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Dynamic Stochastic Blockmodels for
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Abstract—Significant efforts have gone into the development of
statistical models for analyzing data in the form of networks, such
as social networks. Most existing work has focused on modeling
static networks, which represent either a single time snapshot or an
aggregate view over time. There has been recent interest in statis-
tical modeling of dynamic networks, which are observed at multiple
points in time and offer a richer representation of many complex
phenomena. In this paper, we present a state-space model for dy-
namic networks that extends the well-known stochastic blockmodel
for static networks to the dynamic setting. We fit the model in a
near-optimal manner using an extended Kalman filter (EKF) aug-
mented with a local search. We demonstrate that the EKF-based
algorithm performs competitively with a state-of-the-art algorithm
based on Markov chain Monte Carlo sampling but is significantly
less computationally demanding.

Index Terms—State-space social network model, dynamic net-
work, on-line estimation, extended Kalman filter.

I. INTRODUCTION

T HE study of networks has emerged as a topic of great
interest in recent years. Many complex physical, biolog-

ical, and social phenomena ranging from protein-protein inter-
actions to the formation of social acquaintances can be natu-
rally represented by networks. Analysis of data in the form of
networks has recently captured the attention of the signal pro-
cessing community [2]–[6]. To date, much research has focused
on static networks, which either represent a single time snapshot
of the phenomenon of interest or an aggregate view over time.
Accordingly, many statistical models for networks have been
developed for static networks; see [7] for a survey of the lit-
erature. However, most complex phenomena, including social
behavior, are time-varying, which has led researchers in recent
years to examine dynamic, time-evolving networks. Previous
studies have typically examined aspects of dynamic networks
related to their growth over time, including densification [8],
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[9] and shrinking diameters [9], and to their structural changes,
including the temporal evolution of communities in the network
[10]–[12].
In this paper, we consider dynamic networks represented by

a sequence of snapshots of the network at discrete time steps.
Both nodes and edges of the network could be added or removed
over time. In a dynamic social network, for example, the nodes
could correspond to people, and the edges could correspond to
interactions between people. The presence of an edge between
two nodes and at time step would then indicate that an
interaction between and occurred during the time window
represented by time step .
We characterize such dynamic networks using a set of unob-

served time-varying states from which the observed snapshots
are derived. We utilize a state-space model for dynamic net-
works first proposed in [1] that combines two types of statistical
models: a static model for the individual snapshots and a tem-
poral model for the evolution of the states. The network snap-
shots are modeled using the stochastic blockmodel (SBM) [13],
a simple parametric model commonly used in the analysis of
static social networks. The state evolution is modeled by a sto-
chastic dynamic system.
Using a Gaussian approximation, which becomes increas-

ingly accurate as the SBM block sizes increase, we employ
a near-optimal procedure for fitting the proposed model in
the on-line setting where only past and present network snap-
shots are available. The inference procedure consists of an
extended Kalman filter (EKF) [14] augmented with a local
search strategy. The proposed algorithm is considerably faster
than a state-of-the-art algorithm that uses Markov chain Monte
Carlo (MCMC) sampling, yet our experiments show that the
proposed algorithm has comparable accuracy to the more com-
putationally demanding MCMC-based algorithm in recovering
the true states. We apply the proposed algorithm to analyze
the Enron network [15], [16], a dynamic social network of
email communication, and reveal several interesting trends that
cannot be identified by aggregate statistics such as the total
number of emails sent at each time step.
We first proposed the main elements of our model, including

the Gaussian approximation and EKF algorithm for tracking dy-
namic SBMs, in [1]. This paper refines and extends the analysis
of the model in several ways. First, a detailed development of
the approximate inference procedure is given, including a study
of the approximation accuracy. Second, a more extensive per-
formance analysis is presented, for both simulated and real data,
that establishes the advantages of the proposed dynamic SBM
method relative to other methods.
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II. BACKGROUND

A. Notation

Time steps are denoted by superscripts, whilematrix or vector
indices are denoted by subscripts. We represent a dynamic net-
work by a time-indexed sequence of graphs, with
denoting the adjacencymatrix of the graph observed at time step
. We define if there is an edge from node to node
at time , and otherwise. We assume that the graphs
are directed, i.e., in general, and that there are no
self-edges, i.e., . denotes the set of all snapshots
up to time . and denote the
number of observed nodes and edges, respectively, at time . We
write to denote a quantity at time computed
using only observations from time and earlier. The notation

indicates that node is a member of class . denotes the
number of nodes in class . The classes of all nodes at time is
given by a vector with if at time .We denote the
submatrix of corresponding to the relations between nodes
in class and nodes in class by . Finally, we denote
the vectorized equivalent of a matrix , i.e. the vector obtained
by simply stacking columns of on top of one another, by .
Doubly-indexed subscripts such as denote entries of matrix
, while singly-indexed subscripts such as denote entries of

the vectorized equivalent .

B. Static Stochastic Blockmodels

We present a brief summary of the static stochastic block-
model (SSBM) [13], which we use as the static model for indi-
vidual network snapshots. Consider a snapshot at an arbitrary
time step . An SSBM is parameterized by a matrix

, where denotes the probability of forming an
edge between a node in class and a node in class , and de-
notes the number of classes. The SSBM decomposes the adja-
cencymatrix into blocks, where each block is associated with
relations between nodes in classes and . Each block
corresponds to a submatrix of the adjacency matrix .
Thus, given the class membership vector , each entry of is
an independent realization of a Bernoulli random variable with
a block-dependent parameter; that is, .

SSBMs are used in two settings: the a priori blockmodeling
setting, where class memberships are known or assumed, and
the objective is to estimate the matrix of edge probabilities ,
and the a posteriori blockmodeling setting, where the objec-
tive is to simultaneously estimate and the class membership
vector . Since each entry of is independent, the likelihood
for the parameters of the SSBM is given by

(1)

The likelihood (1) can be rewritten as

(2)

where denotes the number of observed
edges in block , and

(3)

denotes the number of possible edges in block [17]. The
parameters are given by in the a priori setting, and

in the a posteriori setting. In the a priori set-
ting, a sufficient statistic for estimating is the matrix of
block densities corresponding to ratios of observed edges rel-
ative to possible edges within each block, which has entries

. The matrix is also the maximum-likeli-
hood estimate of [17].
Parameter estimation in the a posteriori setting is more

involved, and many methods have been proposed, including
Gibbs sampling [18], label-switching [17], [19], and spec-
tral clustering [20], [21]. The label-switching methods use a
heuristic for solving the combinatorial optimization problem
of maximizing the likelihood (2) over the set of possible class
memberships, which is too large for an exhaustive search to be
tractable. The spectral clustering methods utilize the eigenvec-
tors of the adjacency matrix or a similar matrix to estimate
the class memberships.

C. Related Work

Several statistical models for dynamic networks have previ-
ously been proposed for modeling and tracking dynamic net-
works [7]. Guo et al. [22] proposed a temporal extension of
the exponential random graph model (ERGM) called the hidden
temporal ERGM. Sarkar and Moore [23] proposed a temporal
extension of the latent space network model and developed an
algorithm to compute point estimates of node positions over
time using conjugate gradient optimization initialized from a
multidimensional scaling solution. In [24], Sarkar et al. pro-
posed a Gaussian approximation that allowed for approximate
inference on the dynamic latent space model using Kalman fil-
tering. The approach of [24] is similar in flavor to the approach
we employ in this paper; however, our approach involves a dif-
ferent static model, namely the stochastic blockmodel, for the
network snapshots and uses this model to develop an extended
Kalman filter (EKF) to track the model parameters.
Hoff [25] proposed a dynamic latent factor model analogous

to an eigenvalue decomposition with time-invariant eigenvec-
tors and time-varying eigenvalues. The model is applicable to
many types of data in the form of multi-way arrays, including
dynamic social networks, and is fit using MCMC sampling. In
[26], Lee and Priebe proposed a latent process model for at-
tributed (multi-relational) dynamic networks using random dot
product spaces. The authors fit mathematically tractable first-
and second-order approximations of the random dot process
model, for which individual network snapshots are drawn from
attributed versions of the Erdős-Rényi and latent space models,
respectively. Perry and Wolfe [27] proposed a point process
model for dynamic networks of directed interactions and a par-
tial likelihood inference procedure to fit their model. The au-
thors model interactions using a multivariate counting process
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that accounts for effects including homophily. Their model op-
erates in continuous time, unlike the proposed model in this
paper, which operates on discrete-time snapshots.
More closely related to the state-space dynamic network

model we consider in this paper are several temporal extensions
of stochastic blockmodels (SBMs). Xing et al. [28] and Ho et
al. [29] proposed temporal extensions of a mixed-membership
version of the SBM using linear state-space models for the
real-valued class memberships. In [30], Yang et al. proposed
a temporal extension of the SBM that is similar to our pro-
posed model. The main difference is that the authors explicitly
modeled nodes changing between classes over time by using
a transition matrix that specifies the probability that a node in
class at time switches to class at time for all . The
authors fit the model using a combination of Gibbs sampling
and simulated annealing, which they refer to as probabilistic
simulated annealing (PSA). We use the performance of the
PSA algorithm as a baseline for comparison with the less
computationally demanding EKF-based approximate inference
procedure we utilize in this paper.

III. DYNAMIC STOCHASTIC BLOCKMODELS

We now present a state-space model for dynamic networks
that accomplishes a temporal extension of the SSBM. First we
review the dynamic SBM and approximate inference procedure
for both a priori and a posteriori blockmodeling proposed in [1].
Next we present an analysis of the time complexity of the infer-
ence procedure and discuss hyperparameter estimation. Finally
we investigate the validity and accuracy of two key approxima-
tions used in the inference procedure.

A. A Priori Blockmodels

In the a priori SSBM setting, is a sufficient statistic for es-
timating as discussed in Section II-B. The entries of
are independent and identically distributed (iid) Bernoulli .
Thus the sample mean follows a re-scaled binomial distri-
bution. For large block size, is approximately Gaussian by
the Central Limit Theorem with mean and variance

(4)

where was defined in (3). We assume that is indeed
Gaussian for all and posit the linear observation model

, where is a zero-mean independent Gaussian
noise matrix with variance for the th entry.
In the dynamic setting where past snapshots are available, the

observations would be given by the set . The set can
then be viewed as the states of a dynamic system that gener-
ates the noisy observation sequence. We complete the model
by specifying a model for the state evolution over time. Since

is a probability and must be bounded between 0 and 1,
we instead work with the matrix where

, the logit of . A simple model
for the state evolution is given by the linear dynamic system

(5)

Fig. 1. Graphical representation of the dynamic SBM. The rectangular boxes
denote observed quantities, and the ovals denote unobserved quantities. The
logistic SBM refers to applying the logistic function (7) to each entry of to
obtain then generating using and .

where is the state transition model applied to the previous
state, is the vector representation of the matrix , and
is a random vector of zero-mean Gaussian entries, commonly
referred to as process noise, with covariance matrix . The en-
tries of the process noise vector are not assumed to be inde-
pendent (unlike the entries of , which are independent by con-
struction) to allow for states to evolve in a correlated manner.
The state transition matrix may either be known, as in the
case of structural time series models [31], or can be estimated
using methods for system identification [32]. For the simplest
model where for all , the state evolution follows a mul-
tivariate Gaussian random walk.
The observation model can be written in terms of as1

(6)

where the function is defined by

(7)

i.e., the logistic function applied to each entry of . We denote
the covariance matrix of by , which is a diagonal matrix2

with entries given by . A graphical representation of the
dynamic network model is shown in Fig. 1.
The inference procedure for themodel is on-line, i.e., the state

estimate at time is formed using only observations from time
and earlier. We assume the initial state is Gaussian distributed,
i.e., , and that
are mutually independent. If (6) was linear in , then the op-
timal estimate of in terms of minimizing mean-squared error
would be given by the Kalman filter [14]. Due to the non-lin-
earity, we apply the extended Kalman filter (EKF), which lin-
earizes the dynamics about the predicted state and provides a
near-optimal estimate of . The EKF equations for the model
specified by (5), (6) are as follows. The predicted state estimate
is

(8)

1Note that we have converted the block densities and observation noise
to their respective vector representations and .
2The indices for are converted into a single index corre-

sponding to the vector representation .
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and the predicted covariance estimate is

(9)

Let denote the Jacobian of evaluated at the predicted state

estimate . is a diagonal matrix with th entry given
by

(10)

The near-optimal (when the estimation errors are small enough
to make the EKF linearization accurate) Kalman gain is given
by

(11)

from which the updated state estimate

(12)

and the updated covariance estimate

(13)

are obtained [14]. The updated state estimate provides a
near-optimal fit to the model at time given the observed se-
quence .

B. A Posteriori Blockmodels

In many applications, the class memberships are not
known a priori and must be estimated along with . This can
be done using label-switching methods as in [17], [19], but
rather than maximizing the likelihood (2), we maximize the
posterior state density given the entire sequence of observations

up to time to account for the prior information. This is
done by alternating between label-switching and applying the
EKF to arrive at a maximum a posteriori probability (MAP)
estimate of .
The posterior state density is given by

(14)

By the conditional independence of current and past observa-
tions given the current state, drops out of the first mul-
tiplicative factor on the right side of (14). This factor can thus
be obtained simply by substituting for in (2). We ap-
proximate the second term in (14) with using the
estimated class memberships at all previous time steps. By ap-
plying the Kalman filter to the linearized temporal model [14],

. Thus the logarithm of the
posterior density is given by

(15)

Fig. 2. A posteriori blockmodel inference procedure at time using the EKF.

where

and is a constant term independent of that can be ignored3.
We use the log-posterior (15) as the objective function for

label-switching to obtain an a posteriori fit to the dynamic SBM.
We find that a simple local search (hill climbing) algorithm [33]
initialized using the estimated class memberships at the pre-
vious time step suffices, because only a small fraction of
nodes change classes between time steps in most applications.
Pseudocode for the a posteriori inference procedure is shown in
Fig. 2. At the initial time step, we employ the spectral clustering
algorithm of Sussman et al. [21] for the SSBM to generate
an initial estimate of the class memberships at . The
spectral clustering algorithm is given in Fig. 3. Using the
spectral clustering solution as the initialization prevents the
local search from getting stuck in a poor local maximum at the
initial time step.

3At the initial time step, and .



556 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 4, AUGUST 2014

Fig. 3. SSBM spectral clustering initialization to obtain initial estimate of
class memberships at .

C. Time Complexity

We begin with an analysis of the time complexity of the
inference procedure for a priori blockmodeling at each time
step. Calculating the matrix of block densities involves
summing over all edges present at time , which has
time complexity. Application of the EKF requires only ma-
trix-vector multiplications and a matrix inversion (to calculate
the Kalman gain). The size of both the observation and state
vectors in the EKF is , so the time complexity of the EKF
is dominated by the complexity of the matrix inversion.
Hence the overall time complexity at time is .
A posteriori blockmodeling involves performing a local

search at each time step in addition to applying the EKF. At
each iteration of the local search, all neighboring
class assignments are visited. For each class assignment,

we compute the EKF estimate and substitute it into the
log-posterior (15). As previously mentioned, computing the
EKF estimate is dominated by the complexity of an
inverting a matrix. Evaluating the log-posterior (15)
also requires inversion of a matrix. The matrix inver-
sions are independent of the class assignments so they only
need to be performed once at each time step rather than at
each iteration of the local search. Thus the time complexity
at each local search iteration is reduced to for the
matrix-vector multiplications. The overall time complexity at
time then becomes , where denotes
the number of local search iterations. We note that the local
search algorithm is easily parallelized; specifically, each visit to
a neighboring class assignment can be executed on a separate
core or processor, which can significantly reduce the run-time
of a posteriori inference.

D. Estimation of Hyperparameters

The EKF-based inference procedure requires four hyperpa-
rameters to be specified:
1) the mean of the initial state ,
2) the covariance matrix of the initial state ,
3) the covariance matrix of the observation noise , and
4) the covariance matrix of the process (state evolution)
noise .

The first two hyperparameters relate to the initial state. In
the absence of prior information about the network, specifically
the matrix of probabilities of forming edges, we employ a
diffuse prior [31]; that is, we let the variances of the initial states

approach . This can be implemented by simply taking
and , where

is the logit of the th entry of , and
is the Jacobian of evaluated at , which is a diagonal matrix
with entries given by . Thus the
initial state mean and covariance are given by the transformed
initial observation and its covariance.
The third hyperparameter denotes the covariance matrix

of the observation noise. In many applications of state-space
models, it is assumed to be time-invariant and estimated jointly
with . In the dynamic SBM setting, however, is neces-
sarily time-varying because it is related to the current state
through (4) and the logistic function (7). Taking advantage of
this relationship, we use a plug-in estimator for by substi-

tuting for in (4).
The final hyperparameter denotes the covariance matrix

of the process noise . Unlike , we assume to be time-
invariant. Furthermore, it is not necessarily diagonal because
states could evolve in a correlated manner. For example, if
increases from time to time , it may be a result of some ac-
tion by nodes in class , which could also affect the other entries
in row of . Although is not necessarily diagonal, it is de-
sirable to impose some structure on so that one does not have
to estimate all covariances individually. Accordingly we
assume the structure of is such that

(16)

where being neighboring cells means that the matrix indices
corresponding to in are in the same row or column

as matrix indices . This choice for exploits the fact
that the state is actually a matrix that has been flattened into
a vector .
The objective is then to estimate and . Many cost

functions and algorithms have been proposed for learning hy-
perparameters in non-linear dynamic systems; see [34] for a
survey of approaches. The typical approach involves iteratively
optimizing a cost function, such as the prediction error or likeli-
hood, over the hyperparameters and states.Wan and Nelson [35]
present a dual EKF approach for optimizing prediction error
separately over the states and hyperparameters for non-linear
state evolution models. Ghahramani and Roweis [36] use an ex-
pectation-maximization (EM) algorithm to maximize the like-
lihood of the observation sequence . For the experiments
in this paper, we assume that the state transition matrix
and choose hyperparameters to minimize the mean-squared pre-
diction error.

E. Approximation Accuracy

As we noted in Section III.A, the proposed inference proce-
dure makes use of two approximations. The first approximation
involves modeling the block densities by Gaussian random
variables. It is simply the Gaussian approximation to the bino-
mial distribution and is valid provided that the blocks are suf-
ficiently large and dense. A rule of thumb often presented in
introductory statistics textbooks is that the Gaussian approxi-
mation to a distribution is a reasonable approx-
imation provided . In the context of the pro-
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Fig. 4. Eigenvalues of second-order EKF term compared to the observation
noise variances over time, averaged over 50 simulation runs. The line
denotes the median of the eigenvalues, while the error bars denote the minimum
and maximum. The eigenvalues of the second-order EKF term are generally
much smaller than the observation noise variances, suggesting that the linear
approximation in the EKF should be very accurate.

posed dynamic SBM, the rule of thumb would correspond to
for all . Recall from (3) that

varies as the product of the number of nodes in classes and .
Thus the Gaussian approximation is reasonable even for small
values of ; for example, 16 nodes in both classes and is
sufficient for .
The second approximation involves the linearization of the

system dynamics in the EKF. The state estimate from the EKF
is only approximately optimal due to the linearization, which
is a first-order Taylor approximation about the predicted state.
Other approximately optimal filters have been proposed for non-
linear systems, including the second-order compensated EKF,
the unscented Kalman filter, and the particle filter. These fil-
ters are often found to perform better than the EKF for com-
plex non-linear models at the cost of higher computational com-
plexity [37]. We argue that the EKF is sufficient for the system
model posed by (5) and (6). The state transition model (5) is
linear so the only non-linearity is due to the logistic functions

in the observation model. The EKF should
work well when the bias and variance of the second-order term
in the Taylor approximation is negligible compared to the ob-
servation noise variance [37], i.e.,

where denotes the Hessian matrix of denotes a
matrix with th entry given by , and denotes
that the eigenvalues of are much smaller than those of .

Fig. 5. MSE comparison for SSBM, EKF, and two particle filters (PFs) with
10 000 particles for 50 simulation runs. PF-G uses the approximate Gaussian
observation model, and PF-B uses the actual re-scaled binomial observation
model. Edges of the boxes denote 25th and 75th percentiles, and the red (center)
lines denote medians. Red (plus) markers denote outliers. The MSE of the EKF
is comparable to those of the PFs, confirming the near-optimality of the EKF
estimate.

We simulate networks drawn from the dynamic SBM to in-
vestigate the contributions of the second-order EKF term. The
simulation parameters are chosen based on a synthetic network
generator proposed by Newman and Girvan [38]. The network
consists of four equally sized classes of nodes. The mean
of the initial state is chosen so that and

for . The initial state
covariance is chosen to be a scaled identity matrix .
evolves according to a Gaussian random walk model on , i.e.,

in (5). is constructed using (16), with
and . 10 time steps are generated; at each time,
we draw a new graph snapshot4 from the SBM parameterized
by and .
Since the observation noise variance (4) is inversely propor-

tional to , we can simulate a variety of conditions simply by
varying the number of nodes in the network. A comparison of
the eigenvalues of the second-order EKF term to the observation
noise variances for four choices of the number of nodes is shown
in Fig. 4. We find that the contribution of the second-order term
is relatively small, suggesting that the first-order Taylor approx-
imation in the EKF is sufficient.
In Fig. 5, we present a comparison of the mean-squared errors

(MSEs) for the static SBM (SSBM), the EKF, and two particle
filters (PFs), one using the approximate Gaussian distribution
for (PF-G), and one using the actual re-scaled binomial distri-
bution (PF-B). Each data point in the box plot denotes one sim-
ulation run, and MSE refers to the mean of the squared tracking

error over the 10 time steps of the simulation run.
The MSEs for the EKF and both PFs are comparable, which
confirms that the EKF is sufficient for the proposed model. In
addition, there is very little difference in the MSEs for the PF
using the approximate Gaussian distribution and the PF using
the actual distribution for , confirming that the Central Limit
Theorem approximation is also sufficient.

4We draw undirected graph snapshots to match the procedure in [38].
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Fig. 6. Comparison of (a) mean-squared tracking error, (b) and class estima-
tion accuracy of a posteriori methods for simulated experiment. The EKF signif-
icantly outperforms the SSBM in both tracking and class estimation. The EKF
performs slightly better than PSA in tracking and slightly worse in class estima-
tion, but with much less computation time (45 seconds for the EKF compared
to 365 seconds for PSA).

IV. EXPERIMENTS

A. Simulated Stochastic Blockmodels

In this experiment we generate synthetic networks in a
manner similar to a simulation experiment in [30]. The network
consists of 128 nodes initially split into 4 classes of 32 nodes
each. At each time step, 10% of the nodes are randomly se-
lected to leave their class and are randomly assigned to one of
the other three classes. The simulated network parameters are
chosen to be the same as in the simulated networks described
in Section III-E. 10 time steps are generated in each simulation
run.
We compare the performance of the EKF-based inference

procedure to two baselines. The first is the static stochastic block
model (SSBM) fit to each time step individually by spectral
clustering [21]. The second baseline is the probabilistic simu-
lated annealing (PSA) algorithm proposed by Yang et al. [30],
which uses a combination of Gibbs sampling and simulated an-
nealing to perform approximate inference. In the a priori setting,
only the EKF and SSBM are applicable, while all three methods
are applicable in the a posteriori setting.
1) Performance Metrics: The mean-squared errors (MSEs)

for the a priori SSBM and EKF are similar to those shown in
Fig. 5 for 128 nodes due to the similarity in the experiment
setup. The MSEs for the a posteriori methods are shown in
Fig. 6(a). The proposed EKF method achieves the lowest MSE
in both the a priori and a posteriori settings. The SSBM per-
forms only slightly worse than the EKF in the a priori setting
since the observation noise variance is inversely proportional to
the square of the number of nodes in each block. However, the
SSBM performs extremely poorly in the a posteriori setting due
to inaccuracy in the estimation of the true classes.
We evaluate the class estimation accuracy using the adjusted

Rand index [39]. An adjusted Rand index of 1 denotes perfect
accuracy, and 0 denotes the expected accuracy of a random es-
timate. The adjusted Rand indices for the a posteriori methods
are shown in Fig. 6(b). Both EKF and PSA offer a significant
improvement over the SSBM approach. By approximating the
posterior distribution over the classes, the PSA method [30] is

Fig. 7. Variation of median adjusted Rand index (over 50 simulation runs) on
hyperparameter settings for EKF and PSA in simulated experiment. The pro-
posed EKF method is robust to the choice of hyperparameters, while the PSA
method is extremely sensitive to the choice of hyperparameters. (a) EKF: red
asterisk denotes hyperparameter estimates by minimizing mean-squared pre-
diction error. (b) PSA: red asterisk denotes hyperparameter estimates by maxi-
mizing modularity. for all .

able to achieve slightly higher accuracy in estimating the true
classes compared to our EKF approach, which utilizes a MAP
estimate of the classes. However, this comes at the expense of
computation time. Since the PSA approach uses Gibbs sampling
and simulated annealing, it requires significantly more compu-
tation time than both the SSBM and EKF approaches (about
6 minutes for PSA compared to under 1 minute for EKF and
under 1 second for SSBM on a Linux machine with a quad-core
3.00 GHz Intel Xeon processor).
2) Hyperparameter Sensitivity: While PSA is able to slightly

outperform our proposed EKF method in class estimation accu-
racy (at the cost of higher computation time), it is also more
sensitive to the choices of hyperparameters. Specifically, Yang
et al. [30] note that the accuracy in estimating the true classes is
sensitive to the choices of the hyperparameters for the conjugate
prior of the matrix of edge probabilities . The conjugate prior
for each entry in is Beta distributed with hyperparameters

. In Fig. 7, we plot the variation of adjusted Rand index
for different choices of hyperparameters for both the a posteriori
EKF and PSA5. For the EKF, the hyperparameters are
as discussed in Section III-D. Note from Fig. 7(a) that the EKF
is robust to the choice of hyperparameters, while from Fig. 7(b)

5We choose one value of for all and choose for all ,
identical to [30].
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Fig. 8. Scalability of a posteriori methods as number of nodes and number of
classes is varied in simulated experiment. The EKF method is faster than PSA
(except for a large number of classes), which attains similar levels of accuracy,
but slower than the SSBM, which has significantly poorer accuracy.

it can be seen that PSA is extremely sensitive to the choices of
. In particular, certain choices of result in mean

adjusted Rand indices close to 0, i.e., barely better than the ex-
pected result from randomly assigning nodes to classes. Yang et
al. [30] recommend choosing values of that maximize
the modularity criterion [38], which is a measure of the strength
of community structure for a given partition (when ground truth
is not available). The modularity-based approach is applicable
in this experiment because the classes correspond to communi-
ties, i.e., is diagonally dominant, but is not applicable in the
general case where may not be diagonally dominant. In ad-
dition, hyperparameter values that maximize modularity often
have extremely poor MSE. In the general case, one might apply
a diffuse prior by setting for all . Using this
approach, the class estimation accuracy suffers significantly, as
shown in Fig. 7(b).
3) Scalability: We evaluate the scalability of the EKF-based

algorithm and the baselines by varying both the number of
nodes and the number of classes in the experiment. Both a
priori algorithms require only seconds, so we compare only
the a posteriori algorithms. As noted in Section III.C, the
time complexity of the a posteriori EKF at each time step is

, where denotes the number of local
search iterations. From [30], the time complexity of PSA at
each time step is ,
where denotes the number of iterations in Gibbs sampling, and

are constants. The left pane of Fig. 8 shows the variation
in computation time as the number of nodes is increased
from 128 to 1 024 with the number of classes held constant at 4.
The SSBM is fit using spectral clustering [21], which is much
faster than the EKF and PSA, but does utilize any temporal
model, and suffers from poor accuracy in recovering the true
states, as we showed in Fig. 6(a). On the other hand, the EKF
and PSA are comparable in accuracy but the EKF is about an
order of magnitude faster.
The right pane of Fig. 8 shows the variation in computation

time as the number of classes is increased from 2 to 16 with the
number of nodes held constant at 256. Notice that the EKF is an
order of magnitude faster than PSA for , but slower than
PSA once reaches 16. This is also an expected result because
the time complexity of PSA is quadratic in , while the EKF re-
quires . Yang et al. [30] model temporal variation in the class
memberships but not in , unlike the state-space SBM we use;

as a result, PSA has higher tracking error than the EKF as shown
in Fig. 6(a). The EKF performs near-optimal state tracking re-
quiring the inversion of a full covariance matrix as
mentioned in Section III-C, which scales poorly in . For larger
values of , one could achieve significant savings in computa-
tion time by assuming that the process noise covariance matrix
is block-diagonal, which would decouple the dynamics. In-

ference could then be performed by using multiple EKFs with a
smaller state space.

B. MIT Reality Mining

The experiment is conducted on the MIT Reality Mining data
set [40]. The data was collected by recording cell phone activity
of 94 students and staff at MIT over a year. We construct dy-
namic networks based on physical proximity, which was mea-
sured using scans for nearby Bluetooth devices at 5-minute in-
tervals. We exclude data collected near the beginning and end
of the experiment where participation was low. Each time step
corresponds to a 1-week interval, resulting in 37 time steps be-
tween August 2004 and May 2005.
The affiliation of participants are known, so this data set

serves as an excellent real data benchmark for dynamic network
analysis. Eagle et al. [40] demonstrated that two communities
could be found in the time-aggregated network of physical
proximity, corresponding to first-year business school students
and staff working in the same building. We use these participant
affiliations as ground-truth class memberships and compare
the class estimation accuracy of the a posteriori dynamic
SBM methods. Karrer and Newman [17] showed that class
memberships from a posteriori blockmodeling do not agree
with community memberships when there is significant de-
gree heterogeneity within communities. To reduce the degree
heterogeneity, we connect each participant to the 10 other
participants who spent the most time in physical proximity of
during each time step.
A summary of the class estimation performance for the three

a posteriori methods is shown in Table I. Both the EKF and
PSA, which utilize dynamic models, are more accurate than the
SSBM fit using spectral clustering. Notice that the EKF actu-
ally has higher class estimation accuracy than the more compu-
tationally demanding PSA. We find that this is due to the tem-
poral model of the edge probability matrix in our proposed
dynamic SBM, which PSA does not utilize. Notice from Fig. 9
that PSA does not adapt well to changes in the edge probabilities
over time, which degrades its class estimation accuracy com-
pared to our proposed EKF method.

C. Enron Email Network

We run this experiment on a dynamic social network con-
structed from the Enron corpus [15], [16], which consists of
about 500 000 email messages between 184 Enron employees
from 1998 to 2002.We place directed edges between employees
and at time if sends at least one email to during week
. Each time step corresponds to a 1-week interval. We make
no distinction between emails sent “to,” “cc,” or “bcc.” In addi-
tion to the email data, the roles of most of the employees within
the company (e.g., CEO, president, manager, etc.) are available,
which we use as classes for a priori blockmodeling. Employees
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Fig. 9. Estimated edge probabilities for MIT Reality Mining network using
(a) EKF and (b) PSA. Temporal dynamics corresponding to fall and winter
semesters are visible in the EKF estimates of the edge probabilities between
students, but not in the PSA estimates.

TABLE I
COMPARISON OF CLASS ESTIMATION PERFORMANCE FOR A POSTERIORI
METHODS APPLIED TO THE MIT REALITY MINING NETWORK. THE EKF
HAS THE HIGHEST ACCURACY AND IS MUCH FASTER THAN PSA

with unknown roles are placed in an “others” class. We remove
the first 56 and last 13 weeks of data, where only a few emails
were sent.
1) Dynamic Link Prediction: Unlike in the simulated data

set, we do not know the ground truth states in this experiment.
Thus we turn to the task of dynamic link prediction [41] to pro-
vide a basis for comparison. Dynamic link prediction differs
from static link prediction [42] because the link predictor must
simultaneously predict the new edges that will be added at time

, as well as the current edges (as of time ) that will be
removed at time , from the observations . The latter
task is not addressed by most static link prediction methods in
the literature.
Since the SBM assumes stochastic equivalence between

nodes in the same class, the EKF and PSA methods alone
are only good predictors of the block densities , not the
edges themselves. However, the EKF and PSA methods can be
combined with a predictor that operates on individual edges to
form a good link predictor. A simple individual-level predictor
is the exponentially-weighted moving average (EWMA) [43],
[44] given by . Using a convex

TABLE II
COMPARISON OF DYNAMIC LINK PREDICTION PERFORMANCE FOR THE ENRON
NETWORK. THE EKF EWMA AND PSA EWMA APPROACHES PERFORM

COMPARABLY AND BETTER THAN THE EWMA ALONE

Fig. 10. Estimated edge probability matrices for two selected weeks of the
Enron email network. Entry denotes the estimated probability of an edge
from class to class . Classes are as follows: (1) directors, (2) CEOs, (3) pres-
idents, (4) vice-presidents, (5) managers, (6) traders, and (7) others. Notice the
increase in the probability of edges from CEOs during the week of Skilling’s
resignation.

combination of the EKF or PSA and EWMA predictors, we
obtain a better link predictor that incorporates both block-level
characteristics (through the EKF or PSA) and individual-level
characteristics (through the EWMA). We evaluate the perfor-
mance of the link predictors using the area under the receiver
operating characteristic curve (AUC) metric. Since the PSA
implementation we used accepts only undirected graphs, we
reciprocate all edges to create undirected graphs for the link
prediction experiment.
As shown in Table II, the dynamic SBM approaches com-

bined with the EWMA all perform roughly comparably in terms
of AUC, and all better than the EWMA alone. Notice that the a
priori EKF adds hardly any computation time to the EWMA. If
class memberships are not known in advance, one would have
to use a posteriori methods. Both a posteriori methods perform
roughly equally in terms of AUC, but our proposed EKFmethod
is once again an order of magnitude faster than PSA.
2) Temporal Dynamics: Next we investigate the temporal

variation of the state estimates from the EKF. Recall that the
states correspond to the logit of the edge probabilities .We

apply the a priori EKF to obtain the state estimates and their
variances (the diagonal of ). Applying the logistic function,
we can then obtain the estimated edge probabilities with
confidence intervals.
Examining the temporal variation of reveals some inter-

esting trends. For example, a large increase in the probabilities
of edges from CEOs is found at week 89, in which CEO Jeffrey
Skilling resigned. Inspection of the content of the emails sent
during week 89 confirms Skilling’s resignation to be the cause
of the increased probabilities. Fig. 10 shows a comparison of the
matrix during a normal week and during the week Skilling
resigned.
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Fig. 11. A priori EKF estimated edge probabilities (solid lines) with 95%
confidence intervals (shaded region) for (a) CEOs to presidents and (b) others to
others by week in the Enron network. Estimated edge probabilities from CEOs
to presidents peak at times corresponding to three major events (labeled). Edge
probabilities between those in other roles increase only after Enron falls under
federal investigation.

Fig. 12. Total number of emails sent each week in the Enron data set. Peaks
are found around events 2 and 3 but not event 1.

Another interesting trend is highlighted in Fig. 11, where
the temporal variation of two selected edge probabilities over
the entire data trace with 95% confidence intervals is shown.
Probabilities of edges from Enron CEOs to presidents show a
steady increase as Enron’s financial situation worsens, hinting at
more frequent and widespread insider discussions, while prob-
abilities of edges between others (not of one of the six known
roles) begin to increase only after Enron falls under federal in-
vestigation. Notice also that the estimated edge probabilities
from CEOs to presidents peak at three times that align with
three major events during the Enron scandal [45]. A plot of
the number of emails sent by week (Fig. 12) reveals peaks in
email activity around events 2 and 3 but not around event 1
(CEO Skilling’s resignation). Specifically, the overall volume
of emails did not increase during the week Skilling resigned;
only the volume of emails originating from CEOs increased, as
we identified from Fig. 10. Indeed the temporal variation of the
edge probabilities between classes, not the edge probabilities

across the entire network, is what reveals the internal dynamics
of this time-evolving social network. Furthermore, the temporal
model provides estimates with less uncertainty than one would
obtain by fitting a static SBM to each time step, with 95% con-
fidence intervals that are 25% narrower on average.

V. CONCLUSION

This paper presented a statistical model for time-evolving
networks that utilizes a set of unobserved time-varying states
to characterize the dynamics of the networks. The model ex-
tends the well-known stochastic blockmodel for static networks
to the dynamic setting and can be used for either a priori or a
posteriori blockmodeling.We utilized a near-optimal on-line in-
ference procedure based on the EKF that is much faster than an
existing algorithm based on MCMC sampling yet shows com-
parable accuracy.
We applied the EKF-based inference procedure to the Enron

email network and discovered some interesting trends when we
examined the estimated states. One such trend was a steady in-
crease in edge probabilities from Enron CEOs to presidents as
Enron’s financial situation worsened, while edge probabilities
between other employees remained at their baseline levels until
Enron fell under federal investigation. Furthermore, examining
the temporal variation of edge probabilities between classes re-
vealed a spike in edge probabilities that corresponded to the res-
ignation of Enron CEO Jeffrey Skilling; this spike could not be
found by simply examining the number of emails sent by week.
The proposed procedure also showed promising results for pre-
dicting future email activity. We believe the proposed model
and inference procedure can be applied to reveal the internal
dynamics of many other time-evolving networks.
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