Computer Science > Machine Learning
[Submitted on 13 Jun 2012]
Title:Projected Subgradient Methods for Learning Sparse Gaussians
Download PDFAbstract:Gaussian Markov random fields (GMRFs) are useful in a broad range of applications. In this paper we tackle the problem of learning a sparse GMRF in a high-dimensional space. Our approach uses the l1-norm as a regularization on the inverse covariance matrix. We utilize a novel projected gradient method, which is faster than previous methods in practice and equal to the best performing of these in asymptotic complexity. We also extend the l1-regularized objective to the problem of sparsifying entire blocks within the inverse covariance matrix. Our methods generalize fairly easily to this case, while other methods do not. We demonstrate that our extensions give better generalization performance on two real domains--biological network analysis and a 2D-shape modeling image task.
Submission history
From: John Duchi [view email] [via AUAI proxy][v1] Wed, 13 Jun 2012 15:09:50 UTC (177 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)