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Community detection algorithms attempt to find the best clusters of nodes in an arbitrary complex
network. Multi-scale (“multiresolution”) community detection extends the problem to identify the
best network scale(s) for these clusters. The latter task is generally accomplished by analyzing
community stability simultaneously for all clusters in the network. In the current work, we extend
this general approach to define local multiresolution methods, which enable the extraction of well-
defined local communities even if the global community structure is vaguely defined in an average
sense. Toward this end, we propose measures analogous to variation of information and normalized
mutual information that are used to quantitatively identify the best resolution(s) at the community
level based on correlations between clusters in independently-solved systems. We demonstrate our
method on two constructed networks as well as a real network and draw inferences about local
community strength. Our approach is independent of the applied community detection algorithm
save for the inherent requirement that the method be able to identify communities across different
network scales, with appropriate changes to account for how different resolutions are evaluated
or defined in a particular community detection method. It should, in principle, easily adapt to
alternative community comparison measures.

PACS numbers: 89.75.Fb, 64.60.aq, 89.65.–s

I. INTRODUCTION

Applications of complex network analysis span a wide
range of seemingly unrelated fields. In these networks,
elements of the model system are abstracted as nodes
(i.e., people, atoms, etc.), and edges represent known
relationships between them (i.e., friendships, energies,
etc.). As depicted in Fig. 1, community detection (CD)
[1, 2] seeks to identify natural groups of related nodes
in a network. This structure can take the form of social
groups [3], clusters of atoms [4], proteins [5], and much
more. Several categories of common real-world networks
are characterized in Ref. [3].

Conceptually speaking, communities in a network are
groups of nodes that are strongly connected inside a
community but weakly connected between communities.
This basic idea is well established in the literature; it
seems to be easily quantifiable and perhaps even suf-
ficient to rigorously define a community if a few small
clarifications are specified. However, the amazing variety
of CD algorithms as well as a limited consensus in the
field contradicts this näıve assessment.

Multiresolution community detection extends the CD
concepts to find the most natural resolution(s) for a net-
work partition. It endeavors to identify the network
scales that best represent the community structure of
a network, effectively distinguishing between densely or
sparsely connected community members. Similar to sin-
gle resolution CD, multiresolution methods must quan-
titatively assess this description in order to obtain an
objective measure of the best candidate partition and

resolution. A common approach, which is implemented
in various ways, is to search for regions with stable par-
titions [6–10], where the community structure does not
change significantly in terms of various applied measures
of the candidate partitions (e.g., number of communities
q, dynamic flow across the network, information, etc.).
Our global multiresolution algorithm [11] (MRA) asserts
that the most natural resolution for a network may be
identified based on how well independently solved repli-
cas agree on the partition as evaluated by information
measures [12, 13].

Our local multiresolution algorithm (LMRA) quantita-
tively identifies the most natural resolution(s) for individ-
ual communities regardless of the weak or strong commu-
nity correlations present in the rest of the network. That
is, the LMRA method is able to select optimal CD res-
olution parameter(s) independently for each cluster in a
graph. Our use of the term local implies that the commu-
nities are determined with respect to parameters defined
“near” the individual communities or nodes (i.e., com-
munity size, relations among neighboring nodes, etc.).
Here, we solve the full network partition for every resolu-
tion, but the algorithm trivially adapts to CD algorithms
which can identify local communities without partition-
ing the entire network, which is important for immense
networks such as the World Wide Web.

II. BACKGROUND

One of the most popular CD methods defines a cost
function that attempts to quantitatively encapsulate the
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essential features for a “good” division of nodes, thus
evaluating the best community structure in an objective
fashion. Regardless of the specific form, the task is to
optimize the function for a particular graph to deter-
mine the optimal node division(s). Newman and Girvan
[14] introduced the most common approach by far with
“modularity.” CD methods based on Potts model cost
functions, or methods that may be cast as such [15, 16],
are also common. Reichardt and Bornholdt (RB) wrote
a Potts model [17] which they specialized into two main
cases utilizing null models. Null models are auxiliary
graphs which are selected to evaluate the quality of a
candidate partition, thus implicitly selecting the “cor-
rect” scale for a graph.

The choice of a null model inherently, often implicitly,
selects a pre-determined scale for a network. The most
common null models by far are: the “configuration null
model” which sets edge connection probabilities based
on the current graph, encompassing modularity as a spe-
cial case, and the Erdős-Rényi null model [18] which de-
fines the connection probability of all edges to be equally
likely based on the graph’s average edge density. Opti-
mization of CD quality functions using these null mod-
els was shown to suffer from an inherent resolution limit
[14, 17, 19–21], which cannot be resolved by varying the
network scale [22, 23]. This feature hinders the proper
identification of some communities in large graphs.

An important general network model is the stochastic
block model (SBM) [24], which provides a descriptive and
generative model of network structure. Such models can
then be used by various CD techniques to identify com-
munity structure [25–27]. Decelle et. al. [28, 29] and Hu
et. al. [30, 31] studied phase transitions for SBM-type
networks, and Darst et. al. examined related bounds on
well-defined communities [32]. Extensions have moder-
ated the internally homogenous nature of SBM graphs
to improve its performance when modeling realistic net-
works with more varied degree distributions [33–35]. Of-
ten, network models imply or impose an expected struc-
ture, but an adaptive method based on mixture models
[26] allows for detection of unspecified types of structure
in a variety of network classes.

Potts model and related CD approaches include [11, 16,
36–41], and Refs. [39, 40] generalized the RB Potts mod-
els in [17, 18], respectively. Our previous work [11, 41] ad-
vanced a local Potts model, and local models were stud-
ied in more detail in [40]. Other local methods include
[5, 15, 40–45], including variants of modularity [46, 47].
Potts systems in CD can experience disorder from ther-
mal effects [31, 48], extraneous edges (noise) [31, 41, 48–
50], and system size [31, 51]. The selected model can also
exacerbate disorder effects [49, 52].

Some CD methods, such as modularity, implicitly se-
lect a single “objective” scale for a candidate commu-
nity division (e.g., Refs. [14, 15]), but certain networks
such as hierarchical systems inherently possess multiple
natural scales. Hierarchical clustering is an early mul-
tiscale method [53], but it forces hierarchical structure

FIG. 1. (Color online) The figure illustrates a network par-
tition where communities are represented by distinct node
shapes and colors. “Friendly” or “cooperative” relations are
depicted as solid, black lines which are modeled as ferromag-
netic interactions with wij > 0 in Eq. (1). “Adversarial” or
“neutral” relations (some are omitted for clarity) are depicted
as gray, dashed lines. These are modeled as antiferromagnetic
interactions with uij > 0. In both cases, the line thickness in-
dicates a relative interaction strength. With Eq. (1), neutral
interactions (unconnected or unspecified relations) are repul-
sive in nature since they work like adversarial relations that
break up well-defined communities.

on every system without evaluating the relevance of the
solved partitions. That is, it assigns but does not quan-
tititatively evaluate whether the hierarchical structure
is a good multi-scale partitioning scheme for the graph.
More recent hierarchical approaches include [9, 54–58],
and Ref. [59] relates the presence of hierarchical features
to a scale-free-network property.

Ideally, a CD algorithm should be able to determine
all relevant scales of a network. This problem is the
impetus for developing quantitative multiresolution net-
work analysis. Multiscale capable methods that utilize
cost functions include [6, 8, 11, 17, 18, 43, 60]. The RB
Potts model weighs the contribution of the null model
[17], allowing the cost function to span different network
scales. Other methods encompass varied forms of analy-
sis [10, 61–63] to attack the problem.

Even with tunable CD cost function parameters, the
question of which resolutions are the most natural scales
for a network is not necessarily answered. Thus, mul-
tiresolution methods sought to identify the best scale(s)
[6, 7, 11] for a network without imposing, or arbitrarily
selecting, a preferred network scale. The most common
method detects stable resolutions in terms of network and
model resolution parameters [6, 11, 43]. Our multires-
olution replica algorithm calculated information-based
correlations [11] among independent copies of the same
system to quantitatively compare the partition strength
across all relevant network scales.

To our knowledge, all current multiresolution ap-
proaches analyze the network robustness in an “average”
sense across all communities in a network (see Secs. VI A
and VI B), but the best local communities will not nec-
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essarily coincide at the same resolution in general. For
example, communities in large networks may experience
a “lost-in-a-crowd” effect which can obscure locally well-
defined communities and limit the ability of global mul-
tiresolution methods (see Appendix A) to accurately iso-
late their structure. In some models, the effect can be
exacerbated by heterogeneously-sized community struc-
ture [52, 64] depending on the network scale. Conversely,
a global partition may be strongly defined for most com-
munities, but a given cluster may still be weakly defined.

The LMRA method combines the benefits of multireso-
lution analysis with the local identification of community
structure. While each community exists and is defined
in the context of its own network neighborhood, we ide-
ally prefer to identify strong communities independent of
the global system. That is, we allow each community to
stand on its own in terms of the evaluation of its com-
munity structure. Somewhat related efforts to the cur-
rent work include detecting “unbalanced” communities in
a network partition [65] and an efficient seed-expansion
method by Havemann et al. [44] which could, in princi-
ple, be modified for other local cost functions.

Community detection methods utilizing quality func-
tions generally include, or have been extended by subse-
quent work to include, weight parameters that serve vary
the target resolution, so these methods will naturally
adapt to the algorithm described in this work. Other dis-
parate approaches include flow analysis [9, 10], spectral
partitioning [66], Bayesian analysis [67], dynamics [68],
network synchronization [69], k-means [70], and others.

Some of the above methods do not easily or nat-
urally incorporate an explicit resolution parameter—
relying rather on input community parameters, dynam-
ics, or other measures of stability to identify the best
resolution(s). Several of these require the number of
communities q as an input parameter, or equivalently
for our analysis, they may detect q based on the network
(e.g., eigenvalue gaps). Then, q is passed to a cluster-
ing algorithm such as k-means. In either of these cases,
q can serve as the resolution parameter for our LMRA
algorithm, particularly for larger networks where small
changes in q will represent correspondingly small changes
in the overall community structure. For other cases, the
precise implementation will be more model dependent,
but the current LMRA algorithm only needs to receive
the community partitions over a range of network scales,
regardless of how these scales are detected or defined in
a particular CD algorithm.

The remainder of the work is organized as follows: we
introduce our community detection Potts model in Sec.
III. Section IV A elaborates on concepts of community
definitions, and Sec. IV B describes the notion of a par-
tition resolution. We suggest a local, community-based
analogy to the variation of information (VI) and normal-
ized mutual information (NMI) measures in Sec. V which
we apply in Sec. VI for our local multiresolution algo-
rithm. Section VII illustrates the approach with three
examples, and we conclude in Sec. VIII. Appendix A ex-

plains the context of local and global terminology used
in this paper. Finally, Appendices B and C comment
on the semi-metric property of our cluster measure as
well as a couple alternative approaches to local cluster
comparisons in an information-theoretic analogy.

III. POTTS MODEL HAMILTONIAN

Regardless of the underlying solution method, the ulti-
mate goal of any community detection partitioning algo-
rithm is a Potts-type assignment i → σi for each node i
into one of q different clusters where σi may be regarded
as a Potts-type variable. Toward this end, we focus di-
rectly on Potts variables. Some methods extend this
notion to include overlapping memberships (e.g., Refs.
[5, 43, 44, 71]) where nodes may be shared between, or
fractionally assigned to, different communities. In these
cases, the community assignment becomes a vector quan-
tity for each node as opposed to a single integer value.

We identify community partitions by minimizing (see
Sec. VI A) a general CD Potts model

H({σ}) = −1

2

∑
i 6=j

[
wijAij−γuij (1−Aij)

]
δ(σi, σj) (1)

which we refer to as an “absolute” Potts model (APM)
since it is not defined relative to a random null model.
Assuming N nodes, {Aij} is the adjacency matrix where
Aij = 1 if nodes i and j are connected and is 0 if they are
not connected. The spin variable σi identifies the com-
munity membership of node i in the range 1 ≤ σi ≤ q
where node i is a member of community k if σi = k.
The Kronecker delta δ(σi, σj) = 1 if σi = σj and 0 when
σi 6= σj . By virtue of the Kronecker delta, interactions
are limited to spins in the same community, and they are
ferromagnetic in nature if nodes i and j are connected
and antiferromagnetic if they are not connected. The
global resolution parameter γ scales the relative effects
of the ferromagnetic {wij} and antiferromagnetic {uij}
interactions, effectively allowing the model to vary the
network resolution. A network resolution roughly corre-
sponds to the typical community size, but a better char-
acterization may be the typical community edge density
(see Sec. IV B).

In Eq. (1), {wij} and {uij} are the edge weights for
“cooperative” and “neutral” or “adversarial” relations,
respectively, that are defined by the graph under con-
sideration. These weights are based on known or esti-
mated relations between the elements as recorded or de-
fined by the person constructing the network. We refer
to edges defined by {wij} as cooperative since these lower
the community energy (i.e., they reinforce the commu-
nity). Relations described by {uij} raise the energy (i.e.,
they work to break up the community). In unweighted
graphs, uij = wij = 1.

Both adversarial and neutral relations serve to break
up community structure, so the APM [11, 41] penalizes
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neutral relations much like one would expect for adver-
sarial relations (as opposed to zero energy contributions
in a purely ferromagnetic Potts model [15, 36]). This
property avoids a trivial ground state solution (i.e., a
completely collapsed system for every graph) present in
the purely ferromagnetic Potts model. In essence, the en-
ergy penalty for adversarial relations provides a “penalty
function” as an alternative to how modularity resolved
the trivial-ground-state problem [14] (i.e., by compar-
ing a community to an average, random distribution of
edges in the graph). Ref. [39] generalized a common Potts
model variant [17] to include negative link weights.

Despite the global energy sum in Eq. (1), the model is a
local measure of community structure (see Appendix A)
because all node assignments are made strictly by eval-
uating local network parameters [40, 41]. For simplicity,
our current analysis will focus on undirected, static net-
works; but both Eq. (1) and the LMRA method in this
work are suitable for general weighted, directed, and dy-
namic (time-dependent) networks.

IV. COMMUNITY DETECTION CONCEPTS

A precise definition of community structure in net-
works is still not agreed upon in the literature. Gen-
erally speaking, communities consist of nodes which are
strongly connected within communities, in terms of the
number or weight of edges, but nodes in different commu-
nities are more sparsely connected. When constructing
the quantitative community evaluation, there is also a
question as to whether the “inside” versus “outside” de-
gree comparison is summed over all external communities
[72, 73] or is evaluated only between individual pairs of
communities [11, 32, 41]. Our model applies the latter
case.

A. Community definitions

Communities in social networks are the prototypical
CD model. People often have many more “external” rela-
tionships of varying strengths than they do within a local
group in which they are a member. For example, an in-
dividual may associate with a chess club, but his network
of friendships may extend to dozens or even hundreds of
people beyond this local group.

In many network approximations (e.g., the ubiquitous
Zachary karate club network [74]), these “extra” edges
are omitted as extraneous for the reduced-size network
(i.e., no need to solve a large graph if we are only inter-
ested in the local club). If we were to create a more com-
prehensive, expanded network and re-partition the sys-
tem, the additional noise induced by including these pre-
viously external relations should not intuitively disturb
the original communities, provided they are still strongly
defined relative to any new structure(s) in the expanded
system. This intuitive concept is overlooked by some CD

methods because the quantitative evaluation of commu-
nity structure in the expanded system directly changes
by virtue of the size (nodes, edges) increase alone, re-
gardless of whether the local relations in and around a
given community are affected.

Ref. [72] proposed definitions for “strong” and “weak”
communities: in a strong community, all nodes have
more internal than external edges, and a weak commu-
nity is one where the sum over all internal edges exceeds
the sum of the external edges. A large social network
may not have “strong” or even “weak” communities in
the sense of the proposed definitions, but the communi-
ties are still well-defined empirically. Thus, these com-
munity definitions [72] neglect certain important (high
noise) and intuitive [21, 65] cases.

In fact, several CD methods were compared by Lanci-
chinetti and Fortunato [75] where most, if not all, com-
munities were weakly-defined in the sense proposed by
Ref. [72], but many of the algorithms were nevertheless
able to easily identify these purported weak communities.
That is, the best methods easily solved the benchmark
graphs [76] well into regions where all nodes (on average)
have more external than internal edges. This definition is
apparently not characteristic enough to describe weakly-
defined communities based on the capabilities of some
CD algorithms. Otherwise, we would intuitively think
that the detection boundary would lie somewhere near
this threshold. The crux is that the proposed definition
considers the sum of external community edges, but iden-
tifiable communities in many CD algorithms seem to be
more aligned toward a less restrictive definition of what
a weak community is.

With these examples in mind, it seems appropriate, at
least in social and related networks, to favor cost func-
tions or analysis methods that utilize pairwise commu-
nity comparisons when evaluating node membership ro-
bustness. This assumption inherently affects the notion
of well-defined partitions, communities, and individual
node memberships [32, 41]. Another approach that may
be fruitful is to pursue a community definition based on
edge density as opposed to inner and outer community
edge counts, but further quantitative analysis is beyond
the scope of the current work.

B. Resolution

Intuitively, the resolution of a community partition is
the typical strength of intracommunity connections. This
concept can be quantified by the typical edge density p of
the communities in the partition. Communities with sig-
nificantly different edge densities are qualitatively differ-
ent. For example, social networks may naturally display
communities of “close friends” or “acquaintances.” Close
friends are generally very likely to know most or all mem-
bers of the same group (p is high) where acquaintances
are much less likely to know each other (p is lower).

As a specific example, a community where each person
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has five friendships in a group of six is a clique. That
is, every node is connected to all others in the group.
However, if we consider the same five friendships in a
group of 100, it may not even qualify as a community of
social acquaintances. These two clusters have an iden-
tical edge count, but they represent drastically different
types of communities (i.e., different network scales). As
mentioned above, the inner and outer edge count is not
sufficient to quantitatively describe a cluster. This dis-
tinction highlights the importance of a penalty term in
various CD quality functions.

In practice, a partition will contain communities with
a range of edge densities, but intuitively, the differences
should not be drastic at a given resolution since the par-
tition should manifest communities with similar levels of
association. Continuing with the social network exam-
ple, mixing communities of close friends and acquain-
tances in the same partition makes less sense than a
partition that indicates close friendships in most com-
munities. Given this argument, it is reasonable that a
given γ in Eq. (1) could be applied to the whole graph
and provide meaningful partition information in general,
but this manuscript illustrates a method to enhance the
analysis of complex networks by finding locally optimal
resolutions at the community level.

We specialize the edge density analysis below to
unweighted graphs for clarity, but Ref. [41] discusses
weighted graphs in the same context. The edge density
of community a is pa = `a/`

max
a where `a is the number

of edges in the community; `max
a = na(na − 1)/2 is the

maximum number of possible edges in community a with
na nodes. The global resolution parameter γ in Eq. (1)
requires a minimum edge density for each community in
the partition,

pmin ≥
γ

γ + 1
, (2)

which we calculated by determining the minimum den-
sity configuration that yields an energy of zero or less.
Without γ, the model can only solve a particular implicit
resolution for all systems, pγ=1

min ≥ 1/2. Other models im-
plement similar weight parameters [6, 16–18, 39, 40, 43]
which allow them to solve distinct network scales.

While Eq. (2) provides a convenient lower bound on
the minimum community edge density, optimizing Eq. (1)
implements the constraint implied in Eq. (2) by enforcing
a stronger requirement. That is, it merges network ele-
ments (a node to a community or two communities) if the
edge density between them exceeds pmin. Thus, one is as-
sured that all sub-elements of a community are connected
by at least pmin. This effectively avoids resolution-limit-
type effects by acting locally [41].

C. Heuristic multiresolution method

The local and global multiresolution methods are dis-
cussed in detail later, but it is relevant to take a mo-

ment consider the basic function of our multiresolution
approach and its connection to the underlying CD solver.
Briefly, the global method independently solves for the
community structure in a set of r replicas of the net-
work. It then uses information-based measures (see Sec.
V) to evaluate the partition similarities, asserting that
the best resolutions have strongly correlated partitions
among the replicas.

The exact partitions determined among the replicas
depend on the efficacy of the particular CD algorithm
used to determine the individual partition solutions.
While Eq. (1) has a well-defined ground state of par-
titioned nodes that depends on the weight parameter γ,
detecting transitions with the MRA global multiresolu-
tion method still depends in some sense on imperfect CD
solutions provided by our robust, but nevertheless greedy,
CD algorithm.

More specifically, the MRA algorithm takes advantage
of the fact it is significantly more difficult for a heuris-
tic CD algorithm to navigate the energy landscape when
competing partitions have comparable energies. This
condition could occur when two or more good parti-
tions exist at a single resolution, but it appears to occur
more often in transition regions between different levels
or types of structure. In terms of CD model parameters,
these different levels of multi-scale community structure
have a minimum energy at different resolutions; but in
the transition region, the minimum for each distinct di-
vision is comparable, causing different replicas of the CD
algorithm to be more easily trapped in unrelated areas of
the energy landscape. The MRA algorithm attempts to
detect this variation in partitions and uses it to identify
the best resolutions.

If we consider a perfect CD algorithm which always
finds the ground state of the cost function regardless of
any model parameters or the complexity of the problem,
most of the variation among partition solutions in the
replicas mentioned above will disappear (see comment
on degeneracies below). That is, the more perfect the
solver, the sharper the detected transition would become
in terms of any variation in the CD model’s resolution
parameter(s). With a perfect solver or an easy CD prob-
lem, the transition is essentially discrete.

The primary partition similarity measures of our MRA
algorithm, variation of information V and the normalized
mutual information U , would only observe strong agree-
ment among the replicas across this transition (i.e., no
observable extrema indicating structural shifts or pre-
ferred community structure), but changes in the sec-
ondary measures (e.g., Shannon entropy H, mutual infor-
mation I, and the number of clusters q) would still mark
the transition, albeit without quantitatively indicating
the quality of the candidate partitions (the length of the
stable region can still be a qualitative indicator of parti-
tion stability). Thus, a perfect CD algorithm illustrates
that the MRA algorithm, as currently employed, relies to
some extent on the imperfect solutions provided by the
underlying CD solver used. A similar argument would



6

apply to the local multiresolution method discussed in
the current work.

When using a perfect CD solver, our global multires-
olution method would measure the degeneracy of the
ground state energy at a given resolution. One could
extend our global multiresolution method by comparing
partitions at nearby resolutions to better evaluate the
stability of the partitions over a range of resolutions. Un-
der this construction, the MRA algorithm would still be
able to evaluate partition stability even with a perfect
CD solver at the cost of increased computational effort
based on time spent comparing replicas across a range of
resolution values.

V. INFORMATION MEASURES

Information measures have received broad acceptance
for comparing candidate CD partitions. Commonly used
measures include the variation of information [13] and
normalized mutual information [12]. We leveraged the
measures in Sec. V A to identify the best global network
scales via a multiresolution replica method [11] (see Ap-
pendix A and Sec. VI B).

A. Partition correlations

To define VI and NMI, we select a random node from
partition A and note that it has a probability nk/N of
being in community k where nk is the number of nodes
in the community and N is the total number of nodes in
the system. The Shannon entropy is

H(A) = −
qA∑
a=1

nk
N

log
nk
N

(3)

where qA is the number of communities in partition A.
The mutual information I(A,B) between two partitions
A and B evaluates how much we learn about A if we
know B. For our application, contending partitions (A,
B, . . ., Z) are independently solved copies of the system.

We define a “confusion matrix” for partitions A and
B which specifies how many nodes nab in community a
of partition A are also in community b of partition B.
Mutual information is

I(A,B) =

qA∑
a=1

qB∑
b=1

nab
N

log

(
nabN

nanb

)
(4)

where na (nb) is the number of nodes in community a
(b) of partition A (B). Also, I(A,B) = 0 when nab = 0.
The variation of information V (A,B) metric is then

V (A,B) = H(A) +H(B)− 2I(A,B) (5)

which measures the information “distance” between par-
titions A and B with a range of 0 ≤ V (A,B) ≤ logN .
We use base 2 logarithms.

FIG. 2. (Color online) The figure schematically depicts r inde-
pendent solvers (“replicas”) as spheres navigating the energy
landscape of Eq. (1). Stronger agreement among the replicas,
as measured by information correlations in Sec. V A, indicates
a more stable, well-defined global partition (see text). In this
manuscript, we demonstrate that local communities may be
strongly defined even if all the communities in the global sys-
tem are weakly correlated (see Fig. 3).

A normalized information measure [12] of partition
similarity is

U(A,B) =
2I(A,B)

H(A) +H(B)
. (6)

NMI and VI are closely related, U(A,B) = 1 −
V (A,B)/ [H(A) +H(B)]. While NMI is a valuable mea-
sure of partition similarity, it is not a formal metric (see
Appendix B) on partitions A and B in part because
U(A,A) = 1 not 0.

Some researchers prefer NMI as a normalized measure
where it maps uncorrelated partitions to 0 and perfectly
correlated partitions to 1. Others prefer the stricter met-
ric properties of VI, but VI can also be normalized, if de-
sired. In most cases, the two measures provide the same
information, but occasionally distinctions between them
can be observed. For example, we previously showed [41]
that maxima in VI and minima in NMI mark structural
transitions in partitions, that provides information about
the average intercommunity edge density, but only VI
clearly shows an extremum before the system collapses
into disjoint communities as γ is lowered in Eq. (1).

B. Local information analogies

When defining a cluster comparison measure, we wish
to maintain consistency with the trend in CD towards
information-theoretic partition evaluations. Toward this
end, we consider the cluster embedded in the full sys-
tem of N nodes (see also later comments), where N is
the number of nodes in the network. This comparison
gives our measure a context for the resulting cluster-level
entropy or information calculations based on associated
partition-of-unity probabilities.

From Eq. (3), the entropy contribution of community
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a in partition A is

Ha(A) ≡ −na
N

log
(na
N

)
(7)

where na is the number of nodes in community a. Simi-
larly, Eq. (4) indicates the mutual information contribu-
tion when comparing cluster a in partition A, (a,A), to
cluster b in partition B, (b, B),

Iab(A,B) ≡ nab
N

log

(
nabN

nanb

)
. (8)

In analogy with Eq. (5), we introduce the cluster varia-
tion of information (CVI) v(a, b)

v(a, b) ≡ Ha(A) +Hb(B)− 2u(a, b). (9)

CVI exhibits appealing “distance-like” properties of a
semi-metric for comparing clusters (a,A) and (b, B) (see
Appendix B for a trivial proof). Summing over all pairs
of clusters a and b, VI is related to CVI by

V (A,B) =

qA∑
a

qB∑
b

v(a, b)−(qB−1)H(A)−(qA−1)H(B).

(10)
Appendix C provides additional remarks.

From Eq. (6), we introduce the natural cluster normal-
ized mutual information (CNMI) analogy

u(a, b) ≡
2nab log

(
nabN
nanb

)
na log

(
N
na

)
+ nb log

(
N
nb

) . (11)

While CNMI is not a metric [in part because u(a, a) = 1
not 0], it has the same intuitive property of cluster sim-
ilarity that makes NMI attractive for partition compar-
isons. Equation (11) is essentially a normalized variant
of CVI, u(a, b) = 1 − v(a, b)/ [Ha +Hb]. On smaller
networks, CVI provides a clearer picture of transitions
with its distance-like semi-metric properties, but CNMI
is more easily evaluated for larger networks because vari-
ations in CVI become small as N becomes large.

If we were to compare larger (multi-cluster) sub-
graphs, a natural approach is to cut the subgraph from
the whole network and compare the reduced-size par-
titions. This breaks down at the cluster level because
there is no partition-of-unity associated with an individ-
ual cluster as used to define NMI [12] or VI [13] for com-
munity detection. Implementing an arbitrary measure
for clusters is difficult, so we chose to consider the clus-
ter comparisons in the context of a larger network of
nodes. Strictly speaking we do not need to use the true
size of the network for our cluster comparisons. Rather,
we could use some other N ′ 6= N , but it is conceptually
appealing to evaluate a cluster in the context of the full
network.

VI. LOCAL MULTIRESOLUTION ALGORITHM

Our local multiresolution algorithm identifies relevant
local multiresolution order, meaning well-defined local
communities. We invoke v(a, b) in Eq. (9) and u(a, b) in
Eq. (11) to compare local clusters a and b across r “repli-
cas” (independent solutions). Figure 2 depicts solutions
with the global MRA [11] algorithm given in Sec. VI B.
The LMRA method depicted in Fig. 3 extends the MRA
method by incorporating comparisons between specific
clusters.

A. Community detection algorithm

We begin by introducing our greedy CD algorithm
which dynamically moves nodes into the community
that best lowers the local energy according to Eq. (1)
given the current state of the system {σi}. The process
iterates through the nodes until no further nodes are
available. Typically, O(10) iteration cycles through all
N nodes are required except in rare instances that lie in
or near the “hard” (or “glassy”) phase [31, 41, 48].

The CD steps are:
(0) Initialize the system. Initialize the connection ma-

trix Aij and edge weights wij and uij . Determine the
number of optimization trials t.

(1) Initialize the clusters. The initial partition is usu-
ally a “symmetric” state wherein each node is the lone
member of its own community (i.e., q0 = N).

(2) Optimize the node memberships. Sequentially se-
lect each node, traverse its neighbor list, and calculate
the energy change that would result if it were moved into
each connected cluster (or an empty cluster). Immedi-
ately move it to the community which best lowers the
energy (optionally allowing zero energy changes).

(3) Iterate until convergence. Repeat step (2) until
a (perhaps local) energy minimum is reached where no
nodes can move.

(4) Test for a local energy minimum. Merge any
connected communities if the combination lowers the
summed community energies. If any merges occur, re-
turn to step (2) and attempt additional node-level re-
finements.

(5) Repeat for several trials. Repeat steps (1)–(4)
for t independent trials and select the lowest energy
result as the best solution. By a trial, we refer to a
copy of the network in which the initial system is ran-
domized in a symmetric state with a different node order.

The optimal q is usually dynamically determined by
the lowest energy state although the algorithm can also
fix q during the dynamics. Empirically, the computa-
tional effort scales as O(tL1.3 log k) where k is the aver-
age node degree and log k is from a binary search im-
plemented on large sparse matrix systems. This greedy
variant can accurately scale to at least O(109) edges [41].
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Replica 2Replica 1 Replica r

Replica 2Replica 1 Replica r

(1)

(2)

(3)

FIG. 3. (Color online) The figure illustrates our local multiresolution algorithm discussed in detail in Sec. VI. The graphs include
ferromagnetic [“cooperative” with wij > 0 in Eq. (1)] relations depicted by solid, black lines and antiferromagnetic (“neutral”
or “adversarial” with uij > 0) interactions depicted by gray, dashed lines. The line thickness indicates the relative interaction
strength, and we omit intercommunity adversarial and neutral relations for clarity. The following steps are completed for each
γ used in Eq. (1): In step (1), we independently solve a series of r “replicas” of the community detection problem (although we
could, in general, improve the efficiency by solving only the local communities embedded in the network). Step (2) identifies
the target node(s) of interest (solid red circles) and their corresponding parent clusters (blue dashed circles). Step (3) uses Eqs.
(9) and (11) to calculate correlations among all pairs of parent clusters in order to determine the community robustness at the
current resolution specified by γ in Eq. (1).

We can extend it with a stochastic heat bath [48] solver
or a simulated annealing algorithm [17] at the cost of sig-
nificantly increased computational effort, but the greedy
variant performs exceptionally well on many systems.

B. Global multiresolution algorithm

In order to set the stage for introducing our local mul-
tiresolution algorithm, we first discuss the global algo-
rithm and some of its features. As depicted in Fig.
2, our multiresolution algorithm iteratively applies the
CD algorithm in Sec. VI A to quantitatively evaluate the
most stable community partitions over a range of net-
work scales. After convergence, these replicas sample the
local energy minima of the energy landscape, giving an
estimate of its associated complexity.

In its basic form, the global MRA algorithm iteratively
solves the CD problem for a graph over a range of γ in
Eq. (1) and evaluates the average strength of the parti-

tion correlations to find more stable partitions. This pro-
cess quantitatively estimates the robustness of the iden-
tified partitions by sampling the complexity of the en-
ergy landscape. Previous work by the authors [11] on the
Lancichinetti-Fortunato-Kertész [76] as well as other syn-
thetic and real benchmarks [41] show that these strongly
correlated regions regularly correspond to the known, ac-
curate partitions.

Generally speaking, poorer correlations occur when
there are contending partitions of comparable strength
[i.e., the energy difference of the applied cost function is
near zero], the resolution is inside a glassy phase (extra-
neous intercommunity edges obscure the dynamic pro-
cess of locating the best solution), or the graph is more
random in nature. In the case of contending partitions,
local multiresolution methods, such as the one presented
in the current work, may be able to reliably extract the
well-defined communities.

We quantify the partition correlations using informa-
tion theoretic (or other appropriate) measures (see Sec.
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V A). If most or all solvers (replicas) agree on the best so-
lution, then we rate the partition as strongly correlated,
but if the partitions have large variations, we say the so-
lution is weak. In either case, we select the lowest energy
replica solution to represent the best answer at a given
resolution γi, but one could also construct a consensus
partition [15, 77, 78], particularly in the latter case of
weak solutions [79].

As a function of the resolution parameter γ in Eq. (1)
(or any relevant CD scale parameter for another model
[6, 17]), the best resolutions may be identified by peaks
or plateaus in NMI [11], minima or plateuas in VI [8, 11],
and/or plateaus in the number of clusters q [6] or other
measures [8, 11]. Plateaus in these measures (i.e., NMI,
VI, H, q, etc.) as a function of γ imply more stable fea-
tures of the network, although caution must be exercised
when interpreting some measures [11]. Sharper peaks in
NMI or narrow troughs in VI indicate strongly defined
but more transient features. Significant peaks in VI or
troughs in NMI generally indicate transitions between
dominant structures. More generally, we can further ex-
tract pertinent details of the network from other extrema
in NMI and VI (e.g., Ref. [80] also analyzed peaks in VI
to perform image segmentation using CD concepts).

Correlations among the replicas evaluate the level of
agreement on stable, low-energy solutions. If a problem
has two equally viable partitions (i.e., with the same
energy) that are located by two replicas, the one with
the highest overlap among all other replicas would
be preferred. This corresponds to the volume of a
configuration space basin associated with this preferred
partition where the other partition with the same energy
has an associated smaller basin size (the number of
states or exponentiated entropy). This is like an “order
by disorder” effect [81–84] present in various systems
(e.g., entropic contributions to the free energy in finite
temperature systems) which lifts the degeneracy between
equally viable partitions and favors one partition (or a
subset of partitions) over the others.

The MRA algorithm is:
(0) Initialize the algorithm. Select the number of inde-

pendent replicas r. Identify the set of resolutions {γi} to
analyze using Eq. (1) along with a starting γ0. It is often
convenient to begin at high gamma and step downward,
stopping if the system completely collapses.

(1) Initialize the system. For the current γi, initialize
each replica with a unique set of N spin indices (i.e.,

q
(j)
0 = N for each replica j).
(2) Solve each replica. Independently solve each replica

according to the CD algorithm in Sec. VI A.
(3) Compare all replicas. Calculate the Shannon en-

tropy for every replica and compare all pairs of replicas
using the mutual information I(A,B), normalized mu-
tual information U(A,B), and variation of information
V (A,B) measures in Sec. V A.

(4) Iterate to the next resolution. Increment to the
next resolution γi+1. A geometric step size ∆γ = 101/s

is often convenient where s ≈ O(10) is an integer number
of γi’s per decade of γ. Repeat steps (1)–(3) until the
system is fully collapsed (if stepping down in γi) or no
γi’s remain.

The information correlations in steps (3) and (4) allow
the determination of the best global network scale(s) [11]
(see Appendix A) based upon regions of γ with high NMI
or low VI. Plateaus in H, I, and q may also provide sup-
plemental information regarding partition stability. The
solution cost scales linearly in r with the CD algorithm in
secrefapp:CDalgorithm, O(rtL1.3 log k). We have solved
systems with O(107) edges on a single processor [11] in a
few hours.

The algorithm may detect, but does not impose, a hi-
erarchical community structure. That is, as shown in
Sec. VII A, the MRA algorithm will show strongly corre-
lated regions at the well-defined hierarchical levels, but
it is also able to analyze non-hierarchical multiresolution
structure. This approach is preferable to forcing a hier-
archical structure on every analyzed network [53] since
some networks may not naturally possess this type of
organization. Once the preferred resolutions are identi-
fied, the specific hierarchical nature can be analyzed and
evaluated by other means [85, 86].

C. LMRA replica method

Clusters naturally change as the resolution is varied,
so how do we identify the appropriate target clusters
for comparison? Two immediate approaches include: (i)
compare clusters for “nearby” resolutions as specified by
a particular γ in Eq. (1) or (ii) compare targeted parent
clusters for specific node(s) of interest across the replicas.
Another natural approach is to mix the above methods:
(iii) select a node of interest but further compare the
target clusters at neighboring resolutions. This is an ex-
tension of case (ii), so we focus on former cases, leaving
more complicated implementations to future work.

In case (i), if one deviates too far from γi, the clus-
ter will change substantially and the evaluation will be
less useful. That is, at some point, the cluster changes
enough that it is no longer the “same” community. We
could quantitatively define this comparison based on the
relevant CVI values, but the practical question of identi-
fying the appropriate community for comparison across
all partitions becomes increasingly difficult.

In case (ii), the node may be selected a priori based
on a known identity in the real network, or it may be ran-
domly selected. (One may also first analyze the global
system and use any communities with interesting fea-
tures to identify important nodes.) This option has two
advantages: it is simpler to implement, but more impor-
tantly, the studied clusters are always well-defined, en-
abling comparisons of community robustness across all
relevant resolutions. That is, at a given γi, we only need
to know to which cluster node i belongs, regardless of
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any structural changes in its network neighborhood as γ
is varied. Cluster correlations are quantitatively evalu-
ated at a given γi, but the average v(a, b) or u(a, b) values
over the replica pairs can still be compared across differ-
ent γi’s to evaluate the relative strength of the parent
communities.

Option (ii) is used in the current work. We select a
node of interest (e.g., a person in a terrorist network,
see Sec. VII B), and trace the parent clusters among the
replicas across a range of network scales [i.e., different
γi’s in Eq. (1)]. As depicted in Fig. 3, the LMRA algo-
rithm is:

(0) Initialize the algorithm. Select the number of repli-
cas r and the number of independent optimization trials
t per replica (see Secs. VI A and VI B). Select a set of
nodes {η} to track based on problem parameters (e.g., a
person of interest). Identify the set of resolutions {γi}
to analyze (often selected to sample all relevant network
scales, see step 4 in Sec. VI B) by minimizing Eq. (1).
Select a starting γ0.

(1) Solve r independent replicas. For the current γi in
Eq. (1), apply steps (1)–(3) of the global MRA algorithm
in Sec. VI B.

(2) Identify parent clusters. Identify the parent cluster
aij corresponding to each target node η at the current γi
in each replica j.

(3) Compare clusters. For each parent cluster aij , cal-
culate CVI v (aij , aik) in Eq. (9) and CNMI u (aij , aik)
in Eq. (11) with the corresponding parent cluster aik in
replica k. Calculate the average of measure Si [generi-
cally referring to measures v(a, b), u(a, b), etc. in Sec.
V B] over all replica pairs at γi by

Si(a, b) =
2

r(r − 1)

∑
k>j

Sijk(a, b), (12)

where i refers to a particular resolution parameter index
for γi in Eq. (1), and j and k refer to replica summations.

(4) Identify the best resolutions. For each parent
cluster aij , find the lowest CVI values v(a, b) or the
highest CNMI values u(a, b) and their corresponding
resolution(s) {γBest

i } ⊂ {γi}. These are the best resolu-
tions for each cluster aij .

Step (4) is the final result for the algorithm, indicat-
ing which resolutions and candidate partitions are mostly
likely to be useful. As with the global MRA approach in
Sec. VI B, we are interested in extrema or plateaus in the
pertinent measures in Sec. V. Empirically, r ≈ O(10) or
less appears to be sufficient for most problems. We esti-
mate the cost to be O(Lr2) which is comparable to the
base MRA algorithm cost in Sec. VI B.

D. Alternative implementations

In the current work, we contrast local, community-level
analysis with global multiresolution correlations. Thus,

Level 4

Level 3

Level 1

Level 2R

Level 2L

FIG. 4. (Color online) The figure depicts a constructed
N = 1024 node four-level hierarchy. Level 1 is the complete
network with two sides of supercommunities that are ran-
domly connected at a low edge density between them. Level
2 consists of two roughly equal sized branches (NL = 502
and NR = 522) which we denote by left (L, blue or darker
tone) and right (R, purple or medium tone) as the figure in-
dicates. Level 3 is the set of supercommunities, and level 4
is the set of smallest communities strictly contained within
the supercommunities. At levels 3 and 4, elements of the left
branch are connected at higher internal and intercommunity
edge densities than the corresponding right branch elements.
See the text for a more detailed description of the network.
This construction results in a more “blurred” global multires-
olution signature in Fig. 5(a) where level 4L is lost in the
global MRA plot at feature (iv). The corresponding LMRA
plot for node 951 in Fig. 6(c) is nevertheless able to clearly
identify level 4L as a strongly defined resolution.

in this algorithm, we solve for all communities in the full
system and then select the appropriate parent clusters
for the community-level analysis. Since the only global
parameter that we need to evaluate CVI or CNMI is the
system size N , a more efficient approach could take ad-
vantage of our local cost function in Eq. (1) (see also
Ref. [44] for a more efficient method applied a different
fitness function [43]). Specifically, we would solve for the
target communities around a particular node of interest
ai by examining community membership opportunities
strictly for the neighbors of nodes in or connected to ai’s
local neighborhood. The remainder of the graph parti-
tion need not be specified in detail to apply Eqs. (9) and
(11).

A more comprehensive alternative to step (3) could be
useful if there are no a priori nodes of interest to study.
That is, we could compare all pairs of clusters and iden-
tify the best matching cluster bik for aij based on the

minimum v(jk)(a, b) at the current γi. Then we would
average CVI over all cluster matches for each best-cluster
pair. In this scenario, we could further pursue the rela-
tive cluster comparisons among the replicas by evaluat-
ing whether the best clusters match among themselves.
That is, we would determine if bik of partition A also
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Side

FIG. 5. (Color online) In panels (a), we apply our global multiresolution algorithm (MRA, see Appendix A and Sec. VI B) to the
N = 1024 node, four-level, branched hierarchy depicted in Fig. 4. Panels (b) and (c) show the MRA method applied separately
to the left and right level 2 hierarchy branches, respectively. In the top sub-panels (a–c), we compare replica partitions using
normalized mutual information U (left axes, see Sec. V A) and mutual information I (right axes). In the corresponding bottom
sub-panels, we plot variation of information V (left axes) and the Shannon entropy H (right axes). We also plot the average
number of communities q (offset right axes) in top and bottom sub-panels. Features (i)–(iii) demonstrate that the global MRA
algorithm can detect network-wide stable partitions [11]. Feature (iv) in panel (a) shows that the level 4 community structure
on the left side, known to be present at feature (4L) in panel (b), is almost completely obscured because the right branch is
significantly more random at the same network scale [i.e., value of γ in Eq. (1), see also Sec. IV B]. In Fig. 6, we compare
parent communities using the local multiresolution algorithm in Sec. VI where we demonstrate that the method can accurately
extract level 4L for the targeted nodes.
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(c) Local MRA: Node 951 – Member of left

side

FIG. 6. (Color online) In panels (a–c), we apply our local multiresolution algorithm (LMRA) in Sec. VI to randomly selected
nodes of the branched hierarchy depicted in Fig. 4. The top sub-panels compare targeted communities in the solved replicas
(independent solutions) using the cluster normalized mutual information u(a, b) (left axes, see Sec. V B) and the mutual
information contribution Iab. The corresponding bottom sub-panels plot the cluster variation of information v(a, b) (left axes)
and the Shannon entropy contribution Ha (right axes). Both top and bottom sub-panels also plot the average number of nodes
n in the respective parent communities on the offset right axes. The LRMA method is easily able to extract the relevant levels
3 and 4 for the target nodes as evidenced by regions of low CVI (or high CNMI) even though level 4L of the hierarchy is almost
completely obscured at feature (iv) in the combined global MRA plot in Fig. 5(a).
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matches the parent cluster dil in partition B, repeating
the process to the desired depth.

With this alternative to step (3), individual community
matches among the r replicas (see Fig. 3) are not neces-
sarily symmetric. That is, while Eq. (9) is symmetric
in (a,A) and (b, B), this does not require that the best
matching clusters in the respective partitions necessar-
ily agree. Consequently, it would provide an additional
measure of community robustness based on the level of
mutual agreement (number of agreed matches compared
to the total possible matches among all replicas).

VII. EXAMPLES

As discussed in Sec. VI B, we calculate the global MRA
algorithm for the network and concurrently apply the
LMRA algorithm in Sec. VI to targeted nodes by track-
ing the respective parent clusters across a full range of
network scales. Comparing explicit values of VI and CVI
is difficult, so we evaluate relative values of VI or CVI
for a given network. We demonstrate the LMRA method
with a constructed network example and a small, real ter-
ror network.

A. Branched hierarchy

We construct a branched, strict hierarchy as depicted
in Fig. 4 which we use to test the LMRA method of Sec.
VI. Level 1 is the full system of N = 1024 nodes; level 2 is
the two-part branch split (groups of superclusters) with
NL = 502 and NR = 522 nodes for the left (L) and right
(R) sides, respectively; level 3 is the set of superclusters;
level 4 is the set of innermost clusters.

Level 1 was defined by connecting nodes in the left
and right branches (levels 2L and 2R) with an in-
tercommunity density p1 = 0.015. The approximate in-
tracommunity edge densities at level 4 were p4L = 0.9
and p4R = 0.6 assigned randomly with a normal distri-
bution of σp = 0.02. We connected nodes between the
respective communities in the intermediate levels 2 and
3 with probabilities: p3L = 0.37, p3R = 0.10, p2L = 0.16,
and p2R = 0.03. These values were selected in order to
demonstrate a somewhat “blurred” multiresolution sig-
nature in a controlled example where the underlying local
structure is nevertheless strongly defined.

In Fig. 5(a), we show the global MRA algorithm from
Ref. [11] (summarized in Sec. VI B) applied to the full
N = 1024 node network using r = 20 replicas and
t = 10 optimization trials per replica. A more thor-
ough discussion follows, but briefly, feature (iv) illus-
trates how poorly-correlated communities almost com-
pletely obscure the well-defined level 4L structure. Nev-
ertheless, the local MRA algorithm in Sec. VI can fully
extract this hidden section of the hierarchy.

In Fig. 5, the left axes plot NMI, U , and VI, V , from
Sec. V A in the top and bottom sub-panels, respectively,

averaged over all replica pairs. On the right axes, we plot
the average mutual information I and the Shannon en-
tropy H for the top and bottom sub-panels, respectively.
The right offset axes in both sub-panels plot the aver-
age number of communities q. Panels (b) and (c) show
the MRA results applied to the separate left and right
branches of the hierarchy, respectively, using the same r
and t as in panel (a).

For completeness, features (i)–(iii) in panel (a) illus-
trate how the global MRA signature can identify pre-
ferred or stable resolutions by low VI or high NMI corre-
lations (or plateaus in H, I, and q in this example) av-
eraged over the independently-solved replica partitions.
Specifically, feature (i) corresponds to level the 2 par-
tition with qi = 2, and feature (ii) concurrently iden-
tifies levels 2L and 3R with qii = 11 because the re-
spective community edge densities are similar (see Sec.
IV B). Likewise, feature (iii) solves levels 3L and 4R with
qiii = 52. These specific partitions consist of combina-
tions of well-resolved sub-graphs at different levels of the
branched hierarchy, but it is the loss of level 4L in the
global MRA plot that is the main topic of this example.

At feature (iv) in panel (a), the poor correlations show
that the global analysis of the full system misses level
4L. This occurs because the well-defined local clusters
conflict with more random partitions for the right-side
subgraph in Fig. 4. In contrast, panels (b) and (c) show
that the MRA method applied to the separate left and
right branches are perfectly defined with V = 0 and U =
1 [marked by (2L), (3L), . . ., (4R), respectively]. That is,
the structure clearly exists locally, but the global MRA
method in panel (a) cannot resolve level 4L.

In Fig. 6(a–c), we plot the results of the new LMRA
method from Sec. V B for the parent clusters of three
randomly selected nodes 116, 661, and 951, respectively,
as identified within the full N = 1024 node system. On
the left axes, we plot CNMI u(a, b) in Eq. (11) and CVI
v(a, b) in Eq. (9), respectively, averaged over all commu-
nity pairs in the respective replicas. On the right axes, we
plot the mutual information contribution Iab in Eq. (8)
and the Shannon entropy contribution Ha in Eq. (7) av-
eraged over all pairs of target communities in the replicas
or all target communities, respectively. The offset right
axes plot the average number of nodes n over all targeted
communities.

Despite being buried within the full N = 1024 node
system, the parent cluster of node 951 corresponding to
level 4L is clearly present in the LMRA analysis in Fig.
6(b,c). This illustrates how our LMRA algorithm can
resolve well-defined local structure even when the global
signature is obscured. In principle, we could further apply
the LMRA algorithm to all clusters in the partitions and
unambiguously identify the entire set of well-defined level
4L communities.
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(a) Terrorist network – γ = 0.1 (b) Expanding network around Mohamed Atta

FIG. 7. (Color online) The figure depicts a small terrorist network collected from publicly available data [87]. Panel (a)
shows the overall network at γ = 0.1 in Eq. (1) where distinct node shapes indicate separate communities. Panel (b) shows
an “expanding” community around Mohamed Atta where his “local” cluster grows roughly outward in the diagram. Here,
new node categories (shapes and colors) indicate nodes added to the parent cluster (as opposed to new communities) as γ is
lowered to particular well-defined resolutions (see text). In this network, our local multiresolution algorithm indicates that
these communities are strongly defined on an individual basis with CVI v(a, b) = 0 in Fig. 9(b) even at resolutions where
the overall system structure is more vaguely defined in Fig. 8. This illustrates the main benefit of our local multiresolution
approach.

B. Small terrorist network

Even small networks can possess strongly-defined local
clusters within a more indistinct global partition. We
apply the LMRA method to a small terrorist network
related to the terrorism attacks of September 11, 2001, as
constructed from publicly available data [87]. Given that
the highest quality intelligence would be classified, our
purpose here is to demonstrate the practical application
of the LMRA on real data as opposed to setting forth
a rigorous study of the terrorist network. Toward this
end, we select Mohamed Atta for study as the leader of
the operation. We further consider Hani Hanjour, who
was another pilot, and Zacarias Moussaoui, who was the
only terrorist of the 20 prevented from participating in
the attack.

Figure 7(a) depicts the network at γ = 0.1 in Eq. (1)
corresponding to the minimum VI at feature (i) in Fig.
8 with V ' 0 (see below). Here, distinct node shapes in-
dicate separate communities. The community partitions
with V = 0 at the lowest γ’s are disjoint clusters where
all nodes are completely collapsed into their respective
connected groups, resulting in a trivial partition. The
left axes plot U and V (see Sec. V A) for top and bottom
sub-panels, respectively, averaged over all replica pairs.
On the right axes, we plot I and H for the top and bot-
tom sub-panels, respectively, and the offset axes in both
sub-panels plot the average number of communities q.

Figure 7(b) shows the expanding network core centered

on Mohamed Atta at several strongly-defined resolutions
as determined from Fig. 9(b) where v(a, b) = 0. In this
panel, distinct node shapes and colors indicate added
nodes [as opposed to new communities in panel (a)],
roughly spreading outward as γ is lowered. Specifically,
the fixed resolutions correspond to γ = 10 (smallest, in-
nermost cyan circles), γ = 3 (yellow square), γ = 0.6
(green diamonds), γ = 0.3 (red triangles), γ = 0.125
(dark blue circles), and γ = 0.05 (largest, pink squares)
with a few other small fluctuations not depicted.

On the left axes in Fig. 9(a–c), we plot CNMI u(a, b)
in Eq. (11) and CVI v(a, b) in Eq. (9), respectively, aver-
aged over all pairs of parent communities in the respec-
tive replicas. Similarly, the right axes plot the mutual
information contribution Iab in Eq. (8) and the Shannon
entropy contribution Ha in Eq. (7) averaged over all pairs
of parent communities or all parent communities, respec-
tively. The right offset axes display the average number
of nodes n over the parent communities.

Each panel shows distinct, but different, regions of γ
where the parent clusters are strongly defined, but the
cluster correlations in the full network in Fig. 8 are more
poorly defined at most resolutions. Hani Hanjour has a
LMRA signature distinct from Mohamed Atta for γ &
1, but they match at lower γ because they are mutual
members of the same communities.
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FIG. 8. (Color online) We apply our multiresolution algo-
rithm (see Appendix A and Sec. VI B) to a small terrorist
network [87]. Although the plot shows a best resolution at
γ ' 0.1 (depicted in Fig. 7) as indicated by V ' 0, the re-
mainder of the plot has a largely blurred multiresolution sig-
nature (high VI or low NMI). The V = 0 region on the far left
is an essentially trivial partition into nearly disjoint clusters.
In Fig. 9, we show results from the local multiresolution al-
gorithm in Sec. VI to three selected terrorists where we track
the respective parent clusters over a range of resolutions [i.e.,
values of γ in Eq. (1)] and calculate the cluster correlations
using the CVI and CNMI in Sec. V B.

C. LFR Benchmark

We also tested the LMRA method on a common CD
benchmark by Lancichinetti Fortunato and Radicchi [76],
which was designed to emulate a series of strongly defined
networks with realistic distributions of community sizes
and edge assignments. Specifically, it defines a power-law
distribution of community sizes specified by an exponent
β, minimum size nmin, and maximum size nmax. It adds
random unweighted, undirected edges to the network,
defining both the communities and any intercommunity
noise (extraneous edges outside of the well-defined com-
munities), according to a power-law distribution of node
degrees given by an exponent α, average power-law de-
gree 〈k〉 (or minimum degree kmin), and maximum degree
kmax.

In the current tests, we solve for each system using the
algorithm in Sec. VI C using 20 replicas to ensure that we
have a good sample of possible partitions and t = 4 trials
per CD solution attempt. We used N = 10000, 〈k〉 = 35,
nmin = 10, nmax = 50, α = −2, β = −1, and µ = 0.1

or 0.5 as indicated in Fig. 10. The mixing parameter µ
controls the level of intercommunity noise. The results of
the global MRA method of Sec. VI B are shown in Fig.
10, and the corresponding local LMRA data for three
randomly selected nodes are in Fig. 11. As with previ-
ously demonstrated examples [11, 75], the global MRA
algorithm correctly identifies the constructed global par-
tition with exceptional accuracy in the presence low and
high noise in panels (a) and (b). The extreme noise case
in panel c was included for comparison purposes, since
mixing parameters higher than µ ' 0.7 present excep-
tional challenges for all tested CD algorithms in [75]. The
planted partition may even exceed limits of well-defined
communities (see [28, 32, 48] for some general discussion).

In Fig. 11(a) where µ = 0.1, the LRMA method identi-
fies the proper community of node 7603, as indicated by
the arrows at feature (i). Panel (b) of Fig. 11 for node
1213 shows a similar for µ = 0.5, where the correct clus-
ter is again identified perfectly. In both cases, the cluster
structures appear to have reasonably well-defined parent
communities with v being roughly near zero for γ & 4
and 1, respectively, but the CNMI measure clearly shows
u < 1 indicating poorly defined communities. Thus, the
proper interpretation of parameters v and u requires con-
sidering the relative values over the studied range of γ.
Further, one should consider all of the measures together
when identifying relevant community structure(s).

Feature (i) in panel (c) for node 2502 indicates two γ
values which display perfect correlations in CNMI and
CVI, respectively. At γ = 0.12, the parent cluster of the
target node forms a trivial split into a size n = 2 commu-
nity due to the excessive noise. The result at γ = 0.095
shows a partial-identification of the intended cluster with
u = 0.88 when compared with the intended community
by construction. This correlation represents a transient,
partially-false-positive identification since u = 1 among
the algorithm replicas. Additional helps mitigate such
identifications. The large error bars to the left of fea-
ture (i) indicate wide disagreement between the different
candidate clusters among the replicas.

For other problems with very low noise (not depicted),
both CVI and CNMI may indicate a strong partition with
u ' 1 or v ' 0 across a wide range of γ’s without clearly
marking the transitions by changes in v or u. This may
imply that the communities in which the node resides are
not blurred by significant noise so that many of the struc-
tural transitions as γ is varied are sharply defined. The
supplemental measures of Ha and Iab for communities
a and b or the number of communities q can help dis-
tinguish between these different structures, but in these
cases, the base LMRA method may not be conclusive.

VIII. CONCLUSION

Multiresolution network analysis extends the basic no-
tions of community detection to select the best resolu-
tion(s) for a given network over a range of network scales.
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FIG. 9. (Color online) In each panel, we apply our local multiresolution algorithm (LRMA, see Sec. VI) to a small terrorist
network [87]. We analyze three selected terrorists (see text) by tracking the respective parent clusters over a range of resolutions
[i.e., values of γ in Eq. (1)]. We then calculate the cluster correlations using the community comparison measures in Sec. V B.
Note that the individual nodes possess certain strongly preferred resolutions with v(a, b) = 0 for their parent clusters whereas
the global system in Fig. 8 is less well-defined for most values of γ.
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FIG. 10. (Color online) We apply our multiresolution algorithm from Sec. VI B [11, 75] to the LFR benchmark [76] with mixing
parameters µ = 0.1, 0.5, and 0.8. These values correspond to a low (panel a), moderately high (b), and extremely high (c) levels
of network noise, respectively. See the text for other benchmark parameters. In panels (a) and (b), the constructed partitions
are correctly identified at feature (i) by low VI or high NMI. In panel (c), a preferred partition resolution is implied by similar
extrema at feature (i), but the exact identity of the intended partition is probably beyond the capability of our algorithm to
extract. Further, based on overall results in [75], the intended partition likely lies beyond the detection capability of current
CD algorithms. Other works [28, 32, 48] discuss maximum detectability limits and transitions, which may apply here. In Fig.
11, we show corresponding results from the local multiresolution algorithm in Sec. VI for randomly selected nodes where we
track the respective parent clusters over a range of resolutions [i.e., values of γ in Eq. (1)] and calculate the cluster correlations
using the CVI and CNMI in Sec. V B.
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FIG. 11. (Color online) In each panel, we apply our local multiresolution algorithm of Sec. VI to an implementation of the
LFR benchmark [76]. Mixing parameters are µ = 0.1, 0.5, and 0.8 which correspond to a low (panel a), moderately high
(b), and extremely high (c) levels of network noise, respectively. See the text for other benchmark parameters. We analyze
the parent communities for randomly selected nodes over a range of resolutions [i.e., values of γ in Eq. (1)]. Other nodes
display comparable multiresolution signatures. We then calculate the cluster correlations using the community comparison
measures in Sec. V B. In panels (a) and (b), the defined communities are correctly identified as feature (i) with v = 0 and
u = 1 for their parent clusters, corresponding to the correct solution for the global system in Fig. 10. The correct benchmark
communities are clearly detected as stable regions in each of the various cluster measures. In panel (b), note that v is near zero
for this plot beyond γ & 4, but the CNMI measure clearly shows relatively low u values, indicating that we should focus on the
correct partition at feature (i). Feature (i) in panel (c) has two perfect correlations in CNMI and CVI at γ = 0.12 and 0.095,
respectively. The former is a trivial split of the target node into a size n = 2 community due to the excessive noise, and the
latter is a partial-identification of the intended cluster (u = 0.88 with the intended construction), which represents a transient,
partially-false-positive identification since u = 1 among the algorithm replicas. However, the exact intended partition likely lies
beyond the detection capability of current CD algorithms (see [75] and also [28, 32, 48] which discuss maximum detectability
limits and transitions), and there is some concern as to whether the intended partition is even well-defined.

Certain networks may present situations where local clus-
ters experience a lost-in-a-crowd effect. Despite being
strongly defined, the local structure may be lost among a
collection of more poorly defined communities at a given
resolution. This may occur due to the sheer size of a
network or because most clusters do not coalesce in their
strongest state(s) at the same scale(s).

We presented an extension of an existing global mul-
tiresolution method [11] to detect and quantitatively as-
sess local multiresolution structure. We proposed cluster-
level analogies to variation of information and normalized
mutual information which evaluate the strength of local
communities in the context of a pair of network parti-
tions. After applying these measures to evaluate corre-
lations among individual parent communities in multiple
independent solutions (replicas), we demonstrated that
the proposed local multiresolution algorithm is able to
identify the best resolutions and extract the local struc-
ture despite a blurred global multiresolution signature.
In addition, we demonstrated that the algorithm cor-
rectly identifies individual clusters in the single-layered
structure of the LFR benchmark. Our approach only
requires output communities from a multiresolution ca-
pable CD algorithm, so it is independent of the search

algorithm or CD model, making it suitable for use with
any CD method that can identify partitions across dif-
ferent network scales.
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Appendix A: Local and global terminology

The meaning of the terms local and global depends
on the context. For our purposes, global cost functions
are those that require network wide (global) parameters
(e.g., number of edges L, number of communities q, over-
all graph density p, etc.) in the quantitative evaluation
of community structure [14, 17]. Global multiresolution
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methods are those for which the best partition is simul-
taneously determined for the entire system, effectively
averaging the partition robustness over all communities.
This is true regardless of whether the cost function is
itself local or global in nature.

Local cost functions [11, 40, 41] or algorithms [15] uti-
lize parameters only in the neighborhood of a community
or node (e.g., size of community a, edges of node i, etc.)
to evaluate the best community structure. These can be
subdivided into weak and strong local cost functions [41]
where weakly-local cost functions may depend on the de-
tails of the community structure. Briefly, strongly local
cost functions determine community membership for a
given node based only on the node’s own relations with
candidate communities. Local multiresolution methods,
such as the current work, seek to identify the best com-
munities based on their own robustness at a given reso-
lution. That is, each community determines whether it
is strongly defined regardless of the community structure
present in the remainder of the network. The evaluation
of the best resolution is not effectively averaged over all
the communities in the graph. Further, each commu-
nity may be strongly resolved at different network scales
(often described in terms of certain model weight param-
eters).

Appendix B: Semi-metric property of CVI

A semi-metric possesses intuitive “distance-like” prop-
erties for comparing cluster similarity. The proof that
CVI is a semi-metric is trivial. A measure S(a, b) on a
set X with two variables a and b in X is a semi-metric if
and only if it satisfies the following conditions:

• Non-negativity – S(a, b) ≥ 0 for all a and b.

• Zero only for equality – S(a, b) = 0 if and only if
a = b.

• Symmetry – S(a, b) = S(b, a) for all a and b.

S(a, b) is a metric if it additionally satisfies the triangle
inequality S(a, c) ≤ S(a, b)+S(b, c) for three variables a,
b, and c in X.

Theorem 1. CVI in Eq. (9) is a semi-metric between
two clusters a and b in partitions A and B of size |A| =
|B| = N in the space of possible partitions of the N nodes:
(1) It is non-negative and equal to zero if and only if
a = b. (2) It is symmetric with respect to clusters (a,A)
and (b, B), v(a, b) = v(b, a).

Proof.
(1) It is non-negative and strictly equal to zero if and

only if a = b. From Eq. (9)
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since na > 0, nb > 0, nab ≥ 0, na ≥ nab, nb ≥ nab,
N ≥ na, and N ≥ nb.

Furthermore, a = b implies that na = nb = nab, which
trivially yields
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Now, if v(a, b) = 0, this implies
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Since nab ≥ 0, na ≥ nab, nb ≥ nab, N ≥ na, and N ≥ nb,
all terms are non-negative; so they cannot cancel each
other. Each term must be individually zero.

First, if nab = 0 the last two terms in Eq. (B3) are
zero. Then since na > 0 and nb > 0, N = na = nb, but
this result requires that nab = N which contradicts the
assumption that nab = 0. Thus, nab > 0.

Now, the third term in Eq. (B3) vanishes only if na =
nab, and fourth term is zero only if nb = nab. Thus,
na = nb = nab which means that a = b.

Thus, v(a, b) = 0 if and only if a = b.

(2) It is symmetric with clusters (a,A) and (b, B),
v(a, b) = v(b, a).
Since nab is necessarily equal to nba, Iab(A,B) is sym-
metric in clusters (a,A) and (b, B). The symmetry of
v(a, b) is then immediately obvious.

Thus, CVI is a semi-metric.

We have not proved the triangle inequality for CVI, mak-
ing it a metric, but the triangle inequality appears to be
violated rarely, if at all.
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Appendix C: Alternative cluster measures

A tempting alternate measure for CVI might be de-
fined based on the individual terms of

V (A,B) = H(A|B) +H(B|A)

=
∑
a,b

[
nab
N

log
nb
nab

+
nab
N

log
na
nab

]
. (C1)

where A and B are two partitions of a graph. From this
equivalent definition of VI, the natural CVI definition for
two clusters a in A and b in B would be

v′ab(A,B) =
nab
N

log
na
nab

+
nab
N

log
nb
nab

. (C2)

Unlike CVI in Eq. (9), Eq. (C2) has the nice property
that the individual cluster contributions sum to V (A,B),
V (A,B) =

∑qA
a

∑qB
b v′ab(A,B).

Unfortunately, this particular measure does not work
for cluster comparisons. While v′aa(A,A) = 0 as desired,
it is also the case that v′ab(A,B) = 0 if nab = 0. That
is, it is zero if no overlap exists between a and b which
violates the notion of a “distance” as well as one of the
requirements for being a (semi)metric. VI is a metric on
partitions A and B because it sums over all a and b in A
and B, respectively.

We could also consider an alternate ad hoc defini-
tion by redefining the CVI entropy terms in Eq. (10)
according to v′′ab(A,B) = Ha(A)/qB + Hb(B)/qA −
2Iab(A,B). This variant would again yield the desirable
property V (A,B) =

∑qA
a

∑qB
b v′′ab(A,B), but the mea-

sure loses the semi-metric requirements v′′ab(A,B) ≥ 0
and v′′aa(A,A) = 0.
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