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Abstract—Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of

nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community

structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely

extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in

community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for

multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined

such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers

in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer

network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one

another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for

estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network

inferred from data collected in the Human Microbiome Project.

Index Terms—Stochastic block models, clustering, multilayer networks, strata, probabilistic models
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1 INTRODUCTION

MODELING relational information between a set of enti-
ties can often be successfully achieved through a net-

work representation. Here, entities correspond to nodes and
edges reflect some connection between them. In many
applications, there are multiple ways to define an edge that
can be collectively analyzed for a more thorough under-
standing of the data. Multilayer networks provide a frame-
work to do this, in that each relational definition leads to a
new layer in the network [1], [2], [3]. Such data and corre-
sponding networks have shown to be useful in many
contexts, such as, in the comparison of genetic and protein-
protein interactions in a cell [4], in understanding underly-
ing relationships and community structure across social
networks [5], and in the analysis of temporal networks [6].
Furthermore, recent advances in the mathematical founda-
tions for multilayer networks have made analysis of these
types of data more feasible. In particular, [3] has introduced
a mathematical formalism with tensors. Doing so allows for
the calculation of important network quantities, such as cen-
trality and clustering coefficients, as well as modularity [6].
Thus, given the inherent multiplexity of network data
across fields as well as recent theoretical developments for

handling these types of data, there exists a need for the
development of appropriate tools that can leverage informa-
tion from all layers to elucidate structural patterns.

Each layer in a multilayer network provides its own
information about interactions between nodes, and it is use-
ful to ask whether sets of layers are providing redundant
information. Addressing this question requires the develop-
ment of an approach to compress networks into a reduced-
layer representation such that it effectively retains the infor-
mation from the original multilayer network. Aggregating
layers can potentially result in a loss of information, but it can
also successfully corroborate the existence of underlying
structural patterns.Moreover, this can lead to improved iden-
tification of structural patterns, including enhanced commu-
nity detection [7]. This idea of reducibility in multilayer
networks was previously explored in [8]: using an informa-
tion-theoretic notion of distance between pairs of network
layers, the authors performed hierarchical clustering of layers
and chose the partition that maximized a quality function
reflecting information loss due to the aggregation of layers.

Inspired by the ideas in [8] that groups of layers often
provide redundant information, we seek to further explore
this idea to identify sets of layers, which we denote as
“strata”, with each stratum described by a single probabilis-
tic model based on community structure. This effectively
amounts to defining local probabilistic network models, and
is analogous to biclustering [9] or co-clustering [10] prob-
lems. Moreover, our method can be regarded as a joint
clustering procedure, in which the nodes and layers of net-
works are clustered simultaneously. Just as in [10], where
the objective is to jointly cluster words and documents such
that joint word-document subgroups correspond to particu-
lar topics, our objective is to cluster network layers such that
each stratum is a set of layers with a characteristic commu-
nity structure. To achieve this goal, we have developed the
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strata multilayer stochastic block model (sMLSBM). We
additionally emphasize that by collectively utilizing similar
layers in a principled way, we can achieve more robust com-
munity detection and parameter inference for the probabilis-
tic community detectionmodels that describe each stratum.

1.1 Network Comparison Based on Community
Structure

The problem of aggregating layers in a multilayer network
is closely related to the problem of clustering networks.
That is, given an ensemble of networks, one aims to identify
sets such that networks within a set have similar character-
istics. These characteristics, or “features” in this context, can
describe any of the following: micro-scale structural proper-
ties such as subgraph motifs [11], [12]; multiscale properties
such as community structure [13], [14], [15], the spectra of
network-related matrices [16] and by defining latent roles
[17]. Although clustering layers in a multilayer network is
closely related to clustering networks in an ensemble, these
are distinct problems with different difficulties and nuan-
ces. We focus on the prior pursuit; however, we expect for
certain network ensembles that it will be beneficial to mod-
ify and apply our methods to the clustering of networks.

In this work, we analyze and compare layers in a
multilayer network based on their community structure.
Community detection in single-layer networks is an
essential tool for understanding the organization and func-
tional relatedness between nodes in a network [18], [19].
Although there are many definitions for what constitutes
a “community” [20], one often assumes an “assortative
community” in which there is a prevalence of edges
between nodes in the same community as compared to the
amount of edges connecting these nodes to the remaining
network. In seeking to identify such communities, numer-
ous approaches have been proposed, including those based
on maximizing a modularity measure [21] and fitting a gen-
erative probabilistic model [22]. Because each of these
approaches present computational challenges for efficiently
detecting communities, numerous heuristics exist for devel-
oping practical algorithms [19], [23], [24], [25], [26].

While our approach is to define a probabilistic model for
multilayer community structure, we note that there have
previously been approaches to understand similarities in
network ensembles that are grounded in exploiting similari-
ties in community structure between networks. In [14], the
authors seek to partition a group of networks into sub-
groups through construction of a network of networks
(NoN). Communities in the NoN are chosen such that the
networks representing the nodes are sufficiently similar in
their underlying community structure. In one significant
application of this method, the authors clustered gene co-
expression networks and found an increased number of sig-
nificant functional enrichment categories for biological pro-
cesses. Similarly, in [15], the authors explore mesoscopic
similarity between layers using an informational theoretic
approach. While they have designed their method to handle
any feature of network architecture, they highlight their
ability to quantify similarity between network layers based
on node-to-community assignments in the layers.

In seeking a statistically-grounded approach for studying
communities in multilayer networks, we consider the

stochastic block model (SBM) [27], a popular generative
model for community structure in networks. The assump-
tion of the SBM is that nodes in a particular community are
related to nodes within and between communities in the
same way, thus allowing SBMs to describe several types of
communities (e.g., assortative, disassortative, core-periph-
ery, etc. [20], [28]). There are many other appealing aspects
of stochastic block models; for example, a model-based
approach allows for the denoising of networks through the
removal of false edges and the addition of missing edges
[22], [29]. The inference procedure for fitting SBMs to an
undirected network with N nodes and K communities
involves learning the two parameters, pp and Z. Parameter pp
is aK �K symmetric matrix, where pmn gives the probabil-
ity of an edge existing between a given node in community
m and another node in community n. Matrix Z is an N �K
indicator matrix, wherein each binary entry Zim indicates
whether or not node i is in community m. Each row of Z is

constrained such that
PK

m¼1 Zim ¼ 1, i.e., each node only

belongs to 1 community. We also define vector zz, which has
entries zi ¼ argmaxmfZimg that indicate the community to
which node i belongs. For a given network, these parameters
are often inferred through a maximum likelihood approach,
and once learned, they provide information about the within
and between community relatedness.

1.2 Related Work on Multilayer SBMs

Due to the ubiquity of network data with multiple network
layers, community detection in multilayer networks consti-
tutes an important body of research. Important directions
include generalizing the modularity measure [6] and study-
ing dynamics [30] for this more general setting.

Given the usefulness of SBMs for the understanding of
node organization in single-layer networks, it is important to
extend SBMs to the multilayer framework, and indeed this
direction of research is receiving growing attention [7], [31],
[32], [33], [34]. In this context, the general assumption is that
there are shared patterns in community structure across the
layers of a multilayer network, and the goal is to define and
identify a stochastic block model that captures this structure.
These works have explored many types of applications that
can arise involving multilayer networks, and have therefore
given rise to several complementary models for multilayer
stochastic block models (MLSBMs). We now briefly summa-
rize this previous work that is very related, but notably dif-
ferent, from themodel we study herein.

In Refs. [7], [31], [32], the authors studied situations in
which many layers follow from a single SBM. In these
instances, it is possible to obtain improved inference of
the SBM parameters by incorporating multiple samples
from a single model. For example, in Ref. [7] the authors
considered an increasing number of layers, L, and explored
asymptotic properties of the estimated SBM parameters. Spe-
cifically, they fit an SBM to each individual layer in a way that
utilizes the information from all layers, and they showed con-
vergence of these estimators to their true values as L ! 1.
For a networkwithL layers andK communities in each layer,
their approach requires an estimate of the community assign-

ment matrix Zl and probability matrix ppl for each layer l, the
latter of which involves learning KðK þ 1ÞL=2 parameters.
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To this end, the authors extended the variational approxima-
tion for approximating the maximum likelihood estimates of
SBM parameters introduced in single-layer SBMs introduced
in [35] to themultilayer setting.

Ref. [7] was followed up by Ref. [31], wherein the authors
addressed issues that can arise for the model when K and/
or L is large, or if the network is sparse.They proposed a
modified model called the restricted multilayer stochastic
block model (rMLSBM). In this model, instead of learning a

set of L independent parameters, pl
mn, for each pair, ðm;nÞ,

each entry in pp is fully layer-dependent so as to produce a
reduction in the number of free parameters. Specifically, to
determine the probability of an edge between a node from
community m and a node from community n in layer l, they
use a logistic link function and model the probability as

logitðpl
mnÞ ¼ pmn þ bl. The bl is an offset parameter repre-

senting the particular layer or type of edge. In this model, it
is necessary to learn KðK þ 1Þ=2þ L total parameters.
Thus, the maximum likelihood estimate for an rMLSBM is a
regularized estimator.

Consistent with the theme of fitting a single block
model to a collection of layers, Ref. [32] is similar to
Refs. [7] and [31] in that the authors seek to leverage
information from all layers by considering the joint
distribution of layers. Using this, they estimated quanti-
ties such as the marginal probabilities of node assign-
ments to communities and the edge probabilities within
and between groups. An interesting aspect of their
approach is that they introduce a covariate capturing the
coupling between pairs of nodes. For a network with K
communities and L layers, this requires the estimation of

ð2L � 1Þ K2 þ ðK � 1Þ parameters.
We summarize Refs. [33] and [34], which provide tech-

niques to determine whether a single layer network is the
result of an aggregation procedure in a multilayer net-
work. In Ref. [33], the authors defined a version of multi-
layer stochastic block model and an inference procedure
for assessing whether or not a single-layer network was
actually obtained from an aggregation of layers in a mul-
tilayer network; they considered the aggregation of layers
using boolean rules. Ref. [34] describes two possible
generative processes for multilayer networks: the edge-
covariate and independent-layer models. In the edge-
covariate model, an aggregated network is defined in
which a given edge ði; jÞ only appears in a single layer.
Aggregating the layers in a multilayer network into a sin-
gle network representation combines all of the edges
from each of the layers. Thus, the translation of this idea
into a generative model involves choosing a layer mem-
bership for each edge and sampling edges with a proba-
bility conditioned on adjacent nodes. In the independent-
layer model, layers are generated independently from
each other and the only constraint is that group member-
ship of the nodes are the same across all layers.

While motivation to pursue this problem originated from
[8], we point out that our approach does not provide a
method for aggregating layers or reducing the number of
layers in the network. Instead, it can in a sense compress the
network in that the learned stochastic block model parame-
ters for each stratum can be used to generate a sample net-
work to serve as a consensus for that stratum.

1.3 Contributions

While the literature on MLSBMs has recently grown
quickly, there is still a need for a probabilistic generative
model that allows for the layers in a multilayer network to
be described by multiple SBMs. To this end, we developed
a novel multilayer stochastic block model, sMLSBM, that
assigns network layers into disjoint sets that we call strata,
where a collection of layers in a given stratum are assumed
to be samples from the same underlying generative model.
Our method can be viewed as a joint clustering procedure,
where we seek to group layers into strata and nodes into
communities. That is, we seek to simultaneously find layer-
to-strata and node-to-community assignments.

In order to address practical applications that can involve
multilayer networks with several strata, layers, communi-
ties and nodes, we introduce an algorithm that effectively
partitions layers into strata and an inference procedure to
learn the SBM parameters for each stratum. Importantly,
these two steps—assigning nodes to communities and
layers to strata—are combined in an iterative algorithm so
that an improvement in community detection can lead to an
improvement in the clustering of layers into strata, which
can iteratively lead to further improvement in community
detection, and so on.

To describe the model, the algorithm for fitting the
model, and its performance, the remainder of this paper is
organized as follows. In Section 2, we define the model and
an algorithm for fitting it. In Section 3, we perform numeri-
cal experiments on synthetic networks. In Section 4, we test
the model on correlation networks constructed from data
from the Human Microbiome Project.

2 SMLSBM: STRATA MULTILAYER STOCHASTIC

BLOCK MODEL

2.1 Network Definition

Let GðN; EÞ define a single network with N nodes and a set
of undirected edges, E ¼ fði; jÞg. We define a multiplex net-
work, which is one kind of multilayer network [1], [2], by

defining a set of network layers, GlðN; ElÞ, where l 2 L and
the set L ¼ f1; 2; . . . ; Lg indicates the layers’ indices. We
denote the collection of L layers as a set, G, such that

G ¼ fG1; G2; . . . ; GLg makes up the multiplex network and
each element of the set is the network representing a layer.

Furthermore, we define A ¼ fA1;A2; . . . ;ALg to be the cor-
responding adjacency matrix representations of the network
layers in G.

2.2 Model Definition

Under the sMLSBM, the network layers, GlðN;ElÞ are
assumed to be generated by a set of S stochastic blockmodels,
where the layers in stratum s 2 f1; 2; . . . ; Sg, are parameter-
ized by pps andZs (or equivalently, vector zzs, which has entries
zsi ¼ argmaxmfZs

img ).Note that the parameterspps andZs for a
single stratum are analogous in meaning to their respective
parameters in the single-layer SBM case (see Section 1.1). For
each stratum s, we let Ls � L denote the set of layers corre-

sponding to s, so that L ¼ S
sLs and ; ¼ Ls \ Lt for all

s; t 2 f1; . . . ; Sg, s 6¼ t. We let Ls ¼ jLsj denote the number of
layers in strata s so that

P
s L

s ¼ L. Finally, we allow the
number of communities,Ks, to vary across the strata.
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For a given multilayer network, our objective during
inference is to identify the stratum assignment of each
layer and to learn the collection of strata parameters, PP ¼
fpp1;pp2; . . . ;ppSg and Z ¼ fZ1;Z2; . . .ZSg. The learned SBM
parameters for a stratum represent a consensus for the
associated layers, and so in that sense can be interpreted
as reducing the effective number of layers [8]. However,
strata can also be interpreted as a way to simply identify
layers with similarities in community structure. Fig. 1
shows a toy example of a multilayer network with S ¼ 3
strata, where each layer has N ¼ 36 nodes and K ¼ 3
communities. Each individual network in this figure rep-
resents a layer in the network. The nodes in the layers
belonging to each stratum are colored according to their
stratum membership; moreover, it is easy to see that
layers of a stratum exhibit high similarities in community
structure.

As part of our procedure, we specify another parameter
that we refer to as the adjacency probability matrix, uus,
which can be computed from pps and Zs. Specifically, uus is an
N �N matrix such that usij gives the probability of an edge

between nodes i and j in stratum s. That is, usij ¼ ps
zs
i
zs
j
,

where zsi specifies the community number for node i in stra-
tum s. Finally, we define the matrix Y of size L� S, wherein
an entry Yls is a binary indicator of whether or not layer l is
assigned to stratum s. Note that

P
s Yls ¼ 1. We also define a

vector yy, which has entries yl ¼ argmaxsfYlsg to indicate the
strata to which layer l belongs.

2.3 Inference for sMLSBM

The procedure for fitting an sMLSBM to a given
network requires finding the layer-to-strata memberships

and node-to-community memberships that best describe
the multilayer network. For notational convenience, we
introduce hat notation to represent the learned parame-
ter estimate from the inference procedure. We can write
down the marginal likelihood for the collection of net-
work layers, G, as,

pðG jPPÞ ¼
X

Z

X

Y

pðG;Z;Y jPPÞ: (1)

We assume the probability of an edge between two nodes in
layer l belonging to stratum s can be modeled as a Bernoulli
random variable, based on the community membership of

the nodes. In particular, pðAl
ij ¼ 1Þ � Bernoulliðps

zizj
Þ.

Since Y and Z are both latent quantities, searching over
all possible values quickly becomes intractable. To tackle
this issue, we develop a two-phase algorithm that incor-
porates a clustering algorithm for choosing the best Y.
This greedy approach leads to a significant reduction for
the size of the search space since only Z must be statisti-
cally inferred. Specifically, during Phase I, we infer an
SBM for each layer in isolation, and we cluster together
sets of layers that have similar SBM parameters. Using
these results as an initial condition in Phase II, we
develop an iterative method that jointly identifies layer-
to-stratum and node-to-community assignments as well
as the SBM parameters for each stratum. We provide a
schematic of the algorithm in Fig. 2, and below we pres-
ent the two-phase algorithm in detail.

Phase I. Phase I is comprised of two parts. First, we fit an
SBM to each individual layer l 2 f1; . . . ; Lg, which yields

inferred SBM parameters p̂pl and node-to-community mem-

berships Ẑl. Then we cluster the layers based on the

similarities of p̂pl and Ẑl. To infer p̂pl and Ẑl, we use the the
inference method described in [35]. Here, the authors used a

Fig. 1. Objective of strata multilayer stochastic block model (sMLSBM).
Each of the L ¼ 9 networks here represents a layer in a multilayer net-
work. Every network layer has N ¼ 36 nodes that are consistent across
all layers. There are S ¼ 3 strata as indicated by the three rows and the
colors of nodes. Clearly, network layers within a stratum exhibit strong
similarities in community structure. That is, although each layer follows
an SBM with K ¼ 3 communities, the SBM parameters are identical for
layers within a strata but differ between layers in different strata. We
would like to partition the layers into their appropriate strata and learn
their associated SBM parameters, ps and Zs.

Fig. 2. Schematic illustration of our algorithm: Our algorithm for fitting an
sMLSBM is broken up into two phases: an initialization phase to cluster
layers into strata, and an iterative phase that allows learning of node-to-
community and layer-to-strata assignments.
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variational inference technique to approximate the maxi-
mum likelihood estimates for the stochastic block model
parameters. For the set of L layers, this produces sets of SBM

parameters for each layer, which we denote by P̂P ¼ fp̂p1;

p̂p2; . . . ; p̂pLg and Ẑ ¼ fẐ1; Ẑ2; . . . ẐLg (that is, at this stage of
the procedure, each layer is temporarily treated as its own

stratum). Note also that each ẐZl can be equivalently repre-

sented by vector ẑzl, as described in Section 1.1. Using the esti-

mates p̂pl and Ẑl for a given layer, l, we can construct the

corresponding adjacency probability matrix, ûul, which is

defined entry-wise by ûulij ¼ p̂l
ẑi ;ẑj

. Doing this for each layer

results in a collection of adjacency probability matrices,

Q̂Q ¼ fûu1; ûu2; . . . ; ûuLg.
Now, we seek an initial partition of layers into strata

based on Q̂Q. The goal is to identify S sets Ls so that the

matrices fûulg with l 2 Ls are close to one another, but

they are distant from the remaining matrices, fûulg with

l 2 L n Ls. This is accomplished by treating each ûul as a
feature vector and applying k-means clustering with S
centers so as to identify S strata, Ls. Note that S can be
selected a priori, or approximated with a measure such as

the gap statistic [36]. This gives us an initial estimate Ŷ
for Y. Note that this procedure initially treats each layer
as a separate stratum, but provides a principled agglom-
eration of layers into S � L strata.

Phase II. After a first-pass approach for assigning layers
to strata, we initialize an iterative phase to more effectively
estimate layer-to-strata assignments as well as the model
parameters. Specifically, we would like to find the consen-
sus SBM for each strata—that is, the Ks �Ks matrix pps and
the N �Ks matrix Zs that maximize the likelihood of the

observed layers in each stratum. We let As ¼ fAlg for l 2 Ls

denote the collection of adjacency matrices corresponding
to the Ls layers in stratum s.

We now proceed to maximize the likelihood in each stra-
tum, by extending the framework of Ref. [35] to a multilayer
context. Note that this is similar to Ref. [7], except that we
are not aiming to infer an SBM probability matrix for each
layer, individually. In particular, the complete-data log-like-
lihood for stratum s can be written as,

pðAs;ZsÞ ¼ pðAs jZsÞpðZsÞ; (2)

where

pðAs jZsÞ ¼
Y

l2Ls

Y

i < j

Y

mn

ps
mn

Al
ijð1� ps

mnÞð1�Al
ij
Þ
: (3)

To write pðZsÞ, it is helpful to introduce a new parameter
as
m that represents the probability that a randomly-

selected node in stratum s belongs to community m, i.e.,
as
m ¼ pðZs

im ¼ 1Þ.
Note that

P
m as

m ¼ 1. Using this parameter, we can write

pðZsÞ ¼
Y

i

Y

m

as
m
ðZs

im
Þ: (4)

It follows that the complete-data log-likelihood for the adja-
cency matrices representing the layers in stratum s can be
expressed as,

logP ðAs;ZsÞ ¼ log ðP ðZsÞÞ þ log ðP ðAs jZsÞÞ
¼

X

i

X

m

Zs
imlog ðas

mÞ

þ
X

l2Ls

X

i< j

X

mn

Al
ijlog ðps

mnÞ

þ
X

l2Ls

X

i< j

X

mn

ð1�Al
ijÞlog ð1� ps

mnÞ:

(5)

Problems of this variety that involve the need to com-
pute maximum likelihood estimates with incomplete data
are typically addressed with the expectation maximiza-
tion (EM) framework [37]. Doing so requires the ability to
compute P ðZs j AsÞ; however, Ref. [35] showed that it is
intractable to calculate the conditional distribution for the
single-layer network case. To address this challenge, we
use a variational approximation, analogous to approaches
in [7], [32], [35]. In general, a variational approximation
seeks to optimize a lower bound on the log-likelihood. To
do this, we first approximate the conditional distribution,
P ðZs j AsÞ � RAs , where

RAsðZsÞ ¼
Y

i

hðZs
i	; tti	Þ: (6)

Here, matrix tts contains entries tsim that approximate the
probability that node i belongs to community m in stratum
s. Further, function hð	Þ represents the multinomial distribu-
tion, with parameters, fttsimg for m 2 f1; . . . ; Ksg. Using this,
we define the variational approximation as

J ðRAsÞ ¼ ‘‘ðAsÞ �KLðRAsðZsÞ; P ðZs j AsÞÞ; (7)

where ‘‘ is log likelihood and KL is the Kullback-Leibler
divergence.

Through maximizing J ðRAsÞ, we minimize the KL diver-
gence between the true conditional distribution, P ðZs j AsÞ,
and its approximation, RAsðZsÞ. Moreover, we follow the
derivation in Ref. [35] and rewrite J ðRAsÞ as

J ðRAsÞ ¼
X

i

X

m

tsimlog ðas
mÞ

þ
X

l2Ls

X

i< j

X

mn

tsimt
s
jn½Al

ijlog ðps
mnÞ


þ
X

l2Ls

X

i< j

X

mn

tsimt
s
jn½ð1�Al

ijÞlog ð1� ps
mnÞ


�
X

i

X

m

tsimlog ðtsimÞ:

(8)

We can now differentiate J ðRAsÞ with respect to each
parameter—while using Lagrange multipliers to enforce con-
straints (i.e., probabilities summing to 1)—to compute the
updates. Doing so yields the following,where the hat notation
symbolizes the current best estimate for the given parameter:

âs
m ¼

X

i

t̂sim=N ; (9)

p̂s
qt ¼

P
l2Ls

P
i< j t̂

s
imt̂

s
jnA

l
ijP

l2Ls

P
i < j t̂

s
imt̂

s
jn

; (10)

t̂sim / âs
m

Y

l2Ls

Y

i < j

Y

n

½p̂s
mn

Al
ijð1� p̂s

mnÞ1�Al
ij 
t̂sjn : (11)
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To find the best estimates for t̂ts and p̂ps, we alternate
between updating t̂ts and p̂ps until convergence. When con-
vergence has occurred, we refer to the resulting estimates as

the consensus tts and pps for stratum s. Similarly, ZZs repre-
sents the consensus indicator matrix of node-to-community
assignments computed from tts. Note that we use the bar
notation to reflect that the particular parameter estimate is
for a stratum, rather than for an individual layer.

Since tts and pps are computed in terms of each other, we
can use one of the consensus parameters to compute the
other parameter in individual layers. In particular, using
the fixed node-to-community assignments from tts, we com-
pute the maximum-likelihood SBM parameters for a partic-

ular layer l, which we denote with a tilde and hence, ~ppl

and ~ttl. Similarly, for fixed pps, we compute the node-to-

community assignments ~ttl. Such estimates allow us to
determine whether or not the stratum consensus estimates
are accurate estimates for the SBMs of individual layers of
the stratum. More importantly, as we shall now describe,
these layer-specific estimates allow us to design an iterative
algorithm that allows for alternating between learning the
node-to-community and layer-to-stratum assignments.

To this end, we represent each layer by the adjacency
probability matrix, which we compute two different ways:
letting uuðtt;ppÞ represent the adjacency probability matrix
specified by tt and pp, we define

uulð1Þ ¼ uulðtts; ~pplÞ; (12)

uulð2Þ ¼ uulð~ttl;ppsÞ: (13)

Note that the first definition uses the strata-consensus esti-
mate for tts and a layer-specific estimate for pps, whereas the
latter uses a layer-specific estimate for tts and the strata-
consensus estimate for pps.

During Phase I, we identified strata by clustering the
adjacency probability matrices for the L layers using the
k-means algorithm. We employ a similar procedure here,
but instead of clustering L matrices, we now cluster 2L
matrices, since each layer is represented in two different
ways. Moreover, clustering these 2L matrices yields two
cluster assignments for each layer. Typically, both represen-
tations of a particular layer will receive identical cluster

assignments—that is, for a given l, uulð1Þ and uulð2Þ are assigned

to the same cluster, or strata. However, an interesting case
arises when the two representations induce different stra-
tum assignments for a given layer, because this implies that

there is disagreement between uulð1Þ and uulð2Þ, which implies

uncertainty in the strata assignment of that particular layer
l. Because our iterative algorithm requires each layer to be
assigned to a single stratum (i.e., we do not allow for mixed
membership of layers into strata), layers with mixed mem-

bership according to uulð1Þ and uulð2Þ must be dealt with in some

way. To account for these situations, we define additional
strata for each combination of membership that arises. For
example, if there are several layers flg that are clustered

into stratum 1 according to uulð1Þ and stratum 2 according to

uulð2Þ, then we define a new stratum that contains only these

layers. We note that there exists a variety of options for han-
dling layers with such mixed membership after applying

k-means clustering to uulð1Þ and uulð2Þ (e.g., one could assign

such a layer to a stratum at random); however, we leave
open for future work the exploration of these other options.

After a single pass of Phase II, which requires layer-to-
strata assignments (which can be encoded by vector yy) as
input, the algorithm yields (ideally) improved layer-to-
strata assignments (as well as consensus estimates for the
SBM parameters of the strata, tts and pps). Therefore, Phase II
involves iterating the above procedure until the layer-to-
strata assignments do not change. We note that in principle,
it is possible for new strata to arise in each iteration (i.e.,
because we create strata to avoid mixed membership of
layers), and this can allow the number of strata to grow
with each iteration; however, we did not observe this issue
in any of our synthetic or real data experiments. As we will
show in the following section, convergence is typically
observed after just a few iterations (e.g., see, for example,
the second row of Fig. 4). If such an issue arises, it may be
helpful to bound the number of iterations (NOI) in Phase II.

3 SYNTHETIC DATA EXPERIEMENTS

3.1 Comparison of sMLSBM to Other SBM
Approaches

To demonstrate a situation where the sMLSBM framework
has a clear advantage over other models, we designed a syn-
thetic experiment and compared the results to two different
SBM approaches: i) fitting a single SBM to all of the layers
(denoted “single SBM”), and ii). fitting a stochastic block
model to each layer individually (denoted “single-layer
SBM”). We generated a multilayer network, where each
layer has N ¼ 128 nodes, K ¼ 4 communities and an
expected mean degree of c ¼ 20 (i.e., every network layer is
expected to contain cN=2 ¼ 1280 undirected edges). We
specified an sMLSBM with S ¼ 3 strata and 10 layers per
strata, which resulted in L ¼ 30 total layers. We defined pps

for each stratum s in terms of two parameters, psin and psout,
which give the within-community edge probabilities and
between-community edge probabilities, respectively. That
is, we define pps

mn ¼ psin when m ¼ n and pps
mn ¼ psout when

m 6¼ n. It follows that the expected mean degree is given
by c ¼ Nðpsin þ ðK � 1ÞpsoutÞ=K. In our experiment, we select

the following SBM parameters: ðp1in; p1outÞ ¼ ð0:6; 0:0083Þ;
ðp2in; p2outÞ ¼ ð0:4; 0:075Þ; and ðp3in; p3outÞ ¼ ð0:125; 0:167Þ. In
Fig. 3A, we show an example network layer from each
strata. Nodes are colored by their community assignments
in stratum 1. Note that the node-to-community assignments
are different in each stratum and that the extent of block
structure decreases from stratum 1 to stratum 3.

In order to compare the accuracy of fit for the three mod-
els—single-layer SBM, single SBM and sMLSBM—we quan-
tify the inference accuracy of the SBM parameters, ppyl , and

community assignments, Zsl . First, for each layer and each

model, we quantified the error (‘2 norm) between vecðppylÞ
and its true value, vecðpplÞ. Note that vecðXÞ is the KðKþ1Þ

2

length vector representing the lower triangle of the matrix

X. Moreover, to quantify error, we compute jjvecðpplÞ�
vecðppslÞjj2. We note that this error is well-defined because
we identify K ¼ 4 communities for all layers and all mod-
els. The mean error across layers under each model are
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shown in Fig. 3B. In this example, sMLSBM outperforms the
two other models. Second, we computed for each layer the
mean normalized mutual information (NMI) [38] between

the true node-to-community assignments, zl, and the

inferred values, zyl , under each model. In other words, for

each layer, we compute, NMIðzl; zylÞ. Fig. 3C shows the
mean NMI for community assignments across layers.
Indeed, the effects of fitting an incorrect model to a collec-
tion of layers in terms of ability to effectively estimate SBM
parameters and community assignments is apparent. In
particular, fitting a single SBM model results in both larger
mean inference and community assignment error, com-
pared to fitting single-layer SBMs and three strata sMLSBM.
In other words, sMLSBM provides an efficient clustering
into strata only when the layers are indeed related (i.e., gen-
erated from the same SBM), otherwise each layer is a stra-
tum on its own.

3.2 Synthetic Experiment with Two Strata

Next, we further explored the performance of our algorithm
(see Section 2.3) for inferring an sMLSBM under various
situations: 1) in comparison to baseline clustering methods;
2) in response to an increase in the number of layers; and
3) under variations in levels of detectability. Specifically, we
designed synthetic experiments in which we generated
multilayer networks with either L ¼ 10 or L ¼ 100 layers.
Every multilayer network contained S ¼ 2 strata (each

having K1 ¼ K2 ¼ 4 communities), and in each layer there
were N ¼ 128 nodes (each having an expected mean degree
of c ¼ 16). Note that in this example both strata have the
same node-to-community assignments. The stratawere fixed

to be the same size,L1 ¼ L2 ¼ L=2. Similar to the experiment
described in Section 3.1, the SBM parameters were con-
structed using psin and psout. Since we have already specified

the expected mean degree, these parameters must satisfy the
constraint c ¼ Nðpsin þ psoutÞ=2 for both strata. In all simula-

tions, we fixed the SBM parameters of the first strata as

ðp1in; p1outÞ ¼ ð:1836; :1055Þ. It is also convenient to define the

quantity, Nðp1in � p1outÞ ¼ 10, which relates to the detectabil-

ity of communities [39]. For example, the ability to detect
community structure in a given layer and/or strata is, in gen-
eral, expected to improve with increasing Nðpsin � psoutÞ. For
the second strata, we allowNðp2in � p2outÞ to vary.

We present results for this experiment in Fig. 4, wherein
the left and right columns give results for L ¼ 10 and
L ¼ 100, respectively.

Symbols in each plot represent the mean over 50 multi-
layer networks, and error bars show standard error. In each
plot, the vertical dotted line indicates Nðp2in � p2outÞ ¼ 10,
which represents the point where the two strata are indistin-

guishable since ðp1in; p1outÞ ¼ ðp2in; p2outÞ. In Fig. 4A, we show
the NMI between the true layer-to-strata assignments and
those inferred by sMLSBM, or NMIðy; ŷÞ. As a baseline, we
compare sMSLBM results to directly clustering the layers’

Fig. 4. Synthetic experiment with two strata. We conducted numerical
experiments with multilayer networks with N ¼ 128 nodes, mean degree
c ¼ 16, S ¼ 2 strata and K1 ¼ K2 ¼ 4 communities. The networks con-
tained either L ¼ 10 (left column) or L ¼ 100 layers (right column), which
were divided equally into the two strata. For stratum 1, we fixed the quan-
tity Nðp1in � p1outÞ ¼ 10, which fully specifies ðp1in; p1outÞ since setting c ¼ 16
also constrains these parameters. In contrast, we vary Nðp2in � p2outÞ. A.
As a function ofNðp2in � p2outÞ, we plot themeanNMI to interpret the ability
of sMLSBM to recover the true layer-to-strata assignments. We compare
the performance of sMLSBM (purple curve) to generic k-means clustering
(green symbols) of adjacency matrices. B. We plot the mean number of
iterations required for Phase II of our algorithm (see Section 2.3) to con-
verge. C. Finally, we measure the quality of node-to-community assign-
ment results by plotting the mean NMI between the true node-to-
community assignments and those inferred with sMLSBM in stratum 1
(red symbols) and stratum 2 (blue symbols).

Fig. 3. Synthetic experiment comparing sMLSBM to other SBMs. A. We
specified a model with S ¼ 3 strata and L ¼ 10 layers per stratum. A rep-
resentative layer from each stratum is plotted. Note that nodes in all net-
works are colored according to their community membership in stratum
1. Each network has N ¼ 128 nodes, K ¼ 4 communities and mean
degree, c ¼ 20. The psin parameters for s ¼ 1; 2 and 3 are 0.6, 0.4 and
0.25, respectively. Corresponding values of psout were selected to main-
tain the desired expected mean degree, c=20. B. We fit three types of
models to the 30 network layers: i) single SBM: fitting a single SBM to all
of the layers; ii) single-Layer SBM: fitting an individual SBM to each
layer; and iii) sMLSBM: identifying strata and fitting an SBMs for each
strata. Each model yields an estimate ppsl for the true SBM of each layer
l, which is denoted ppl. Here sl denotes the inferred strata for layer l. On
the vertical axis we plot the mean ‘2 norm error jjvecðpplÞ � vecðppsl Þjj2.
C. For each of the three models, we computed the normalized mutual
information (NMI) between the true node-to-community assignments zl

and the inferred values zsl .
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adjacency matrices using the k-means algorithmwithK ¼ 2.
We consistently observe higher NMI as a result of sMLSBM
compared to k-means. More interestingly is the case with
L ¼ 100, where both k-means and sMLSBM perform at least
moderately well at partitioning layers into strata before the
point where the strata are indistinguishable. In Fig. 4B, we
plot the number of iterations required for Phase II of our
algorithm to converge. We observe that as the number of
layers in the network increases, so does the number of
required sMLSBM iterations. Moreover, the peaks in panel
B. correspond to the sudden jumps in strata NMI.

Finally, in Fig. 4C we show the quality of node-to-
community assignments by plotting the NMI between the
true and inferred node-to-community assignments as
described in Section 3.1. Note that stratum 1 here represents
the stratum where the majority of layers were generated
from model S1 and analogously for stratum 2. Therefore,
when the strata NMI is low (panel A.), we see poorer com-
munity detection results than expected, as layers get incor-
rectly mixed. As the strata NMI increases, layers from the
same model are assigned together and the communities
NMI stabilizes. Finally, by comparing the results for
L ¼ 100 to those for L ¼ 10, we observe an increase in num-
ber of layers, L, generally leads to an improvement in com-
munity detection and strata identification.

4 CORRELATION NETWORKS FROM THE HUMAN

MICROBIOME PROJECT

As an application of sMLSBM, we consider correlation net-
works constructed from data from the Human Microbiome
Project [40]. For various sites on the body, the human micro-
biome project has successfully collected multiple human
samples in order to better understand interactions between
bacterial species. In this context, network inference is partic-
ularly interesting, as such methods aim to capture the rela-
tionships between various organisms. Microorganisms
exhibit intricate ecologies within the gut of their human
host and particular body sites have been shown to possess
characteristic interactions. Further, certain interactions
between microbes can often be associated with particular
health and disease states [41]. Microbiome data is typically
collected through metagenomic sequencing and reads are
further binned into groups, known as operational taxo-
nomic units (OTUs), to represent particular organisms. The
nature of this count-based sequencing data makes network
inference challenging, and is thus an interesting field in
itself. To demonstrate the potential use for sMLSBM in the
context of the human microbiome, we applied our algo-
rithm for learning sMLSBMs to multilayer networks con-
structed from the SparCC [42] network inference method.

SparCC is a correlation network inference method that
aims to approximate the linear Pearson correlation between
components in a system. This method performs favorably,
as it accounts for the extent of diversity in the microbial
community, which plays a significant role in detecting valid
interactions. Furthermore, networks are constructed with
the assumptions that the number of components in the sys-
tem (e.g., OTUs) is large and that the correlation network
should be sparse. As supplemental data in Ref. [42], the
authors provided their inferred microbial interaction

networks for 18 sites in the human body, using the sparse,
SparCC framework. The edges in these networks have posi-
tive and negative real-valued weights, based on the results
of SparCC inference. In this analysis, we converted the
SparCC networks into binary adjacency matrices by allow-
ing a link only if the SparCC edge-weight between two
OTUs was at least 0.15 (chosen as a value close to 0.2, given
in Ref. [42]). To convert the 18 single-layer networks corre-
sponding to species interactions in 18 body sites, we identi-
fied the collection of nodes (OTUs) that participated in at
least two layers in terms of having at least one connecting
edge weight value in the layer above the 0.15 threshold.
This resulted in N ¼ 213 unique OTUs (nodes) for our mul-
tilayer network analysis. We emphasize that restricting
attention to nodes that participate in multiple layers was a
choice we made in our focus on identifying common com-
munity structures across layers, to demonstrate the accu-
racy in the algorithm and inference procedures of sMLSBM.
A more biologically-relevant treatment of this dataset
should of course consider domain-specific expertise in for-
mulating a network representation appropriate to the ques-
tion at hand.

We inferred an sMLSBM for the multilayer network and
chose to show results for S ¼ 6 strata. That is, this selection
leads us to find six clusters of body sites such that the micro-
biomes are similar between sites in the same cluster but dif-
fer from microbiomes at sites in the remaining clusters.

We indicate these six strata with colored boxes in
Fig. 5. We note that due to the stochasticity of k-means in
our algorithm, the communities and strata fit by sMLSBM
can vary from one realization to the next. The shown
strata assignments reflect those observed to yield the
highest log-likelihood.

To gauge the performance of our method, we compared
our strata membership results to the hierarchy obtained as

Fig. 5. Comparison of sMLSBM on the OTU interaction networks [42] for
each of the body sites to a reducibility hierarchy [8]. As described in the
text, we consider a multiplex network with L ¼ 18 layers and N ¼ 213
nodes, which we group here into S ¼ 6 strata, while the dendrogram
was generated by the method employed as the precursor to the reduc-
ibility framework. Colored boxes around the leaves of the dendrogram
designate the body site to strata assignments obtained with sMLSBM.
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part of the reducibility method developed in [8]. To do this,
we followed the following steps:

1) Compute the normalized Laplacian matrices for each
of the 18 body site networks;

2) Compute the eigenvalues for each normalized Lapla-
cian matrix;

3) Use these eigenvalues to compute the Von Neumann
entropies for individual layers and pairs of layers;

4) Use the Von Neumann entropies to compute Jensen-
Shannon distances between pairs of networks; and

5) Perform hierarchical clustering using the Jensen-
Shannon distances and Ward linkage.

We show the results of this hierarchical clustering with a
dendrogram in Fig. 5, which are in very good agreement
with the sMLSBM results. However, as expected, we
observe slight differences, since these methods cluster
layers based on different criteria; in particular, sMLSBM
partitioning reflects similarity only in community structure.

The results of both methods are relatively faithful to
body regions in terms of groups of body sites that are spa-
tially proximal. The only exception to this observation is the
brown-colored stratum in Fig. 5, which is comprised of
some seemingly unrelated body sites. While this grouping
may not be intuitive, there is biological evidence to explain
its plausibility. Specifically, Ref. [43] offers a state-of-the-art
clustering of body sites based on biological expertise. Here,
the authors have advanced understanding of microbial
community composition through the application of a
multinomial mixture model to define community types
to characterize body sites. In particular, each sample
collected through the Human Microbiome Project was
assigned to 1 of 4 community types. They then quantified
relationships between body sites using the p-value from a
Fisher exact test on the membership of samples to com-
munity types. Similar to what we observe in the brown-
colored stratum, the authors of [43] found a surprising
correlation between samples from stool and oral cavity,
which is reflected in our result.

In Fig. 6, we illustrate network layers for four of the six
strata that we identify to highlight one advantage of having
a probabilistic generative model for microbial composition
shared in subsets of body sites. Specifically, each row pro-
vides information about the network layers and their fitted
sMLSBM model for a particular stratum. Each grid in the
figure represents the binary adjacency matrix encoding
interactions between OTUs: a colored dot at position ði; jÞ
indicates the existence of an edge ði; jÞ in the corresponding
network layer. In the first column of each row is a sample
network generated with the learned SBM parameters of that

stratum, pps and Zs. Columns 2 and 3 show two representa-
tive network layers within the stratum. Note that while
some strata have more than two members, for illustrative
purposes we only show two example layers. It is easy to see
the very similar block structure between all networks in a
given row, corroborating the usefulness of the sMLSBM
approach. Finally, we highlight the usefulness of fitting
sMLSBM to this multilayer network as each stratum eluci-
dates a mechanistic understanding of the relationship
between groups of OTUs, which could inspire further bio-
logical understanding or inquiry.

5 CONCLUSION AND FUTURE WORK

We developed a novel model for multilayer stochastic block
models (MLSBMs) and an associated algorithm to jointly
partition layers into strata and nodes into communities. Our
model assumes that layers belonging to a stratum have
community structure following the same underlying
SBM. To fit sMLSBM to a multilayer network, and more-
specifically, a multiplex network, we iteratively alternate
between rearranging layer-to-strata assignments and updat-
ing the model parameters for each stratum. Having multiple
networks within a stratum—hence multiple realizations
from some underlying model—helps to make inference
more accurate. Particularly, more accurate assignments of
nodes-to-communities within a stratum leads to improved
estimation of SBM probability parameters, and vice versa.
We have shown for multiplex networks with several strata
(e.g., see Fig. 3) that inaccuracies can arise if one attempts to
fit a single SBM to the network or study the network layers
in isolation. In contrast, our model allows for an under-
standing of the similarities between layers in a network, in
terms of their community structure.

Fig. 6. Visualization of Strata in SparCC Networks. We visualize the
adjacency matrices for SparCC networks that encode microbiome inter-
actions at body sites. In each panel, a colored dot at position ði; jÞ indi-
cates the existence of an edge ði; jÞ in the corresponding network layer.
The four rows correspond to four different strata. In column 1, we show a

sample network generated from the SBM parameters, pps and Zs, that we
inferred for that stratum. In Columns 2 and 3, we show SparCC networks
from that particular stratum. Note the strong similarity across each row.
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The ability to identify strata within collections of network
layers holds promise in numerous applications. One moti-
vating application is network reducibility, whereby one
compresses a multilayer network by aggregating similar
layers [8]. We stress that although reducibility is a closely
related pursuit, it is fundamentally different from our co-clus-
tering pursuit of simultaneously identifying communities
and strata. In particular, our approach does not provide a
method for aggregating layers. Instead, sMLSBM compresses
the network information in the sense that the learned SBM
parameters represent a consensus for each stratum, and those
consensus parameters can be used to generate a representa-
tive sample network for that stratum. For applications in
which layer aggregation is sought, there are a variety of ways
to aggregate layers in a strata. See, for example, Ref. [44],
where the authors explore the effects on community structure
for different aggregation methods. We highlight that the
sMLSBM modeling approach is appropriate in situations
where one seeks a generativemodel for community structure,
and it may be particularly appropriate when application-
specific evidence suggests that subsets of networks have char-
acteristic differences in community structure.

Our comparison of sMLSBM to the reducibility method
of Ref. [8] (see Fig. 5) for the application of studying micro-
bial interaction networks reveals several extensions to
sMLSBM that could make the approach more accurate and
applicable to a wider range of applications. First, the reduc-
ibility method [8] does not require networks to be undi-
rected and unweighted, and it could be quite useful to
extend the sMLSBM framework to weighted and directed
networks following the extensions for single-layer SBMs, as
developed in [45] and [46], respectively. It would also be
useful to extend to degree-corrected and overlapping (i.e.,
mixed-membership) communities [47], as well as mixed
membership of layers into strata. Additionally, the Human
Microbiome example reveals some interesting biological
questions that could facilitate the development of more
advanced network tools. To construct the multilayer net-
work, negative edges were thresholded away; however,
antagonistic relationships between microbes are known to
be important [48]. Thus, it would be useful to develop a
signed version of sMLSBM that allows edges to be either
positive or negative.

The rise of a greater number of multilayer network data-
sets is providing the need for additional tools for the con-
struction and analysis of such networks. The sMLSBM
provides a new method to find signal in inherently noisy
and complex network data.
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