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ABSTRACT. Finite memory sources and variable-length Markov chains have recently gained
popularity in data compression and mining, in particular, for applications in bioinformatics and lan-
guage modelling. Here, we consider denser data compression and prediction with a family of sparse
Bayesian predictive models for Markov chains in finite state spaces. Our approach lumps transition
probabilities into classes composed of invariant probabilities, such that the resulting models need
not have a hierarchical structure as in context tree-based approaches. This can lead to a substan-
tially higher rate of data compression, and such non-hierarchical sparse models can be motivated
for instance by data dependence structures existing in the bioinformatics context. We describe a
Bayesian inference algorithm for learning sparse Markov models through clustering of transition
probabilities. Experiments with DNA sequence and protein data show that our approach is com-
petitive in both prediction and classification when compared with several alternative methods on the
basis of variable memory length.

Key words: Bayesian learning, data compression, predictive inference, Markov chains, variable
order Markov models

1. Introduction

Variable order Markov (VOM) chain models pioneered by Rissanen (1983) have been a sub-
ject of intensive further research in the past two decades (Weinberger et al., 1995; Bühlmann
and Wyner, 1999; Bacallado, 2011). Compression of data sequences using such models can be
understood as a characterization of the observed information in terms of the learned generat-
ing model and the rate of compression as proportional to inverse of the parametric dimension
of the learned model. Because the variable order models allow for a substantially higher rate of
data compression than ordinary Markov chain (MC) models, they have recently become pop-
ular for various applications in modelling DNA data (Ben-Gal et al., 2005; Zhang et al., 2005;
Browning, 2006; Corander et al., 2009). Another important application of variable order mem-
ory is modelling of natural languages (Wood et al., 2009; Gasthaus et al., 2010). For an early
Bayesian approach to predictive language modelling based on Markov-type dependence and a
hierarchical Dirichlet prior, see also MacKay & Peto (1995). For a review and comparison of
several algorithms for data compression with VOM models, see Begleiter et al. (2004). Roos
& Yu (2009) introduced a method for estimating context tree models in binary state spaces
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based on a transformation leading to logistic regression models for which Lasso penalization
is applied.

Here, we consider compression and prediction of data sequences using Bayesian inference
on sparse MC (SMC) models, which need not correspond to a hierarchical representation of
contexts used in variable order and variable length MCs (VLMCs). We show that the SMC
models can lead to significantly improved predictions and higher rate of data compression
than VOM and VLMC models. Related classes of Markov models were introduced in García
& González-López (2010), who derived an asymptotic criterion for learning of partition mod-
els, and in Farcomeni (2011), who considered hidden Markov partition models and proposed
learning by an expectation–maximization algorithm (EM), where the number of hidden states
is fixed.

Bayesian inference for VOM models seems to have gained attention only very recently. Dim-
itrakakis (2010a) considered Bayesian estimation of VOM models using an approach similar to
the context tree weighting (Willems et al., 1995), whereas Bacallado (2011) introduced a conju-
gate prior for reversible VLMC models. García & González-López (2010) derived a consistent
information theoretic criterion for model comparison based on an asymptotic expansion gener-
alizing the results presented in Csiszár & Shields (2000) and Csiszár & Talata (2006). Using the
results derived in Corander et al. (2009) for VLMC models, we introduce both prior predictive
and posterior predictive distributions for sparse Markov models to enable Bayesian inference
within this class of models. It is shown that the inference problem can be formulated as a clus-
tering of populations (contexts/words) for which the data correspond to observed counts of
transitions to the underlying alphabet.

The outline of the paper is as follows. In Section 2, we introduce the SMC models and
investigate their relation to VLMC models. A Bayesian inference method for SMC models is
described in Section 3, together with several predictive comparisons with other variable order
methods. Some remarks about possible generalization of sparse models, in particular, in the
context of bioinformatics applications are given in the final section.

2. Sparse Markov models and variable length memory

Let X D ¹1; : : : ; J º be a finite alphabet and X0; X1; : : : ; Xn a sequence of random variables
that take values in X . Assume that the sequence can be represented by a time homogeneous
MC ¹Xnº1nD0 of a finite orderm. To enable comparison of alternative model definitions, we let
Xm be the enlargened alphabet with jX jm D J � values. An arbitrary time homogeneous MC
¹Xnº

1
nD0

of a finite order m can always be represented by transforming it to a first-order MC
¹Znº

1
nD0

with transition probabilities

P D .pijj /
J�;J�

iD1;jD1
; (1)

where i; j are arbitrary values in Xm and each row has exactly J non-zero transition proba-
bilities from the state i to state j in the vector pij� D .pijj /

J�

jD1
. Note that for typographical

clarity, in all the examples in the succeeding text, we use upper case letters instead of pijj to
denote the transition probabilities when the states involved are specified explicitly.

The following definition specifies a class of Markov models on the basis of partitions of Xm.

Definition 1. Sparse Markov chain (SMC). Let ¹Xnº1nD0 be a time homogeneous MC of a finite
order m transformed to a first-order MC ¹Znº1nD0. Let S D .s1; : : : ; sk/ be a partition of Xm
such that the transition probability vectors satisfy the equality pij� D pj j� for all pairs of states
¹i; j º 2 sc ; c D 1; : : : ; k, and P the corresponding set of k transition probability distributions
in Xm. If k < jXmj, the pair .S;P/ is called an SMC (of order m).

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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An SMC model is a special case of an MC, where two or more transition probability vectors
have identical values, such that the effective dimension of the parameter space is reduced, which
is illustrated by the following examples.

Example 1. Consider a second-order MC with the state space X D ¹A;C;G; T º and define a
partition S according to

S D ¹¹AA;AC;AG;AT º; ¹CA;CC;CG;CT º; ¹GA;GC;GG;GT º; ¹TA; TC; TG; T T ºº:

Using the transformation of the state space to obtain a representation as a first-order MC, this
partition corresponds to the four transition probability distributions

� .1/ D PAAj� D PAC j� D PAGj� D PAT j�

� .2/ D PCAj� D PCC j� D PCGj� D PCT j�

� .3/ D PGAj� D PGC j� D PGGj� D PGT j�

� .4/ D PTAj� D PTC j� D PTGj� D PTT j�

which imply that for each Xn, the preceding state Xn�1 is irrelevant for predicting the state of
Xn, whereas Xn�2 is always relevant, whatever the state of Xn�2 is. The likelihood of the data
sequence .x0x1 � � � x8/ D .AAGTCCAAA/ then equals

PAA � �
.1/

AG
� � .1/
GT
� � .3/
TC
� � .4/
CC
� � .2/
CA
� � .2/
AA
� � .1/
AA
; (2)

where the probability of the initial state PAA is considered fixed and the elements of the transi-
tion probability vectors are indexed by the target states, so that, for instance, � .2/

CA
D PCC jCA

and � .2/
AA
D PCAjAA. Ignoring the probability distribution of the initial state as customary in

likelihood inference for MCs, the SMC model based on the aforementioned partition reduces
the number of free parameters from 48 to 12. The transition probabilities for the ordinary MC
in the transformed state space are shown in the succeeding text, using lower case letters to
obtain a more compact notation in which the conditional distribution of the current state given
an arbitrary previous state is denoted by p�j�.

Xn�1nXn AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

AA p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0 0 0 0 0

AC 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0

AG 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0

AT 0 0 0 0 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j�

CA p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0 0 0 0 0

CC 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0

CG 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0

CT 0 0 0 0 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j�

GA p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0 0 0 0 0

GC 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0

GG 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0

GT 0 0 0 0 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j�

TA p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0 0 0 0 0

TC 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0 0 0 0 0

TG 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j� 0 0 0 0

TT 0 0 0 0 0 0 0 0 0 0 0 0 p�j� p�j� p�j� p�j�

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Example 2. X D ¹A;C;G; T º and
define the following partition of Xm with 12 classes:

S D ¹¹AA;CA;GA; TAº; ¹GT; T T º; ¹AC º; ¹AGº; ¹AT º; ¹CC º;

¹CGº; ¹CT º; ¹GC º; ¹GGº; ¹TC º; ¹TGºº :

The resulting parametric sparsity is more modest (from 48 to 36 free parameters), such that the
transition probability vectors corresponding to the two foremost classes in S are defined as

� .1/ D PAAj� D PCAj� D PGAj� D PTAj�

� .2/ D PGT j� D PTT j�

Each of the remaining classes contains only a single state, which does not reflect any additional
sparsity, and the corresponding probabilities are explicitly denoted by the pair of states accord-
ing to the particular transition. Here, the likelihood of the previously introduced data sequence
.x0x1 � � � x8/ D .AAGTCCAAA/ can be written as

PAA � �
.1/

AG
� PAGjGT � �

.2/

TC
� PTC jCC � PCC jCA � �

.1/

AA
� � .1/
AA
; (3)

where again the probability of the initial state PAA is considered fixed.
The partitions in the two examples of SMC models enjoy different properties in terms of

possibility to derive an alternative representation of the likelihood using so-called contexts
(Rissanen, 1983; Bühlmann and Wyner, 1999), where for each Xn, the finite his-
tory Xn�m; : : : ; Xn�1 is mapped to the shortest possible context dependent subset
Xn�r ; : : : ; Xn�1; r � m, such that

P .Xn D xnjXn�1 D xn�1; : : : ; Xn�m D xn�m/

D P.Xn D xnjXn�1 D xn�1; : : : ; Xn�r D xn�r /I
(4)

that is, the history is generally truncated to an order, which varies, depending on the actual
outcome Xn�1 D xn�1; : : : ; Xn�m D xn�m. We make the difference between models in
Examples 1 and 2 more explicit after introducing some additional notation.

Definition 2. Let ¹Xnº1nD0 be a time homogeneous MC of a finite order m. Let B D ¹Bc �
X rc W c D 1; : : : ; kº be the set of k contexts for a VLMC defined by its context function f ,
where rc � m is the length of a particular context. When the cardinality jBc j D 1, then Bc
consists of the single b.r/; 1 � r � m, for which all paths xn�1; : : : ; xn�m with b.r/ as suffix
satisfy the constraint

P
�
xn D j jb

.r/; xn�r�1; : : : ; xn�m

�
D P

�
xn D j jb

.r/
�
:

When the cardinality 1 < jBc j < jX j, then Bc is a set of strings with a common suffix b.r/; 1 �
r � m; such that for all paths xn�1; : : : ; xn�m with b.r/ as suffix and with xn�r�1 2 Ab.r/ � X
satisfy the constraint

P
�
xn D j jb

.r/; xn�r�1 2 Ab.r/ ; : : : ; xn�m

�
D P

�
xn D j jb

.r/ ŒAb.r/ �
�
;

where b.r/ ŒAb.r/ � indicates the suffix b.r/ concatenated by any letter in Ab.r/ . Let P D

¹pBc W c D 1; : : : ; kº be the set of k conditional distributions associated with the elements

of B, where each pBc D
�
pBc jj

�J
jD1

, with pBc jj either equal to P
�
xn D j jb

.r/
�

or to

P
�
xn D j jb

.r/ ŒAb.r/ �
�
, depending on the cardinality of Bc .

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Note that the restriction Ab.r/ � X simply states that Ab.r/ must be a proper subset of
the alphabet X , otherwise Bc could be reduced to a set of cardinality one, because then all
preceding states xn�r�1 lead to the same conditional probability distribution that depends only
on b.r/. Hence, whenBc is a set with cardinality larger than one, it represents the set of contexts
sharing a common suffix such that the corresponding transition probabilities are equal. The
notation b.r/ ŒAb.r/ � is inspired by Mächler & Bühlmann (2004), who explicitly considered this
more flexible and parsimonious class of VLMC models where a context can be a set instead of
just a single string.

Example 3. Re-consider the SMC model from Example 2 .Define the VLMC model with the
contexts B D ¹A; ŒGT �T;AC;CC;GC; TC;AG;CG;GG; TG;AT;CT º, written in the reverse
order from left to right. Here, there is a single context set with cardinality larger than one,
where Ab.r/ D ¹G; T º and b.r/ D T , which implies that the equality (4) holds for the two pairs
of states .xn�1 D T; xn�2 D G/; .xn�1 D T; xn�2 D T /, such that

P.xn D j jxn�1 D T; xn�2 D G/ D P.xn D j jxn�1 D T; xn�2 D T /

D P
�
xn D j jb

.r/ ŒAb.r/ �
�
: (5)

As can be seen from the set of contexts B, for this model, it is necessary to specify 12 transition
probability vectors, instead of the 16 required by a full second-order MC. For the data sequence
.x0x1 � � � x8/ D .AAGTCCAAA/, the likelihood defined by the VLMC model can be written
as

PA � PAjA � PAjG � PAGjT � PT jC � PTC jC � PCC jA � PAjA � PAjA: (6)

If the initial state AA is again considered fixed, the VLMC-based likelihood (6) becomes a
corresponding expression as the earlier obtained likelihood (3) based on the partition of the
enlargened state space.

In contrast to Example 2, in Example 1, the relevant part of the history will, for each state,
involve the two preceding states. Consequently, the context mapping according to (4) will lead
to a full second-order MC under the VLMC-based representation of sparsity, which illustrates
that when the dependence structure of the Markov model does not allow a recursive factoriza-
tion of the joint probability, a representation based on a partition of the transition probability
distribution may lead to a considerably sparser model than a context-based representation.
Reversely, a VLMC model is always representable as an SMC model, which is formally shown
in the succeeding text together with a condition identifying when an SMC has an equivalent
VLMC representation. A VLMC model is often represented in terms of a context tree, which
specifies a pruning of the sample paths of a full MC of order m with respect to the set B.
The sample paths of a full MC of order m can be determined through the tree specified in the
following definition.

Definition 3. Let ¹Xnº1nD0 be a time homogeneous MC of a finite order m. Denote by � the
tree of possible sample paths for Xn�m; : : : ; Xn�1; Xn D xn, where Xn D xn corresponds
to the root node and the nodes at distance r from the root correspond to the J r end points
Xn�r D xn�r of each possible path Xn�r D xn�r ; : : : ; Xn�1 D xn�1 to Xn D xn.

Lemma 1. Let B;P be the set of contexts and transition probability distributions for a VLMC
model of order m. The set B defines a partition S D .s1; : : : ; sk/ of Xm such that the transition

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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probability vectors satisfy the equality pij� D pj j� for all pairs of states ¹i; j º 2 sc ; c D 1; : : : ; k.
Further, any two VLMC models with distinct context sets B1 and B2 define distinct partitions S1
and S2 of Xm.

Proof. By definition, all contexts in B are distinct from each other, and a VLMC maps a subset
sc � Xm of the sample paths Xn�m; : : : ; Xn�1 in � to a unique context Bc such that the
equality (4) holds for all pij�, where i is a state in Xm and where the unique b.r/ in Bc is
a suffix of each i 2 sc . Because no sample path can map to two contexts in B, a partition
S D .s1; : : : ; sk/ with k classes results from the mapping of all the states in Xm, where each
class has the stated property. The latter property can be established as follows. As B1 and B2
must differ at least with respect to a single element, let B1 denote a context that is in B1 but
not in B2. Then, the class s1 induced by the VLMC model with B1 cannot exist in S2 because
no other suffix Xn�r D xn�r ; : : : ; Xn�1 D xn�1 will correspond to the exactly same set of
sample paths Xn�m; : : : ; Xn�1.

Theorem 1. Let .S;P/ be an SMC. Then, there is an equivalent representation based on the set
of contexts B of a VLMC model if and only if there exists a unique context Bc with b.r/, which is
a suffix to all states i assigned to the same class sc in S , for all c D 1; : : : ; k.

Proof. Firstly, lemma 1 established that each VLMC model with a context set B defines a
unique partition S of the states in Xm. Hence, by choosing the VLMC model that corresponds
to the partition specified by the SMC, equality of the two representations follows by definition
under the stated condition. To show that an SMC model lacks a VLMC representation if the
stated condition is not satisfied, consider the tree � of sample paths under the full MC of order

m. Assume that a class contains two states i D
�
x
.i/
n�m; : : : ; x

.i/

n�1

�
and j D

�
x
.j/
n�m; : : : ; x

.j/

n�1

�
such that they do not share a suffix b.r/ whose length is larger than zero. Then, there exists no
contextBc , which maps the histories i and j such that they correspond to the same conditional

probability P
�
xnjx

.i/

n�1
; : : : ; x

.i/
n�m

�
D P

�
xnjx

.j/

n�1
; : : : ; x

.j/
n�m

�
.

Although some SMC models lack a context-based representation corresponding to a stan-
dard VLMC model, the definition of contexts can be generalized to accommodate dependence
structures reflecting the class of SMC models, as stated in the following definition.

Definition 4. Generalized context set. Let S;P be an SMC. Given .S;P/, define the generalized
context set B D ¹Bc � X rc W c D 1; : : : ; kº as the set of k contexts, such that for each class sc
in S , the suffixes b.r/

h
; r � m of the strings in Bc indexed by h D 1; : : : ; jBc j share a common

prefix a.l/; l � r for which the constraint

P
�
xn D j jb

.r/; xn�r�1; : : : ; xn�m

�
D P

�
xn D j jb

.r/
�
D P

�
xn D j ja

.l/
�
;

is satisfied. That is, the r � l most recent states xn�1; : : : ; xn�.r�l/ of the history are irrelevant
for predicting xn, whereas the l states xn�.r�l/�1; : : : ; xn�r need to be retained. Such
a generalized context is denoted by ŒAa.l/ � a

.l/, where ŒAa.l/ � denotes the set of states
xn�1; : : : ; xn�.r�l/ over which the conditional probabilities P

�
xn D j jb

.r/
�

are identical.

Remark. In particular, when the cardinality of the generalized context set equals jX r�l j, the
generalized context can be more compactly denoted as Œ��a.l/, because all possible paths from
a.l/ onwards lead to the same conditional probability for xn. The generalized contexts enable

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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a compact representation of an MC that is sparse in the sense of an SMC. However, not all
partitions of Xm enjoy such an alternative representation, because a class of states sc may lack
entirely the possibility of finding a common prefix. For instance, s1 D ¹AA; T T º is an example
of such a class for the DNA alphabet. Moreover, the generalized context representation does
not necessarily lead to an identical likelihood as defined by the SMC, which is illustrated by the
example in the succeeding text.

It is worth noticing that the concept of generalized contexts is not novel in itself. Wong
& Ma (2010) derived a prior distribution that is a generalization of the Pólya tree approach
by using optional stopping and optional choice of splitting variables. Another related recent
construct is introduced in Dimitrakakis (2010b), who considers a generalization of contexts
by a sequence of covers on the conditioning variable. Also, Roos & Yu (2009) mentioned in
the case of a binary state space the possibility of using Haar transformation to specify models
where a symbol has a zero effect on average, even when symbols further away in a context have
non-zero effects, which has a clear connection to the sparse models presented here. However,
they do not explicitly pursue the idea any further in experiments or theoretical considerations.

Example 4. As an illustration of the generalized context function, consider the model in
Example 1 with the partition S :

S D ¹¹AA;AC;AG;AT º; ¹CA;CC;CG;CT º; ¹GA;GC;GG;GT º; ¹TA; TC; TG; T T ºº:

Notice that the ordering of the letters in strings within the cells of the aforementioned partition
is reversed with respect to the ordering for generalized contexts. Here, the generalized context
set equals B D ¹Œ��A; Œ��C; Œ��G; Œ��T º in the compact representation, and the corresponding
likelihood expression for .x0x1 � � � x8/ D .AAGTCCAAA/ becomes

PA�jG � PA�jT � PG�jC � PT�jC � PC�jA � PC�jA � PA�jA; (7)

when the probability of the initial state x0x1 is assumed fixed. Here, the two transitions from
x5x6 D CA to x7 D A and x4x5 D CC to x6 D A have identical likelihoods with respect to the
generalized context set. However, in the SMC-based likelihood given earlier, these transitions
have the probabilities � .2/

CA
D PCC jCA and � .2/

AA
D PCAjAA, which are not restricted to be

equal, because the target state differs in the two cases.

3. Inference for sparse Markov chain models

Bayesian inference for VLMC models in terms of exact expressions for an unnormalized pos-
terior has been earlier considered to a very limited extent. Corander et al. (2009) derived
analytically the marginal likelihood of a data sequence with respect to a VLMC model and
applied it to learning of the background noise model for de novo simultaneous detection of
multiple classes of DNA regulatory binding regions. Dimitrakakis (2010a) considered Bayesian
estimation of VLMC models using a method similar to the context tree weighting, and
Bacallado (2011) introduced a conjugate prior for reversible VLMC models. Here, we derive
first both prior predictive and posterior predictive distributions for SMC models, and then
introduce a stochastic optimization algorithm to identify an approximate maximum a posteriori
(MAP) model from data.

Consider an SMC model of order m defined by the pair .S;P/, where we have k vectors
of parameters ¹pcj� W c D 1; : : : ; kº. Let � 2 ‚ denote collectively the set of quantitative

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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parameters of an SMC model. Assuming the canonical conjugate multivariate Dirichlet prior
for the matrix of transition probabilities (Koski, 2001), we have

p.� j˛; q/ D

kY
cD1

2
4 �.˛/QJ

jD1 �.˛qj /

JY
jD1

p
˛qj�1

cjj

3
5 ; (8)

where the hyperparameters satisfy the following conditions: ˛ > 0, qj > 0,
PJ
jD1 qj D 1. The

likelihood of an observed data sequence x D x0x1 � � � xn with initial state ´0 D .x0x1 � � � xm�1/
assumed fixed equals under the SMC model

p.xj�; S/ /
J�Y
iD1

JY
jD1

p
nijj

ijj
D

kY
cD1

JY
jD1

p

P
i2sc nijj

cjj
; (9)

where nijj is the observed count of transitions from the state i to j in x. Consequently,
the marginal likelihood p.xjS/ of x is available analytically using the properties of Dirichlet
distribution, such that

p.xjS/ /
Z
�2‚

p.xj�; S/p.� j˛; q/d�

/

Z
�2‚

2
4 kY
cD1

�.˛/QJ
jD1 �.˛qj /

JY
jD1

p
˛qj�1

cjj

JY
jD1

p

P
i2sc nijj

cjj

3
5 d�

/

kY
cD1

�.˛/QJ
jD1 �.˛qj /

QJ
jD1 �

�P
i2sc

nijj C ˛qj
�

�
��PJ

jD1

P
i2sc

nijj

�
C ˛

� ;
(10)

where �.�/ is the Gamma function.
Conditional on m, posterior probability of S is obtained by assigning a prior distribution

over the space of possible partitions of Xm. For simplicity of implementation, we have used
the uniform prior over the partition space, that is, p.S/ D 1=BjXmj, where BjXmj is the jXmjth
Bell number, in all the numerical experiments reported in the succeeding text. Similarly, the
order parameterm is also assigned a uniform distribution over the valuesm D 0; : : : ;M , where
M is an upper bound, preferably specified using knowledge about reasonable values of the
order in a particular application context. The joint posterior distribution of m and S is then
defined by

p.S;mjx/ / p.xjS/p.S/p.m/; (11)

where p.m/ D 1=.M C 1/. Despite that a uniform prior distribution on S assigns more prob-
ability mass on a larger number of k than on small values because there are more partitions
in the former case, the joint prior will still penalize an increase in the order m considerably
because the probability mass 1=.M C 1/ of any single value of order will be split evenly over
an increasing set of partitions when m increases. If an inadequately small value of M would be
chosen, the posterior distribution of m is likely to be concentrated at the upper bound, which
provides a clear signal to re-consider the analysis on the basis of a larger M .

Using the predictive approach, we also find it possible to derive an analytical posterior pre-
dictive distribution for the future sequence of states XnC1; XnC2; : : : ; XnCl , conditional on S
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and any particular sequence of previous states of the process Xn�m�1 D xn�m�1; : : : ; Xn D

xn. The future sequence has the predictive probability

p.XnCl D xnCl ; : : : ; XnC1 D xnC1jXn D xn; : : : ; Xn�m�1 D xn�m�1; S/ D (12)

D

Z
�2‚

p.xnCl ; : : : ; xnC1jxn; : : : ; xn�m�1; �; S/p.� jx; S/d�

D

kY
cD1

�
�
˛ C

P
i2sc

nijj
�

�
��PJ

jD1

P
i2sc

mijj C nijj

�
C

�̨ JY
jD1

�
�P

i2sc
mijj C nijj C ˛qj

�
�
�P

i2sc
mijj C ˛qj

� ;

where mijj is defined analogously to the count nijj and is calculated from the sequence
xnCl ���nC1. The form of this probability follows from the conjugacy property of the multivari-
ate Dirichlet distribution (Koski, 2001).

The MAP estimator of S conditional on m equals

OS D arg
S2S

maxp.xjS/p.S/; (13)

which cannot in general be obtained using complete enumeration over the space of partitions
due to its rapidly growing size. Assuming that an algorithm is available for calculating an
approximate MAP estimate for a given m, then a MAP estimate over the class of SMC models
is obtained by sequentially considering each value of order with positive prior probability:

�
OS; Om

�
D arg max
m2¹0;:::;Mº

´
arg max
Sm2Sm

p.xjSm/p.Sm/

μ
; (14)

where p.xjSm/ and p.Sm/ denote the marginal likelihood and prior probability for a particu-
lar value of m, respectively, and Sm refers to the space of possible partitions for a given order
m. To ensure compatibility of model comparisons between all putative values of m, the ini-
tial observations x0x1 � � � xM�1 are considered fixed similar to order comparison for ordinary
MC models.

Because the sufficient statistics from the data sequence x correspond to an array of observed
transition vectors defined in (9), the MAP partition estimation problem corresponds to clus-
tering the transition data from each of the observed states in Xm. In likelihood terms, this
problem is identical to the population genetic problem of clustering populations (Corander
et al., 2003; Corander and Marttinen, 2006), when the number of available molecular marker
loci equals one and the set of alleles in each population is defined as X . Bayesian MC Monte
Carlo (MCMC)-based clustering methods typically employing random split/merge/move-type
search operators (e.g. Dawson and Belkhir, 2001; Corander et al., 2003; Saraiva and Milan,
2012) represent a class of possible approaches to traverse the space of partitions to obtain
the MAP estimate. However, such operators easily become numerically inefficient for larger
state spaces, requiring impractically long simulations to be pursued, and therefore, one can
alternatively use more efficient search operators that make intelligent data-driven proposals as
discussed in, for example, Tu & Zhu (2002), Corander & Marttinen (2006) and Corander et al.
(2006, 2008). Marttinen et al. (2006) and Marttinen et al. (2009) demonstrated that stochastic
greedy optimization with such proposals could easily outperform standard MCMC approach
to identify a competitive MAP estimate for challenging model classes.

Here, we adapt the stochastic greedy search algorithm considered in Corander & Marttinen
(2006) and Marttinen et al. (2006) to the current learning problem. The adapted algorithm is
based on the following steps for a given value of m:
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(i) initialize St ; t D 0, with jXmj singleton clusters and store for all pairs of states
i; l 2 Xm the distances between posterior mean estimates of their transition probability
vectors

di;l D

JX
jD1

 
nijj C ˛qjPJ
jD1 nijj C ˛qj

�
nljj C ˛qjPJ
jD1 nljj C ˛qj

!2
I (15)

(ii) given the current value of p.xjSt /, apply the following operators sequentially until no
change in St results in a higher marginal likelihood;

(iii) in a random order, move each state i 2 Xm to the class c in St , which results in the
StC1 associated with a maximal increase in p.xjStC1/. If p.xjStC1/ � p.xjSt / for all
c D 1; : : : ; k, StC1 D St ;

(iv) for each pair of classes c; c0 D 1; : : : ; k; calculate p .xjS�/ for the S� obtained by
merging classes c; c0 in St . If any S� satisfies p .xjS�/�p.xjSt / > 0, set StC1 equal to
the S� for which p .xjS�/ � p.xjSt / is maximal, otherwise set StC1 D St ;

(v) for each class c D 1; : : : ; k, use the complete linkage algorithm (e.g. Mardia et al., 1979)
with distances (15) to split the class into two non-empty subsets of states and calculate
p .xjS�/ for the resulting partition S�. If p .xjS�/ � p.xjSt / > 0, set StC1 equal to
S�, otherwise set StC1 D St .

Because the distances between the posterior mean estimates of transition probability vectors
can be calculated and stored before the stochastic search, the split operator can make intelligent
data-driven splits of clusters in contrast to a standard MCMC-type operator proposing random
splits. The stochastic search algorithm converges to a local mode when no improvements to the
posterior probability are accessible under the given operators. To increase the probability of
finding globally representative areas of the posterior, the algorithm is used with restarts from
different initial configurations having less than jXmj clusters. To facilitate escape from eventual
local peaks of the posterior that cannot be overcome by the aforementioned operators, it would
also be possible to generalize this algorithm into a hybrid version similarly to Marttinen et
al. (2006), where stochastic greedy optimization was interleaved with non-reversible MCs. This
strategy would yield a consistent posterior mode estimator given the results from Corander
et al. (2006, 2008), but we do not pursue it further here because of the added computational
complexity and the already satisfactory results obtained using the current version.

To illustrate the predictive ability of SMC models, we applied the greedy stochastic learning
algorithm to both synthetic and real DNA sequences with X D ¹A;C;G; T º. This is a relevant
area of application because techniques for tasks such as sequence segmentation and classifica-
tion benefit from efficient modelling of transition probabilities in the DNA. Further, advances
in these tasks open new possibilities for biological and medical research. SMC models seem to
be less suitable for some other domains of application. We noticed, for example, that processing
of natural language, such as, ASCII text (with the alphabet size of 128), the computer mem-
ory needed for an implementation of an SMC learning algorithm is impractically high even for
models of moderate order. Besides DNA, promising and computationally feasible applications
include, for example, classification of protein sequences, which will be explored at the end of
this section.

For empirical assessment of SMC, we compared it with other VOM models for data com-
pression for which implementations were publicly available and which can handle also larger
than binary state spaces. These were the Lempel-Ziv 78 method and a recent modification of it
(LZ-MS), prediction by partial match method-C (PPMC), decomposed context tree weighting
(DCTW) and binary context tree weighting as described and reviewed in Begleiter et al. (2004)
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where also a reference to Java/Matlab implementation of the algorithms is given. PPMC and
DCTW were reported as the generally strongest algorithms in the original article, and therefore,
our comparisons focus on them. LZ-MS is not included here because its performance in pre-
diction as reported in Begleiter et al. (2004) was mediocre. However, in the classification task,
LZ-MS was reported to achieve very good results. So for classification, we include LZ-MS as
one of the algorithms in the comparison.

We combined our implementation of the SMC learning algorithm with the existing imple-
mentations of the other algorithms to get a train/test protocol for DNA sequence data.
In the training phase, each algorithm was trained with the training sequence, whereas the
model parameters were tuned with fivefold repetition similar manner to what was described in
Begleiter et al. (2004). This was performed to get more representative view of the capabilities of
the algorithms. In the testing phase, average log-loss was calculated over the testing sequence.
This is a way to measure the predictive performance of the estimated probability model. For
the test sequence x D x1 : : : xT , the average log-loss is

l
�
OP ; x

�
D �

1

T

TX
iD1

log2 OP .xi jx1 : : : xi�1/; (16)

where the conditional probabilities of the form OP .xi jx1 : : : xi�1/ are given by the model esti-
mated from training data (Begleiter et al., 2004). This calculation of the average log-loss is
possible for all the models considered here.

To produce synthetic DNA data under an ordinary MC with order m D 3, parameters for
the generating model were sampled as follows. Firstly, a four-dimensional multivariate nor-
mal distribution with zero mean vector and the covariance matrix were defined as 5 � I4 (I4
refers to a 4 � 4 identity matrix). This was used for generating vectors zl D .´l1; ´l2; ´l3; ´l4/
with l D 1; : : : ; 64. Distributions of the transitions probabilities were then sampled from the
corresponding Dirichlet .e´l1 ; e´l2 ; e´l3 ; e´l4/ distributions for each of the 64 states. To sim-
ulate parameters for an SMC model with order m D 3, 20 transition probability vectors
were generated in an analogous manner to the previous case. These were assigned with uni-
form probabilities to the 64 states of the third-order MC. Under both generating models, 200
independent MCs of length 105 were simulated, and the log-losses were calculated for each
realization sequentially using an increasing amount of training data. In Fig. 1, log-loss distribu-
tions are summarized for the competing algorithms when the generating model is a third-order
MC. Relative log-loss has been calculated by subtracting the average log-loss score of the gen-
erating model from that of the learned model. Despite of the fact that the generating model is
not sparse, our SMC-based method performs clearly best. The difference in predictive ability
in favour of SMC becomes even more pronounced when the underlying model is sparse, which
is illustrated in Fig. 2.

To investigate how well our SMC method performs in terms of parameter estimation, we
generated data using the model in Example 1 in the previous section. In that model, there are
four classes of transition probability vectors and m D 2: The model parameters were gener-
ated using otherwise the same aforementioned procedure, but with correspondingly reduced
size of the state space (jXmj D 16). We applied the SMC estimation method to 50 simulated
sequences of length 5000 observations, extracted the posterior means of the transition prob-
ability distributions for all classes and calculated the minimum mean squared error over all
possible permutations of the resulting partition classes when k D 4, because the classes are
unordered, and it cannot be known directly which inferred class corresponds to which class in
the generating model. The MAP estimate had k D 4 in 45/50 cases, and the remaining data
sequences did lead to k D 5 as the optimal estimate. Figure 3 illustrates the decrease of mean
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Fig. 1. Means˙ standard deviations (interval endpoints) for log-loss over 200 replicates of a Markov chain
of orderm D 3.

squared error of the parameter estimates as a function of the amount of data available for the
inference method.

For studying real DNA data, we used a large bacterial genomic database investigated in
detail in Corander et al. (2012), where each sequence was assigned to a cluster using a pop-
ulation genomic model. Two experiments were performed using the concatenated multilocus
sequence typing (MLST) DNA sequences of 7829 Neisseria meningitidis bacterial strains. In
the first example, 200 sets of sequences were sampled randomly with replacement from the
database. Each set included two sequences for training and two for testing. Within a single set,
the four sequences were all from different clusters identified in Corander et al. (2012). In addi-
tion to that, all the sequences used in the experiment were unique in terms of their nucleotide
data. Because the generating model in this case is not known, comparison between algorithms
is more challenging than in the previous examples. We used a training sequence with a cumu-
latively increasing length while keeping the testing data constant. Thus, within a single set,
the two test sequences were used for all lengths of the training sequence. This procedure was
repeated separately for the 200 sets, and log-loss was calculated after each interval obtained by
segmentation of the sequences into 20 equally sized parts. This experiment is particularly chal-
lenging because the amount of training data is very small. For the first half of the sequences,
the three best methods provide indistinguishable results, whereafter DCTW improves gradually
over SMC and PPMC.

To investigate how an increase in the amount of training data affects the performance of the
different methods, the data were randomly split into 3915 training and 3914 test sequences. All
the same algorithms as reported in Fig. 4 were again used; however, we also added a full MC
model and considered orders between 5 and 10. Because of the extensive computation times,
the experiment was only performed once. Table 1 displays the log-losses only for ordinary MCs
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Fig. 2. Means ˙ standard deviations (interval endpoints) for log-loss over 200 replicates of a sparse
Markov chain with orderm D 3 and 20 classes of transition probability distributions.
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Table 1. Log-loss for predicting the 3914 concatenated multilocus
sequence typing DNA sequences based on 3915 training sequences

Order DCTW MC PPMC SMC

5 1.424 1.629 1.403 1.374
6 0.928 1.542 0.930 0.882
7 0.483 1.505 0.492 0.448
8 0.228 1.504 0.246 0.209
9 0.119 1.513 0.128 0.108
10 0.080 1.526 0.090 0.073

DCTW, decomposed context tree weighting; MC, Markov chain;
PPMC, prediction by partial match method-C; SMC, sparse
Markov chain.

and for DCTW, PPMC and SMC, as the other methods had so low scores that they are excluded
from this comparison. As expected, the sparse methods are superior to an ordinary MC for all
orders. SMC shows here consistently the best predictive performance, similar to the simulated
DNA data experiments.

Using log-loss for measuring model performance has its limitations for certain applications.
For example, Begleiter et al. (2004) reported that average log-losses in the protein predic-
tion task were larger than entropy of the uniform distribution. When they classified protein
sequences instead of predicting, LZ-MS achieved the best results. But when in an additional
setup, prediction was based on classification, DCTW and PPMC dominated. This variability
suggests that several testing procedures give better understanding of the algorithms than pre-
diction alone. We tested our approach of SMCs with the classification of the protein sequences.
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Table 2. Error rates in protein classification. Values for the LZ-MS and decomposed
context tree weighting; methods are taken from Begleiter et al. (2004)

LZ-MS DCTW SMC
Class Mean Std Mean Std Mean Std

A 0.16 0.031 0.19 0.031 0.21 0.018
B 0.14 0.031 0.17 0.031 0.16 0.01
C 0.17 0.035 0.22 0.031 0.18 0.02
D 0.16 0.031 0.19 0.031 0.17 0.08
E 0.05 0.017 0.09 0.031 0.04 0.025
F 0.17 0.03 0.21 0.044 0.14 0.044
G 0.16 0.017 0.25 0.035 0.21 0.053

DCTW, decomposed context tree weighting; SMC, sparse Markov chain; Std,
standard deviation.

The test protocol followed that of Begleiter et al. (2004) so that a direct comparison of the
results is possible.

Table 2 presents error rate (1-accuracy) with standard deviations. In the original article,
LZ-MS was reported as the most successful algorithm, and DCTW was also among the better
ones. In Table 2, LZ-MS has the best average performance in test classes A, B, C, D and G,
whereas SMC gives the best accuracy in classes E and F. In all except one of the test classes,
SMC achieves error rates that are lower than those of DCTW. Although LZ-MS has here
slightly smaller average error rate than SMC, its performance for the DNA sequence prediction
was inferior, and the results generally illustrate that SMC can achieve performance that is at a
comparable level with the best algorithms reviewed in Begleiter et al. (2004) and even markedly
better under certain circumstances.

4. Discussion

Versatility of VOM and VLMC models has been demonstrated in a multitude of applications
to data compression and prediction, ranging from text modelling to describing background
variation in DNA sequences. Very recently, a considerable interest has surfaced to generalize
this class of models and to introduce novel learning methods for the new models. Using results
derived earlier for VLMC models, we here introduced a way to perform Bayesian inference for
SMC models, which lump transition probabilities into invariant classes, such that the result-
ing models need not have a hierarchical structure as in general required in context tree-based
approaches. We illustrated with synthetic and real DNA data, as well as by classification of
protein sequences, that our approach leads to good performance when compared with earlier
proposed algorithms. None of the algorithms considered here showed clearly superior perfor-
mance to all other methods throughout the testing, which emphasizes the challenging nature
of the DNA and protein data types.

In our approach, we used a default uniform prior for the partitions of sequence states, com-
bined with a uniform prior for the MC order. The experiments indicate that this choice leads to
satisfactory results, because the prior for transition probability parameters penalizes too exces-
sive models. However, more advanced priors directly penalizing an increase in the number of
classes could also considered, for instance, using a Dirichlet process model (Neal, 2000).

DNA sequence data offer an attractive target of application for the SMC models, given that
higher order MCs will typically be too parameter rich for reliable estimation. More sparse
VOM/VLMC models have already earlier been demonstrated to offer clear benefits over MCs
in various advanced bioinformatics applications (Ben-Gal et al., 2005; Zhang et al., 2005;
Browning, 2006; Corander et al., 2009). It would thus be interesting in the future to generalize
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the SMC models to accommodate various types of situations where SMCs represent modular
parts of the total model, such as model-based sequence segmentation, clustering of sequences
and regulatory element identification.
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