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ENUMERATION OF PLANE PARTITIONS WITH A RESTRICTED

NUMBER OF PARTS

A. A. Rovenchak∗

We use the quantum statistical approach to estimate the number of restricted plane partitions of an

integer n with the number of parts not exceeding some finite N . We use the analogy between this number

theory problem and the enumeration of microstates of the ideal two-dimensional Bose gas. The numbers

of restricted plane partitions calculated with the conjectured expression agree well with the exact values

for n from 10 to 20.
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1. Introduction

The problem of integer partitions, already originating in works of Leibniz and Euler, has found numer-
ous applications not only in mathematics but also in different domains of physics. Domains of mathematics
where it is used, for example, include combinatorics and probability theory, while in physics, this problem
is related to the theory of crystals, percolation theory, and also quantum statistics (see, e.g., [1] and the
references therein).

So-called two-dimensional or plane partitions are a special type of integer partitions. A plane partition
of a positive integer number n is a two-dimensional array of nonnegative integers nij satisfying a nonincrease
condition across rows and columns such that

n =
∑

i,j>0

nij , ni1j1 ≥ ni2j2 for i1 ≤ i2, j1 ≤ j2

(see [2]). For instance, all 13 two-dimensional partitions of the number 4 are [3]

4, 3 1,
3
1

, 2 2,
2
2

, 2 1 1,
2 1
1

,

2
1
1
, 1 1 1 1,

1 1 1
1

,
1 1
1 1

,

1 1
1
1

,

1
1
1
1

.

Zero elements are traditionally suppressed when writing partitions; the remaining nonzero elements are
called parts. The number of different plane partitions of n is further denoted by p2D(n); p2D(4) = 13 in
the above example. This quantity is traditionally called the “partition function” in mathematics. To avoid
ambiguities here, we reserve the term “partition function” for the Zustandsumme in statistical physics and
call p2D(n) the number of partitions.
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As with simple one-dimensional or linear partitions [4]–[7], the problem of enumerating plane partitions
can be related to the problem of counting the number of microstates in a system of two-dimensional quantum
harmonic oscillators obeying the Bose–Einstein statistics [5], [8].

Different types of restrictions can be imposed on partitions. We can require the parts to be either odd
or even numbers, limit the magnitude or the number of parts, and so on [2]. With respect to quantum
ensembles, this in particular corresponds to studies of fractional statistics or effects of a finite number
of particles [6], [9], [10]. With plane partitions, it is also possible to impose different shapes, to limit
the number of rows and columns, and so on [2], [11], [12]. Curiously enough, it seems that the problem
of enumerating plane partitions with the sole restriction on the number of parts (considered from the
standpoint of asymptotic behavior) has not been properly reflected in the literature. Our aim here is to
partially fill this gap.

This paper is organized as follows. Section 2 contains a derivation of the sought expressions for a
finite N -particle system in the general D-dimensional case. These expressions are then applied to the
one-dimensional problem, whence we derive the known behavior of ordinary (linear) restricted partitions in
Sec. 3. We consider restricted plane partitions in Sec. 4. A short discussion concludes the paper.

2. General results for a finite system of N particles

The partition function ZN of a finite system of N bosonic harmonic oscillators satisfies the recurrence
relation [6], [13]

ZN (x) =
1
N

N∑

k=1

Bk(x)ZN−k(x), Z0(x) ≡ 1, (1)

where x = e−β�ω, β is the inverse temperature, and ω is the oscillator frequency. In D dimensions,

Bk(x) =
1

(1 − xk)D
.

A closed-form expression for ZN exists only in the one-dimensional case:

Z1D
N (x) =

N∏

k=1

1
1 − xk

. (2)

In what follows, we use this result to verify the proposed method.
To solve Eq. (1), we can apply the integral transformation. To avoid complications connected with

passing from summation to integration, it seems our best choice is to use a discrete transformation.
The Z-transform of a function f(N) is defined as [14]

Z[f(N)] =
∞∑

n=0

f(n)s−n = f̃(s).

It is a discrete analogue of the Laplace transform. The two properties of the Z-transform are required for
solving Eq. (1):

Z[Nf(N)] = −s
df̃(s)

ds
, Z[f(N) ∗ g(N)] = f̃(s)g̃(s),

where the convolution is defined as

f(N) ∗ g(N) =
N∑

n=0

f(n)g(N − n).

1429



We rewrite Eq. (1) in the form immediately suitable for using the Z-transform:

NZN (x) =
N∑

k=0

Bk(x)ZN−k(x), B0(x) def= 0.

It seems more convenient to consider the correction to the partition function of an infinite system Z∞(x):

ZN (x) = Z∞(x)yN (x), (3)

where the function yN (x) has the obvious limit behavior

lim
N→∞

yN (x) = 1. (4)

For the transform of this correction, we easily obtain

− s
dỹ(s|x)

ds
= B̃(s|x)ỹ(s|x) (5)

or

ỹ(s|x) = C exp
{
−

∫ s B̃(s′|x)
s′

ds′
}

,

where the integration constant C can be found from Eq. (4).

3. Testing the approach in one dimension

We first verify the method in the one-dimensional case, where all results are well known [6], [7], [15].
The summation in the transform of BN (x) is easily done in the first order of x:

B̃1D(s|x) =
∞∑

k=1

s−k

1 − xk
�

∞∑

k=1

s−k(1 + xk) =
s − 2x + sx

(s − 1)(s − x)
,

which gives

ỹ1D(s|x) = C
s2

(s − 1)(s − x)
,

and inverting the transformation, we therefore obtain

y1D
N (x) = Z

−1

[
C

s2

(s − 1)(s − x)

]
= C

xN+1 − 1
x − 1

. (6)

From Eq. (4), we find the integration constant C = 1 − x and finally in the leading order

y1D
N (x) = 1 − xN+1.

This result correctly reproduces exact expression (2). Indeed,

Z1D
∞ (x) =

N∏

k=1

1
1 − xk

∞∏

k=N+1

1
1 − xk

,
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hence

y1D
N (x) =

∞∏

k=N+1

(1 − xk) = exp
∞∑

k=N+1

log(1 − xk). (7)

As before, in the leading order, taking into account that x < 1 and N is large, we obtain

y1D
N (x) = e−xN+1

= 1 − xN+1 ± . . . . (8)

Some clarifications are required here. The number of (one-dimensional or linear) partitions p1D(n) ≡
p(n) of an integer n is equal to the number of microstates Γ(E) of the system with the energy E = �ωn.
The function Γ(E) is related to Z(β) via the inverse Laplace transformation, which we can evaluate using
the steepest-descent method [7]:

Γ(E) =
eS(β0)

√
2πS′′(β0)

, (9)

where the entropy is S(β) = βE + log Z(β) and the stationary point β0 is defined by S′(β0) = 0.
Considering a finite number of particles N (or, equivalently, a finite number of parts for the partitions),

from Eq. (3), we can see that the expression for yN (x) should directly enter the formula for the number
of restricted partitions. Indeed, for a finite N , the entropy equals SN = βE + log Z∞ + log yN , which by
virtue of Eq. (9) yields

pN (n) = p(n)yN (e−β0),

where the stationary point is β0 = π/
√

6n [7], [8]. We note that because n is large, β0 is small, and the
argument x = e−β0 is close to unity, although still x < 1. The summation in (7) therefore requires a more
careful approach, namely,

∞∑

k=N+1

log(1 − xk) � −
∞∑

k=N+1

xk = −xN+1

1 − x
.

With N � 1, this provides a modification of (8):

y1D
N (x) = exp

(
− xN

1 − x

)
� exp

(
−xN

β0

)
.

Therefore, the leading correction in the number of restricted partitions is [4], [7]

pN(n) = p(n) exp
{
−
√

6n

π
e−πN/

√
6n

}
, (10)

reproducing the classical result of Erdős and Lehner [16] about the asymptotic behavior of the number of
partitions of n into at most N parts.

Obtaining such an expression (10) directly from Eq. (6) would be somewhat speculative because the
Z-transformed function B̃1D(s) is derived in the limit of small x. We can solve the equation for ỹ1D(s) in
a closed form in the limit as x → 1, but the inversion Z−1[ỹ1D(s)] cannot be done analytically in this case.
We can therefore use the relation between the dependences on N and on x for y1D

N (x) obtained using the
two different approaches and assume that a similar transition also holds in higher space dimensions. As is
shown below, this assumption leads to a quite good agreement between actual and calculated numbers of
restricted plane partitions.
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4. Results for plane partitions

In two dimensions, B2D
k (x) equals

B2D
k (x) =

1
(1 − xk)2

,

which leads to the approximate expression

B̃2D(s|x) �
∞∑

k=1

s−k(1 + 2xk) =
s − 3x + 2sx

(s − 1)(s − x)
.

The solution of Eq. (5) is

ỹ2D(s|x) = C
s3

(s − 1)(s − x)2
.

Its inverse Z-transform is

y2D
N (x) = Z

−1[ỹ2D(s|x)] = C
(N + 1)xN+2 − (N + 2)xN+1 + 1

(x − 1)2
,

where C = (x − 1)2; for large N and small x, it becomes

y2D
N (x) = 1 − NxN . (11)

A similar expression can be obtained for a system of N isotropic two-dimensional oscillators if the
partition function is written in the form

log Z2D
N (x) = −

N∑

k=1

k log(1 − xk), (12)

where the k-fold degeneracy of the kth level is taken into account. If we replace the upper summation limit
with infinity, then we obtain MacMahon’s generating function for plane partitions [17]:

∞∑

n=0

p2D(n)xn =
∞∏

n=1

1
(1 − xn)n

.

Comparing Eqs. (11) and (12) and acting by analogy with the one-dimensional case, we consider the
limit β → 0. For y2D

N (x), we can obtain

y2D
N (x) = exp

∞∑

k=N+1

k log(1 − xk) �

� exp
(
−

∞∑

k=N+1

kxk

)
= exp

(
−xN+1[N(1 − x) + 1]

(1 − x)2

)
.

For Nβ0 � 1, we thus obtain the asymptotic formula

y2D
N (x) = exp

(
−NxN

1 − x

)
� exp

(
−NxN

β0

)
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with the stationary point

β0 =
(

2ζ(3)
n

)1/3

,

where ζ(x) denotes the Riemann zeta function [8].
Therefore, we can conjecture the asymptotic behavior

p2D
N (n) = p2D(n) exp

{
− Nn1/3

[2ζ(3)]1/3
e−N [2ζ(3)/n]1/3

}
(13)

for the number of restricted plane partitions. This formula is our main result. It estimates the number of
plane partitions of n into at most N parts.

The conditions on N follow directly from the procedure itself:

0.75n1/3 
 N < n, 0.75 ≈ [2ζ(3)]−1/3. (14)

Table 1

n N p2D(n)
p2D

N (n) relative

exact calc. calc. calc. errors, %

values 1 2 3 1 2 3
10 9 500 458 474 498 497 3.5 8.8 8.7

15 14 6879 6703 6791 7082 7073 1.3 5.7 5.5

20 19 75278 74651 75003 77574 77478 0.5 3.9 3.8

18 74161 74898 77435 77339 1.0 4.4 4.3

Number of restricted plane partitions: the exact values are from [18],
the column calc. 1 corresponds to the exact p2D(n) from [19], and the
columns calc. 2 and calc. 3 are based on p2D(n) in (14) with the con-
stant c respectively taken from [8] and [20], [21].

Some calculation results with Eq. (13) are given in Table 1. The exact numbers of unrestricted plane
partitions p2D(n) can be found in [19], while the asymptotic dependence on n is given by [20], [21]

p2D(n) =
[2ζ(3)]7/36

√
6π

n−25/36 exp
{

3
2
[2ζ(3)]1/3n2/3 + c

}
, (15)

where c = ζ′(−1) = −0.165421 . . . . The value

c = −1
6

= −0.166666 . . .

was obtained in [8], which gives a better approximation for n ≤ 7573 but does not describe the behavior as
n → ∞ sufficiently well.
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5. Discussion

As can be seen from Table 1, a good accuracy is achieved for the number of restricted plane partitions
given by Eq. (13), at least for n = 10, . . . , 20. Higher relative errors (4–9%) are mainly due to the error
of the asymptotic formula (14) for the number of unrestricted plane partitions. An expected monotonic
decrease of the relative error is observed at least for N/n = 9/10.

Further planned studies of this problem include solving recurrence relation (1) for ZN (x) numerically
to verify the x and N behavior, especially in the limits as x → 1 and with large N . After exact values of
p2D

N (n) become available, conjectured formula (13) can be verified for larger n.
It seems tempting to extend the suggested approach to higher-dimensional partitions, but we refrain

from doing so before restricted plane partitions are thoroughly analyzed.
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