s
q)

+
∑
l∈Ls

∑
i<j

∑
qt

τsiqτ
s
jt[A

l
ij log(π

s
qt)]

+
∑
l∈Ls

∑
i<j

∑
qt

τsiqτ
s
jt[(1−Alij) log(1− πsqt)]

−
∑
i

∑
q

τsiq log(τ
s
iq).

(8)

We can now differentiate J (RAs) and use Lagrange mul-
tipliers to enforce constraints (i.e. probabilities summing to 1),
with respect to each parameter to compute the updates. Doing
so yields the following, where the hat notation symbolizes the
current best estimate for the given parameter:

α̂sq =
∑
i

τ̂siq/n , (9)

π̂sqt =
∑
l∈Ls

∑
i<j τ̂

s
iq τ̂

s
jtA

l
ij∑

i<j τ̂
s
iq τ̂

s
jt

, (10)

τ̂siq ∝ α̂sq
∏
l∈Ls

∏
i<j

∏
t

[π̂sqt
Al

ij (1− π̂sqt)1−A
l
ij ]τ̂

s
jt . (11)

We alternate between updating τ̂ s and π̂s until conver-
gence. When convergence has occurred, we refer to the result-
ing estimates as the consensus τ s and πs for stratum s. Since
τ s and πs are computed in terms of each other, we can use one
of the consensus parameters to compute the other parameter
in individual layers. This allows us to determine whether or
not the stratum consensus estimates affect the estimation of
analogous parameters in the single-layer case. Particularly, it
indicates whether the stratum consensus parameters are proper



descriptions of the node-to-community assignments and the
stochastic block model parameters in single layers of the
stratum. We are now able to represent each layer by the
adjacency probability matrix computed in two different ways,
letting θ(τ ,π) represent the τ and π being used to compute
the adjacency probability matrix for layer l. Specifically, we
compute,

θl(1) = θ
l(τ s,πl) (12)

with the π that provides the best match to layer l using
information about node-to-community assignments given by
τ s.

θl(2) = θ
l(τ l,πs) (13)

with the τ that provides the best match to layer l using
information about the stochastic block model probabilities
given by πs.

That is, for each layer in stratum s, θl(1) uses the consensus
τ computed for stratum s and the π computed to best fit a
particular layer. Conversely, θl(2) uses the consensus π from
the stratum paired with the single-layer estimates for τ to
compute the adjacency probability matrix for each layer in
the stratum.

During the phase I, we took the adjacency probability
matrix for each of the L layers and clustered these matrices
using k-means clustering. We employ a similar procedure
here, but instead of clustering L matrices, we now cluster 2L
matrices, since each layer is represented in two different ways.
Moreover, clustering these 2L matrices yields two cluster
assignments for each layer. The total number of partition
combinations induced by the two representations of each layer
determines the number of strata in the next iteration. Ideally,
both representations of a layer will receive identical cluster
assignments for an individual layer. However, an interesting
case arises when the two representations induce different
stratum assignments on the same layer because this implies
that the consensus π and single-layer τ (and vice versa) do
not have sufficient agreement. We iterate phase II until the
assignment of layers into strata does not change. Theoretically,
new strata could arise in every iteration, so one could specify
a maximum number of iterations to terminate the process.
However, we did not observe this problem in any of our
synthetic or real data experiments.

III. NUMERICAL EXPERIMENTS

A. Comparison of sMLSBM to other SBM Approaches

To demonstrate a situation where sMLSBM would be
useful, we designed a synthetic experiment and compared
the results of using different SBM approaches: i) fitting a
stochastic block model to each layer individually (denoted
single-layer SBM), and ii) fitting a single SBM to all of
the layers (denoted single SBM). We generated a multilayer
network, where each layer has n = 200 nodes, k = 5
communities and a mean degree, c, of c = 25. We specified an
sMLSBM with 3 strata and 10 layers per strata. Note that this
results in 30 total layers. We define the πs for each stratum

in terms of two parameters, pin and pout, giving the within-
community edge probabilities and between-community edge
probabilities, respectively. That is, the diagonal elements of
each π are pin and the off-diagonal values are pout. The pin
values for strata 1,2 and 3 are assigned to be .6,.45 and .35,
respectively. Given the mean degree for networks belonging to
each stratum is 25, this gives corresponding values of 0.00625,
0.04375, and 0.06875 for pout. In figure 2 A, we show a
sample of a graph plotted from strata 1, 2, and 3 in panels i,
ii and iii, respectively. Nodes are colored by their community
assignments in stratum 1. Further, we can see that the node-
to-community assignments are different in each stratum and
that the extent of block structure decreases from stratum 1 to
stratum 3.

We attempt to learn parameters and community assign-
ments for each layer with 3 methods: the single-layer SBM
involves fitting an SBM to each layer separately, the single
SBM fits one SBM across all of the layers, and strata SBM fits
an SBM to each stratum. First, for each layer, we quantified the
error (`2 norm) between its true π parameter, and the π learned
to describe it under each of the 3 models. The mean errors
across layers under each model are shown in figure 2 B. Sec-
ond, we computed the normalized mutual information (NMI)
[27] between the true Zs, (node-to-community assignments)
and the inferred Zs under each model. Figure 2 C shows the
mean NMI for community assignments across layers.

B. Two-Strata Synthetic Experiment

To test how sMLSBM performs in comparison to a baseline
k-means clustering of adjacency matrices and for different pin
and pout parameters, we created a synthetic experiment with
2 strata. In each simulation, layers in the network have 200
nodes, 5 communities and a mean degree of 50. Additionally,
there are 100 total layers and 50 were assigned to each stratum.
Thus, in experiments in figure 3 we hold pin and consequently
pout constant at 0.5 and 0.19, respectively in stratum 1. Then
in each separate experiment (horizontal axis), we choose a pin
value for stratum 2 and again choose the corresponding pout
value such that the mean degree is 50.

In figure 3 A we quantify the quality of layer-to-strata
assignment with normalized mutual information. Each numer-
ical experiment consists of running 50 simulations with a pin
value specified by the horizontal axis. Fitting sMLSBM to the
networks in a particular simulation results in a vector of strata
assignments, ŷ. Thus, we compute the NMI between ŷ and
the true y for the strata (green curve). As a baseline we also
perform k-means clustering of the adjacency matrices (purple
curve). We can see that as the pin of model 2 approaches the
pin of model 1 inference becomes more difficult, as expected.
We can also see that in the experiments having a pin parameter
close to 0.5 in model 2, sMLSBM dramatically outperforms
k-means.

Since phase II of fitting sMLSBM is an iterative process,
we recorded the mean number of iterations required for the
strata assignments to converge. Figure 3 B plots the mean
number of iterations (vertical axis) against the corresponding
experimental parameter. Again, for pin values close to 0.5,
more iterations are required for sMLSBM to converge.

Finally, we analyzed the mean quality of node to com-
munity assignments across all layers. That is, after fitting
sMLSBM, each layer was assigned to a particular stratum



Fig. 2. Mixture of SBMs Synthetic Experiment. A. We specified a
model with 3 strata and 10 layers per stratum. Panels i, ii and iii represent
sample networks from strata 1, 2 and 3, respectively. Note that nodes in all
networks are colored according to their community membership in graph i.
Each network has n = 200 nodes, mean degree, c = 25. The pin parameters
for strata 1,2 and 3 are .6, .45 and .35, respectively. Corresponding values of
pout were selected to maintain the desired mean degree. B. We fit 3 types
of models to the 30 networks such that each model yields a representation,
πl for layer l. The three models fit are 1) Single Layer SBM: fitting an
individual SBM to each layer, 2) Single SBM: fitting a single SBM to all of
the layers, and 3) Strata SBM: fitting SBMs based on strata memberships. On
the vertical axis we plot the mean `2 norm error between each layer’s true
underlying πl and that inferred under the given model. C. For the community
assignments inferred for each layer, given by Zl, under each of the 3 models,
single-layer SBM, single SBM and strata SBM, we computed the normalized
mutual information (NMI) between the true Zs and Zl.

with the corresponding community membership parameter, Zs.
Thus, we let the community memberships for all layers within
the stratum be represented by this parameter and computed the
NMI between the inferred Zs representation and the true Zs.
Figure 3 C shows the mean NMI (vertical axis) against the
pin experiment parameters for model 2. As reflected by the
low NMI, detectability of communities is difficult in networks
where the pin for model 2 is less than 0.5.

IV. CORRELATION NETWORKS FROM THE HUMAN
MICROBIOME

As a real-world motivation for sMLSBM, we consider
correlation networks constructed from data from the human
microbiome project [28]. For various sites on the body, the
human microbiome project has successfully collected multiple
human samples in order to better understand interactions
between bacterial species. In this context, network inference
is particularly interesting, as such methods aim to capture the
signed relationships between various organisms. Microorgan-
isms exhibit intricate ecologies within the gut of their human
host and particular body sites have been shown to possess
characteristic interactions. Further, certain interactions between
microbes can often be associated with particular health and

Fig. 3. 2 Stratum Synthetic Experiment. We considered numerical
experiments consisting of multilayer networks with 200 nodes, 2 strata and
50 layers per stratum. Within-community edge probability, pin = .5 for
stratum 1 and a corresponding pout was chosen such that the mean degree,
c = 50. Numerical experiments consisted of varying the within-community
edge probability (pin) for stratum 2, and measuring 3 quantities. Results
shown correspond to mean and standard deviation obtained from 50 random
networks. A. As a baseline, we compared the performance of sMLSBM to k-
means clustering of the adjacency matrices. Curves show the mean NMI across
50 simulations and error bars show standard deviation. B. The mean number
of iterations (NOI) required for sMLSBM to converge. C. Each numerical
experiment resulted in a node-to-community membership vector for each layer,
depending on its strata assignment. We used NMI to compare this vector to
the true node-to-community assignments in each layer. Here we have plotted
the mean NMI across layers as a function of experimental parameter.

disease states [29]. Microbiome data is typically collected
through metagenomic sequencing and reads are further binned
into groups, known as operational taxonomic units (OTUs), to
represent particular organisms. The nature of this count-based
sequencing data makes network inference challenging, and is
thus an interesting field in itself. To demonstrate the potential
use for sMLSBM in the context of the human microbiome,
we applied MLSBM to networks constructed from the SparCC
[30] network inference method.

SparCC is a correlation network inference method that
aims to approximate the linear Pearson correlation between
components in a system. Their method accounts for the ex-
tent of diversity in the microbial community, which plays a
significant role in detecting valid interactions. Furthermore,
networks are constructed with the assumptions that the number
of components in the system (e.g. OTUs) is large and that the
correlation network should be sparse. As supplemental data
in their paper, the authors provided their inferred microbial
interaction networks for 18 sites in the human body. The
edges in these networks have positive and negative real-
valued weights, based on the results of SparCC inference. In



Fig. 4. Hierarchical Clustering of SparCC Networks Hierarchical cluster-
ing was performed on the thresholded binary adjacency matrices corresponding
to the interactions between OTUs at each body site. Leaves of the tree
correspond to body sites and colored boxes around the leaves indicate the strata
assignment, according to sMLSBM. The variability in hierarchical clustering
results, depending on where the tree is cut, highlights the usefulness of fitting
sMLSBM.

this analysis, we converted the SparCC networks into binary
adjacency matrices by allowing a link only if the SparCC edge-
weight between two OTUs was at least 0.2. To convert the 18
single-layer networks corresponding to species interactions in
18 body sites, we found the collection of nodes (OTUs) that
occurred in at least 2 of the layers. This resulted in 213 unique
OTUs (nodes) for our multilayer network analysis.

We ran sMLSBM on the multilayer network and found
6 strata. The partitions of layers (body sites) into strata
was interesting because similar body sites tended to group
together. We compared the sMLSBM results to those obtained
performing hierarchical clustering of the networks. Figure 4
shows the dendrogram, depicting the hierarchical clustering
result. Also captured in this figure at the sMLSBM results.
Leaves correspond to body sites and the colored boxes indicate
strata assignments assigned with sMLSBM. We note that the
orange, red, blue, green, and purple strata (as colored in
the figure) are appropriate in terms of their location in the
body. For example, it makes sense that the saliva, hard palate
and tongue dorsum layers have very similar microbe species
interaction networks. However, the brown stratum seems to
be a miscellaneous cluster. Using the dendrogram to compare
the sMLSBM results with hierarchical clustering, we see that
the quality of the clustering partition is highly dependent on
where the tree is cut. It is difficult to find a cut of the tree
that partitions the body sites in a way that is as meaningful
as the result of fitting sMLSBM. Moreover, fitting sMLSBM
also provides a generative model for each stratum.

To further visualize the quality of sMLSBM, we can
highlight 4 of the 6 strata. Each row of figure 5 provides infor-
mation about the networks and their fitted sMLSBM models
in a particular stratum. Each grid in the figure represents the
binary adjacency matrix encoding interactions between OTUs.
Edges, or a 1 in the matrix, are colored black. The first column
of each row (pink) is a sample network generated with the
learned model parameters of that stratum, πs and Zs. Columns
2 and 3 (blue) show adjacency matrices for two representative
layers within the stratum. Note that while some strata have

Fig. 5. Visualization of Strata in SparCC Networks. We visualize the
adjacency matrices corresponding to the SparCC networks corresponding to
body sites in each stratum (empirical networks) in blue, as well as a sample
network generated from the inferred stratum model parameters, πs and Zs,
in pink. Black dots indicate an edge in the adjacency matrix. The following
gives a legend for the networks in the figure in terms of the row and column
(c) indices (rows go top to bottom). row 1: c2-saliva, c3-tongue dorsum. row
2: c2-subgingival plaque, c3-supra gingival plaque. row 3: c2-l antecubital
fossa, c3-r antecubital fossa. row 4: c2-mid vagina, c3-vaginal introits.

more than two members, we only show two example members
in this figure, for illustrative purposes. It is easy to see the
block structure that naturally arises in all of the networks,
corroborating the usefulness of the stochastic block model. The
caption of figure 5 provides an indication of what each grid
represents. Finally, model sample networks closely mimic the
members of its stratum in terms of community structure.

V. CONCLUSION AND FUTURE WORK

We developed a novel model for multilayer stochastic block
models and an associated algorithm to jointly partition layers to
strata and nodes to communities. Our model assumes that lay-
ers belonging to a stratum have the same underlying stochastic
block model for community structure. To fit sMLSBM to a
multilayer network, we iteratively alternate between rearrang-
ing layer-to-strata assignments and updating the model pa-
rameters for each stratum. Having multiple networks within a
stratum and hence multiple realizations from some underlying
model helps to make inference more accurate. Particularly,
more accurate assignments of nodes-to-communities within
a stratum leads to improved estimation of SBM probability
parameters, and vice versa. If layers from different models
were all considered to have arisen from the same SBM, both
the community memberships and SBM parameters used to
represent each layer would be noisier and inaccurate. Our
model allows for an understanding of the similarities between



layers in a network, in terms of their community structure. The
ability to identify strata within collections of networks holds
promise in numerous applications.

There are several extensions to sMLSBM that could make
the approach more accurate and applicable to a wider range
of applications. First, as always in the context of stochastic
block models, it is useful to consider the degree-corrected [31]
and overlapping community [31] varieties. Next, sMLSBM
as implemented here, is only appropriate in unweighted,
undirected networks. Extensions analogous to weighted and
directed networks as shown in [32] and [33] could be quite
useful. Next, we could consider the case where there exist
layers that should not belong to any stratum and should be
assigned to singleton clusters.

Finally, the microbiome example shown in the paper re-
veals some interesting computational biology questions that
could facilitate the development of more advanced network
tools. To construct the multilayer network, negative edges were
thresholded away. However, an understanding of antagonistic
relationships between microbes is interesting. Thus, it would
be useful to develop a signed version of sMLSBM, where
edges could be modeled as either positive, or negative.

The rise of a greater number of multilayer network datasets
is providing the need for additional tools for the construction
and analysis of such networks. The sMLSBM provides a new
method to find signal in inherently noisy and complex network
data.
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