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Wmixnet: Software for Clustering the Nodes of

Binary and Valued Graphs using the Stochastic

Block Model

Leger, J.-B. ∗†

Abstract

Clustering the nodes of a graph allows the analysis of the topology of a
network.

The stochastic block model is a clustering method based on a probabilistic
model. Initially developed for binary networks it has recently been extended
to valued networks possibly with covariates on the edges.

We present an implementation of a variational EM algorithm. It is writ-
ten using C++, parallelized, available under a GNU General Public License
(version 3), and can select the optimal number of clusters using the ICL
criteria. It allows us to analyze networks with ten thousand nodes in a
reasonable amount of time.

1 Introduction

Complex networks are being more and more studied in different domains
such as social sciences and biology. The network representation of the data
is graphically attractive, but there is clearly a need for a synthetic model,
giving an enlightening representation of complex networks. Statistical meth-
ods have been developed for analyzing complex data such as networks in a
way that could reveal underlying data patterns through some form of clas-
sification.

Unsupervised classification of the vertices of networks is a rapidly de-
veloping area with many applications in social and biological sciences. The
underlying idea is that common connectivity behavior shared by several
vertices leads to their grouping in one meta-vertex, without losing too much
information. Thus, the initial complex network can be reduced to a sim-
pler meta-network, with few meta-vertices connected by few meta-edges.
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Picard et al. (2009) show applications of this idea to biological networks and
Nowicki and Snijders (2001) and Handcock et al. (2007) to social networks.

Model-based clustering methods model the heterogeneity between nodes
by grouping the nodes into classes. The model used in this paper is an exten-
sion of the stochastic block model (SBM) (Nowicki and Snijders, 2001). This
model assumes that the nodes are distributed into groups, and connectivity
between nodes is driven by node group memberships.

SBM for non-binary graphs, with or without covariates has been intro-
duced in Mariadassou et al. (2010). In this paper, a variational Expectation–
Maximization algorithm has been used to estimate parameters and to predict
groups.

This article introduces wmixnet, an implementation of the variational ex-
pectation–maximization algorithm for this extension of the stochastic block

model with or without covariates for three families of laws of probability:
Bernoulli, Poisson, Gaussian.

This implementation allows us to estimate parameters and to predict
node groups and covariate effects for graphs which are valued or binary,
directed or not, and with or without covariates.

2 SBM model with covariates

We introduce here the stochastic block model with covariates and three prob-
ability distributions.

2.1 Notations

Graph. Consider a graph G = (V,E,w), where

• V is the set of nodes, labelled in {1, · · · , n},

• E is the set of edges, which is a subset of V 2,

• w : E → R, is the function which gives edge weights.

• Y : V 2 → Rp, is the function which gives the covariate vector associ-
ated to each couple of nodes.

We assume without loss of generality that E = V 2, with the convention
w(i, j) = 0 if there is no edge from vertex i to vertex j.

Groups. Consider Q classes of nodes. For a given partition (C1, · · · , CQ)
of V , for a node i and a group q, let Z be defined as Ziq = 1 ⇔ i ∈ Cq. And
let Zi = (Zi1, · · ·ZiQ).
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2.2 The model

Nodes. The class memberships of the nodes are driven by independent
identically distributed multinomial distributions:

∀i ∈ V Zi
i.i.d.
∼ M(1, α)

where α = (α1, · · · , αQ) and
∑

q αq = 1.

Edges. For each couple of nodes (i, j) the probability law of the link is
driven by their class memberships and the (i, j) covariate Y (i, j):

(w(i, j)|(i, j) ∈ Cq × Cl) ∼ Fql(Y (i, j)).

2.3 Probability laws

Generally, various probability laws can be used. The probability distribu-
tions which are implemented in wmixnet are the following:

• Bernoulli :

without covariates: Fql(Y (i, j)) = B(πql). This model does not use
covariates and can model only binary networks. This is the classical
stochastic block model model.

with covariates (with homogeneous effects): Fql(Y (i, j)) = B(πql
1

1+exp(−βT Yij
).

This model uses covariates and can model only binary networks. The
effect of covariates is the same for all pairs of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = B(πql
1

1+exp(−βT
ql
Yij

).

This model uses covariates and can model only binary networks. The
effect of covariates is not the same for all pairs of classes.

• Poisson:

without covariates: Fql(Y (i, j)) = P(λql). This model does not
use covariates and can model networks with non negative integer weights.

with covariates (with homogeneous effects): Fql(Y (i, j)) = P(λql(Y (i, j))
where λql(Y (i, j) = λql exp(β

TY (i, j)). This model uses covariates and
can model networks with non negative integer weight. The effect of
covariates is the same for all pairs of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = P(λql(Y (i, j))
where λql(Y (i, j) = λql exp(β

T
qlY (i, j)). This model uses covariates and

can model networks with non negative integer weight. The effect of
covariates is not the same for all pairs of classes.
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• Gaussian:

without covariates: Fql(Y (i, j)) = N (µql, σ
2). This model does

not use covariates and can model networks with real weight.

with covariates (with homogeneous effects): Fql(Y (i, j)) = N (µql(Y (i, j)), σ2)
where µql(Y (i, j)) = µql + βTY (i, j). This model uses covariates and
can model networks with real weight. The effect of covariates is the
same for all pair of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = N (µql(Y (i, j)), σ2)
where µql(Y (i, j)) = µql + βT

qlY (i, j). This model uses covariates and
can model networks with real weight. The effect of covariates is not

the same for all pair of classes.

2.4 Analysis of groups when covariates are used

Without covariates, groups are sets of nodes which have the same connec-
tivity behavior (in probability), and groups can be easily interpretable using
the connectivity matrix ([πql], [λql] or [µql]).

With covariates, groups are sets of nodes which have the same connectiv-
ity behavior (in probability) conditionally to covariates. Two nodes of the
same group can have different connectivity behavior due to different values
of covariates.

For a model with covariates, groups are covariate-residual groups. There
are two points of view:

• the focus is on the effects of the covariates and groups model the
(residual) connectivity which is not explained by covariates,

• the focus is on the groups which helps in suggesting some sources of
heterogeneity after correcting the artefact due to covariates.

One can test the effect of covariates using a likelihood ratio test between
models with and without covariates.

3 Estimation method

The estimation method is described in Mariadassou et al. (2010). The like-
lihood is not computable in a reasonable time, and a variational approxima-
tion is done and a variational expectation–maximization is used. The ICL
criterion is used for choosing the number of groups, see Mariadassou et al.
(2010).

Some estimation implementation details which differ from the framework
introduced in Mariadassou et al. (2010) are explained here.
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3.1 Initialization

As in the general case on expectation–maximization algorithm, the initial-
ization plays a major role in the quality of the local maximum found.

In Mariadassou et al. (2010), the authors propose to use a hierarchical
clustering to initialize the algorithm. In a real case of network analysis this
initialization is often an extremal one (most of the initialized groups contain
only one node) and the expectation–maximization algorithm converges to a
local maximum which may be far from the global maximum.

The Absolute Value Spectral Clustering algorithm is consistent for find-
ing groups in SBM (with Bernoulli probability law without covariates), see
Rohe et al. (2011). We use the absolute spectral clustering to initialize the
expectation–maximization algorithm.

When there are covariates, the spectral clustering is done on the residual
graph, after eliminating the effect of covariates by regression.

3.2 Smoothing

To determine if an estimation for Q groups has reached a bad local maxi-
mum, we use two findings:

• With an ascending number of groups, models are nested. A model
with Q groups can be interpreted as a model with Q + 1 groups, so
the likelihood must increase with Q.

• Empirical findings make us say that the ICL criterion is convex.

A reinitialization of the expectation–maximization can be done. The new
initialization is obtained in two ways:

• merging two groups of the Q+ 1 result (descend mode)

• splitting one group into two groups of the Q− 1 result (ascend mode),
this split is done by a spectral clustering of the residual graph on Q−1
groups.

There are two modes of reinitialization:

• the minimal one, reinitializations are done each time one of the two
findings (see above) is not respected,

• the exhaustive one, all reinitializations are done; while it improves
likelihood, this option is very time-consuming and cannot be used with
non small graphs.
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3.3 Parallelism

Many steps of the estimation can be done independently:

• The expectation–maximization algorithm for various Q

• Reinitialization in ascend and descend mode

Considering that computers and computing units have more than one
logical processor, this implementation uses threads to parallelize the imple-
mentation as much as possible.

4 wmixnet program

This section introduces the wmixnet program and the program usage.

4.1 Sources availability and installation

wmixnet is provided on the GNU General Public Licence version 3, and C++

sources are available on the wmixnet page:

• http://www.agroparistech.fr/mia/productions:logiciels

• http://www.agroparistech.fr/mia/productions:logiciel:wmixnet

wmixnet should be installable from sources on any Linux distribution,
when dependencies are provided:

• IT++ library, used for matrix calculation. This library uses blas and
lapack, well-known algebra libraries.

• boost library, for many aspects including parallelism.

4.2 Input format

The input format is a plain text with the following specifications:

• each line describes a node

• for each line the first two columns describe the indexes of starting and
ending nodes

• for each line the third column describes the weight of the edge

• for each line the fourth to end columns (if present) describe the co-
variates associated to the edge.

There are some constraints:
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• node indexes must start from 1 to the number of nodes

• each edge must have the same number of covariates.

If an edge is not present, and if no covariates are used, the corresponding
lines can be omitted; otherwise the line must be present with a weight of
zero.

Functions are provided to write a file following these specifications, with
adjacency matrices, and covariate matrices, for GNU R, and MATLAB or GNU
Octave.

4.3 Output format

The output format contains the model parameters for all explored numbers
of groups.

Model parameters are:

• α, the parameters of the multinomial distribution

• θ, the parameters of the probability law of the edge weight condition-
ally to groups of nodes,

for the Bernoulli model, θ = (π),

for the Poisson model, θ = (λ),

for the Poisson model with covariates θ = (λ, β),

for the Gaussian model θ = (µ, σ2),

for the Gaussian model with covariates θ = (µ, σ2, β).

The output contains variational parameter estimates (τ) which give the
nodes membership in groups.

The output also contains values of criteria such as pseudo-likelihood and
the ICL criterion.

There are three output formats provided:

• Plain text output format (named text), which is a human readable file.

• GNU R file output format, which is an GNU R loadable file. Nevertheless
this file can be easily read by a human.

• MATLAB or GNU Octave file output format, which is a MATLAB and GNU

Octave loadable file. Nevertheless this file can be easily read by a
human.
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4.4 Command line usage

wmixnet is usable with command line, and the following arguments must be
provided:

• --input to specify the input file,

• --symmetric to indicate if the graph is an undirected graph if appli-
cable,

• --model to specify the model in

bernoulli for Bernoulli without covariate

BH for Bernoulli with covariates (homogeneous effects)

BI for Bernoulli with covariates (heterogeneous effects)

poisson for Poisson without covariate

PRMH for Poisson with covariates (homogeneous effects)

PRMI for Poisson with covariates (heterogeneous effects)

gaussian for Gaussian without covariate

GRMH for Gaussian with covariates (homogeneous effects)

GRMI for Gaussian with covariates (heterogeneous effects)

• --Qmax to specify the maximum number of groups, or --Qauto to let
the program choose the maximum number of groups,

• --smoothing to specify the smoothing mode

none no reinitialization is done (by default)

minimal reinitializations are done for detected problems

exhaustive all reinitialization are done (time-consuming option,
only for small graphs)

• --output to specify the output file,

• --output-format to specify the output format

text (by default)

R for GNU R loadable file

matlab or octave which are synonymous for MATLAB and GNU

Octave loadable file.
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4.5 Empirical complexity

Some simulations suggest the following estimation of complexity:

t = Cmodel n
2.46 g2.1 1.03p

with

• t the total processor time (equivalent time on a mono-core computer,
without parallelization, which executes only this job)

• Cmodel a constant which depends on the model. Since absolute values
are not pertinent, ratios are given:

Cpoisson

Cbernoulli
= 3.9

CPRMH

Cbernoulli
= 21

Cgaussian

Cbernoulli
= 840

CGRMH

Cbernoulli
= 1350

This ratio is dependent on the way each model is implemented. Some
models allow us to vectorize some steps, have explicit maxima, and
thus are significantly faster

• n the number of nodes

• g the number of groups found

• p the number of covariates (the size of the covariate vector)

4.6 Capacity of extension

In the wmixnet program, the estimation procedure and other model-common
parts are implemented once. Only model-specific functions are present for
each model. Therefore it is relatively easy to add other models in the
wmixnet program.

5 Example

Here we introduce the analysis of two ecological networks, already analyzed
by Mariadassou et al. (2010).

5.1 The networks

The networks are two undirected, valued networks having parasitic fungal
species (n = 154) and tree species (n = 51) as nodes, respectively. Edge
strengths was defined as the number of shared host species and the number
of shared parasitic species, respectively (see Mariadassou et al., 2010 for
details).
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5.2 Covariate data

For the tree species network, we know the taxonomic distance between tree
species and the degree of geographic overlap between tree species distri-
bution. For the fungal species network, we know the taxonomic distance
between fungal species (see Mariadassou et al., 2010 for details).

5.3 Example of command line

For the analysis of the tree species network, for the Poisson model without
covariates, the command line is:

wmixnet --input Trees.spm --symmetric \

--model poisson \

--Qauto --smoothing exhaustive \

--output Trees.m --output-format octave

5.4 Results

5.4.1 On the tree species network

In Figure 1, we plot the ICL criterion for Poisson model without and with
covariates (taxonomic distance, geographical distance or both). For the
model without covariates the maximum is reached with 7 groups. With
the geographical covariates, the maximum is reached for 6 groups, with a
little improvement of the ICL criterion. For the model with the taxonomic
covariates, the maximum is reached for 4 groups, with a larger improvement
of the ICL criterion. Adding the geographical covariates to the taxonomic
covariates does not improve the criterion.

Ecological interpretations are presented in Mariadassou et al. (2010).

5.4.2 On the fungi network

In Figure 2, we plot the ICL criterion for the Poisson model without and with
covariates (taxonomic distance). For the model with and without taxonomic
covariates the maximum is reached with 15 groups in both cases. There is
no real improvement by adding the taxonomic covariates to the model.

Ecological interpretations are presented in Mariadassou et al. (2010).
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Figure 1: ICL criterion values obtained for Poisson and Poisson with covari-
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Figure 2: ICL criterion values obtained for the Poisson model and the Pois-
son with covariates model on the fungus species network.
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