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SUMMARY

We suggest a method for estimating a covariance matrix on the basis of a sample of vectors
drawn from a multivariate normal distribution. In particular, we penalize the likelihood with a
lasso penalty on the entries of the covariance matrix. This penalty plays two important roles:
it reduces the effective number of parameters, which is important even when the dimension of
the vectors is smaller than the sample size since the number of parameters grows quadratically
in the number of variables, and it produces an estimate which is sparse. In contrast to sparse
inverse covariance estimation, our method’s close relative, the sparsity attained here is in the
covariance matrix itself rather than in the inverse matrix. Zeros in the covariance matrix corre-
spond to marginal independencies; thus, our method performs model selection while providing a
positive definite estimate of the covariance. The proposed penalized maximum likelihood prob-
lem is not convex, so we use a majorize-minimize approach in which we iteratively solve convex
approximations to the original nonconvex problem. We discuss tuning parameter selection and
demonstrate on a flow-cytometry dataset how our method produces an interpretable graphical
display of the relationship between variables. We perform simulations that suggest that simple
elementwise thresholding of the empirical covariance matrix is competitive with our method for
identifying the sparsity structure. Additionally, we show how our method can be used to solve a
previously studied special case in which a desired sparsity pattern is prespecified.

Some key words: Concave-convex procedure; Covariance graph; Covariance matrix; Generalized gradient descent;
Lasso; Majorization-minimization; Regularization; Sparsity.

1. INTRODUCTION

Estimation of a covariance matrix on the basis of a sample of vectors drawn from a multivariate
Gaussian distribution is among the most fundamental problems in statistics. However, with the
increasing abundance of high-dimensional datasets, the fact that the number of parameters to
estimate grows with the square of the dimension suggests that it is important to have robust
alternatives to the standard sample covariance matrix estimator. In the words of Dempster (1972),

The computational ease with which this abundance of parameters can be estimated
should not be allowed to obscure the probable unwisdom of such estimation from
limited data.

Following this note of caution, many authors have developed estimators which mitigate the sit-
uation by reducing the effective number of parameters through imposing sparsity in the inverse
covariance matrix. Dempster (1972) suggests setting elements of the inverse covariance matrix
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808 JACOB BIEN AND ROBERT J. TIBSHIRANI

to zero. Meinshausen & Bühlmann (2006) propose using a series of lasso regressions to iden-
tify the zeros of the inverse covariance matrix. More recently, Yuan & Lin (2007), Banerjee et al.
(2008) and Friedman et al. (2007) frame this as a sparse estimation problem, performing penal-
ized maximum likelihood with a lasso penalty on the inverse covariance matrix; this is known as
the graphical lasso. Zeros in the inverse covariance matrix are of interest because they correspond
to conditional independencies between variables.

In this paper, we consider the problem of estimating a sparse covariance matrix. Zeros in a
covariance matrix correspond to marginal independencies between variables. A Markov network
is a graphical model that represents variables as nodes and conditional dependencies between
variables as edges; a covariance graph is the corresponding graphical model for marginal inde-
pendencies. Thus, sparse estimation of the covariance matrix corresponds to estimating a covari-
ance graph as having a small number of edges. While less well-known than Markov networks,
covariance graphs have also been met with considerable interest (Drton & Richardson, 2008). For
example, Chaudhuri et al. (2007) consider the problem of estimating a covariance matrix given a
prespecified zero-pattern; Khare & Rajaratnam (2011) formulate a prior for Bayesian inference
given a covariance graph structure; Butte et al. (2000) introduce the related notion of a relevance
network, in which genes with pairwise correlation exceeding a threshold are connected by an
edge; and Rothman et al. (2009) consider applying shrinkage operators to the sample covariance
matrix to get a sparse estimate. Most recently, Rothman et al. (2010) propose a lasso-regression-
based method for estimating a sparse covariance matrix in the setting where the variables have a
natural ordering.

The purpose of the present work is to develop a method which, in contrast to pre-existing
methods, estimates both the nonzero covariances and the graph structure, i.e., the locations of
the zeros, simultaneously. In particular, our method is permutation invariant in that it does not
assume an ordering to the variables (Rothman et al., 2008). In other words, our method does for
covariance matrices what the graphical lasso does for inverse covariance matrices. Indeed, as
with the graphical lasso, we propose maximizing a penalized likelihood.

2. OPTIMIZATION PROBLEM

Suppose that we observe a sample of n multivariate normal random vectors,
X1, . . . , Xn ∼ Np(0, �). The loglikelihood is

�(�)=−np

2
log 2π − n

2
log det � − n

2
tr(�−1S),

where we define S = n−1 ∑n
i=1 Xi X T

i . The lasso (Tibshirani, 1996) is a well-studied regularizer
which has the desirable property of encouraging many parameters to be exactly zero. In this
paper, we suggest adding to the likelihood a lasso penalty on P ∗�, where P is an arbitrary
matrix with nonnegative elements and ∗ denotes elementwise multiplication. Thus, we propose
the estimator that solves

Minimize��0

{
log det � + tr(�−1S)+ λ‖P ∗�‖1

}
, (1)

where for a matrix A, we define ‖A‖1 = ‖vecA‖1 =
∑

i j |Ai j |. Two common choices for P
would be the matrix of all ones or this matrix with zeros on the diagonal to avoid shrinking
diagonal elements of �. Lam & Fan (2009) study the theoretical properties of a class of problems
including this estimator but do not discuss how to solve the optimization problem. Additionally,
while writing this paper, we learned of independent and concurrent work by K. Khare and B.
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Sparse covariance estimation 809

Rajaratnam, presented at the 2010 Joint Statistical Meetings, in which they propose solving
(1) with this latter choice for P . Another choice is to take Pi j = 1(i |= j)/|Si j |, which is the
covariance analogue of the adaptive lasso penalty (Zou, 2006). In § 6, we will discuss another
choice of P that provides an alternative method for solving the prespecified zeros problem
considered by Chaudhuri et al. (2007).

In words, (1) seeks a matrix � under which the observed data would have been likely and for
which many variables are marginally independent. The graphical lasso problem is identical to (1)
except that the penalty takes the form ‖�−1‖1 and the optimization variable is �−1.

Solving (1) is a formidable challenge since the objective function is nonconvex and there-
fore may have many local minima. A key observation in this work is that the optimization
problem, although nonconvex, possesses special structure that suggests a method for per-
forming the optimization. In particular, the objective function decomposes into the sum of a
convex and a concave function. Numerous papers in fields spanning machine learning and
statistics have made use of this structure to develop specialized algorithms: difference of
convex programming focuses on general techniques to solving such problems both exactly
and approximately (Horst & Thoai, 1999; An & Tao, 2005); the concave-convex procedure
(Yuille & Rangarajan, 2003) has been used in various machine learning applications and stud-
ied theoretically (Yuille & Rangarajan, 2003; Argyriou et al., 2006; Sriperumbudur & Lanckriet,
2009); majorization-minimization algorithms have been applied in statistics to solve problems
such as least-squares multidimensional scaling, which can be written as the sum of a convex
and concave part (de Leeuw & Mair, 2009); most recently, Zhang (2010) approaches regularized
regression with nonconvex penalties from a similar perspective.

3. ALGORITHM FOR PERFORMING THE OPTIMIZATION

3·1. A majorization-minimization approach

While (1) is not convex, we show in Appendix 1 that the objective is the sum of a convex and a
concave function, since tr(�−1S)+ λ‖P ∗�‖1 is convex in � while log det � is concave. This
observation suggests a majorize-minimize scheme to approximately solving (1).

Majorize-minimize algorithms work by iteratively minimizing a sequence of majorizing func-
tions (Lange 2004, Ch. 6; Hunter & Li 2005). The function f (x) is said to be majorized by
g(x | x0), if f (x) � g(x | x0) for all x and f (x0)= g(x0 | x0). To minimize f , the algorithm
starts at a point x (0) and then repeats until convergence, x (t) = argminx g(x | x (t−1)). This is
advantageous when the function g(· | x0) is easier to minimize than f (·). These updates have
the favourable property of being nonincreasing, i.e., f (x (t)) � f (x (t−1)).

A common majorizer for the sum of a convex and a concave function is to replace the latter
part with its tangent. This method has been referred to in various literatures as the concave-
convex procedure, the difference of convex functions algorithm and multi-stage convex relax-
ations. Since log det � is concave, it is majorized by its tangent plane: log det � � log det �0 +
tr{�−1

0 (� −�0)}. Therefore, the objective function of (1),

f (�)= log det � + tr(�−1S)+ λ‖P ∗�‖1,

is majorized by g(� |�0)= log det �0 + tr(�−1
0 �)− p + tr(�−1S)+ λ‖P ∗�‖1. This sug-

gests the following majorize-minimize iteration to solve (1):

�̂(t) = argmin��0

[
tr{(�̂(t−1))−1�} + tr(�−1S)+ λ‖P ∗�‖1

]
. (2)
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810 JACOB BIEN AND ROBERT J. TIBSHIRANI

To initialize the above algorithm, we may take �̂(0) = S or �̂(0) = diag(S11, . . . , Spp). We
have thus replaced a difficult nonconvex problem by a sequence of easier convex problems, each
of which is a semidefinite program. The value of this reduction is that we can now appeal to
algorithms for convex optimization. A similar stategy was used by Fazel et al. (2003), who pose a
nonconvex log det-minimization problem. While we cannot expect (2) to yield a global minimum
of our nonconvex problem, An & Tao (2005) show that limit points of such an algorithm are
critical points of the objective (1).

In the next section, we propose a method to perform the convex minimization in (2). It should
be noted that if S � 0, then by Proposition 1 of Appendix 2, we may tighten the constraint � � 0
of (2) to � � δ Ip for some δ > 0, which we can compute and depends on the smallest eigenvalue
of S. We will use this fact to prove a rate of convergence of the algorithm presented in the next
section.

3·2. Solving (2) using generalized gradient descent

Problem (2) is convex and therefore any local minimum is guaranteed to be the global min-
imum. We employ a generalized gradient descent algorithm, which is the natural extension of
gradient descent to nondifferentiable objectives (e.g., Beck & Teboulle 2009). Given a differen-
tiable convex problem minx∈C L(x), the standard projected gradient step is x = PC{x − t∇L(x)}
and can be viewed as solving the problem x = argminz∈C(2t)−1‖z − {x − t∇L(x)}‖2. To solve
minx∈C L(x)+ p(x) where p is a nondifferentiable function, generalized gradient descent
instead solves x = argminz∈C(2t)−1‖z − {x − t∇L(x)}‖2 + p(z).

In our case, we want to solve

Minimize��δ Ip

{
tr(�−1

0 �)+ tr(�−1S)+ λ‖P ∗�‖1
}

,

where for notational simplicity we let �0 = �̂(t−1) be the solution from the previous iteration
of (2). Since the matrix derivative of L(�)= tr(�−1

0 �)+ tr(�−1S) is d L(�)/d� =�−1
0 −

�−1S�−1, the generalized gradient steps are given by

� = argmin��δ Ip

{
(2t)−1‖�−� + t (�−1

0 −�−1S�−1)‖2F + λ‖P ∗�‖1
}

. (3)

Without the constraint �� δ Ip, this reduces to the simple update

�← S
{
� − t (�−1

0 −�−1S�−1), λt P
}

,

where S is the elementwise soft-thresholding operator defined by S(A, B)i j = sign(Ai j )(Ai j −
Bi j )+. Clearly, if the unconstrained solution to (3) happens to have minimum eigenvalue greater
than or equal to δ, then the above expression is the correct generalized gradient step. In practice,
we find that this is often the case, meaning we may solve (3) quite efficiently; however, when
we find that the minimum eigenvalue of the soft-thresholded matrix is below δ, we perform the
optimization using the alternating direction method of multipliers (Boyd et al. 2011), which is
given in Appendix 3.

Generalized gradient descent is guaranteed to get within ε of the optimal value in O(ε−1) steps
as long as d L(�)/d� is Lipschitz continuous (Beck & Teboulle, 2009). While this condition is
not true of our objective on � � 0, we show in Appendix 2 that we can change the constraint
to � � δ Ip for some δ > 0 without changing the solution. On this set, d L(�)/d� is Lipschitz,
with constant 2‖S‖2δ−3, thus establishing that generalized gradient descent will converge with
the stated rate.
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Sparse covariance estimation 811

1: �← S
2: repeat
3: �0←�

4: repeat
5: �← S{� − t (�−1

0 −�−1 S�−1), λt P} where S denotes elementwise soft-thresholding. If � �� δ Ip , then instead
perform alternating direction method of multipliers given in Appendix 3.

6: until convergence
7: until convergence

Algorithm 1. Basic algorithm for solving (1).

Algorithm 1 presents our algorithm for solving (1). It has two loops: an outer loop in which
the majorize-minimize algorithm approximates the nonconvex problem iteratively by a series of
convex relaxations, and an inner loop in which generalized gradient descent is used to solve each
convex relaxation. The first iteration is usually simple soft-thresholding of S, unless the result
has an eigenvalue less than δ.

Generalized gradient descent belongs to a larger class of first-order methods, which do not
require computing the Hessian. Nesterov (2005) shows that a simple modification of gradient
descent can dramatically improve the rate of convergence so that a value within ε of optimal
is attained within only O(ε−1/2) steps (e.g., Beck & Teboulle 2009). Due to space restrictions,
we do not include this latter algorithm, which is a straightforward modification of Algorithm 1.
Running our algorithm on a sequence of problems in which � = Ip and with λ chosen to ensure
an approximately constant proportion of nonzeros across differently sized problems, we estimate
that the run time scales approximately like p3. We will release an R package which implements
this approach to the �1-penalized covariance problem.

For a different perspective of our minimize-majorize algorithm, we rewrite (1) as

Minimize��0,	�0

{
tr(�−1S)+ λ‖P ∗�‖1 + tr(�	)− log det 	

}
.

This is a biconvex optimization problem in that the objective is convex in either variable hold-
ing the other fixed; however, it is not jointly convex because of the tr(�	) term. The standard
alternate minimization technique to this biconvex problem reduces to the algorithm of (2). To
see this, note that minimizing over 	 while holding � fixed gives 	̂=�−1.

3·3. A note on the p > n case

When p > n, S cannot be full rank and thus there exists v |= 0 such that Sv = 0. Let V = [v :
V⊥] be an orthogonal matrix. Denoting the original problem’s objective as f (�)= log det � +
tr(�−1S) + λ‖P ∗�‖1, we see that

f (αvvT + V⊥V T
⊥)= log α + tr(V T

⊥SV⊥)+ λ‖P ∗ (αvvT + V⊥V T
⊥)‖1→−∞, α→ 0.

Conversely, if S � 0, then, writing the eigenvalue decomposition of � =∑p
i=1 λi ui uT

i with
λ1 � · · ·� λp > 0, we have

f (�) � log det � + tr(�−1S)= constant+ log λp + uT
p Su p/λp→∞

as λp→ 0 since uT
p Su p > 0.

Thus, if S � 0, the problems inf��0 f (�) and inf��0 f (�) are equivalent, while if S is not
full rank, then the solution will be degenerate. We therefore set S = S + ε Ip for some ε > 0 when
S is not full rank. In this case, the observed data lie in a lower dimensional subspace of R p, and

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/98/4/807/234877 by C
EU

 Library user on 23 D
ecem

ber 2023



812 JACOB BIEN AND ROBERT J. TIBSHIRANI

adding ε Ip to S is equivalent to augmenting the dataset with points that do not lie perfectly in
the span of the observed data.

3·4. Using the sample correlation matrix instead of the sample covariance matrix

Let D = diag(S11, . . . , Spp) so that R = D−1/2SD−1/2 is the sample correlation matrix.
Rothman et al. (2008) suggest that, when estimating the concentration matrix, it can be advanta-
geous to use R instead of S. In this section, we consider solving

	̂(R, P)= argmin	�0

{
log det 	+ tr(	−1 R)+ λ‖P ∗	‖1

}
, (4)

and then taking �̃ = D1/2	̂(R, P)D1/2 as an estimate for the covariance matrix. Expressing the
objective function in (4) in terms of � = D1/2	D1/2 gives, after some manipulation,

−
p∑

i=1

log(Sii )+ log det � + tr(�−1S)+ λ‖(D−1/2 P D−1/2) ∗�‖1.

Thus, the estimator �̃ based on the sample correlation matrix is equivalent to solving (1)
with a rescaled penalty matrix: Pi j← Pi j/(Sii S j j )

1/2. This gives insight into (4): it applies a
stronger penalty to variables with smaller variances. For large n, Sii ≈�i i , and so we can think
of this modification as applying the lasso penalty on the correlation scale, i.e., ‖P ∗�‖1 where
�i j =�i j (�i i� j j )

−1/2, rather than on the covariance scale. An anonymous referee pointed out
that this estimator has the desirable property of being invariant to both scaling of variables and
to permutation of variable labels.

4. CROSSVALIDATION FOR TUNING PARAMETER SELECTION

In applying this method, one will usually need to select an appropriate value of λ. Let �̂λ(S)

denote the estimate of � we get by applying our algorithm with tuning parameter λ to S =
n−1 ∑n

i=1 Xi X T
i where X1, . . . , Xn are n independent Np(0, �) random vectors. We would like

to choose a value of λ that makes α(λ)= �{�̂λ(S);�} large, where �(�1;�2)=− log det �1 −
tr(�2�

−1
1 ). If we had an independent validation set, we could simply use α̂(λ)= �{�̂λ(S); Svalid},

which is an unbiased estimator of α(λ); however, typically this will not be the case, and so we
use a crossvalidation approach instead: for A⊆ {1, . . . , n}, let SA = |A|−1 ∑

i∈A xi xT
i and let

Ac
i denote the complement of A. Partitioning {1, . . . , n} into k subsets, A1, . . . ,Ak , we then

compute α̂CV (λ)= k−1 ∑k
i=1 �{�̂λ(SAc

i
); SAi }.

To select a value of λ that will generalize well, we choose λ̂CV = argmaxλα̂CV (λ). Figure 1
shows 20 realizations of crossvalidation for tuning parameter selection. While α̂CV (λ) appears to
be biased upward for α(λ), we see that the value of λ that maximizes α(λ) is still well estimated
by crossvalidation, especially considering the flatness of α(λ) around the maximum.

5. EMPIRICAL STUDY
5·1. Simulation

To evaluate the performance of our covariance estimator, which we will refer to as the
�1-penalized covariance method, we generate X1, . . . , Xn ∼ Np(0, �), where � is a sparse
symmetric positive semidefinite matrix. We take n = 200 and p= 100 and consider three types
of covariance graphs, corresponding to different sparsity patterns, considered for example in an
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Fig. 1. Tuning parameter selection via crossvalidation.
Each dashed line is a realization of α̂CV (λ) and the
solid line is α(λ). Each open circle shows a realization

of λ̂CV ; the solid circle shows argmaxλα(λ).

unpublished 2010 technical report by J. Friedman, T. J. Hastie and R. J. Tibshirani from Stanford
University:

I. Cliques model: We take � = diag(�1, . . . , �5), where �1, . . . , �5 are dense matrices. This
corresponds to a covariance graph with five disconnected cliques of size 20.

II. Hubs model: Again � = diag(�1, . . . , �5), however each submatrix �k is zero except for
the last row/column. This corresponds to a graph with five connected components each of
which has all nodes connected to one particular node.

III. Random model: We assign �i j =� j i to be nonzero with probability 0·02, independently
of other elements.

IV. First-order moving average model: We take �i,i−1 =�i−1,i to be nonzero for i = 2, . . . , p.

In the first three cases, we generate the nonzero elements as ±1 with random signs. In the
moving average model, we take all nonzero values to be 0·4. For all the models, to ensure that
S � 0 when n > p, we then add to the diagonal of � a constant so that the resulting matrix has
condition number equal to p as in Rothman et al. (2008). Fixing �, we then generate ten samples
of size n.

We compare three approaches for estimating � on the basis of S:

(a) the simple soft-thresholding method. This takes �̂i j = S(Si j , c) for i |= j and �̂i i = Sii . It
is a special case of Rothman et al.’s (2009) generalized thresholding proposal and does not
necessarily lead to a positive definite matrix;

(b) the �1-penalized covariance method. This uses Algorithm 1 with Pi j = 1{i |= j} where an
equal penalty is applied to each off-diagonal element;

(c) the �1-penalized covariance method. This uses Algorithm 1 with Pi j = |Si j |−11{i |= j} with
an adaptive lasso penalty on off-diagonal elements. This choice of weights penalizes less
strongly those elements that have large values of |Si j |. In the regression setting, this modifi-
cation has been shown to have better selection properties (Zou, 2006).
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814 JACOB BIEN AND ROBERT J. TIBSHIRANI

We evaluate each method on the basis of its ability to correctly identify which elements of �

are zero and on its closeness to � based on both the root-mean-square error, ‖�̂ −�‖F/p, and
entropy loss, − log det(�̂�−1)+ tr(�̂�−1)− p. The latter is a natural measure for comparing
covariance matrices and has been used in this context by Huang et al. (2006).

The first four rows of Fig. 2 show how the methods perform under the models for �

described above. We vary c and λ to produce a wide range of sparsity levels. From the receiver
operating characteristic curves, we find that simple soft-thesholding identifies the correct zeros
with comparable accuracy to the �1-penalized covariance approaches (b) and (c). Relatedly, J.
Friedman, T. J. Hastie and R. J. Tibshirani, in their 2010 technical report, observe with surprise
the effectiveness of soft-thresholding of the empirical correlation matrix for identifying the zeros
in the inverse covariance matrix. In terms of root-mean-square error, all three methods perform
similarly in the cliques model (I) and random model (III). In both these situations, method (b)
dominates in the denser realm while method (a) does best in the sparser realm. In the moving
average model (IV), both soft-thresholding (a) and the adaptive �1-penalized covariance method
(c) do better in the sparser realm, with the latter attaining the lowest error. For the hubs model
(II), �1-penalized covariance (b) attains the best root-mean-square error across all sparsity levels.
In terms of entropy loss there is a pronounced difference between the �1-penalized covariance
methods and soft-thresholding. In particular, we find that the former methods get much closer
to the truth in this sense than soft-thresholding in all four cases. This behaviour reflects the
difference in nature between minimizing a penalized Frobenius distance, as is done with
soft-thresholding, and minimizing a penalized negative loglikelihood, as in (1). The rightmost
plot shows that for the moving average model (IV) soft-thresholding produces covariance
estimates that are not positive semidefinite for some sparsity levels. When the estimate is not
positive definite, we do not plot the entropy loss. In contrast, the �1-penalized covariance method
is guaranteed to produce a positive definite estimate regardless of the choice of P .

The bottom row of Fig. 2 shows the performance of the �1-penalized covariance method when
S is not full rank. In particular, we take n = 50 and p= 100. The receiver operating characteristic
curves for all three methods decline greatly in this case, reflecting the difficulty of estimation
when p > n. Despite trying a range of values of λ, we find that the �1-penalized covariance
method does not produce a uniform range of sparsity levels, but rather jumps from being about
33% zero to 99% zero. As with model (IV), we find that soft-thresholding leads to estimates that
are not positive semidefinite, in this case for a wide range of sparsity levels.

5·2. Cell signalling dataset

We apply our �1-penalized covariance method to a dataset that has previously been used in
the sparse graphical model literature (Friedman et al., 2007). The data consist of flow cytometry
measurements of the concentrations of p= 11 proteins in n = 7466 cells (Sachs et al., 2005).
Figure 3 compares the covariance graphs learned by the �1-penalized covariance method to the
Markov network learned by the graphical lasso (Friedman et al., 2007). The two types of graph
have different interpretations: if the estimated covariance graph has a missing edge between two
proteins, then we are stating that the concentration of one protein gives no information about
the concentration of another. On the other hand, a missing edge in the Markov network means
that, conditional on all other proteins’ concentrations, the concentration of one protein gives no
information about the concentration of another. Both of these statements assume that the data are
multivariate Gaussian. The right panel of Fig. 3 shows the extent to which similar protein pairs are
identified by the two methods for a series of sparsity levels. We compare the observed proportion
of co-occurring edges to a null distribution in which two graphs are selected independently from
the uniform distribution of graphs having a certain number of edges. The dashed and dotted lines
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Sparse covariance estimation 815

Fig. 2. Simulation study. Black and dark-grey curves are the �1-penalized methods with equal penalty on off-
diagonals and with an adaptive lasso penalty, respectively. The light-grey curves are soft-thresholding of the
nondiagonal elements of S. From top to bottom, the rows show the (I) cliques, (II) hubs, (III) random, (IV)
first-order moving average and (V) cliques with p > n models for �. From left to right, the columns show the
receiver operating characteristic curves, root-mean-square errors, entropy loss and minimum eigenvalue of the

estimates. The horizontal dashed line shows the minimum eigenvalue of the true �.
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Fig. 3. Cell signalling dataset. (Left) Comparison of our algorithm’s solution to the sparse covariance maximum
likelihood problem (1) to the graphical lasso’s solution to the sparse inverse covariance maximum likelihood
problem. Here we adopt the convention of using bi-directed edges for covariance graphs (e.g., Chaudhuri et al.
2007). Different values of the regularization parameter were chosen to give same sparsity levels. (Right) Each
black circle shows the proportion of edges shared by the covariance graph from our algorithm to the Markov
graph from the graphical lasso at a given sparsity level. The dashed and dotted lines show the mean and 0·025-

and 0·975-quantiles of the null distribution, respectively.

show the mean and 0·025- and 0·975-quantiles of the null distribution, respectively, which for
k-edge graphs is a Hypergeometric {p(p − 1)/2, k, k}/k distribution. We find that the presence
of edges in the two types of graphs is anti-correlated relative to the null, emphasizing the differ-
ence between covariance and Markov graphical models. It is therefore important that a biologist
understand the difference between these two measures of association since the edges estimated
to be present will often be quite different.

6. EXTENSIONS AND OTHER CONVEX PENALTIES

Chaudhuri et al. (2007) propose a method for performing maximum likelihood over a fixed
covariance graph, i.e., subject to a prespecified, fixed set of zeros, � = {(i, j) : �i j = 0}.
This problem can be expressed in our form by taking P defined by Pi j = 1 if (i, j) ∈� and
Pi j = 0 otherwise, and λ sufficiently large. In this case, (1) is maximum likelihood subject to
the desired sparsity pattern. The method presented in this paper therefore gives an alternative
method for approximately solving this fixed-zero problem. In practice, we find that this method
achieves very similar values of the likelihood as the method of Chaudhuri et al. (2007), which is
implemented in the R package ggm.

In deriving the majorize-minimize algorithm of (2), we used only that ‖P ∗�‖1 is convex.
Thus, the approach in (2) extends straightforwardly to any convex penalty. For example, in some
situations we may desire certain groups of edges to be simultaneously missing from the covari-
ance graph. Given a collection of such sets G1, . . . ,GK ⊂ {1, . . . , p}2, we may apply a group
lasso penalty:

Minimize��0

{
log det � + tr(�−1S)+ λ

K∑
k=1

|Gk |1/2‖vec(�)Gk‖2
}

,

where vec(�)Gk denotes the vector formed by the elements of � in Gk . For example in some
instances such as in time series data, the variables have a natural ordering and we may desire
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Sparse covariance estimation 817

a banded sparsity pattern (Rothman et al., 2010). In such a case, one could take Gk = {(i, j) :
|i − j | = k} for k = 1, . . . , p − 1. Estimating the kth band as zero would correspond to a model
in which a variable is marginally independent of the variable k time units earlier.

As another example, we could take Gk = {(k, i) : i |= k} ∪ {(i, k) : i |= k} for k = 1, . . . , p. This
encourages a node-sparse graph considered by J. Friedman, T. J. Hastie and R. J. Tibshirani, in
their 2010 technical report, in the case of the inverse covariance matrix. Estimating �i j = 0 for
all (i, j) ∈ Gk corresponds to the model in which variable k is independent of all others. It should
be noted however that a variable’s being marginally independent of all others is equivalent to its
being conditionally independent of all others. Therefore, if node-sparsity in the covariance graph
is the only goal, i.e., no other penalties on � are present, a better procedure would be to apply
this group lasso penalty to the inverse covariance, thereby admitting a convex problem.

We conclude with an extension that may be worth pursuing. A difficulty with (1) is that it is
not convex and therefore any algorithm that attempts to solve it may converge to a suboptimal
local minimum. Exercise 7.4 of Boyd & Vandenberghe (2004), on p. 394, remarks that the log-
likelihood �(�) is concave on the convex set C0 = {� : 0≺� � 2S}. This fact can be verified by
noting that over this region the positive curvature of tr(�−1S) exceeds the negative curvature of
log det �. This suggests a related estimator that is the result of a convex optimization problem:
let �̂c denote a solution to

Minimize0≺��2S

{
log det � + tr(�−1S)+ λ‖P ∗�‖1

}
. (5)

While of course we cannot in general expect �̂c to be a solution to (1), adding this con-
straint may not be unreasonable. In particular, if n, p→∞ with p/n→ y ∈ (0, 1), then by
a result of Silverstein (1985), λmin(�

−1/2
0 S�

−1/2
0 )→ (1− y1/2)2 almost surely, where S ∼

Wishart(�0, n). It follows that the constraint �0 � 2S will hold almost surely in this limit if
(1− y1/2)2 > 0·5, i.e., y < 0·085. Thus, in the regime that n is large and p does not exceed
0·085n, the constraint set of (5) contains the true covariance matrix with high probability.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes a simulation evaluating the
performance of our estimator as n increases.

APPENDIX 1

Convex plus concave

Examining the objective of problem (1) term by term, we observe that log det � is concave while
tr(�−1S) and λ‖�‖1 are convex in �. The second derivative of log det � is −�−2, which is negative def-
inite, from which it follows that log det � is concave. As shown in Example 3.4 of Boyd & Vandenberghe
(2004), on p. 76, X T

i �
−1 Xi is jointly convex in Xi and �. Since tr(�−1S)= n−1

∑n
i=1 X T

i �
−1 Xi , it follows

that tr(�−1S) is the sum of convex functions and therefore is itself convex.
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APPENDIX 2

Justifying the Lipschitz claim

Let L(�)= tr(�−1
0 �)+ tr(�−1S) denote the differentiable part of the majorizing function of (1).

We wish to prove that d L(�)/d� =�−1
0 −�−1S�−1 is Lipschitz continuous over the region of the

optimization problem. Since this is not the case for λmin(�)→ 0, we begin by showing that the constraint
region can be restricted to � � δ Ip.

PROPOSITION 1. Let �̃ be an arbitrary positive definite matrix, e.g., �̃ = S. Problem (1) is equivalent
to

Minimize��δ Ip

{
log det � + tr(�−1S)+ λ‖P ∗�‖1

}
for some δ > 0 that depends on λmin(S) and f (�̃).

Proof. Let g(�)= log det � + tr(�−1S) denote the differentiable part of the objective function
f (�)= g(�)+ λ‖P ∗�‖1, and let � =∑p

i=1 λi ui uT
i be the eigendecomposition of � with λ1 � · · ·�

λp.
Given a point �̃ with f (�̃) <∞, we can write (1) equivalently as

Minimize f (�) subject to � � 0, f (�) � f (�̃).

We show in what follows that the constraint f (�) � f (�̃) implies � � δ Ip for some δ > 0.
Now, g(�)=∑p

i=1 log λi + uT
i Sui/λi =

∑p
i=1 h(λi ; uT

i Sui ), where h(x; a)= log x + a/x . For a > 0,
the function h has a single stationary point at a, where it attains a minimum value of log a + 1, has
limx→0+ h(x; a)=+∞ and limx→∞ h(x; a)=+∞, and is convex for x � 2a. Also, h(x; a) is increas-
ing in a for all x > 0. From these properties and the fact that λmin(S)=min‖u‖2=1 uT Su, it follows that

g(�) �
p∑

i=1

h{λi ; λmin(S)}� h{λp; λmin(S)} +
p−1∑
i=1

h{λmin(S); λmin(S)}

= h{λp; λmin(S)} + (p − 1){log λmin(S)+ 1}.

Thus, f (�) � f (�̃) implies g(�) � f (�̃) and so

h{λp; λmin(S)} + (p − 1){log λmin(S)+ 1}� f (�̃).

This constrains λp to lie in an interval [δ−, δ+]= {λ : h{λ; λmin(S)}� c}, where c= f (�̃)− (p −
1){log λmin(S)+ 1} and δ−, δ+ > 0. We compute δ− using Newton’s method. To see that δ− > 0, note that
h is continuous and monotone decreasing on (0, a) and limx→0+ h(x; a)=+∞.

As λmin(S) increases, [δ−, δ+] becomes narrower and more shifted to the right. The interval also narrows
as f (�̃) decreases.

For example, we may take �̃ = diag(S11, . . . , Spp) and P = 11T − Ip, which yields

h{λp, λmin(S)}�
p∑

i=1

log{Sii/λmin(S)} + log λmin(S)+ 1.
�

We next show that d L(�)/d� =�−1
0 −�−1S�−1 is Lipschitz continuous on � � δ Ip by bounding

its first derivative. Using the product rule for matrix derivatives, we have

d

d�
(�−1

0 −�−1S�−1)=−(�−1S ⊗ Ip)(−�−1 ⊗�−1)− (Ip ⊗�−1){(Ip ⊗ S)(−�−1 ⊗�−1)}

= (�−1S�−1)⊗�−1 +�−1 ⊗ (�−1S�−1).
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Sparse covariance estimation 819

We bound the spectral norm of this matrix:∥∥∥∥ d

d�

d L

d�

∥∥∥∥
2

� ‖(�−1S�−1)⊗�−1‖2 + ‖�−1 ⊗�−1S�−1‖2

� 2‖�−1S�−1‖2‖�−1‖2

� 2‖S‖2‖�−1‖3
2.

The first inequality follows from the triangle inequality; the second uses the fact that the eigenvalues of
A ⊗ B are the pairwise products of the eigenvalues of A and B; the third uses the sub-multiplicativity of
the spectral norm. Finally, � � δ Ip implies that �−1 � δ−1 Ip, from which it follows that∥∥∥∥ d

d�

d L

d�

∥∥∥∥
2

� 2‖S‖2δ
−3.

APPENDIX 3

Alternating direction method of multipliers for solving (3)

To solve (3), we repeat until convergence:

1. diagonalize {� − t (�−1
0 −�−1S�−1)+ ρ	k − Y k}/(1+ ρ)=U DU T;

2. �k+1←U DδU T where Dδ = diag{max(Dii , δ)};
3. 	k+1← S{�k+1 + Y k/ρ, (λ/ρ)P}, i.e., soft-threshold elementwise;

4. Y k+1← Y k + ρ(�k+1 −	k+1).
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