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Abstract

We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of
synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian
matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition
on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of
feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the
extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks
under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which
synchronization plays a significant role.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Complex networks; Synchronization; Optimization
1. Introduction

Synchronization has recently been attracting many re-
searchers’ attention as a simple yet interesting example of col-
lective behavior on complex networks [1–22]. Of particular in-
terest is how the networks’ ability to synchronize depends on
various structural parameters of the networks, such as average
node-to-node distance [23,24], clustering coefficient [25],
degree distribution [24,26], and weight distribution [27–29].
Revealing the precise mechanism for synchronization in rela-
tion to the network structure is an important step toward under-
standing more complex behavior and unveiling the evolutionary
origin of real-world networks.

In some naturally evolved networks, such as neuronal and
biochemical networks, there is evidence that synchronized or
more general coordinated behavior may be playing significant
roles in the system’s functionality [30–32]. It appears natural
to expect that the ability of such networks to synchronize
their activity has been optimized to some extent during their
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evolution. In reality, however, the problem is likely to be more
complicated, since the fitness of the networks could depend on
multiple factors, such as stability, robustness, and adaptability.
Because of the complexity of the problem, researchers have
instead been focusing on simplified yet tractable optimization
problems as a first step toward solving the real problem. In
particular, there have been some efforts to solve the problem of
maximizing the synchronizability of oscillator networks [9,21,
22,27–29,33]. The scope of such studies has so far been mainly
limited either to numerical investigations or to single-parameter
families of possible networks.

In this paper, we go beyond these restrictions and
present rigorous solutions to the problem of maximizing
the network synchronizability, measured by the range of
coupling parameter for which the system achieves stable
synchronization. We also consider a more general concept,
the cost required for stable synchronization, and treat the
problem of minimizing it. Remarkably, we prove that the
solution sets of the two optimization problems coincide
and are completely characterized by a simple condition
on the Laplacian eigenvalues of the network. This spectral
characterization, however, does not provide much intuition
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about the structure of the optimal networks. To gain more
intuition, we explicitly construct a large subclass of optimal
networks characterized by a hierarchical structure, in which
information can flow only from top to bottom of the hierarchy,
making the network optimal for synchronization.

The theorems in this paper also provide mathematical
foundation for the solutions of a related problem that we
presented in our recent publication [34]. That problem was
originally motivated by the discovery that random scale-
free and other degree-heterogeneous networks are generally
difficult to synchronize [24]. This discovery led to efforts
to enhance the synchronizability of complex networks by
introducing directionality and weight to each link [27–29].
Underlying such efforts is a problem of optimization with
topological constraints [34]: given a fixed topology of allowed
interactions, find assignments of weights and directions that
would maximize the range of the coupling parameter for
stable synchronization. Here we prove that a solution can
be systematically and explicitly constructed using oriented
spanning trees embedded within any given connected topology
of allowed interactions. The resulting networks are guaranteed
to be optimal with respect to both synchronizability and
synchronization cost.

The problem of optimization under topological constraints is
potentially relevant for many real-world networks. In metabolic
networks, for example, the weights and directions of feasible
links (metabolic fluxes) are adjusted to optimize fitness, which
is likely to account for robustness of synchronized behavior
against environmental changes [35]. Similar adjustment of
weights and directions may enhance neuronal synchronization
within a given topology of synaptic connections in the brain.
In designing the interaction scheme for a computer network,
choosing proper weights and directions may optimize the
performance of computational tasks based on synchronization
of processes [36]. The adjustment of flows in power grids and
communication patterns in social organizations are additional
examples where directional and weighted patterns may be
favored because they can facilitate the synchronized or
coordinated behavior on which the functioning of these
networks is based.

Our results are based on an extension [34] of a well-known
framework for studying network synchronization [37]. The
power of this framework is that it can separate the effect of
the network structure from that of the dynamics of individual
nodes. However, it implicitly assumes that the Laplacian
matrix of the network is diagonalizable, i.e., the dynamics
of the network must be decomposable into independent
eigenmodes. In most of the previous works, this assumption
was automatically satisfied, since the main focus was on
symmetrically coupled networks, which are guaranteed to be
diagonalizable. However, the same does not hold true in general
when the network is directed. In fact, we prove the interesting
result that most optimal networks are non-diagonalizable, and
thus violate an assumption of the original framework. We show
that the stability condition for synchronization is formally the
same for all networks, but the speed at which the system
converges toward the synchronized state can be significantly
slower when the network is non-diagonalizable.

The technique underlying our extended framework can be
regarded as an example of a methodology for studying complex
systems that relies neither on the eigenmode decomposition nor
on any kind of superposition principle, and is expected to meet
applications in various other network phenomena.

The paper is organized as follows. In the next section,
we present the extended master stability framework. We state
the optimization problems in Section 3 and characterize their
solutions in Sections 4–6. In Section 7, we consider the
optimization problems with topological constraints. Finally, in
Section 8, we make concluding remarks on implications of our
results and on future directions.

2. Extension of master stability analysis

Consider n identical oscillators whose individual dynamics
without coupling is governed by ẋ = F(x), x ∈ Rm . Now
consider the network of these oscillators interacting through
a diffusive-type coupling, i.e., oscillator i receives input from
oscillator j that is proportional to Ai j [H(x j ) − H(xi )], where
Ai j is a nonnegative constant representing the relative strength
of the coupling, and H : Rm

→ Rm is a general output function.
The interaction is indeed the usual diffusive coupling when
H(x) = x. The set of equations governing the dynamics of the
system is then

ẋi = F(xi ) + σ

n∑
j=1

Ai j [H(x j ) − H(xi )], i = 1, . . . , n (1)

where σ is the parameter controlling the overall coupling
strength. Note that the system can be regarded as a sum of
two distinct components: the network structure represented by
the adjacency matrix A = (Ai j ) and the dynamical component
represented by the functions F and H. The general method of
analysis introduced by Pecora and Carroll [37] to study the
stability of complete synchronization in Eq. (1) is based on the
diagonalization of its variational equation. In the following, we
extend their analysis to include cases where the diagonalization
is not necessarily possible.

We first note that having diffusive-type coupling guarantees
the existence of a completely synchronous state, though it
may be unstable. In fact, given any solution x = s(t) of the
individual dynamics ẋ = F(x), the completely synchronized
solution, defined by xi = s(t), i = 1, . . . , n, is automatically
a solution of the entire system (1). For notational convenience,
we rewrite Eq. (1) as

ẋi = F(xi ) − σ

n∑
j=1

L i j H(x j ), (2)

where L = (L i j ) is called the Laplacian matrix of the directed
weighted network, defined by

L i j = −Ai j if i 6= j, L i i = −

∑
j 6=i

L i j . (3)



T. Nishikawa, A.E. Motter / Physica D 224 (2006) 77–89 79
Like the adjacency matrix A, the Laplacian matrix also contains
all information about the network structure and can be regarded
as a network analog of the Laplacian operator for diffusive
processes on continuous space. Note that L is not necessarily
symmetric because in our general formulation the network is
not constrained to be undirected.

The stability condition can be studied by considering the
variational equation for the synchronous solution xi = s(t) of
Eq. (2):

ξ̇ i = DF(s)ξ i − σ

n∑
j=1

L i j DH(s)ξ j , (4)

which can also be written in the matrix form as

ξ̇ = DF(s)ξ − σ DH(s)ξ LT, (5)

where ξ = (ξ1, . . . , ξn) is the m × n perturbation matrix,
ξ i is the vector of perturbations to the i th oscillator, and LT

denotes the transpose of L . In the Pecora–Carroll analysis,
the assumption that the Laplacian matrix L is diagonalizable
was implicitly used to diagonalize the variational equation (5).
Here we do not assume the diagonalizability of L . Instead, we
utilize the Jordan canonical transformation of L . For any n × n
matrix L , there exists an invertible matrix P of generalized
eigenvectors of L , which transforms L into Jordan canonical
form as

P−1L P = J =


0

B1
. . .

Bl

 , (6)

where Bi ’s are blocks of the form

Bi =


λ

1 λ

. . .
. . .

1 λ

 (7)

and λ is one of the (possibly complex) eigenvalues of L . We
note that the Jordan canonical transformation has been used
to study the stability of synchronization in specific classes of
networked systems [38–40]. By applying the change of variable
η = ξ(P−1)T in Eq. (5), we get [34]

η̇ = DF(s)η − σ DH(s)ηJ T. (8)

Each column of η, being a linear combination of all ξ i ’s,
represents in general a mode of perturbation to the entire
oscillator network, and not to any particular oscillator. Thus,
the synchronous solution is stable if and only if all of these
columns converge to zero under Eq. (8).

Before getting into the general treatment, let us first consider
the case where L is diagonalizable. In this case, the matrix J is
a diagonal matrix having the eigenvalues λ1, . . . , λn of L along
the diagonal. Thus, the equation for each column of η becomes
independent of the others and takes the form

ẏ = [DF(s) − αDH(s)]y, (9)
Fig. 1. Schematic illustration of the stability condition (10) for synchronized
state. The shaded area is the region in the complex plane in which the master
stability function Λ(α) is negative, and the dots represent σλi for i = 2, . . . , n.
The condition (10) corresponds to having all the dots in the shaded region.

where α = σλi when y represents the i th column of η.
Regarding α as a tunable complex parameter, Eq. (9) is called
a master stability equation and its stability profile as a function
of α determines the linear stability of the synchronous solution
in systems with various network structures represented by the
Laplacian eigenvalues. The largest Lyapunov exponent Λ(α)

for the solution y = 0 is usually used to test the stability
and is called a master stability function [37]. The eigenvalues
λ1, . . . , λn of L can always be arranged so that 0 = λ1 ≤

Re λ2 ≤ · · · ≤ Re λn , since
∑

j L i j = 0 implies that we always
have eigenvalue 0 corresponding to the eigenvector (1, . . . , 1)T,
and all eigenvalues are guaranteed to have nonnegative real
parts by the Gerschgorin Circle Theorem. Thus, the condition
for the synchronized solution to be linearly stable is

Λ(σλi ) < 0, i = 2, 3, . . . , n. (10)

See Fig. 1 for a visual demonstration of this stability condition.
Note that λ1 = 0 is excluded from the condition, because
Λ(σλ1) = Λ(0) actually determines the linear stability of
the individual solution s(t) against perturbation [try setting
α = 0 in Eq. (9)]. It would be positive if s(t) is chaotic, but it
does not affect the stability of synchronization. In other words,
Λ(0) corresponds to the stability in the direction parallel to
the synchronization manifold defined by {x1 = · · · = xn},
while Λ(σλ2), . . . ,Λ(σλn) correspond to the stability in the
directions transversal to the manifold.

Let us now consider the more general case where L is not
necessarily diagonalizable. Each block of the Jordan canonical
form corresponds to a subset of these columns in η, which
obeys a subset of equations in (8). For example, if block Bi
is k × k, and if the corresponding columns of η are denoted by
η1, η2, . . . , ηk , then the equations take the form

η̇1 = [DF(s) − αDH(s)]η1 (11)

η̇2 = [DF(s) − αDH(s)]η2 − σ DH(s)η1 (12)

· · ·

η̇k = [DF(s) − αDH(s)]ηk − σ DH(s)ηk−1, (13)

where α = σλ. Here η1, η2, . . . , ηk represent the modes
of perturbation in the generalized eigenspace associated with
eigenvalue λ. Eq. (11) has exactly the same form as the master
stability equation (9), so η1 converges exponentially to zero
as t → ∞ if and only if Λ(σλ) < 0. The condition for
Eq. (12) to be stable is apparently more involved but can be
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formulated as follows. Assuming that Λ(σλ) < 0 and that the
norm of DH(s) is bounded, we have that the second term in
Eq. (12) is exponentially small as well. Then, the same
condition Λ(σλ) < 0 guarantees the stabilizing effect of both
the first and second terms, resulting in exponential convergence
of η2 to zero as t → ∞. The same argument applied repeatedly
shows that η3, . . . , ηk must also converge to zero if Λ(σλ) < 0.
This shows that Λ(σλ) < 0 is the condition for the linear
stability of the equations corresponding to each full block Bi .
Thus, when all the Jordan blocks are taken into account, we see
that the stability condition for the synchronous solution in the
general non-diagonalizable case is also given by (10).

Although the stability condition is the same for both the
diagonalizable and non-diagonalizable cases, it is worthwhile
noting that there is a crucial difference. If L is diagonalizable,
then each mode of perturbation is decoupled from others,
so the exponential convergence of each column of η occurs
simultaneously and independently of other columns. On the
other hand, if L is not diagonalizable, some modes of
perturbation may suffer from a long transient because they may
be coupled to other modes associated with the same eigenvalue.
In Eqs. (11)–(13), η2 may have to wait for η1 to get small
enough before it can start converging, η3 may have to wait for
η2, and so on, so ηk may have to wait for a long time before
it starts to converge. The larger the size k of the Jordan block,
the longer we expect the transient to be. As a simple example
to illustrate this effect, consider a network of linearly coupled
phase oscillators described by

θ̇i = ω + σ

n∑
j=1

Ai j (θ j − θi ), θi ∈ S1, (14)

= ω − σ

n∑
j=1

L i jθ j , (15)

where S1 denotes the unit circle. In this case, the corresponding
variational equation around the synchronized solution θi =

ωt , i = 1, . . . , n, is a simple linear system, and so are the
corresponding Eqs. (11)–(13). Thus, they can be explicitly
solved to give

η1 = c1e−αt (16)

η2 = (−c1σ t + c2)e−αt (17)

η3 =

[
c1σ

2t2

2
− c2σ t + c3

]
e−αt (18)

· · · (19)

ηk =

[
(−1)k−1c1σ

k−1tk−1

(k − 1)!
+ · · · − ck−1σ t + ck

]
e−αt (20)

where (c1, . . . , ck) is the initial value of the perturbation vector
(η1, . . . , ηk). We can indeed see that the polynomial factors
lead to slower convergence for larger k in this example.

In fact, even when L is diagonalizable, we expect to
see longer transient as it becomes closer to being non-
diagonalizable, i.e., some of its eigenvectors become closer
to being parallel. To see this, imagine a small sphere cen-
tered at the origin of the space of perturbation matrices ξ . If
a pair of eigenvectors are almost parallel, then the matrix P
of eigenvectors is close to being singular. Hence, the sphere is
stretched quite a bit along some direction under the transforma-
tion η = ξ(P−1)T. This implies that small perturbations to the
synchronized state in the original coordinates can lead to large
perturbations in the eigenvector coordinates. This in turn leads
to relatively long transient, even though the type of convergence
remains purely exponential. This mechanism is at work to some
extent for any network with non-orthogonal eigenvectors, but
the effect is more prominent if the eigenvectors are closer to
being parallel. In the limit of parallel eigenvectors, L becomes
non-diagonalizable, and the convergence becomes qualitatively
different, as we saw in the phase oscillator example above.
Thus, we expect to observe relatively long transient not only in
a few special networks, but also in many others close to them.

The fact that the stability condition is the same regardless
of the diagonalizability of the Laplacian matrix is analogous
to the fact that the linear stability condition of a fixed
point in a dynamical system is the same regardless of the
diagonalizability of the Jacobian. In both situations, lack of
diagonalizability leads to long transient.

3. Optimization problems

Here we are interested in two different optimization
problems:

• Which network structure maximizes the synchronizability of
the system?

• Which network structure allows the system to synchronize
stably with the minimum possible cost?

To address these optimization problems, we need to
precisely define quantities to optimize: the synchronizability
and the synchronization cost of an oscillator network. To set the
stage for doing this, we first let R denote the stability region,
defined as the subset of the complex plane in which the master
stability function Λ(α) is negative, i.e., R = {α ∈ C | Λ(α) <

0}. Using this notation, the stability condition (10) can now be
written as σλ2, . . . , σλn ∈ R. This shows clearly that there
are only two distinct factors that determine the stability of the
synchronized solution:

(1) Network structure, encoded in the adjacency matrix A
and affecting the stability only through the Laplacian
eigenvalues λ2, . . . , λn ;

(2) Dynamical component, consisting of the individual
dynamics given by F and s, together with the output
signal function H, and affecting the stability only through
the properties of the stability region R. We denote this
component by (F, H, s).

By considering the complex conjugate of Eq. (9), we can see
that R is always symmetric about the real axis. In most of the
previously studied cases, it has been found [37,41] that

(A-I) R is a convex subset of C.

In addition, for a large class of systems in which the dynamics
of each oscillator is chaotic, it has also been found [18,28,37,
41] that
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Fig. 2. Examples of stability regionR for systems with (a) no short-wavelength bifurcation and with (b) intermediate-wavelength bifurcation.
(A-II) 0 < α1 < α2 < ∞,

where we define

α1 = inf{Re α | α ∈ R}, α2 = sup{Re α | α ∈ R}. (21)

The assumptions (A-I) and (A-II) on the stability region
imply that the set of overall coupling strength σ for which
complete synchronization is stable,

Isync = {σ | Λ(σλi ) < 0, i = 2, . . . , n}

= {σ | σλ2, . . . , σλn ∈ R}, (22)

is either an empty set or a finite interval with endpoints at σmin
and σmax, where 0 < σmin ≤ σmax < ∞. In the case of a
finite interval, this can be physically interpreted as follows. The
completely synchronized state of the network is unstable for
small enough values of σ , but as σ is increased, it becomes
stable at a lower threshold σmin and then becomes unstable
again above an upper threshold σmax. Thus, the relative width
of this interval defined by

S =
σmax

σmin
(23)

provides a natural and convenient measure of how easy it is
for the network to synchronize, i.e., the synchronizability of
a network of coupled chaotic oscillators: larger values of S
correspond to more synchronizable networks. In this paper, we
consider only those systems with R satisfying properties (A-I)
and (A-II) to ensure that S is well-defined.

The synchronization cost C of a network is defined [27,28]
as the sum of the total input strength of all nodes at the lower
synchronization threshold σmin:

C = σmin

n∑
i, j=1

Ai j . (24)

We define S = 0 and C = ∞ when Isync is empty because
this simply means that stable synchronization is impossible.
Note that while S is guaranteed to give meaningful values only
when (A-I) and (A-II) are satisfied, C is meaningful without any
assumptions on the stability region. This means that the notion
of synchronization cost applies to a wider range of systems,
including those with no short-wavelength bifurcation [19,42]
or with intermediate-wavelength bifurcation. See Fig. 2 for
examples of the stability region for such systems. The results
presented below for the synchronization cost would hold even
when these assumptions are weakened, but here we assume
(A-I) and (A-II) for simplicity.

With S and C defined, the two optimization problems under
consideration can now be formulated precisely:

• Which network structure A has the property that it
maximizes the synchronizability S for any given dynamical
component (F, H, s) withR satisfying (A-I) and (A-II)?

• Which network structure A has the property that it
minimizes the synchronization cost C for any given
dynamical component (F, H, s) with R satisfying (A-I) and
(A-II)?

By requiring the optimality for the entire class of dynamical
components, we are defining the optimality of a network
structure, independently of the dynamical component of any
specific system. Note that both S and C are invariant under
re-scaling of A, and thus only the relative distribution of
the individual coupling strength Ai j is important for the
optimization problems.

4. Optimal network structures

In this section, we give a complete characterization of
the class of solutions to the two optimization problems
introduced in the previous section. We start by studying the
properties of the quantities to be optimized. Even though the
synchronizability S and the synchronization cost C generally
depend on both the dynamical component encoded in R and
the network structure encoded in λ2, . . . , λn , it turns out that
they are both bounded by a quantity that depends only on R
(and also on n in the case of C).

Theorem 1. For any stability region R satisfying (A-II), we
have

S ≤
α2

α1
, C ≥ α1(n − 1). (25)

Proof. Let the Laplacian eigenvalues be ordered so that 0 =

λ1 ≤ Re λ2 ≤ · · · ≤ Re λn . If Re λ2 = 0, then Isync is
empty, and the inequalities are clearly satisfied since S = 0
and C = ∞. Thus, we are left with proving the inequalities in
the case 0 < Re λ2 ≤ · · · ≤ Re λn .

Suppose σ ∈ Isync. Then, since σλi ∈ R for i = 2, . . . , n,
we have

α1 ≤ Re (σλi ) ≤ α2, (26)
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and hence

α1

Re λi
≤ σ ≤

α2

Re λi
(27)

for i = 2, . . . , n. In particular, this implies that

α1

Re λ2
≤ σ ≤

α2

Re λn
. (28)

This holds for any σ ∈ Isync, so by the definition of σmin and
σmax, we have

α1

Re λ2
≤ σmin and σmax ≤

α2

Re λn
. (29)

Therefore,

S =
σmax

σmin
≤

α2

α1
·

Re λ2

Re λn
≤

α2

α1
, (30)

and

C = σmin

n∑
i, j=1

Ai j = σmin · tr L

= σmin

n∑
i=2

λi ≥
α1

Re λ2

n∑
i=2

Re λi

≥
α1

Re λ2
· (n − 1) · Re λ2 = α1(n − 1). � (31)

In the special cases where all the Laplacian eigenvalues
are real, S and C can be computed explicitly. In particular,
S is proportional to an eigenvalue ratio [23]. Such a situation
occurs for example for the undirected networks, for which the
Laplacian matrix is symmetric. This result is expressed in the
following theorem.

Theorem 2. Suppose that the Laplacian eigenvalues are all
real and ordered as 0 = λ1 < λ2 ≤ · · · ≤ λn . For any R
satisfying (A-I) and (A-II), we have

S =
α2

α1
·
λ2

λn
, C =

α1

λ2

n∑
i=2

λi . (32)

Proof. Suppose R satisfies (A-I) and (A-II). Let Rreal be the
intersection of R and the real axis. By combining (A-I) with
the fact that R is symmetric about the real axis, we see that
Rreal is an interval with endpoints at α1 and α2. We can write

Isync =

n⋂
i=2

I (i)
sync, where I (i)

sync = {σ | σλi ∈ R}. (33)

Since λi is real, we have σλi ∈ R if and only if σλi is in the
intervalRreal, and hence I (i)

sync is an interval whose endpoints are
at α1/λi and α2/λi . Taking into account all i = 2, . . . , n, this
means that Isync is an interval with endpoints at σmin = α1/λ2
and σmax = α2/λn . Thus,

S =
σmax

σmin
=

α2

α1
·
λ2

λn
. (34)
We also have

C = σmin

n∑
i, j=1

Ai j =
α1

λ2
· tr L =

α1

λ2

n∑
i=2

λi . � (35)

A surprising consequence of this theorem is that a simple
condition on the eigenvalues suffices to guarantee both the
maximum synchronizability and the minimum synchronization
cost for any dynamical component (F, H, s) with R satisfying
(A-I) and (A-II):

Corollary 3. Suppose that the Laplacian eigenvalues of a
network satisfy,

0 = λ1 < λ2 = · · · = λn . (36)

Then, S and C achieve their maximum and minimum values,
respectively, i.e.,

S =
α2

α1
, C = α1(n − 1), (37)

for any (F, H, s) withR satisfying (A-I) and (A-II).

Proof. Condition (36) implies that the eigenvalues are all real,
so Theorem 2 applies, and we have

S =
α2

α1
·
λ2

λn
=

α2

α1
, (38)

and

C =
α1

λ2

n∑
i=2

λi = α1(n − 1). � (39)

Corollary 3 shows that any network satisfying Eq. (36) is a
simultaneous solution of the two optimization problems under
consideration. However, even more surprising is the fact that
those that satisfy (36) are actually the only solutions. In other
words, the two classes of optimal networks – those with
the maximum synchronizability and those with the minimum
synchronization cost – actually coincide, and both can be
completely characterized by condition (36). To state this in
a precise but convenient form, let us define the following
terminology. We say that a network given by A has the
maximum synchronizability if S = α2/α1 for any (F, H, s)
with R satisfying (A-I) and (A-II). Similarly, we say that a
network given by A has the minimum synchronization cost if
C = α1(n − 1) for any (F, H, s) with R satisfying (A-I) and
(A-II). Thus, the optimality is a property that depends solely on
the network structure and not on the dynamical component of
the system.

Theorem 4. The following statements are equivalent:

(i) A network has the maximum synchronizability.

(ii) A network has the minimum synchronization cost.

(iii) The Laplacian eigenvalues of a network satisfy condi-
tion (36).
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Proof. (iii) ⇒ (i) and (iii) ⇒ (ii) are precisely what Corollary 3
states, so we are left with proving (i) ⇒ (iii) and (ii) ⇒ (iii). We
do this by showing their contrapositives, i.e., that if (iii) does
not hold, then neither (i) nor (ii) hold. If (iii) does not hold, we
either have Re λ2 < Re λn or Im λk 6= 0 for some k, where
2 ≤ k ≤ n. If Re λ2 < Re λn , then, by (30) and (31), we have

S ≤
α2

α1
·

Re λ2

Re λn
<

α2

α1
, (40)

and

C ≥
α1

Re λ2

n∑
i=2

Re λi

≥ α1

[
(n − 2) +

Re λn

Re λ2

]
> α1(n − 1), (41)

and hence neither (i) nor (ii) hold. If Re λ2 = · · · = Re λn
and Im λk 6= 0 for some k, then there exist systems with R
satisfying (A-I) and (A-II) (in fact, most systems; see Fig. 3)
such that {Re (σλk) | σλk ∈ R} is an interval with endpoints at
α′

1 and α′

2, where α1 < α′

1 < α′

2 < α2, implying

α′

2

α′

1
<

α2

α1
. (42)

Here we used the fact thatRreal is an interval with endpoints
at α1 and α2, as in the proof of Corollary 3. Again, by using
the same argument as in the proof of Theorem 1 with α1 and α2
replaced with α′

1 and α′

2, we have

S ≤
α′

2

α′

1
<

α2

α1
, (43)

and

C ≥ α′

1(n − 1) > α1(n − 1), (44)

so neither (i) nor (ii) hold. We have shown (i) ⇔ (iii) and (ii) ⇔

(iii), which prove the equivalence of the three statements. �

The conclusions about the synchronization cost C in
Theorem 1, Theorem 2, Corollary 3, and Theorem 4 remain
valid if the assumptions on the stability region are weakened,
with straightforward modification to the proofs. The bound on
C in Theorem 1 and the identity for C in Theorem 2 are valid
without assuming (A-II). The conclusion about C in Corollary 3
remains valid if (A-I) and (A-II) are replaced with the condition
that α1 (as a point in the complex plane) is contained in
Rreal. The latter condition is also sufficient for the equivalence
between statements (ii) and (iii) in Theorem 4.

In view of the equivalence in Theorem 4 and for
convenience, we will use the following terminology in the rest
of the paper.

Definition 5. We say that a network given by L is optimal if it
satisfies condition (36).

Thus, the class of optimal networks is the set of simultaneous
solutions to the two optimization problems. The uniform global
coupling, in which all oscillators are connected to all the
Fig. 3. A situation leading to suboptimal S and C in the proof of Theorem 4.

Fig. 4. Simple examples of optimal networks. (a) The global coupling
configuration with uniform weight λ/n on every link, where n = 6 and each
double arrow represents two links, one in each direction. (b) The outward
oriented star configuration with uniform weight λ on every link, where each
arrow represents a single link.

other oscillators with weight λ/n on all links, is perhaps the
simplest example of an optimal network [Fig. 4(a)]. The non-
zero Laplacian eigenvalues in this case are λ2 = · · · = λn = λ,
and therefore this network satisfies condition (36). Another
simple example is the outward oriented star, defined here as
having a single node connected to all the other nodes with
uniform weight λ on all of these links [Fig. 4(b)]. The Laplacian
eigenvalues are also λ2 = · · · = λn = λ for this configuration.
However, there are many more networks that are optimal, as we
will see in Section 6.

5. Diagonalizability of optimal structures

We now study the diagonalizability of the optimal networks
defined by (36). Here we say that a network is diagonalizable
if the corresponding Laplacian matrix is diagonalizable.
Otherwise, the network is called non-diagonalizable. We
will show that all networks that are diagonalizable must
satisfy a special structural condition. This has a rather
surprising consequence that most optimal networks are non-
diagonalizable. This means that the extension of the master
stability analysis in Section 2 was indeed necessary for a proper
treatment of the optimization problems. The following theorem
gives a complete characterization of the optimal networks that
are diagonalizable.

Theorem 6. The following two statements about a given
network are equivalent:

(i) The network is optimal and diagonalizable.
(ii) The oscillators can be divided into two groups: those with

uniform positive output to all the other oscillators and those
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with no output at all. In addition, there is at least one
oscillator in the first group.

Proof. Suppose that a network satisfies condition (i), i.e., L
is optimal, so that λ = λ2 = · · · = λn > 0, and L
is diagonalizable. Then, the eigenspace associated with the
eigenvalue λ has the maximum possible dimension of n−1, and
so does the solution space of the eigenvalue equation Lx = λx ,
which can also be written as (L − λI )x = 0. This implies that
all rows of the matrix L − λI must be constant multiples of the
first row, so the matrix must be of the form

L − λI =


a1 a2 · · · an

c2a1 c2a2 · · · c2an
...

...
...

cna1 cna2 · · · cnan

 . (45)

Then, the Laplacian matrix itself takes the form

L =


a1 + λ a2 · · · an
c2a1 c2a2 + λ · · · c2an

...
...

...

cna1 cna2 · · · cnan + λ

 . (46)

However, from the property of a Laplacian matrix that∑
j L i j = 0, it follows that c2 = · · · = cn = 1, and hence

L =


a1 + λ a2 · · · an

a1 a2 + λ · · · an
...

...
...

a1 a2 · · · an + λ

 . (47)

The off-diagonal entries in the j th column represent the
strength of the output from the j th oscillator to the other
oscillators. Hence, this form of L implies that each oscillator j
either has the same positive output to all the oscillators (a j 6= 0)
or it has no output at all (a j = 0). In addition, there must be at
least one oscillator that has positive output, since otherwise the
network is completely disconnected, and it is impossible for it
to be optimal.

Now suppose that the network satisfies condition (ii). Then,
since the strength Ai j of the connection from node j to node
i 6= j depends only on j , the adjacency matrix A must have the
form

A =


0 b2 · · · bn
b1 0 · · · bn
...

...
...

b1 b2 · · · 0

 , (48)

where bi ≥ 0. Using
∑

j L i j = 0, we can show that the
Laplacian matrix L must be in the form

L =


λ − b1 −b2 · · · −bn
−b1 λ − b2 · · · −bn

...
...

...

−b1 −b2 · · · λ − bn

 , (49)

where λ =
∑

i bi > 0. From this, it is straightforward to show
that the eigenvalues of L are 0 = λ1 < λ2 = · · · = λn = λ,
Fig. 5. Examples of optimal networks that are diagonalizable. Each arrow
represents a single directed link. Thick, medium, and thin arrows have weight
λ/2, λ/3, and λ/6, respectively. For each network, all nonzero eigenvalues are
λ.

and the eigenspace of λ has dimension n −1. Thus, the network
is optimal and diagonalizable. �

The uniform global coupling and the outward oriented star
configurations, shown in Fig. 4, are examples of optimal
networks that are diagonalizable. Fig. 5 shows two more
such examples. For both examples, the Laplacian eigenvalues
λ2, . . . , λ7 are all equal to λ and the corresponding eigenspace
has the full dimension of 6.

In fact, condition (ii) in Theorem 6 provides us with an
explicit procedure to construct all optimal networks that are
diagonalizable. Start with a set of n nodes with no links and
choose nonnegative numbers b1, b2, . . . , bn , not all zero. For
each i , make directed links from node i to the n − 1 other
nodes with weight bi on each link. Regardless of the choice of
bi ’s, the resulting network is guaranteed to satisfy condition (ii),
and different choices of bi ’s are guaranteed to generate all such
networks. In the example of Fig. 5(a), the three nodes in the
middle have links to all the other nodes with weight bi = λ/3,
while the remaining nodes have no outgoing links (bi = 0).
In Fig. 5(b), the three middle nodes have outgoing links with
different weights (bi = λ/2, λ/3, λ/6) that add up to λ. In this
class of networks, the (n − 1)-degenerate eigenvalue is always
equal to

∑
i bi .

The theorem implies that for any optimal network that is
diagonalizable, there is at least one oscillator with uniform
positive output to all the other oscillators in the network.
This, however, is unlikely to occur in a large realistic complex
networks, implying that if synchronization is important for such
networks, they are likely to be non-diagonalizable, or at least
close to being non-diagonalizable.

6. Optimality of hierarchical network structures

Here we present another subclass of optimal networks,
characterized by three structural conditions that are more
intuitive than (36). The first condition ensures connectedness
of the network, the second ensures well-defined hierarchy of
nodes, and the third ensures uniformity of total input strength
in each node. To conveniently state the first condition, we define
an oriented spanning tree to be a directed subnetwork that is a
tree and spans the entire set of nodes, with the links oriented in
the direction from the root to the branches of the tree. Thus, the
existence of an oriented spanning tree embedded in a network is
equivalent to the existence of a node from which all other nodes
can be reached by following the directed links.
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Fig. 6. (Color online) (a) Example of optimal network with hierarchical structure. Thick, medium, and thin arrows have weight λ, 2λ/3, and λ/3, respectively,
where the sum of input strengths in each node is normalized to λ. The nodes are numbered according to the ranking and colored by the levels in the hierarchy. (b)
The nodes in (a) are rearranged to make the hierarchical levels more clearly visible.
Theorem 7. Suppose that a network satisfies the following
three conditions:

(i) It embeds an oriented spanning tree.
(ii) It has no feedback loops.

(iii) For all nodes that receive positive input, the sum of input
strength

∑
j 6=i Ai j = L i i is equal to a constant λ.

Then, the network is optimal and the (n − 1)-degenerate
eigenvalue is equal to λ.

Proof. Suppose that a network satisfies the given condi-
tions (i)–(iii). By starting from an arbitrary node and traversing
nodes following links in the reverse direction, we must even-
tually either return to a node already visited, thus creating a
feedback loop, or arrive at a node without any input. By condi-
tion (ii) we cannot have any feedback loops, so we must arrive
at a node that receives no input. Such a node can only be the
unique node at the root of the oriented spanning tree that is
guaranteed to exist by condition (i), since any other nodes in
the tree must be reachable from the root.

Now let us assign the index 1 to the unique node
without input. Consider the network obtained by removing
the node 1 and any links from it. Applying the same
argument as above to this subnetwork (but now only the
existence part), we see that there is at least one node
without input within the subnetwork. The only input to
such a node is from node 1. Let n2 be the number of
such nodes. We arbitrarily index them 2, 3, . . . , n2 + 1.
Let us then consider the network obtained by removing these n2
additional nodes, together with all associated links. Applying
the same argument again, we see that there is at least one node
whose only input is from nodes 1, 2, . . . , n2 + 1, and we index
them n2 + 2, n2 + 3, . . . , n2 + n3 + 1. Repeating this argument
until we assign indices to all the nodes, we obtain an indexing
in which all the links are from a node with smaller index to a
node with larger index. This means that the Laplacian matrix L
of the network using these indices is a lower triangular matrix,
and hence the diagonal elements are its eigenvalues. Since the
diagonal elements of L are precisely the total input strength
of the nodes, the first one is 0, corresponding to the unique
node without input, and all the others are λ, which follows from
condition (iii). Hence the network satisfies the condition (36)
and therefore is optimal, by Theorem 4. �
Note that condition (i) of Theorem 7 is equivalent to Re λ2 >

0, which follows immediately from a recent result in Ref. [43],
and this generalizes the notion of connectedness to directed
networks. Condition (i) is necessary for a network to satisfy
the stability condition (10). In other words, the network must be
connected in this sense to make sure that it is at least compatible
with the possibility of stable complete synchronization.

In Fig. 6, we show an example of a network satisfying
conditions (i)–(iii) of Theorem 7. The method of assigning
indices to the nodes described in the proof above defines a
ranking of the nodes in such a network. In this ranking, links
exist only from a node of higher rank to a node of lower rank.
In addition, the method defines a hierarchical structure with
multiple levels. The top level contains the unique node without
input. The second level consists of n2 nodes that receive input
only from the top level. The third level consists of n3 nodes
that receive input only from the top two levels. The rest of the
hierarchical structure is defined similarly, so that links exist
only from a higher level to a lower level. These hierarchical
levels are indicated by different colors in Fig. 6, and in panel
(b), the nodes are rearranged to make the levels more clearly
visible.

The flow of information about the dynamical state of the
oscillators in this hierarchical structure is unidirectional; it
flows only from the top down to the bottom. With this picture
in mind, the reason for the optimality of such a network
can be understood intuitively as follows. The top node in
the hierarchy receives no input and acts as the “master”
oscillator that dominates the network dynamics. If the coupling
strength σ is chosen so that Λ(σλ) < 0, where λ > 0
is the (n − 1)-degenerate eigenvalue, then the oscillators in
the second level, which receive input only from the master,
will synchronize themselves with the master. An oscillator in
the third level, which receives input only from those in the
top two levels, must also synchronize, since normalization
of the total input strength makes the equation effectively
look as if it were receiving input from a single oscillator
synchronized with the master. Repeating the same argument for
the rest of the hierarchical levels in the network, we see that
all oscillators must eventually synchronize. Thus, conditions
(i)–(iii) guarantee stable synchronization in the entire range of
σ such that Λ(σλ) < 0. This makes perfect sense because
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the stability condition (10) becomes Λ(σλ) < 0 when the
optimality condition (36) is satisfied.

Notice that this argument is very similar to the argument in
Section 2 that was used to derive the stability condition for non-
diagonalizable cases. This suggests that the networks satisfying
conditions (i)–(iii) may also suffer from long transient before
converging to the synchronized state. For these networks, the
number of levels in the hierarchy is strongly related to the
length of the transient. In addition, the similarity suggests that
most of these hierarchical networks in Theorem 7 are non-
diagonalizable. In fact, the only exception is when there are
only two levels in the hierarchy, with one top node connected to
all the other nodes with uniform weights, leading to the outward
oriented star configuration.

Theorem 8. Let L represent a network satisfying (i)–(iii) in
Theorem 7. Then, L is diagonalizable if and only if it is the
outward oriented star.

Proof. Suppose L is diagonalizable. Then, by Theorem 6, for
each i , oscillator i either has the same nonzero output to all the
other oscillators or has no output at all. From the argument in
the proof of Theorem 7, there is a unique oscillator without any
input. This oscillator must have uniform output to all the other
oscillators, since it would be isolated otherwise. Any of the
other oscillators must have no output at all, since otherwise it
would have output to all the other oscillators, including the first
one, which leads to a feedback loop. Thus, we have the outward
oriented star configuration, and the weights on the links are
uniform because of the condition (iii) in Theorem 7.

If the network is the outward oriented star, then it is clear
that each oscillator either has the same nonzero output to all
the other oscillators or has no output at all. Therefore, by
Theorem 6, it must be diagonalizable. �

This result is intimately related to the structure of branches
in the underlying spanning trees. In an oriented spanning tree,
it can be shown that the number of independent eigenvectors
associated with an (n−1)-degenerate eigenvalue λ > 0 is equal
to the number of branches in the tree.

7. Optimization with topological constraints

Let us now consider optimization problems with topological
constraints. Suppose that the oscillators are constrained to
interact only within a given network topology represented by
a symmetric matrix A0 defined by

(A0)i j =

1, if distinct oscillators i and j are allowed
to interact,

0, otherwise.
(50)

Note that A0 represents an undirected network of interaction
topology. To make the system compatible with synchronization,
we assume that this network is connected, i.e., there is a
path between any two nodes. The problem is to choose an
assignment of weights and directions for the links in this
network, so that the resulting network is optimal. Let Wi j ≥ 0
be the weight assigned to the directed link from j to i . With
this assignment, we obtain a network with adjacency matrix A
given by Ai j = (A0)i j Wi j . Then, the constrained optimization
problems can be formulated as follows. Given a connected
network topology A0 of allowed interactions, for which
assignment W does the resulting network have the maximum
synchronizability and/or the minimum synchronization cost?

Remarkably, there always exists an assignment that achieves
the optimality defined by (36) for any constraining topology
A0 that is connected. We can explicitly construct solutions
using Theorem 7, together with the fact that we can always
find an oriented spanning tree within the topology A0.
Indeed, if we properly assign directions to links along such
a tree, then conditions (i) and (ii) are clearly satisfied. The
fact that properly weighted trees can have identical nonzero
eigenvalues has been noted before, without considering their
non-diagonalizability [44].

One way to explicitly construct an oriented spanning tree
is the well-known procedure called the breadth-first search.
The procedure also determines a ranking of the nodes and the
hierarchical levels. First, we choose an arbitrary node as the top
rank node which forms the top hierarchical level by itself. Then,
we find all nodes that can be reached from the first node, make
connections to them, and rank them arbitrarily following the
first node. These nodes form the second level in the hierarchy.
The third level consists of the nodes that are not yet discovered
but can be reached by following two links, and again we rank
them arbitrarily following the nodes already discovered. We
make connections to these nodes, making sure to choose only
one connection to each node. We repeat this until we discover
all the nodes in the network, and the resulting directed network
is an oriented spanning tree. This procedure can produce at
least n distinct oriented spanning trees, one for each choice of
the root node, but in general there are many others, and many
of them cannot be found by this procedure. Indeed, from the
Matrix-Tree Theorem it follows that the number of all such
oriented trees is

∏n
i=2 µi , where µ2, . . . , µn are the nonzero

Laplacian eigenvalues of the underlying undirected network
defined by matrix A0. For a globally connected network, for
example, the number of oriented spanning tree is nn−1, which
is a huge number even for relatively small networks.

To ensure that condition (iii) is also satisfied, we assign
the same weight to all the links in the oriented spanning tree.
The resulting network is guaranteed by Theorem 7 to have the
maximum synchronizability and the minimum synchronization
cost (see Fig. 7 for an example). Therefore, for a given
connected topology of possible interactions, there are at least as
many solutions to the constrained optimization problems as the
number of oriented spanning trees. However, there are certainly
many more ways to assign weights and directions so as to
satisfy the conditions in Theorem 7. For example, any addition
of directed links to an oriented spanning tree, that is allowed
by the topology of possible interactions and that does not create
loops, leads to an optimal network after normalization of inputs.
It is rather remarkable that these solutions allow the network
with an arbitrary topological constraint to achieve the same
synchronization efficiency – from both synchronizability and
cost viewpoints – as the global coupling configuration.
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Fig. 7. (Color online) (a) Example of weight and direction assignment within a given interaction topology based on an oriented spanning tree constructed by the
breadth-first search. Arrows indicate directed links with nonzero weight, while dashed lines are links with zero weight. (b) The nodes in (a) are rearranged to make
the hierarchical levels more clearly visible.
An interesting property of this construction is that the
choice of the “master” oscillator does not matter in achieving
optimality. Despite the intuition that the nodes with the largest
number of links in the given topology are the most natural
choices for the master, the above construction shows that any
node can be the master. Moreover, the direction of each link in
an optimal network is not necessarily related to the properties
of the nodes it connects.

Because the weight assignments based on oriented spanning
trees explore only some of the many potential links, the
optimality of the resulting networks can be interpreted as a
synchronization version of the paradox of Braess for traffic
flow [45,46], in which removing links leads counter-intuitively
to improved performance of the network. It is interesting to
notice that similar directed networks without feedback loops
also emerge as gradient networks [47] and in the study of
transport processes on complex networks [48].

An immediate consequence of Theorem 6 is that all
solutions of the constrained optimization problem are non-
diagonalizable, unless some oscillator is allowed to interact
with all the other oscillators.

Corollary 9. Suppose that the topology A0 of interactions
allows no oscillator to interact with all the other oscillators.
If an assignment of weights and directions leads to an optimal
network (which is always possible as long as A0 is connected),
then the resulting network is non-diagonalizable.

Proof. Suppose that the optimal network obtained by the
assignment of weights and directions is diagonalizable.
Theorem 6 implies that there must be at least one oscillator
having nonzero output to all the other oscillators. Therefore,
under the assumption of the Corollary, the network must be
non-diagonalizable. �

Once again, this shows that the extension of the master stability
framework was indeed necessary to treat the problem. The
global coupling topology and star topology are among the
exceptional cases where an oscillator can communicate with all
the other oscillators, but such a situation is uncommon in a large
complex network.

The oriented spanning trees form a subclass of all optimal
networks constrained under the given topology of interactions.
One property that sets the oriented spanning trees apart
from others in the class of optimal networks is that in
addition to maximizing synchronizability and minimizing the
synchronization cost, it also minimizes the number of links
used (i.e., the number of links with nonzero weight). This is
because the number of links in an oriented spanning tree, which
is always n−1, is the minimum number of links required to span
all n nodes.

The oriented spanning trees can be used as a basis for
optimization under even stricter constraints. Suppose that, in
addition to constraining the topology of interactions, we have
constraints on the directions of allowed links. In other words,
we consider optimization among all subnetworks of a given
directed network represented by

(A0)i j =

1, if oscillator i may receive connection from
oscillator j 6= i ,

0, otherwise.
(51)

Note that in this case, A0 is not necessarily symmetric. As long
as the directed network given by A0 is connected in the sense
that it embeds an oriented spanning tree, explicit construction of
an optimal subnetwork is possible. These optimal subnetworks
include the embedded oriented spanning tree itself and any
other subnetwork satisfying the conditions in Theorem 7.

Interestingly enough, despite all the optimal properties that
stem from the properties of oriented spanning trees, undirected
tree topology was found to be among the most difficult to
synchronize [49]. Moreover, the out-degree distribution of
these optimal networks can be highly heterogeneous, in sharp
contrast with the case of undirected networks [24]. These
highlight the significance of directionality of the interactions
in determining the synchronizability of networks. The fact that
directed networks may have advantage over undirected ones
is consistent with the finding in [27–29,50] that asymmetric
coupling in networks of chaotic oscillators has positive effect
on synchronization.

8. Concluding remarks

In this work, we have considered the problem of maximizing
the synchronizability and minimizing the synchronization cost
of oscillator networks. By extending the master stability
formalism to the case of non-diagonalizable Laplacian
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matrices, we have shown that the solutions of the optimization
problems can be completely characterized by the simple
condition (36) on the Laplacian eigenvalues. We have
also shown that the intuitive structural conditions (i)–(iii)
in Theorem 7, which facilitate unidirectional information
flow and normalized input strength, guarantee optimality. In
addition, we have considered optimization under topological
constraints and shown that we can explicitly construct optimal
networks using oriented spanning trees. Furthermore, by a
complete characterization of diagonalizable optimal networks,
we have proved that most optimal networks are actually non-
diagonalizable, which necessitates the extension of the master
stability formalism. Since spectral analyses are also relevant
for other dynamical processes on networks (e.g., diffusion and
other spreading processes), it would be interesting to see these
results applied to the study of different network phenomena.

Structural properties of optimal networks, such as those
given in our theorems for the diagonalizable and hierarchical
networks, can serve as a general guideline for designing
networks for synchronization. For such applications, however,
it is important to address the question of robustness. What
is the effect of structural perturbations on the optimality of
these networks? We expect that a perturbation theory can
be used to show that small deviations from the optimal
structures will induce only a small change in S and C . Another
type of robustness question is about the effect of dynamical
perturbations: how does disturbances introduced at one or more
nodes in the synchronized state propagate over the network?

Within the class of all optimal networks, we have explicitly
constructed a large number of important networks: those that
are diagonalizable (Theorem 6) and those that are hierarchical
(Theorem 7). However, there are many other optimal networks
that fall into neither categories (see Fig. 8 for examples).
Some of them can be constructed by combining two optimal
networks. For example, the network shown in Fig. 8(d) is a
combination of a hierarchical network and a diagonalizable
network, constructed by replacing the root node in the 5-node
outward oriented star (hierarchical) with the 3-node global
coupling configuration (diagonalizable). However, the other
examples in Fig. 8 cannot be constructed in a similar fashion.
There are also cases in which this kind of construction does not
lead to an optimal network (see Fig. 9 for an example). The
explicit construction of all optimal networks is an important
open problem.

The complete characterization of the entire class of optimal
networks is expected to have a profound implication on the
widely assumed hypothesis that synchronizability plays an
important role in the evolution of many real-world complex
networks. If the signatures typical of optimal networks are
found to be absent in these networks, then the hypothesis
may be questionable; synchronization may be less significant
than other competing factors such as robustness, or else,
the oscillator network model does not describe the essential
features of the system. Hierarchical structures have been
suggested to play a significant role in the network of motor
neurons of Aplysia [51] and in the mechanism of invariant
visual representation in the human brain [52]. Hierarchical
Fig. 8. Examples of optimal networks that are neither diagonalizable nor
hierarchical. An arrow indicates a directed link, while a double arrow indicates
two directed links. Thick, medium, and thin arrows have weight λ, λ/2, and
λ/3, respectively. For each network, all nonzero eigenvalues are λ.

Fig. 9. Example of a suboptimal network resulting from combining two
optimal networks. The lower-level node of a hierarchical network with two
nodes is replaced by a global coupling network with two nodes. We can show
that no combinations of weights on the two downward links can make this
network optimal.

structures are also common in many human organizations,
perhaps because they can better facilitate coordinated activities.
It is important to examine the existing real data as a first step
toward testing this and possibly other hypotheses about the
evolution of complex networks.
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