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Abstract

The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation

of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been

studied in a multilayer networks configuration, in almost all the research the isolation of infected

individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network,

and we use an isolation parameter to measure the effect of isolating infected individuals from

both layers during an isolation period. We call this process the Susceptible-Infected-Isolated-

Recovered (SIIR) model. The isolation reduces the transmission of the disease because the time

in which infection can spread is reduced. In this scenario we find that the epidemic threshold

increases with the isolation period and the isolation parameter. When the isolation period is

maximum there is a threshold for the isolation parameter above which the disease never becomes

an epidemic. We also find that epidemic models, like SIR overestimate the theoretical risk of

infection. Finally, our model may provide a foundation for future research to study the temporal

evolution of the disease calibrating our model with real data.
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INTRODUCTION

Most real-world systems can be modeled as complex networks in which nodes represent

such entities as individuals, companies, or computers and links represent the interactions

between them. In recent decades researchers have focused on the topology of these net-

works [1]. Most recently this focus has been on the processes that spread across networks,

e.g., synchronization [2, 3], diffusion [4], percolation [5–8], or the propagation of epidemics

[9–17]. Epidemic spreading models have been particularly successfully in explaining the

propagation of diseases and thereby have allowed the development of mitigation strategies

for decreasing the impact of diseases on healthy populations.

A commonly-used model for reproducing disease spreading dynamics in networks is

the susceptible-infected-recovered (SIR) model [18, 19]. It has been used to model such

diseases as seasonal influenza, such as the SARS [20]. This model groups the population of

individuals to be studied into three compartments according to their state: the susceptible

(S), the infected (I), and the recovered (R). When a susceptible node comes in contact

with an infected node it becomes infected with a probability β and after a period of time

tr it recovers and becomes immune. When the parameters β and tr are made constant,

the effective probability of infection is given by the transmissibility T = 1 − (1 − β)tr

[5, 21].

As infected individuals cannot be reinfected, the SIR model has a tree-like structure

with branches of infection that develop and expand. Because in its final state this process

can be mapped into link percolation [7, 22], we use a generating function to describe

it. In this framework, the most important magnitude is the probability f that a branch

of infection will expand throughout the network, [1, 22]. When a branch of infection

reaches a node with k connections across one of its links, it can only expand through its

k − 1 remaining connections. It can be shown that f verifies the self-consistent equation

f = 1−G1(1− Tf), where G1(x) =
∑kmax

k=kmin
kP (k)/〈k〉xk−1 is the generating function of

the underlying branching process [7]. Note that G1(x) here represents the probability that

the branches of infection will not expand throughout the network. At the final state of this

process, the branches of infection contribute to a spanning cluster of recovered, previously

infected individuals. Thus the probability of selecting a random node that belongs to the

spanning cluster is given by R = 1 − G0(1 − Tf), where G0 =
∑kmax

k=kmin
P (k)xk is the
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generating function of the degree distribution. When T ≤ Tc there is an epidemic-free

phase with only small outbreaks, which correspond to finite cluster in link percolation

theory. But, when T > Tc an epidemic phase develops. In isolated networks the epidemic

threshold is given by Tc = 1/(κ− 1), where κ is the branching factor that is a measure of

the heterogeneity of the network. The branching factor is defined as κ ≡ 〈k2〉/〈k〉, where

〈k2〉 and 〈k〉 are the second and first moment of the degree distribution, respectively.

Because real-world networks are not isolated, in recent years scientific researchers have

focused their attention on multilayer networks, i.e., on “networks of networks” [23–36]. In

multilayer networks, individuals can be actors on different layers with different contacts

in each layer. This is not necessarily the case in interacting networks. Dickinson et al.

[37] studied numerically the SIR model in two networks that interact through inter-layer

connections given by a degree distribution. There is a probability that these inter-layer

connections will allow infection to spread between nodes in different layers. They found

that, depending on the average degree of the inter-layer connections, one layer can be in an

epidemic-free phase and the other in an epidemic phase. Yagan et al. [38] studied the SIR

model in two multilayer networks in which all the individuals act in both layers. In their

model the transmissibility is different in each network because one represents the virtual

contact network and the other the real contact network. They found that the multilayer

structure and the presence of the actors in both layers make the propagation process more

efficient and thus increase the theoretical risk of infection above that found in isolated

networks. This can have catastrophic consequences for the healthy population. Sanz

et al. [16] studied the spreading dynamics and the temporal evolution of two concurrent

diseases that interact with each other in a two-layer network system, for different epidemic

models. In particular, they found that for the SIR in the final state this interaction can

determinate the values of the epidemic threshold of one of the diseases whose dynamic

has been modified by the presence of the other disease. Buono et al. [39] studied the SIR

model, with β and tr constant, in a system composed of two overlapping layers in which

only a fraction q of individuals can act in both layers. In their model, the two layers

represent contact networks in which only the overlapping nodes enable the propagation,

and thus the transmissibility T is the same in both layers. They found that decreasing

the overlap decreases the risk of an epidemic compared to when there is a full overlap

(q = 1).
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All of the above research assumes that individuals, independent of their state, will

continue acting in many layers. In a real-world scenario, however, an infected individual

may be isolated for a period of time and thus may not be able to act in other layers,

e.g., for a period of time they may not be able to go to work or visit friends and may

have to stay at home or be hospitalized. Thus the propagation of the disease is reduced.

This scenario is more realistic than the one in which an actor continues to participate

in all layers irrespective of their state [38, 39]. As we will demonstrate, compared to the

theoretical risk measurement produced by multilayer network SIR models, our approach

more accurately measures the decrease in the theoretical risk of epidemic propagation.

RESULTS

Model and Simulation Results

We consider the case of a two-layer network, A and B, of equal size N , where one layer

represents an individual’s work environment and the other their social environment. The

degree distribution in each layer is given by Pi(k), with i = A,B and kmin ≤ k ≤ kmax,

where kmin and kmax are the minimum and the maximum degree allowed a node.

At the initial stage all individuals in both layers are susceptible nodes. We randomly

infect an individual in layer A. At the beginning of the propagation process, each infected

individual is isolated from both layers with a probability w for a period of time tw. For

simplicity, in our epidemic model we assume that every infected individual is isolated

from both layers with the same probability w during a period of time tw. The probability

that an infected individual is not isolated from both layers is thus 1 − w. At each time

step, a non-isolated infected individual spreads the disease with a probability β during a

time interval tr after which he recover. When an individual j after tw time steps is no

longer isolated he reverts to two possibles states. When tw < tr, j will be infected in both

layers for only tr − tw time steps and the infection transmissibility of j is reduced from

1− (1− β)tr to 1− (1− β)tr−tw , but when tw ≥ tr, j recovers and no longer spreads the

disease. At the final stage of the propagation all of the individuals are either susceptible

or recovered. The overall transmissibility T ∗ ≡ T ∗
β,tr ,tw,w is the probability that an infected

individual will transmit the disease to their neighbors. This probability takes into account
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that the infected is either isolated or non-isolated in both layers for a period of time and

is given by

T ∗ = 1−
[

(1− w) (1− β)tr + w (1− β)tr−tw
]

. (1)

Here the second and third term takes into account non-isolated and isolated individuals

and represents the probabilities that this infected individual does not transmit the disease

during tr and tr − tw time steps respectively.

Mapping this process onto link percolation in two layers, we can write two self-

consistent coupled equations, fi, i = A,B, for the probability that in a randomly chosen

edge traversed by the disease there will be a node that facilitates an infinite branch of

infection throughout the two-layer network, i.e.,

fA = [1−GA
1
(1− T ∗fA) G

B
0
(1− T ∗fB)]

fB = [1−GB
1
(1− T ∗fB) G

A
0
(1− T ∗fA)], (2)

where G
A/B
0 and G

A/B
1 are the generating function defined in the Introduction for layer

A and B. Here G
A/B
1 takes into account the probability that a branch of infection reaches

a node in layer A/B of connectivity k across one of its links and cannot expand through

its remaining k − 1 connection. Then G
A/B
0 represents the probability that the branch

of infection propagates from one layer into the other, reaches a node, but cannot expand

through all of its connections. Figure (1) shows a schematic of the contributions to

Eqs. (2).

Using the nontrivial roots of Eq. (2) we compute the order parameter of the phase

transition, which is the fraction of recovered nodes R, where R is given by

R = 1−GA
0
(1− T ∗fA) G

B
0
(1− T ∗fB). (3)

Note that in the final state of the process the fraction of recovered nodes in layers A and

B are equal because all nodes are present in both layers. From Eqs. (1) and (2) we see

that if we use the overall transmissibility T ∗ as the control parameter we lose information

about w, the isolation parameter, and tw, the characteristic time of the isolation. In our

model we thus use β ≡ βT ∗ as the control parameter, where β is obtained by inverting

Eq. (1) with fixed tr [40].
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FIG. 1: Schematic of a multilayer network consisting of two layers, each of size N = 12. The

black nodes represent the susceptible individuals and the red nodes the infected individuals. In

this case, we consider tw < tr. (a) The red arrows indicate the direction of the branches of

infection. All the branches spreads through A and B because the infected nodes are not isolated

and thus interact in both layers. (b) The gray node, represents an individual who is isolated

from both layers for a period of time tw. (c) After tw time steps the gray node in (b) is no longer

isolated, and can infect its neighbors in A and B, if they were not reach by another branch of

infection, during tr − tw time steps (Color on line).

Figure 2 shows a plot of the order parameter R as a function of β for different values

of w, with tr = 6 and tw = 4 obtained from Eq. (3) and from the simulations. For (a) we

consider two Erdős-Rényi (ER) networks [41], which have a Poisson degree distribution

and an average degree 〈kA〉 = 〈kB〉 = 2, and for (b) we consider two scale free networks

with an exponential cutoff c = 20 [7], where Pi(ki) ∼ k−λi

i e−ki/c, with λA = 2.5 and

λB = 3.5. We use this type of SF network because it represents many structures found in

real-world systems [42, 43].

In the simulations we construct two networks of equal size using the Molloy-Reed

algorithm [44], and we randomly overlap one-to-one the nodes in network A with the

nodes of networks B. We assume that an epidemic occurs at each realization if the

number of recovered individuals is greater than 200 for a system size of N = 105 [45].

Realizations with fewer than 200 recovered individuals are considered outbreaks and are

disregarded.

Figure 2 shows an excellent agreement between the theoretical equations (see Eq. 3)

and the simulation results. The plot shows that the critical threshold βc increases with

w, which indicates that the theoretical risk for an epidemic decreases with the isolation
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FIG. 2: Simulations and theoretical results of the total fraction of recovered nodes R, in the

final state of the process, as a function of β, with tr = 6 and tw = 4, for different values of w.

The full lines corresponds to the theoretical evaluation of Eq. 3 and the symbols corresponds to

the simulations results, for w = 0.1 (©) in green, w = 0.5 (✷) in blue and w = 1 (✸) in violet.

The multilayer network is consisted by two layers, each of size N = 105. For (a) two ER layers

with 〈kA〉 = 〈kB〉 = 2, kmin = 1 and kmax = 40 and (b) two scale free networks with λA = 2.5,

λB = 3.5 and exponential cutoff c = 20 with kmin = 2 and kmax = 250 (Color online).

parameter w. Note that above the threshold but near it R decreases as the isolation w

increases, indicating that isolation for even a brief period of time reduces the propagation

of the disease. The critical threshold βc is at the intersection of the two Eqs. (2) where all

branches of infection stop spreading, i.e., fA = fB = 0. This is equivalent to finding the

solution of the system det(J − I) = 0, where J is the Jacobian of the coupled equation

with Ji,k|fi=fk=0 = ∂fi/∂fk|fi=fk=0 and I is the identity, and

T ∗ 2

c [(κA − 1)(κB − 1)− 〈kA〉〈kB〉]− T ∗
c [(κA − 1) + (κB − 1)] + 1 = 0, (4)

where κA and κB are the branching factor of layers A and B, and 〈kA〉 and 〈kB〉 are their

average degree. Using numerical evaluations of the roots of Eq. (4) we find the physical

and stable solution for the critical threshold βc, which corresponds to the smaller root of

Eq. (4) [46]. Figure 3 shows a plot of the phase diagram in the plane β − w for (a) two

ER multilayer networks [41] with average degree 〈kA〉 = 〈kB〉 = 2 and (b) two power law

networks with an exponential cutoff c = 20 [7], with λA = 2.5 and λB = 3.5. In both

Fig. 4 and Fig. 3 we use tr = 6 and values tw = 0, 1, 2, 3, 4, 5, and 6, from bottom to
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FIG. 3: Phase diagram in the plane β − w. In both plots, we consider tr = 6 and tw =

0, 1, 2, 3, 4, 5, 6 from bottom to top for (a) two ER networks with 〈kA〉 = 〈kB〉 = 2 with kmin = 1

and kmax = 40. (b) two power law networks with λA = 2.5 and λB = 3.5 with kmin = 2

and kmax = 250 and exponential cutoff c = 20. The region above each line corresponds to the

Epidemic phase and the region below correspond to the Epidemic-free phase. In the limit of

w → 0 and for tw = 0 we recover the SIR in multiplex networks with (a) βc ≈ 0.043 and (b)

βc ≈ 0.019. For the case tr = tw, there is a threshold for w with (a) wc = 0.76 and (b) wc = 0.88,

above which there is only an Epidemic-free phase.

top.

The regions below the curves shown in Fig. 3 correspond to the epidemic-free phase.

Note that for different values of tw those regions widen as w increases. Note also that

when tr = tw there is a threshold wc above which, irrespective of the theoretical risk (βc),

the disease never becomes an epidemic. For tw = 0 and w = 0 we recover the SIR process

in a two-layer network system that corresponds to βc ≈ 0.043 with kmin = 1 and kmax = 40

[47] in Fig. 3(a) and βc ≈ 0.019 with kmin = 2 and kmax = 250 in Fig. 3(b). Although in

the limit c → ∞, βc → 0, and most real-world networks are not that heterogeneous and

exhibit low values of c [9, 42].

As expected and confirmed by our model, the best way to stop the propagation of a

disease before it becomes an epidemic is to isolate the infected individuals in both layers

until they recover, which corresponds to tw = tr and w > 0. Because this is strongly

dependent upon the resources of the location from which the disease begins to spread and
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FIG. 4: Ratio of βc(tw) to βc(0) as a function of w. For tw = 1, 2, 3, 4, 5, 6 from bottom to top for

(a) two ER networks with 〈kA〉 = 〈kA〉 = 2 with kmin = 1 and kmax = 40 and (b) two power law

networks with λA = 2.5 and λB = 3.5 with kmin = 2 and kmax = 250, with exponential cutoff

c = 20. In both Figures, the limit w → 0 correspond to a SIR process, and as w increases the

overestimation increases.

on each infected patient’s knowledge of the consequences of being in contact with healthy

individuals, the isolation procedure can be difficult to implement.

We also study a case in which there is isolation in one layer (for a detailed description

see Supplementary Information). We find that, for all values of β, there is no critical value

of w above which the phase is epidemic-free, i.e. the disease never becomes an epidemic.

The phase diagram indicates that when the SIR model is applied to multilayer net-

works, which corresponds to the case tw = 0, it overestimates the theoretical risk βc of

an epidemic. This theoretical overestimation can strongly affect the spreading dynamics.

Figure 4(a) plots the ratio βc/βc(tw = 0) as a function of w for different values of tw, with

tw > 0 for two ER networks. Figure 4(b) shows how much the theoretical risk is overes-

timated in the SIR model of a two-layer SF networks. Note that in order to estimate the

real epidemic risk the model must fit data from where the estimated transmission param-

eter, β, can be obtained. This is a difficult task when using theoretical networks because

the structure of the contact network, where the epidemic propagation takes place, is not

known, and in general these problems are solved using meta-population [48, 49] networks

or a full-mixing approach [50–52].
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In the limit tw = 0 and w → 0 we revert to the SIR model in multilayer networks [39].

As w increases and when tw 6= 0 there is always an overestimation of the theoretical risk.

Note that when tw = tr the plot shows that when the percentage of infected individuals

who are hospitalized or isolated in their homes is approximately 40, for two ER, and 50

percent, for two SF, the SIR model indicates double the actual theoretical risk of infection.

The declaration of an epidemic by a government health service is a non-trivial decision,

and can cause panic and negatively effect the economy of the region. Thus any epidemic

model of airborne diseases that spread in multilayer networks, if the projected scenario

is to be realistic and in agreement with the available real data, must take into account

that some infected individuals will be isolated for a period of time. In particular, in such

diseases as the recent outbreak of Ebola in Western Africa, in which the hospitalization of

patients is a significant factor strongly affecting the propagation of the outbreak, research

must take this hospitalization into account [48, 50–52]. Note also that this isolation can

also delay the onset of the peak of the epidemic and thus allow health authorities more

time to make interventions. This is an important topic for future investigation.

Discussion

In summary, we study a SIR epidemic model in two multilayer networks in which

infected individuals are isolated from both layers with probability w during a period

of time tw. Using a generating function framework, we compute the total fraction of

recovered nodes in the steady state as a function of the probability of infection β and

find a perfect agreement between the theoretical and the simulation results. We derive an

expression for the epidemic threshold and we find that βc increases as w and tw increase.

For tw = tr we find a critical threshold wc above which any disease can be stopped before

it becomes an epidemic and which cannot be found when isolating only in one layer.

From our results we also note that as the isolation parameter and the period of isolation

increases the overestimation increases. Our model enables us to conclude that the SIR

model of multilayer networks overestimates the theoretical risk of infection. This finding

is highly relevant to the work of researchers developing epidemic models. Our model can

also provide a foundation for estimating the real value of β through a data driven model

that could be used by health authorities when implementing policies for stopping a disease
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before it becomes an epidemic.
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Supplementary Information

To measure the efficiency of the our SIIR model we focus on a two-layer network in

which one layer is isolated. The two layers of our network, A and B, are of equal size

N . This situacion reflects a real-world scenario in which infected individuals do not go to

their jobs, layer A, but still have contact with people, layer B. At the initial stage all the

individuals in both layers are susceptible. We randomly infect a node in layer A. This

node can either be isolated within its own layer with a probability w for a period of time

tw or spread the disease within its own layer with a probability 1 − w. Also, it will be

present in layer B and will spread the disease there. Thus the isolated nodes in network

A will be able to infect for a shorter period of time than the non-isolated nodes, and the

transmissibility of isolated individuals will be 1 − (1 − β)tr−tw . On the other hand, the

transmissibility of non-isolated individuals in A and all infected individuals in B will be

equal to 1 − (1 − β)tr . At the final stage of the propagation all individuals are either

susceptible or recovered, and the transmissibility TA and TB for each layer is given by

TA = 1−
[

(1− w) (1− β)tr + w (1− β)tr−tw
]

,

TB = 1−
[

(1− β)tr
]

. (5)

Here the second and third term of TA takes into account non-isolated and isolated in-

dividuals in layer A and represents the probability that an infected individual will not

transmit the disease during the tr and tr − tw time steps, respectively. In layer B the

transmissibility is the same as in the SIR model.

Using the theoretical arguments presented in Model and Simulation Results we can

write two self-consistent coupled equations, fi, i = A,B,

fA = [1−GA
1
(1− TAfA) G

B
0
(1− TBfB)]

fB = [1−GB
1
(1− TBfB) G

A
0
(1− TAfA)], (6)

from which we can obtain the critical threshold βc (see Model and Simulation Results) in

which

(TA
c T

B
c )2 [(κA − 1)(κB − 1)− 〈kA〉〈kB〉]− TA

c (κA − 1)− TB
c (κB − 1) + 1 = 0. (7)

Here κA and κB are the branching factor of layers A and B, and 〈kA〉 and 〈kB〉 are their

average degree. Figure 5 shows a plot of the phase diagram in the plane β − w for (a)
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two ER multilayer networks [41] with average degree 〈kA〉 = 〈kB〉 = 2 and (b) two power

law networks with an exponential cutoff c = 20 [7], with λA = 2.5 and λB = 3.5. In

Fig. 5 we use tr = 6 and values tw = 0, 1, 2, 3, 4, 5, and 6, reading from bottom to top.

Note that the regions below the curves in Fig. 5 correspond to the epidemic-free phase.

Then for different values of tw these regions widen as w increases and reach their max-

imum size for tr equal to tw. Unlike the model with isolation in both layers (see Fig. 3

in Model and Simulation Results), as tw increases the critical values of β change as w

increases. When tw = 0 and w = 0 we recover the SIR process in a two-layer network that

corresponds to βc ≈ 0.043 with kmin = 1 and kmax = 40 in Fig. 5(a) and βc ≈ 0.019 with

kmin = 2 and kmax = 250 in Fig. 5(b). In contrast to the model with isolation in both

layers there is no critical value of w above which there is only an epidemic-free phase.

Thus we conclude that this model is not as efficient in halting the spreading as the model

with isolation in both layers.

Note that an isolation may represent a behavioral change, but unlike previous models

in which the behavioral changes are solely the result of decisions made by susceptible

individuals, our model also allows behavioral changes brought about by placing the in-

dividuals in quantantine or by hospitalizing them [48, 50–52], two practices that were

instituted during the recent Ebola outbreak in West Africa.
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(a) (b)

FIG. 5: Phase diagram in the plane β − w. In both plots, we consider tr = 6 and tw =

0, 1, 2, 3, 4, 5, 6 from bottom to top for (a) two ER networks with 〈kA〉 = 〈kB〉 = 2 with kmin = 1

and kmax = 40. (b) two power law networks with λA = 2.5 and λB = 3.5 with kmin = 2

and kmax = 250 and exponential cutoff c = 20. The region above each line corresponds to the

Epidemic phase and the region below correspond to the Epidemic-free phase. In the limit of

w → 0 and for tw = 0 we recover the SIR in multiplex networks with (a) βc ≈ 0.043 and (b)

βc ≈ 0.019.
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