arXiv:1409.3059v2 [physics.data-an] 18 Sep 2014

Model selection and hypothesis testing for large-scale network models with

overlapping groups

Tiago P. Peixotd

Institut fiir Theoretische Physik, Universitit Bremen, Hochschulring 18, D-28359 Bremen, Germany

The effort to understand network systems in increasing detail has resulted in a diversity of gener-
ative models that describe large-scale structure in a variety of ways, and allow its characterization in
a principled and powerful manner. Current models include features such as degree correction, where
nodes with arbitrary degrees can belong to the same group, and community overlap, where nodes
are allowed to belong to more than one group. However, such elaborations invariably result in an
increased number of parameters, which makes these model variants prone to overfitting. Without
properly accounting for the increased model complexity, one should naturally expect these larger
models to “better” fit empirical networks, regardless of the actual statistical evidence supporting
them. Here we propose a principled method of model selection based on the minimum descrip-
tion length principle and posterior odds ratios that is capable of fully accounting for the increased
degrees of freedom of the larger models, and selects the best model according to the statistical evi-
dence available in the data. Contrary to other alternatives such as likelihood ratios and parametric
bootstrapping, this method scales very well, and combined with efficient inference methods recently
developed, allows for the analysis of very large networks with an arbitrarily large number of groups.
In applying this method to many empirical datasets from different fields, we observed that while
degree correction tends to provide better fits for a majority of networks, community overlap does

not, and is selected as better model only for a minority of them.

I. INTRODUCTION

Many networks possess non-trivial large-scale struc-
tures such as communities [II [2], core-peripheries [3], 4],
bi-partitions [5] and hierarchies [6, [7]. These struc-
tures presumedly reflect the organizational principles be-
hind their formation. Furthermore, their detection can
be used to predict missing links [6, [§], detect spurious
ones [8], determine the robustness of the system to failure
or intentional damage [9], the outcome of the spread of
epidemics [I0] and functional classification [II], among
many other applications. The detail with which such
modular features are both represented in generative mod-
els, and detected with inference algorithms, reflects di-
rectly on the quality of these tasks. Hence, a natural
undertaking has been the development of more elabo-
rate models, which include degree correction [12], com-
munity overlap [13] [14], hierarchical structure [6l [7], self-
similarity [I5] [I6], bipartiteness [5], edge and node corre-
lates [I7, [I8], social tiers [19], multilayer structure [20],
temporal information [21]], to name only a few. Although
such developments are essential, they should be made
with care, since increasing the complexity of generative
models may lead to artificial results caused by overfit-
ting. While this is a well understood phenomenon when
dealing with independent data or time series, open prob-
lems remain when the empirical data is a network, for
which many common assumptions no longer hold and
usual methods perform very poorly [22]. This problem is
significantly exacerbated when methods are used which
make no attempt to assess the statistical significance of
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the results. Unfortunately, the most widely used methods
fall into this class, such as modularity maximization [23],
link similarity [24], clique percolation [25], and many oth-
ers [2]. Although for certain specially constructed exam-
ples some direct connections between statistical inference
and ad hoc methods can be made [26] 27], and in the
case of some spectral methods a much deeper connection
seems to exist [28] 29], they still inherently lack the ca-
pacity to reliably distinguish signal from noise. Further-
more, what is perhaps even more important, these dif-
ferent methods cannot easily be compared to each other.
For example, if a non-overlapping partition is found with
some spectral method, another overlapping partition is
obtained with clique percolation, and yet another with a
local method based on link similarity, most of the time
they will be very different, and yet there is no obvious
way to decide which one is a more faithful representation
of the network. We show in this work that this issue can
be solved in a consistent and principled manner by re-
stricting oneself to generative models, and by performing
model selection based on statistical evidence. In particu-
lar, we employ the minimum description length principle
(MDL), which seeks to minimize the total information
necessary to describe the observed data as well as the
model parameters. This can be equivalently formulated
as the maximization of a Bayesian posterior likelihood
which includes non-informative priors on the parameters,
from which a posterior odds ratio between different hy-
pothesis can be computed, yielding a degree of confidence
for a model to be rejected in favor of another. We fo-
cus on the stochastic block model as the underlying gen-
erative model, as well as variants which include degree
correction and mixed memberships. We show that with
these models MDL can be used to produce a very effi-
cient algorithm which scales well for very large networks
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and with arbitrarily large number of groups. Further-
more we employ the method to a wide variety of network
datasets, and we show that degree correction tends to be
selected for a significant majority of them, whereas com-
munity overlaps are seldom selected. This casts doubt on
the claimed pervasiveness of group overlaps [24}, 25], ob-
tained predominantly with nonstatistical methods, which
— as long as there is a lack of corroborating evidence
other than the network structure supporting the overlap
— should perhaps be interpreted as an artifact of us-
ing methods with more degrees of freedom, instead of an
underlying property of many systems.

This paper is divided as follows. In Sec. [[Il we present
the generative models considered, and in Sec. [[TI] we de-
scribe the model selection procedure based on MDL. In
Sec. [[V] we present the results for a variety of empirical
networks. In Sec.[V]we analyze the general identifiability
limits of the overlapping models, and in Sec. [VI we de-
scribe in detail the inference algorithm used. In Sec. [VII]
we finalize with a discussion.

II. GENERATIVE MODELS FOR NETWORK
STRUCTURE

A generative model is one which attributes to each
possible graph G a probability P(G|{6}) for it to be
observed, conditioned on some set of parameters {6}.
Here we will be restricted to discrete models, where
specific choices of {#} prohibit some graphs from oc-
curring, but those which are allowed to occur have
the same probability. For these models we can write
P(GI{0}) = 19)(G)/Q({6}) = e~SCHD), with Q({6})
being the total number of possible graphs compatible
with a given choice of parameters, 1{91(G) is the indi-
cator function with value one if the graph G belongs
to the ensemble constrained by {0} or zero otherwise,
and S(G{0}) = mQ({#}) — In1(G) is the entropy
of this constrained ensemble (where it should be under-
stood simply that if 1;4,(G) = 0, then S(G|{#}) is un-
defined, since the graph has zero probability) [30, [3T].
In order to infer the parameters {#} via maximum like-
lihood, we need to maximize P(G|{6}), or equivalently,
minimize S(G|{#}). This approach, however, cannot be
used if the order of the model is unknown, i.e. the num-
ber of degrees of freedom in the parameter set {6}, since
choices with higher order will almost always increase
P(G|{0}), resulting in overfitting. For the same reason,
maximum likelihood cannot be used to distinguish be-
tween models belonging to different classes, since mod-
els with larger degrees of freedom will inherently lead to
larger likelihoods. In order to avoid overfitting, one needs
to maximize instead the Bayesian posterior probability
P{0}|G) = P(GH{#})P({0})/P(G), with P(G) being
a normalizing constant. The prior probability P({0}),
which encodes our a priori knowledge of the parameters
(if any) should inherently become smaller if the number of
degrees of freedom increases. We will also be restricted to

discrete parameters with constant prior probabilities, so
that P({#}) = e *U%D) with £({#}) being the entropy of
the ensemble of possible parameter choices. We can thus
write the total posterior likelihood as P({#}|G) = e~ =,
with ¥ = L({0}) + S(G|{6}). The value ¥ is the descrip-
tion length of the data [32, [33], i.e. the total amount of
information required to describe the observed data con-
ditioned on a set of parameters as well as the parameter
set itself [34]. Hence, if we maximize P({0}|G) we are
automatically finding the parameter choice which most
compresses the data, since it will also minimize its de-
scription length ¥. Because of this, there is no difference
between specifying probabilistic models for both G and
{0}, or encoding schemes that quantify the amount of
information necessary to describe both. In the following,
we will use both terminologies interchangeably.

A. Model without degree correction

Here we consider a simple variation of the stochastic
block model [35H38] with N nodes and E edges, where
the nodes can belong to different groups. Hence, to each
node we attribute a binary vector l_;Z with B entries, where
a given entry b] € {0,1} specifies whether or not the
node belongs to block r € [1,B]. In addition to this
overlapping partition, we simply define the edge-count
matrix {e,s}, which specifies how many edges are placed
between nodes belonging to blocks r and s (or twice that
number for r = s, for convenience of notation), where we
have er ers = 2F. This simple definition allows one to
generate a broad variety of overlapping patterns, which
are not confined to purely assortative structures, and the
non-overlapping model can be recovered as a special case,
simply by putting each node in a single group.

The posterior likelihood of observing a given graph
with the above constraints is simply P(G|{b;}, {ess}) =
1/Q({b;}, {ers}), where Q({b;}, {e,s}) is the number of
possible graphs. In this construction, the existence of
multiple edges is allowed. However, the placement of
multiple edges between nodes of blocks r and s should
occur with a probability proportional to O(e,s/n,ns),
where n, is the number of nodes which belong to block
r, i.e. n, = >, b7 (note that )  n, > N). Since here
we are predominantly interested in the sparse situation
where e,s ~ O(N/B?) and n, ~ O(N/B), the proba-
bility of observing parallel edges will decay as O(1/N),
and hence can be neglected in the large network limit.
Making use of this simplification, we may approximately
count all possible graphs generated by the parameters
{b;},{ers} as the number of graphs where each distinct
membership of a single node is considered to be a dif-
ferent node with a single membership. This corresponds
to an augmented graph generated via a non-overlapping
block model with N’ = > n, nodes, where N’ > N, but



with the same matrix {e,s}, for which the entropy is [31]

1 €rs
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where S; = an({l;i},{e,«s}), and n,ng > €., was as-
sumed. Under this formulation, we recover trivially the
single-membership case simply by assigning each node to
a single group, since Eq. [I] is identical in that special
case. It is possible to remove the approximation that
no parallel edges occur, by defining the model somewhat
differently, as in shown in appendix in which case
the Eq. [l holds exactly as long as no parallel edges are
observed.

Like its non-overlapping counterpart, the block model
without degree correction assumes that nodes belonging
to the same group will receive approximately the same
number of edges of that type. Hence, when applied to
empirical data, the modules discovered will also tend to
have this property. This means that if the graph pos-
sesses large degree variability, the groups inferred will
tend to correspond to different degree classes. On a simi-
lar vein, if a node belongs to more then one group, it will
also tend to have a total degree which is larger than nodes
that belong to either group alone, since it will receive
edges of each type in an independent fashion. In other
words, the group intersections are expected to be strictly
denser than the non-overlapping portions of each group.
Note that in this respect this model differs from other
popular ones, such as the mixed membership stochastic
block model (MMSBM) [I3], where the density at the
intersections is the weighted average of the groups (see

appendix [B 1)).

B. Model with degree correction

In a manner analogous to the non-overlapping
model [I2], a multiple membership version of the stochas-
tic block model with degree correction can be defined.
This can be achieved simply by specifying, in addition to
the overlapping partition {l_);}, the number of half-edges
incident on a given node 7 which belong to group 7, i.e.
k7. Given this labelled degree sequence, one can simply
use the same edge count matrix {e,;} as before to gener-
ate the graph. If we again make the assumption that the
occurrence of parallel edges can be neglected, the total
number of graphs fulfilling these constrains is approxi-
mately equal to the non-overlapping ensemble where each
set of half-edges incident on any given node 7 that belongs
to the same group r is considered as an individual node
with degree k7, for which the entropy is [31]

1 €rs .
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where e, ((k?), — (k),) (k) — (k),)/ (k)2 (k)2 < npng
has been assumed. Similarly to the non-degree-corrected

case, it is possible to remove the approximation that no
parallel edges occur, by using a “Poisson” version of the
model, as is shown in appendix [B2] Under this formula-
tion, it can be shown that this model is equivalent to the
one proposed by Ball et al [14], although here we keep
track of the individual labels on the half-edges as latent
variables, instead of their probabilities.

Since we incorporate the labelled degree sequence as
parameters to the model, nodes which belong to the same
group can have arbitrary degrees. Furthermore, since
the same applies to nodes which belong simultaneously
to more than one group, the overlap between groups are
neither preferably dense nor preferably sparse; it all de-
pends on the parameters {k7 }.

IIT. MODEL SELECTION

As discussed previously, in order to perform model se-
lection, it is necessary to include the information neces-
sary to describe the model parameters, in addition to the
data. The parameters which need to be described are the
overlapping partition {b;}, the edge counts {e,}, and in
the case of the degree-corrected model we also need to
the describe the labeled degree sequence {k!}.

When choosing an encoding for the parameters we
need to avoid redundancy, and describe them as parsi-
moniously as possible. This means that we need to make
few prior assumptions, in order to be able to use ob-
served patterns in the data to compress the parameter
description as much as possible. In Bayesian language,
we need non-informative priors which express maximal
uncertainty about the parameters. On the other hand,
we need to fully exploit known or intrinsic constraints,
since they should not be learned from the data.

In order to specify the partition {gi}, we assume that
all different 28 — 1 mixtures are not necessarily equally
likely, and furthermore the sizes d; = ), b of the mix-
tures are also not a priori assumed to follow any spe-
cific distribution. More specifically, we consider the mix-
tures to be the outcome of a generative process with two
steps. We first generate the local mixture sizes {d;},
which are sampled uniformly from the distribution with
fixed counts {ng4}, such that its description length is

Lqg=1In ((ﬁ))—i—lnN!—Zlnnd!, (3)
d

where D is the maximum value of d, and ((J]\D,)) is the

total number of different choices of {ng4}, with () =
("+ZLL_1) being the total number of m-combinations with
repetitions from a set of size n. Then, for all ny nodes
with the same value of d, we sample a sequence of {l_);}

from a distribution with support |b;]; = >, b =dand



with fixed counts ny, which has a description length

Ly = Z In (( (7?2 )) +Inng! — Z Inngl|, (4)

d bl =d

where, similarly, (( (n?d) )) enumerates the total number of

{ng} counts with bly = d. The whole description length
L, = L4+ Ly becomes

£,=m((% ))—I—Zln(( )) +m - Zlnn (5)

Although it is possible to encode the partition in differ-
ent ways (e.g. by sampling the membership to each group
independently [39]), this choice makes no assumptions re-
garding the types of overlaps which are more likely to oc-
cur, either according to the number of groups to which a
node may belong, or the actual combination of groups —
it is all left to be learned from data. In particular, it is not
a priori assumed that if many nodes belong to groups r
and s then the overlap between these two groups will also
contain many nodes. As desired, if the observed partition
deviates from this pattern, this will be used to compress
it further. Only if the observed partition falls squarely
into this pattern will further compression not be possi-
ble, and we would have an overhead describing it using
Eq. 5} when compared to an encoding which expects it a
priori. However, one can also see that in the limit n; > 1,
as the first two terms in Eq. 5| grow asymptotically only
with In N and Inng, respectively, the whole description
length becomes £, ~ NH({n;/N}), where H({p,}) is
the entropy of the distribution {p,}, which is the opti-
mal limit. Hence if we have a prior which better matches
the observed overlap, the difference in description length
compared to Eq.[f] will disappear asymptotically for large
systems. Another advantage of this encoding is that it
incurs no overhead when there are no overlaps at all (i.e.
D =1), and in this case the description length is identical
to the non-overlapping case,

L,(D=1)=In ((ﬁ)) +1nN!thlnr!, (6)

as defined in Ref. [7].

A. Degree correction

For the degree-corrected model, we need to describe
the labeled degree sequence {EZ} We need to do so in
a way which is compatible with the partition {l;z} so far
described, and with edge counts {e,;}, which will restrict
the average degrees of each type.

In order to fully utilize the partition {b;}, we de-
scribe for each value of b its individual degree sequence
{k;|b; = b}, via the counts n%, i.e. the number of nodes

in partition b which possess labeled degrees k. We do so
in order to preserve the lack of preference for patterns in-
volving the degrees in the overlaps between groups. Since
the model itself is agnostic with respect to the density of
the overlaps, not only does this choice remain consistent
with this, but also any existing pattern in the degree se-
quence in the overlaps will be used to construct a shorter
description.

In addition, we must also consider the total number
of half—edges of a given type r incident on a partition
eﬂ =20 mﬂ, which must be compatible with the edge

counts {ers} viae, =3 ers =3 0 eg.

We begin by first distributing all the e, half-edges of
type r in all the m, bins corresponding to each non-
empty b partition which contains the label r, i.e. m, =
> pbr[ny > 0]. The total number of such partitions is

simply (( ’")) Now we need to distribute the labelled

half-edges inside each partition to obtain each degree se-
quence. The logarithm of the total number of degree
sequences fulfilling all necessary constraints is

enE)

However, most degree sequences uniformly sampled from
this set will result in nodes with very similar degrees.
Since we want to profit from degree variability, it is better

to condition the description on the counts n% i.e. how

many nodes in partition b possess labelled degree k. The
description in this case becomes

E(Q) Zb ln_a+lnn

Zln n%!, (8)
E

where Eg is the enumeration of all possible n% counts

which fulfill the constraints ) n% =nyand ) krn% =
e”. Unfortunately, this enumeration cannot be done eas-
ily in closed form. However, the maximum entropy en-
semble where these constraints are enforced on average
is analytically tractable, and as we show in appendix [C}
can be very well approximated by

InE5 ~ 2, /¢(2)er, 9)

where ((x) is the Riemann zeta function. This approxi-
mation with “soft” constraints should become asymptot-
ically exact as the number of nodes become large, but
otherwise will deviate from the actual entropy. On the
other hand, if the number of nodes is very small, de-
scribing the degree sequence via Eq. [§] may not provide
a shorter description, even if computed exactly. In this
situation, Eq. [7] may actually provide a shorter descrip-
tion of the degree sequence. We therefore compute both
Eq.[7]and Eq. [§]and choose whatever is shorter. Putting
it all together, the description length for the whole degree



sequence becomes
Ly = Z In (( o )) + Zmin (L:l(;l), El(;z)) . (10)
T b

In the limit n% > 1, we have that £, ~} » H({n%/nl;}),
and hence the degree sequences in each partition are de-
scribed close to the optimum.

For the non-overlapping case with D = 1, the descrip-
tion length simplifies to

L= min (55}%59) , (11)

LM =1n ((: )) (12)

£1€2) :lnErJrlnnT!fZlnnZ!, (13)
k

with

and In=Z, ~ 2,/((2)e,. For n, > 1 we obtain L, ~
>, H({n}/n,}). This approximation was used a pri-
ori in Ref. [7], but Eq. is a more complete descrip-
tion length of the non-overlapping degree sequence, and
its use should be preferred. Hence, like the description
length of the overlapping partition, the encoding above
offers no overhead when the partition is non-overlapping.

B. Matrix of edge counts

The final piece that needs to be described is the ma-
trix of edge counts {e,s}. We may view this set as
an adjacency matrix of a multigraph with B nodes and
E =3 . ers/2 edges. The total number of such matri-

ces is (( (g) )), and the logarithm of this number can be

used as the description length [40]. However, this implic-
itly assumes that all matrices are equally likely a priori.
Not only this is unlikely to be the case, since most net-
works still possess structure at the block level, but this
assumption also leads to a limit in the detection of small
groups, with a maximum detectable number of groups
scaling as Bpax ~ VN [40]. Similarly to what we did
for the node partition and the degree sequence, this can
be solved by considering a generative model for the edge
counts themselves, with its own set of hyperparameters.
Since they correspond to a multigraph, a natural choice
is the stochastic block model itself, which has its own set
of edge counts, and so on recursively until one has only
one group at the top. This nested stochastic block model
was proposed in Ref. [7], where it has been shown to re-
duce the resolution limit to Bpax ~ N/log N, making
it often virtually non-existent in practice. Furthermore,
since the number of levels and the topology at each level
is obtained by minimizing the overall description length,
it corresponds to a fully non-parametric way of inferring

the multilevel structure of networks. If we denote the ob-
served network to be at the level [ = 0 of the hierarchy,
then the total description length is

L
S=Sye+ Y Sm{e b imh) + L7 (14)

=1

with {el }, {nl} describing the block model at level [,

and
Sn=2m () + X (L) o

is the entropy of the corresponding multigraph ensemble
and

Ll =1n <(BZB—ZI)) +InB;_4! —Zlnni!. (16)

is the description length of the node partition at level
[ > 0. For the level [ = 0 we have LY = L, given by
Eq. bl or £? = £, + L, for the degree-corrected model.

Note that here we use the single-membership non-
degree-corrected model at the upper layers. This could
be modified to include arbitrary mixtures of degree cor-
rection and multiple membership, but we stick with this
formulation for simplicity.

C. Significance levels

Minimizing the description length will select the model
which is most favored given the evidence in the data.
But there will be situations where more than one model
describes the data almost equally well, and one would
like to be able to rule out alternative models with some
degree of confidence. This can be done by computing
the posterior probability of observing a given partition
according to some version #H of the model (e.g. degree-
corrected or non-degree-corrected),

P(G|{b:}, H)P({b:}|H) P(H)

P({b;},H|G) = 17
({o:}, HIG) PC) (A7)
where P(H) is the prior probability asso-
ciated with model type H, and P(G) =

Y0 PGB}, H)P{b:}H)P(H) is a mormal-
ization constant. The marginal likelihood P(G|{b;},H)
is obtained by summing over the remaining model
parameters. In the case of the degree corrected model
(H = DC) they are the {e,s} matrix and the la-
belled degree sequence {k;} (which is omitted for the
non-degree-corrected model, H = NDC),

P(G|{b:},DC) = > P(G{bi}. {er, ) (KD P({er ) P({k;})

{e.}
(K}

= P(G{bi} {ers}, (ki) P({ers DP({E:D),
(18)
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Figure 1. Left: Values for posterior odds ratio A for the network of co-appearances of characters in the novel “Les Misérables”,
for all model variations (D > 1 indicates an overlapping model, “DC” a degree-corrected model and “NDC” a non-degree-
corrected one). The models with the best and second-best fits are shown at the bottom. Right: Same as in the left, but for

the American college football network.

where the sum contains trivially only one term, since
for the same graph G and partition {b;}, there is only
one possible choice for the {e,s} matrix and degree

sequence {IQZ}7 which is a convenient feature of the
microcanonical model formulation considered here [the

same holds for # = NDC, ie. P(G|{b;},NDC) =
P(G|{b;},{ers})P({ers})]. Now if we want to compare
two competing partitions {b;}q and {b; },, we must com-
pute the posterior odds ratio A,

_ P({gi}aaHa|G) (19)
P({bi}, Hs|G)

_ P Gl{gi}aaHa>P<{gi}a|Ha)P(,Ha) (20)
P(G|{bi}s, H) P({bi }o|Hb) P(H,)

=exp (—AY), (21)

with AY, = ¥, — ¥} being the difference in the de-
scription length, and in Eq. 2I] it was assumed that
P(H,) = P(H,) = 1/2, corresponding to a lack of
a priori preference for either model variant (which in
fact makes A identical to the Bayes factor [4I]). For a
value of A = 1, both models explain the data equally
well. For values of A < 1 model a is rejected in favor

of b with a confidence increasing as A diminishes. In
order to simplify its interpretation, the values of A are
usually divided into regions corresponding to a subjec-
tive assessment of the evidence strength. A common
classification is as follows [41]: Values of A in the intervals
{[1,1/3],[1/3,1/10],[1/10, 1/30], [1/30, 1/100], [1/100, 0]}
are considered to be very weak evidence supporting
model a, substantial evidence, strong evidence, very
strong evidence and decisive evidence, respectively.

Using the posterior odds ratio A is more practical than
some alternative model selection approaches, such as like-
lihood ratios. As has been recently shown [22], the like-
lihood distribution for the stochastic block model does
not follow a y2-distribution asymptotically for sparse
networks, and hence the calculation of a p-value must
be done via an empirical computation of the likelihood
distribution which is computationally costly, and pro-
hibitively so for very large networks. In contrast, com-
puting A can be done easily, and it properly accounts for
the increased complexity of models with larger parame-
ters, and protects against overfitting.
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Figure 2. The network of political blogs by Adamic et al [42]. The left panel shows the best model with an overlapping
partition, and the right the best non-overlapping one. Nodes with a blue halo belong to the Republican faction, as determined
in Ref. [42]. For the visualization, the hierarchical edge bundles algorithm [43] was used.

IV. EMPIRICAL NETWORKS

The method outlined in the previous section allows
one to determine the best model from the various avail-
able choices. Here we analyze some empirical examples,
and determine the most appropriate model, and examine
the consequences of the balance struck between model
complexity and quality of fit. We start with two small
networks, the co-appearance of characters in the Victor
Hugo novel “Les Misérables” [45], and a network of col-
lege American football games [46,[47]. For both networks,
we obtain the best partition according all model varia-
tions and for different number of groups B, and compute
the value of A relative to the best model, as shown in
Fig. For the “Les Misérables” network, the best fit
is a non-degree-corrected overlapping model which puts
the most central characters in more than one group. All
other partitions for different values of B and model types
result in values significantly below the plausibility line of
A = 1072, indicating that the overlapping model offers
a better explanation for the data with a large degree of
confidence. In particular, it offers a better description
than the non-overlapping model with degree correction.
For the Football network, on the other hand, the prof-
fered model is non-overlapping and without degree cor-
rection with B = 10, which matches very well the as-
sumed correct partition into 10 conferences. The groups
are relatively homogeneous, with most nodes having sim-
ilar degrees, such that degree correction becomes an extra
burden, with very little explanatory power. For this net-

work, however, there are alternative fits with values of
A within the plausibility region, which means that the
communities are not very strongly defined, and they ad-
mit alternative partitions with B = 9 and B = 8 groups
which cannot be fully discarded given the evidence in the
data.

Degree correction tends to become a better choice for
larger data sets, which display stronger degree variabil-
ity. One example of this is the network of political blogs
obtained by Adamic et al [42]. For this network, the best
model is a degree-corrected, overlapping partition into
B = 7 groups, shown in Fig. [2] Compared to this parti-
tion, the best alternative model without overlap divides
the network into B = 12 groupsEl, but has a posterior
odds ratio significantly below the plausibility region. It
should be observed that the non-overlapping version cap-
tures well the segregation into two groups (Republicans
and Democrats) at the topmost level of the hierarchy.
The overlapping version, on the other hand, tends to clas-
sify half-edges belonging to different camps into different
groups, which is compatible with the accepted division,
but the upper layers of the hierarchy do not reflect this,
and prefers to merge together groups that belong to dif-
ferent factions, but that have similar roles.

L In Ref. [7] using the same non-overlapping model, a value of B =
15 was found. This is due the difference in the description length
for the degree sequence, where here we use a more complete
estimation than in Ref. [7], which results in this slight difference.
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Figure 3. Ego network of Facebook contacts [44]. Left: The
best model fit across all model variations, which puts the ego
node in its own group. Right: The alternative hypothesis
where the node is split in several groups. Below each network
are shown the degree distributions inside each group. The
arrow marks the degree of the ego node.

Overlapping partitions, however, do not always provide
better descriptions, even in situations where it might be
considered more intuitive. One of the contexts where
overlapping communities are often considered to be bet-
ter explanations are in social networks, where different
social circles could be represented as different groups (e.g.
family, co-workers, friends, etc.), and one could belong to
more than one of these groups. This is well illustrated by
so-called “ego networks”, where one examines only the im-
mediate neighbours of a node, and their mutual connec-
tions. Omne such network, extracted from the Facebook
online social network [44], is shown in Fig. [3| The com-
mon interpretation of networks such as these is shown on
the right in Fig. 3] and corresponds to a partition of the
central “ego” node so that it belongs to all of the different
circles. Under this description, the ego node is only spe-
cial in the sense that it belongs to all groups, but inside
each group it is just a common member. However, among
all model variants, the best fit turns out to be the one
where the ego node is put separately in its own group, as
shown in the left in Fig.[3] In this example it is easy to see
why this is the case. If we observe the degree distribution
inside each group for the network on the left, we see that
there is no strong degree variation. On the right, as the
ego is included in each group, it becomes systematically
the most connected node. This is simply by construction,
since the ego must connect to every other node. The only
situation where the ego would not stand out inside each
group, would be if the communities were cliques. Hence,
since the ego is not a typical member of any group, it is

simpler to classify it separately in its own group, which
is selected by the method as a being a more plausible
hypothesis. Note that degree correction is not selected
as the most plausible solution, since it is burdened with
the individual description of every degree in the network,
which are fairly uniform with the exception of the ego.
One can imagine a different situation where there would
be other very well connected nodes inside each group, so
that the ego could be described as a common member of
each group, but this not observed in any other network
obtained in Ref. [44]. Naturally, if one considers the com-
plete network, of which the ego neighbourhood is only a
small part, the situation may change, since there may me
members of each group to which the ego does not have a
direct connection.

When performing model selection for larger net-
works, it is often the case that the overlapping mod-
els are not chosen. In table [ are shown the re-
sults for many empirical networks belonging to dif-
ferent domains. For the majority of cases, the non-
overlapping degree-corrected models are selected. The
are, however, many exceptions which include two so-
cial networks (Gowalla and Brightkite [53]), the global
airport network of lopenflights.com, the neuronal
network of C. elegans [54], the political blog net-
work already mentioned, the arXiv co-authorship net-
works [55] [in the fields of general relativity and quan-
tum cosmology (gr-qc), high-energy physics (hep-th),
condensed matter (cond-mat), and astronomy (astro-
ph)], co-authorship in network science [56], and the
network of genes implicated in diseases [58], for which
some version of the overlapping model is chosen. In-
terestingly, for the arXiv co-authorship network in
high-energy physics/phenomenology (hep-ph) a non-
overlapping model is selected instead. For only one of
the remaining four arXiv networks (astro-ph), the degree-
corrected version of the overlapping model is selected,
whereas for the other three the non-degree-corrected ver-
sion is preferred. Hence, for co-authorship networks the
model selection procedure seems to correspond to the
intuition that they are composed predominantly of over-
lapping groups [25].

We take the arXiv cond-mat network as a representa-
tive example of the differences between the inferred mod-
els. As can seen in Fig. [] although the degree distribu-
tion is very broad, the inferred labelled degree distribu-
tion is narrower, meaning that many large-degree nodes
can be well explained as having a smaller degree of any
single type, but belonging simultaneously to many groups
(in the specific context of this network, prolific authors
tend to be the ones which belong to many different types
of collaborations). The distribution of mixture sizes ng4
has almost always a maximum at d = 1, meaning that
most nodes belong to one group, but with a tail which is
comparatively broad (this seems to be a general feature
which is observed in the majority of networks analyzed).
The distribution of group sizes can be very different, de-
pending on which model is used. Non-overlapping models


openflights.com

No. N (k) log,o Apco logio Apc logig Anpco logigAxpc B (d) ©/E
1 34 4.6 —2.1 —2.1 — 0 2 1 4
2 62 5.1 —4.6 —1.4 — 0 2 1 48
377 6.6 —17 —7.7 0 -73 5 1.1 4
4 105 8.4 =12 —2.8 —6.6 0 5 1 44
5 115 10.7 —79 —27 — 0 10 1 4.3
6 297 15.9 0 —61 —2.0x 102 —2.1x10% 5 1.8 5.1
7 379 4.8 —47 —6.6 0 -89 20 1.16.2
8 903 15.0 —3.8 x 10> —3.7 x 107 0 —3.7x10% 60 1.2 3.1
9 1,278 2.8 —8.1 0 —1.5 x 10% —89 2 1 74
10 1,490 25.6 0 —5.2x 107 —2.3x10° —23x10% 7 1.8 4.4
11 1,536 3.8 —2.5x10° 0 —65 —62 38 1 6.7
12 1,622 11.2 —4.3 x 10? 0 —12 —82 48 1 33
13 1,756 45 —43 0 —4.0 x 102 —2.8x10% 7 1 59
14 2,018 2.9 -9.2 0 —2.9 x 102 —2.1 x 10% 2 1 85
15 4,039 43.7 —1.5 x 103 0 —8.1x 10> —9.5x10% 158 1 3.2
16 4,941 2.7 —22x10% 0 —21 —25 25 1 11
17 7,663 17.8 0 —1.1x10* —53x10° —1.6x10* 85 1 3.2
18 7,663 53 —1.8x10% 0 —9.3x102 —73x10263 1 5
19 8,298 25.0 —9.1 x 10° 0 —1.4x10* —1.4x10* 34 1 54
20 9,617 7.7 —4.2x10° 0 —23x10° —25x10% 34 1 9.3
21 26,197 2.2 —2.4x10° —1.2 x 103 0 —2.7 x 10° 363 1.3 4.5
22 36,692 20.0 —4.1 x 10* 0 —8.5x 10* —2.8x10* 1812 1 5.5
23 39,796 15.2  —6.1 x 10* 0 —8.8 x 10* —4.5x 10* 1323 1 6.3
24 52,104  15.3 —1.5x 10° 0 —3.7x10* —40x10* 172 1 6.4
25 58,228 14.7 0 —5.8x 10" —1.8x 10° —1.4 x 10° 1995 3.2 7.3
26 65,888 305.2 —4.4 x 10* 0 —4.6 x 10° —4.6x10° 384 1 4.1
27 68,746 1.5 —4.8x 10> —1.4 x 10° 0 -7.0x 10 719 1.4 6.4
28 75,888 13.4 —1.1x 10° 0 —8.2x10* —9.0x10* 143 1 8.9
29 89,209 53 —1.0 x 10* 0 —9.7x10° —1.1x 10* 848 1 3.2
30 108,300 3.5 —3.3x 10° —5.2 x 103 0 —2.4 x 10* 1660 1.8 5.7
31 133,280 5.9 0 —4.4x10° —7.4x 10" —3.8x 10* 1944 5.3 4.4
32 196,591 19.3 0 —1.9x10° —7.1x10° —6.6 x 10° 6856 3.7 7.8
33 265,214 3.2 —1.4x 107 0 -9.2x 10" —85x10" 549 1 86
34 273,957 16.8 —5.4 x 10° 0 —46x10* —72x10* 727 1 5.8
35 281,904 164 —1.2 x 10° 0 —2.8 x 10° —1.5x 10° 6655 1 4.3
36 317,080 6.6 —1.7x 10° 0 —3.9x 10° —4.2x10° 8766 1 11
37 325,729 9.2 —5.8 x 10° 0 —1.1x10° —2.3x10° 4293 1 5.8
38 325,729 9.2 —5.6 x 10° 0 —1.2x10° —2.5x10° 3995 1 5.8
39 334,863 5.5 —3.3x 10° 0 —3.6 x 10° —3.4x10* 9118 1 11
40 372,787 9.7  —1.0 x 10° 0 —1.3x10° —1.4x10° 965 1 11
41 463,347 20.3 —6.4 x 10° 0 —-1.8x10° —1.5x10° 9276 1 9.3
42 1,134,890 5.3 — 0 —4.5x10° —49x10° 264 1 13
1 Karate Club [48] 22 Enron emails [491150]

2 Dolphins [51] 23 PGP [52] (directed)

3 Les Misérables [45] 24 Internet AS (Caidaﬂ(directed)

4 Political Bookg 25 Brightkite social network [53]

5 American FootBall [46][47] 26 netflix-pruned-smaller-u

6 C. elegans Neurons [54] (directed) 27 arXiv Co-Authors (hep-th) [55]

7 Coauthorships in network science [56] 28 Epinions.com trust network [57] (directed)
8 Disease Genes [58] 29 arXiv Co-Authors (hep-ph) [55]

9 Yeast protein interactions (CCSB-YI11) [59] 30 arXiv Co-Authors (cond-mat) [55]

10 Political Blogs [42] (directed) 31 arXiv Co-Authors (astro-ph) [55)

11 Yeast protein interactions (LC) [60] 32 Gowalla social network [53]

12 Yeast protein interactions (Combined AP/MS) [61] 33 EU email [55] (directed)

13 E. coli gene regulation [62] (directed) 34 Flickr [63]

14 Yeast protein interactions (Y2H union) [59] 35 Web graph of stanford.edu! [64] (directed)
15 Facebook egos [44] 36 DBLP collaboration [65]

16 Power Grid [54] 37 Web graph of nd.edu [64] (directed)

17 Airport routesﬁ(directed) 38 WWW [66] (directed)

18 Airport routes 39 Amazon product network [65]

19 Wikipedia Votes [67168] (directed) 40 IMDB film-actof® | [40]

20 Human protein interactions (HPRD r9) [69) 41 APS cil.atiun rected)

21 arXiv Co-Authors (gr-qc) [55] 42 Youtube social network [65]

@ Retrieved from http://www.caida.org.
b V. Krebs, retrieved

from http://www-personal.umich.edu/ mejn/netdata/
¢ Retrieved from http://openflights.org/

d Retrieved from http://www.imdb.com/interfaces!
¢ Retrieved from http://publish.aps.org/dataset|

Table I. Comparison of different models for many empiri-
cal networks. The columns at the top table correspond to
the data set number (with the name given at the bottom
table), the number of nodes N, the average degree (k) =
2E/N, the posterior odds ratios relative to the best model
for the degree-corrected overlapping (Apco), the degree-
corrected non-overlapping (Apc), non-degree-corrected over-
lapping (Axpco) and non-degree-corrected non-overlapping
(Anpc) models. Missing entries correspond to situations
where the best overlapping partition turns out to be non-
overlapping. The last three columns show some parameters
of the best model: The number of groups B, the average mix-
ture size (d), and the description length per edge (in bits per
edge).
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Figure 4. Statistical properties of the best model inferred
for the network of arXiv co-authors in the field of condensed
matter (cond-mat). Top left: Degree distribution of the orig-
inal network and of the overlapping model (where the labeled
degree sequence {EZ} is flattened into a single histogram for
all labelled degrees {k;}). Top right: Distribution of mix-
ture sizes, ng. Bottom left: Distribution of group sizes for
the best-fitting non-overlapping, non-degree-corrected model.
Bottom right: Distribution of group sizes for the best-fitting
overlapping, non-degree-corrected model.

without degree correction tend to find groups which are
strongly correlated with degrees [12], and hence lead to
a broad distribution of group sizes when the degree dis-
tribution is also broad. On the other hand, either degree
correction or group overlap tend to change the distribu-
tion considerably. In the literature there are often claims
of community sizes following power-law distributions [70-
73] with figures similar to the lower left panel of Fig.
Regardless to the validity of this hypothesis for the var-
ious methods used in the literature, this is certainly not
the case for the overlapping model as shown in the lower
right panel of the same figure. Indeed, for most net-
works analyzed, the model which best fits the data (which
tends to be degree-corrected and non-overlapping) shows
no vestige of group sizes following a scale-free distribu-
tion. Some further examples of this are shown in Fig. [5]
where characteristic size scales can be clearly identified.

V. MODEL IDENTIFIABILITY:
OVERLAPPING VS. NON-OVERLAPPING

A central issue when selecting between non-
overlapping and overlapping models is to decide when
a group of nodes should belong simultaneously to two
or more groups, of if these nodes should be better rep-
resented by a single membership to a different unique
group. The choice is not always immediately obvious,
since we can always generate very similar networks with
either model. If we generate a network with the over-
lapping model, but treat it as if it were generated by
the non-overlapping model, with each distinct mixture b
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Figure 5. Distribution of group sizes for the best fitting non-
degree-corrected non-overlapping model (left) and the degree-
corrected non-overlapping model (right), for the PGP [52]
(top) and DBLP collaboration [65] (bottom) networks. In
both cases the degree-corrected model provides a better fit,
as shown in table Il

corresponding to a separate non-overlapping group, the
associated entropy will be
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where

is the expected number of edges between mixtures b, and
bs. By exchanging the sums and using Jensen’s inequality
we observe directly that
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with the right-hand side being the entropy of original
overlapping model S;, and with the equality holding only
if the original model happens to be non-overlapping to
begin with. Thus, the non-overlapping model will invari-
ably possess a lower entropy. Nevertheless, the overlap-
ping hypothesis may still be preferred if the number of
groups B is sufficiently smaller than the number of in-
dividual b mixtures, so that the total description length
is shorter. It should be observed, however, that since
one model is contained inside the other, the difference in
the description length can be interpreted simply as the
difference in the prior probabilities for the model param-
eters. As the amount of available data increases, the ef-
fect of the priors should “wash out”, and the description
length should be increasingly dominated by the model
entropy alone. In these cases one should expect the non-
overlapping model to be preferred, regardless of the spe-
cific model which was used to generate the data. How-
ever, differently than models which generate independent
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Figure 6. Top: Parameter regions for the model considered
in the main text, with N = 10 and (k) = 2E/N = 20. Each
curve corresponds to one value of B, and separate a region
above where the non-overlapping model is preferred from a
region below where the overlapping model is chosen. Bot-
tom: Networks and their preferred partitions, corresponding
to parameter values indicated in the top panel.

data points, the “amount of available data” for network
models is a finer issue. In the case of the stochastic block
model it involves the simultaneous scaling of the number
of edges E, the number of nodes N and the number of
groups B.

As a case example, here we consider a simple over-
lapping assortative model, with e, = 2E[d,5¢/B + (1 —
0rs)(1 — ¢)/B(B — 1)], with ¢ € [0, 1] controlling the de-
gree of assortativity. The mixtures are parameterized
as ny = C[J, pub, with C being a normalization con-
stant, and p €]0, 1] controlling the degree of overlap. For
© — 0 we obtain asymptotically a non-overlapping par-
tition with n, = N/B, and for p = 1 all mixtures b
have the same size. We compare the difference in de-
scription length between this model and its equivalent
parametrization with each mixture as a separate group.
As can be seen in Fig.[6] for any given value of ¢, there is a



value of p above which the non-overlapping model is pre-
ferred. In this parameter region, the group intersections
are sufficiently well populated with nodes, so that their
representation as individual groups is chosen. For values
of u below this value, the intersections are significantly
smaller than the non-overlapping portion. In this case,
the data is better explained as larger groups of almost
non-overlapping nodes, with few nodes at the intersec-
tions. The boundary separating the two regions recedes
upwards as the number of groups B is increased, meaning
that a larger number of distinct intersections can com-
pensate for a smaller number of non-overlapping nodes.
It should also be pointed out that the boundaries move
downwards as the number of nodes and edges is increased,
such that the average degree in the network remains the
same (not shown), so that it is not only the relative sizes
of the intersections which are the relevant properties, but
also their absolute sizes. The same occurs if the average
degree increases and everything else remains constant.
Hence in the limit of sufficient data, either with the num-
ber of nodes inside each group and intersection becom-
ing sufficiently large, or each part becoming sufficiently
dense, the non-overlapping model is the one which will
be selected. For empirical networks, this may not be the
scaling condition which is more representative, since the
most appropriate number of groups and degree of over-
lap may in fact follow any arbitrary scaling, and hence
the overlapping model may still be selected, even for very
large or very dense networks. Nevertheless, this example
seems to suggest that the non-overlapping model is gen-
eral enough to accommodate structures generated by the
overlapping model in these limiting cases, and may serve
as a partial explanation to why the overlapping model
is seldom selected in the empirical systems analyzed in

Sec. V1

VI. INFERENCE ALGORITHM

The inference procedure consists in finding the labeling
of the half-edges of the graph such that the description
length is minimized. Such global optimization problems
are often NP-hard, and require heuristics to be solvable
in practical time. One possibility is to use Markov chain
Monte Carlo (MCMC), which consists in modifying the
block membership of each half-edge in a random fashion,
and accept or reject each move with a probability given
as a function of the description length difference AYX. By
choosing the acceptance probabilities in the appropriate
manner, i.e. by enforcing ergodicity and detailed balance,
one can guarantee that the labellings will be sampled
with the correct probability after a sufficiently long equi-
libration time is reached. However, naive formulations
of the Markov chain will lead to very long equilibration
times, which become unpractical for large networks. Here
we adapt the algorithm developed in Ref. [74] for the non-
overlapping case which implements a fast Markov chain.
It consists in the move proposal of each half-edge incident
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on node ¢ of type r to type s with a probability given by

€15+ €

—slt) = 21—
plr = slt) = 2,

(25)
where ¢t is the block label the half-edge opposing a ran-
domly chosen half-edge incident to the same node as
the half-edge being moved, and ¢ > 0 is a free param-
eter. Eq. means that we attempt to guess the label
of a given half-edge by inspecting the group membership
the neighbors of the node to which it belongs, and us-
ing the currently inferred model parameters to choose
the most likely group to which it should be moved. It
should be emphasized that this move proposal does not
result in a preference for either assortative or dissorta-
tive networks, since it depends only on the matrix {e,s}
currently inferred. For any choice of € > 0, this move pro-
posal preserves ergodicity, but not detailed balance. This
last characteristic can be enforced via the Metropolis-
Hastings criterion [75] [76] by accepting each move with
a probability a given by

in(s — 7t
a = min {e‘ﬁAZ —thtp(s rft)

zmmw+ﬂw’} (26)

where p! is the fraction of opposing half-edges of node i
which belong to block ¢, and p(s — r|t) is computed af-
ter the proposed r — s move (i.e. with the new values of
etr), whereas p(r — s|t) is computed before. The param-
eter 8 in Eq. [26]is an inverse temperature, which can be
used to sample partitions according to their description
length (8 = 1) or to find the ground state (8 — 00). As
explained in Ref. [74], this move proposal as well as the
computation of a can be done efficiently, with minimal
book-keeping, so that a sweep of the network (where each
half-edge move is attempted once) is done in time O(FE),
independent of the number of groups B. This is true
even in the overlapping case, since updating Egs.
and [10] after each half-edge move can be done in time
o(1).

As discussed in Ref. [74], although the MCMC method
above succeeds in equilibrating faster than a naive
Markov chain, it still suffers from a strong dependence on
how close one starts from the global minimum. Usually,
starting from a random partition of the half-edges leads
to metastable states where the Markov chain seems to
have equilibrated, but in fact the network structure has
only been partially discovered, and will move from such
configurations only after a very long time. This is a prob-
lem common to many inference procedures based on local
moves such as expectation maximization [14] and belief
propagation [77]. In Ref. [74] a multilevel agglomerative
heuristic was proposed, which significantly alleviates this
problem. It consists in equilibrating the chain for a larger
number of groups, and then merging the groups using the
same algorithm used for the block membership moves.
This method, however, cannot be used unmodified in the
overlapping case, since the strict merging of groups will
not properly explore the landscape of possible overlap-



B=4

B =4, planted

Figure 7. Typical outcome of the greedy multilevel agglomer-
ative algorithm described in the text, for a network sampled
from the overlapping model with B = 4. The different panels
show the progression of the algorithm from B = 2F to B = 4.
The panel on the lower right shows the planted partition used
to generate the network.

ping partitions. We therefore modify the approach as fol-
lows. Before groups are merged, the half-edges belonging
to each one of them are split into subgroups correspond-
ing to the different group memberships at the oppos-
ing sides. These subgroups are then treated as separate
groups, and are merged together until the desired number
of groups is achieved. All the details of the algorithm be-
yond this modification are performed exactly as described
in Ref. [74]. Since this algorithm usually does a good job
in finding the a partition very close to the final one, it also
tends to perform very well when the algorithm is turned
into a greedy heuristic, by starting with B = 2E and
each half-edge in its own group, and by making 5 — oco.
An example of a typical outcome of the greedy algorithm
is show in Fig. [7] The greedy version is very fast, with
an overall complexity of O(EIn? E), which makes it us-
able for very large networks. Note that this complexity
is independent on the number of groups, B. This is a
strong contrast to other methods proposed for the same
problem, such as the stochastic optimization algorithm of
Gopalan et al [78], and the expectation maximization al-
gorithm of Ball et al [I4], both of which have a complexity
of O(EB) per sweep, although they only consider strictly
assortative models, and applying the same techniques to
the more general models considered here would lead to
a O(EB?) complexity, similar to belief propagation al-
gorithms for non-overlapping models [22] [77]. Although
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these approaches can be very efficient if the number of
groups is very small, they quickly become prohibitive if
the most appropriate number of groups scales as some
function of the system size (which seems to be generally
the case when model selection is applied, see table || and
Ref. [7]), which is not an issue with the algorithm de-
scribed above. It should also be noted that none of the
other algorithms mentioned [14} 22} [T, [78] are designed
to overcome metastable solutions, like the multilevel ap-
proach presented here.

For most networks analyzed in this work, the fast
heuristic version of the algorithm was used, together with
the algorithm described in Ref. [7] to infer the upper lay-
ers of the hierarchy (which includes the determination of
the number of groups B at the lowest level, in addition
to the entire hierarchy, in a non-parametric fashion)El

VII. CONCLUSION

We presented a method of inferring overlapping and
degree-corrected versions of the stochastic block model
based on the minimum description length principle
(MDL) that avoids overfitting and allows for the com-
parison between model classes. Based on a Bayesian in-
terpretation of MDL, we derived a posterior odds ratio
test that yields a degree of confidence with which models
can be selected or discarded. In applying this method to
a variety of empirical networks, we obtained that for the
majority of them the non-overlapping degree-corrected
model variant is the one which best fits the data.

Although overlapping structures are often considered
to be more reasonable explanations for some networks,
we showed that in many representative cases the non-
overlapping model can accommodate the same structure
while providing a more parsimonious description of the
data. We expect this fact to bear on tasks which require
high quality fits, such as the prediction of missing or
spurious links [6], [§], or other generalizations of the data.

The models considered in this work generate unlabeled
networks, without any other properties associated with
the nodes or edges. However, it is often the case that
either the nodes or edges have weights [18] or are of dif-
ferent types [I7, 20], or have temporal information [21].
This sort of additional data may corroborate the evidence
supporting the generation via a specific type of model
(e.g. with overlaps) and tip the scale towards it. The
approach presented here is generalizable to these cases
as well, by augmenting the model to generate covariates
associated with the edges and nodes. Furthermore, one
should be able to perform a similar comparison with mod-
els which belong to very different classes, such as latent
space models [80], or others.

2 A complete implementation of the algorithm is freely available
as part of the graph-tool library at http://graph-tool.
skewed.de!


http://graph-tool.skewed.de
http://graph-tool.skewed.de

Appendix A: Directed graphs

The same approach of the main text can be carried
over to directed graphs with no difficulties. In this case
the edge counts are in general asymmetric, e,; # e,
which leads to the entropy for the non-degree-corrected
model [3T]

eT’S
~F— ers In Al
Seam(). @
For the degree-corrected case, there are two degree se-
quences for the labelled out- and in-degrees, {k*}} and
{k~!}, respectively. Applying the same argument as for
the undirected case, the entropy becomes [31]

_ +ry
E— Zersln<eres> Zlnkz ! Zlnk“

(A2)
where ef =3 e,s and e; =) e
The description length for the overlapping partition is
identical to the undirected case, with £, given by Eq. [5}
For the labeled degree sequence, we have instead

=) () + o ().

(A3)
£l = Zln << iU >> +1n ((;
and

)@
£ = Zb (=t +ms

b
) + lnng! — Zlnnéﬂﬁf!?

with

oy T

(
where ln_zJr and InZ;~ are computed as in Eq.

and eL™
k+ - %

respectlvely, which give the total

i +L
but using ey = Y pipk

Z;}J}— k. n,g+ s
number of out- and in-edges incident on the mixture b.
In the previous equations the counts n% e refer to the
joint distribution of labelled in- and out—(iegrees, so that
each vector k*/~ describes the in- and out-degrees la-
belled according to degree membership, i.e. k7 = {k*]}

and k; = {k~7}.
Appendix B: Poisson Models

1. Non-degree-corrected

This approximation of the formulation with “hard”
constraints of the multiple membership model discussed
in the main text is closely related to a Poisson variant of
the model with “soft” constraints, where each half-edge
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of the graph is labeled with a latent variable specifying
which group memberships were responsible for its exis-
tence, and the number of edges of type (r,s) between
nodes ¢ and j, A77, is independently sampled according
to a Poisson distribution, so that the likelihood becomes

P(GI{B:}, {prs}) = [ [L pre? e 7r%3% jAz21,

i>jr>s

(B1)

where p,; is the average number of edges of type (r,s)
between nodes which belong to each group. The log-
likelihood can be written as

InP = % Z ers INPrg — NpNgPrs — Z Zln AL,

rs 1>7 r>s

Maximizing In P w.r.t. p,s, we obtain p,s = eps/n,ng,
and hence

. 1 Crs
InP = —E+§ ;em In (nrns)

For simple graphs with A7# € {0, 1}, the last term in the
above equation is equal zero, and we have that the ap-
proximation of the likelihood of the model with “hard”
constraints in the sparse case is identical to the exact
maximum likelihood of the Poisson model with “soft” con-
straints.

This model is similar to the popular mixed mem-
bership stochastic block model (MMSBM) [13], how-
ever it differs in the important aspect that it gener-
ates strictly denser overlaps. In the MMSBM, the ex-
istence of an edge A;; is sampled from a Bernoulli dis-
tribution with parameter \;; = > 0703p,s, where 0]
is the probability that node i belongs to group r, such
that > 67 = 1, and p,s € [0,1] is the probability
that two nodes belonging to groups r and s are con-
nected. Although for sparse graphs the difference be-
tween Poisson and Bernoulli models tend to disappear,
with this parametrization the density of the overlaps are
mixed with normalized weights. More specifically, for
a node 7 which belongs simultaneously to groups r and
s, its expected degree is equal to the weighted average
of the unmixed degrees, (k), = 07 (k). + 0;(k),, where
(k), = > . prsy. ;07 is the expected degree of a node
that belongs only to group r. Thus, in the MMSBM the
nodes in the mixture have an intermediate density be-
tween the sparser and the denser groups. In contrast,
in the model considered in the main text, as well as the
Poisson model above, we have simply (k), = (k), + (k),,
and therefore the overlaps are always strictly denser than
the pure groups. In this respect, it is equivalent to other
formulations of the MMSBM, e.g. Refs. [81] [§2].

S S mAn (B

i>7 r>s

2. Degree-corrected

A connection to a version of the model with “soft” con-
straints can also be made. We may consider each la-
belled entry A7 in the adjacency matrix to be Poisson



distributed with an average given by 6703\,

i>jr>s
(B4)
where A:JS is the number of edges of type (r, s) between
nodes ¢ and j, and ] is the propensity with which a

node receives an edge of type r. The log-likelihood can
be written as

InP = Ze,éln)\ré +Zk’”ln0r > A > 07063

r>s i>7

=3 InApl (Bs)

1>5 r>s

Maximizing In P w.r.t. {\,s} and {6]}, we obtain As =
ers/eres and 07 = k7, and hence

A 1 s T '
InP=-F+ igersln (66765) +Zkz lnkz
,ZZWVS' (B6)

1>5 r>s

Again, for simple graphs with A? € {0,1}, the last term
in the above equation is equal zero, however even in that
case the likelihood is not identical to the version with
“hard” constraints considered above, as is the case for the
single membership version as well [3I]. Both likelihoods
only become the same in the limit k] > 1 such that
Inkl! ~ k7 Ink] — kI. Nevertheless, for the purpose of
this paper, which is classification of empirical networks,
the differences between these models can be overlooked.

There is a direct connection between this model and
the one proposed by Ball et al [14]. In the not strictly
assortative version of their model, the number of edges
A;; is distributed according to a Poisson with average
Xij =D, 1F njwrs, where n;" is the propensity with which
node ¢ receives edges of type r and w,; regulates the
number of edges across groups. The total likelihood of
that model is

P(G‘{gi}v{wrs}v{nr}> (B7)

= 57 e /440

i>j

Since the sum of independent Poisson random variables
is also distributed according to a Poisson, if we gener-
ate a graph with the model of Eq. [B4] and observe only
the total unlabelled edge counts A;; = >  Aj7, they are
distributed exactly like Eq. [B7 for the same choice of
parameters 0] = n] and A,s = w,s. Hence, the model
of the main text is an equivalent formulation of the one
in Ref. [I4] where one keeps track of the latent variables
specifying the exact type of each half-edge, instead of
their marginal probability. This has the advantage that
the maximum likelihood estimates for the model param-
eters A,s and 6] can be obtained directly by differentia-
tion, and do not require iterations of an EM algorithm

H H 97"93 A:;G GE.Q;A”/AM'

(%
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as in Ref. [14]. On the other hand we are left with the
determination of labels in the half-edges, which is done
with the method already described in Sec. [V]]

Appendix C: Maximum entropy ensemble of counts
with constrained average

Suppose we want to compute the number of all possi-
ble non-negative integer counts {n;}, subject to a nor-
malization constraint .- ,nr = N and a fixed average
Z;io knyr = E. This can be obtained approximately,
by relaxing the constraints so that they hold only on
average. The maximum entropy ensemble given these
constraints is the one with the probabilities P({n}) =
e~ HUmD /7 with H({nk}) = A, ne + pudy knk,
where A and p are the Lagrange multipliers which keep
the constraints in place. This is mathematically analo-
gous to a simple Bose gas with energy levels given by k.
The partition function is given by

7= eSS -]z, (o
{nn}
with
Zp=[1— e A k] (C2)
The average counts are given by (ng) = —0Z;/0\ =

[exp(A + pk) —1]7", and the parameters A and p are de-
termined via the imposed constraints,

[exp(A + pk) = 1] 7' = N,

NE

(C3)

o

klexp(A + pk) — 1] ' = E.

Mgﬁ

(C4)

k=0

Further analytical progress can be made by replacing the
sums with integrals, and using the Polylogarithm func-
tion and its connectlon Wlth the BosefEinstein distribu-

tion, Li,(2) I b
/O "k fexp(r + k) — 1) L“(u) _ N, (C5)
/ dick [exp(\ + k) — 1] LIQLQ) B (Co)

Eq. can be inverted as e™ = 1 — exp(—N/u), but
Eq. [C6| cannot be solved for A in closed form. However,
by assuming a sufficiently “high temperature” regime
where i ~ O(1), we have that the fugacity simplifies
in the thermodynamic limit, e — 1 for N > 1
and hence we obtain p ~ /Lis(1)/E. Using Egs.
and [C6, we can write the entropy of the ensemble In= =
—> x[0InZ,/OXN+0In Z;, /Op + In Zy], as

InZ = AN + 2uF, (C7)



and for the regime e~* — 1, we have
In=~2/((2)E, (C8)

where the identity Lis(1) = ((2) was used. Although
Eq. [C§ becomes asymptotically exact in the thermody-
namic limit with £ ~ N and N > 1, the exact solution
can also be obtained with arbitrary precision simply by
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iterating Egs. and as M(t+1) = 1—exp(—=N/pu(t)),
u(t+1) = \/ E/ Lig(A(t)), where A = e, with the start-
ing points 5\(0) =1, p(0) = y/Liz(1)/FE, until sufficient
convergence is reached, and the results are substituted
in Eq. (We actually use this more precise procedure

when computing Eq. [§|in the main text, throughout the
analysis.)
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