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Bose–Einstein condensation, fluctuations, and recurrence relations
in statistical mechanics

W. J. Mullin and J. P. Fernández
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003

~Received 7 November 2002; accepted 13 December 2002!

We calculate certain features of Bose–Einstein condensation in the ideal gas by using recurrence
relations for the partition function. The grand canonical ensemble gives inaccurate results for certain
properties of the condensate that are accurately provided by the canonical ensemble. Calculations in
the latter can be made tractable for finite systems by means of the recurrence relations. The ideal
one-dimensional harmonic Bose gas provides a particularly simple and pedagogically useful model
for which detailed results are easily derived. An analysis of the Bose system via permutation cycles
yields insight into the physical meaning of the recurrence relations. ©2003 American Association of

Physics Teachers.
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I. INTRODUCTION

The achievement of Bose–Einstein condensation~BEC! in
alkali gases1 was a remarkable feat in atomic and low
temperature physics. The gases are most often trapped
netically in potentials accurately approximated by harmo
oscillator wells. The result has been a deluge of theoret
papers on BEC in harmonic potentials, both for ideal a
interacting gases.2 Experimentally, the gases are sufficient
dilute and weakly interacting that the ideal gas is a good fi
approximation for their description, making the subject mo
accessible to students even in their first statistical phy
course.

A basic problem with the standard presentation of BEC
that the grand canonical ensemble misrepresents se
physical quantities when a condensate is present. For
ample, grand canonical ensemble calculations greatly o
estimate the fluctuations of the condensate number.
though, because of their isolation, the most realistic desc
tion of the experimentally condensed gases is via the mi
canonical ensemble, the canonical ensemble gives equ
accurate results. In the latter the system of interest is in c
tact with a heat bath but the particle number is kept fix
which is crucial.

Calculations using the canonical ensemble are avoide
most elementary treatments of BEC because of mathema
complications. The grand canonical ensemble removes t
complications by putting the system in contact with a parti
bath. Unfortunately, when there is a condensate, the de
glie wavelength can be larger than the system size, ma
the distinction between system and bath meaningless
leading to the fluctuation inaccuracy mentioned. Moreov
the trapped Bose systems of current interest consist of r
tively few particles. There exist simple methods using rec
rence relations that have been exploited often in recent w
to treat finite systems in the canonical ensemble; howe
these relations are not well known outside the research
erature. It is these techniques that we want to discuss h

Because the experimental trapped systems are finite,
are not equivalent to systems in the thermodynamic lim
The trapped systems have a nonuniform distribution es
lished by the external harmonic potential. The true therm
dynamic limit in these systems would require that as
particle numberN is increased, we also would decrease
661 Am. J. Phys.71 ~7!, July 2003 http://ojps.aip.org/aj
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frequencyv of the potential in such a way that the maximu
density—proportional tovdN, whered is the spatial dimen-
sion of the system—remains constant.3,4 Although this limit
is not physically realized and finite systems have no r
phase transitions, the experimental transformation of the
tem into its lowest state is still rather sudden. Neverthele
the existence of a mathematically sharp phase transitio
not crucial to the description of real systems. What is imp
tant is the appearance of a ‘‘condensation,’’ by which w
mean the rapid accumulation of a substantial fraction of
N particles into the ground state~without big fluctuations
about this average! when the temperature falls below a ce
tain finite value. We will show that even a finite one
dimensional ideal Bose gas in a harmonic potential has
property.

The choice of the canonical ensemble and the use of
recurrence relations are particularly suitable for the study
finite systems. Thus a simple model with physical propert
amenable to calculation is available to be exploited for pe
gogical or other purposes.

In Sec. II we will review the standard grand canonic
ensemble treatment of the one-dimensional~1D! harmonic
ideal Bose gas and identify a temperature below which th
is a substantial accumulation of particles in the ground st
We will also identify the physically unrealistic fluctuations
the ground-state occupation that appear in the grand can
cal ensemble description. In Sec. III we will show how t
1D Bose gas can be treated by developing a recurrence
tion for the partition function. More general recurrence re
tions for the average number of particles in a single-part
state and for the partition function are developed in Sec.
Armed with these tools, we compare canonical ensemble
culations with their grand canonical ensemble equivale
For a finite system there are only small differences in
mean values; however, there are large differences in the r
mean-square fluctuations. In Sec. V we look at the cond
sation problem from a quite different point of view, name
that of permutation cycles a` la Feynman.5 Such a view gives
a physical explanation to several mathematical formulati
found in the previous sections and especially to the partit
function recurrence relation. From this point of view we al
see that the grand canonical ensemble misrepresents the
densate, while the canonical ensemble treats it accura
661p/ © 2003 American Association of Physics Teachers
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We find the somewhat surprising result that the condensa
made up of equally probable permutation cycles of
lengths up to the condensate number.

II. GRAND CANONICAL TREATMENT

We first consider a grand canonical ensemble treatmen
BEC in a one-dimensional~1D! harmonic well. Although our
approach is typical of most statistical physics textbooks,
know of only one such book that actually covers this parti
lar example.6 The harmonic potential leads to equally spac
single-particle energy levels given by

ep5pD, ~1!

with p a non-negative integer. The zero-point energy, om
ted in Eq.~1!, can be restored to any physical quantity at t
end of the calculation. The constantD is related to the har-
monic angular frequencyv by D5\v.

In the grand canonical ensemble7 the average number o
particlesN is given by the relation

N5(
p

1

eb(ep2m)21
, ~2!

where b51/kBT and m is the chemical potential. In Bos
problems the denominator is often expanded in powers
e2b(ep2m) to yield

N5(
l 51

`

elbm (
p50

`

e2b lpD5(
l 51

`

elbmZ1~b l !, ~3!

where

Z1~b l !5
1

12e2b lD ~4!

is the one-body partition function at the effective inver
temperatureb l . In Sec. V we will see that the sum overl in
Eq. ~3! represents a sum over permutation cycles.

For the very weak potentials used to trapN particles ex-
perimentally, the harmonic oscillator states are very clos
spaced (\v!kBT). Thus to a good approximation we ca
replace the sum overp in Eq. ~3! by an integral.@Alterna-
tively, we could directly replace the sum in Eq.~2! by an
integral to arrive at the same result.# Because*dp e2b lpD

5(b lD)21, we find

N'N85
1

bD (
l 51

`

elbm
1

l
52

kBT

D
ln~12ebm!. ~5!

The sum in Eq.~5! is one of the Bose integrals,8 which in
this case can be evaluated analytically. Of course, chan
the sum to an integral is valid only if the summand is
smooth function ofp; we then lose the contribution of th
lowest state when it becomes occupied with orderN par-
ticles. HenceN8 in Eq. ~5! is just the contribution of the
excited states, and we obtain the total numberN by including
the ground-state population:

N5n01N8, ~6!

where

n05~e2bm21!21. ~7!

We want to identify a Bose–Einstein ‘‘transition temper
ture,’’ that is, one below which there will be a sizable fra
662 Am. J. Phys., Vol. 71, No. 7, July 2003
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tion of theN particles in the ground state. From Eq.~7! this
requirement implies that2bm5(gN)21!1, whereg is a
number of order unity. If we invert Eq.~5!, we obtain

12e2bN8D5ebm'11bm, ~8!

so thatbN8D' ln gN. BecauseN8 is of orderN at the tran-
sition, we find that the condensate will be large for tempe
tures belowT0 defined by3,9

T05
ND

kB ln N
. ~9!

We can show3 that the density of the system is propo
tional to ND, so that, in the thermodynamic limit, we kee
the numeratorND constant while lettingN→`, D→0. Then
the characteristic temperature will go to zero as 1/lnN, which
is small only for extremely largeN. In actual 1D
experiments,10,11 where N is about 104, the logarithm re-
duces this characteristic temperature only by a factor of or
10 compared toND/kB , an experimentally accessible valu
Nevertheless, we say that there is a ‘‘quasicondensati
rather than a real one. For a two-dimensional~2D! ideal gas
we find that an actual phase transition occurs; however
accord with the Hohenberg theorem,3 this transition disap-
pears if there are particle–particle interactions. On the ot
hand, some authors have claimed that the 1D and 2D fi
interacting systems at sufficiently low temperature have
true condensation, because the coherence length beco
larger than the finite condensate size.12,13 ~Moreover, in 2D
we expect a true phase transition of the Kosterlitz–Thoul
variety14 at a temperature of orderDAN.)

It is straightforward to solve Eq.~3! numerically for the
chemical potentialm and compute the exact condensate nu
ber from Eq.~7! for some given averageN value. In Fig. 1
we show the occupation of the first two energy levels
N5500. We see thatT0 provides a fairly good estimate o
the quasicondensation temperature.

Many textbooks compute particle-number fluctuations
the grand canonical ensemble.7 The grand partition function
for any ideal Bose gas with statesep each occupied bynp
particles is7

Fig. 1. Grand canonical ensemble calculation of the number of particle
the two lowest states versusT/T0 for the 1D harmonic Bose gas. The resul
shown for all the figures are forN5500.
662W. J. Mullin and J. P. Ferna´ndez
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Z5(
N

ZN ebmN5)
p

(
np50

`

e2b(ep2m)np

5)
p

1

12e2b(ep2m) , ~10!

whereZN is the canonical partition function of anN-particle
system. The average square deviation of the occupation n
ber np is

Dnp
2[~np2n̄p!25~kBT!2

]2 ln Z
]ep

2 5n̄p1n̄p
2 . ~11!

With no condensate we haven̄p!1 for all except a negli-
gible number of excited states, soDN25(pDnp

2'(pn̄p

5N, and we have a normal distribution with

ADN2

N
5O~N21/2!. ~12!

However, with a condensate of orderN, we have

ADn0
2

N
5O~1!, ~13!

that is, the fluctuations of the condensate are as large a
condensate itself—a manifestly unphysical result. This pr
lem is not new,15,16but has received a large amount of rece
attention,17–27 including the invention of a new ‘‘fourth’’
ensemble—the so-called ‘‘Maxwell demon’’ ensemble—
take care of it.21

There are various explanations of what goes wrong w
the grand canonical ensemble. Grossmann and Holtha17

state that ‘‘@T#he relative mean square fluctuations of t
ground state population, and thus the relative fluctuation
the total particle number, approach unity: as a result of p
ticle exchange with the reservoir, the uncertainty of the nu
ber of particles becomes comparable with^N& itself. This
fluctuation catastrophe is related to the divergency of
quantum coherence lengthlT for T→0. WhenlT vastly ex-
ceeds the length scale characterizing the system under
sideration, a rigid distinction between ‘system’ and ‘res
voir’ is no longer practical.’’ The difficulty also can be state
in more mathematical terms. The grand canonical ensem
often is shown to be equivalent to the canonical ensemble
using the method of steepest descents,28 which evaluates the
canonical partition function by an approximation to a co
plex integral of the grand canonical partition function. Wil
ens and Weiss23 state that ‘‘The most common procedure
to evaluate the contour integral in a stationary phase appr
mation. In leading order one recovers the grand-canon
formulation. However, belowTc , fluctuations are badly rep
resented in this approach. The reason is that, for largeN, the
saddle point is located within a distanceO(1/N) from the
branch point while the Gaussian approximation for the fl
tuations assumes a much larger range of validityO(1/N1/2). ’’

We will not pursue the cause of this difficulty further, b
will avoid it by using the canonical ensemble.
663 Am. J. Phys., Vol. 71, No. 7, July 2003
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III. ONE-DIMENSIONAL BOSE GAS BY THE
CANONICAL ENSEMBLE

We next examine the 1D ideal Bose gas by using the
nonical ensemble. There is a simple recurrence relation
the partition function of this model. As we will see in Se
IV, there are more general recurrence relations by wh
other problems~for example, the 3D ideal Bose gas! can be
treated. The connection between the two formulations tu
out to be a special case of a famous theorem in num
theory as we demonstrate in Sec. IV.

If we let z5ebm, the grand partition function of Eq.~10!
can be written as

Z5(
N

ZNzN5(
N

(
$n%

8zNe2bD(ppnp, ~14!

where the prime in the sum over$n% implies a sum over all
n0 ,n1 ,n2 ,...50,1,2,... such that(pnp5N. If we definex
5e2bD, the last exponential in Eq.~14! can be written asxM

with M5E/D5(pp np andZ becomes

Z5(
N

(
$n%

8xMzN5(
N

(
M

cN~M ! xMzN, ~15!

wherecN(M ) is the degeneracy factor for the energy stateM
of N particles.

In the 1D oscillator problem, this degeneracy fact
cN(M ) has a very interesting mathematical property.19,29–32

It is just the number of ways that one can partition the in
ger M into N or less integers. For example,M54 can be
partitioned in five ways: 1111111, 11112, 113, 212,
and 4, which is equivalent to the number of ways that fo
Bose particles can be set in equally spaced states 0, 1, 2
to have four units of energy. Euler, Gauss, Hardy, Rama
jan, and many other famous mathematicians have con
uted theorems on partitions.33

We do not need an explicit expression forcN(M ). We can
identify the canonical partition function in Eq.~15! as

ZN5(
M

cN~M !xM. ~16!

We also have from Eq.~10! that

Z~z!5)
p

1

12zxp 5
1

12z

1

12zx

1

12zx2¯ . ~17!

We next replacez in Z(z) by xz so that

Z~xz!5
1

12zx

1

12zx2¯5~12z!Z~z!, ~18!

or

(
N

(
M

cN~M !xM1NzN5~12z!(
N

(
M

cN~M !xMzN.

~19!

We equate equal powers ofz to obtain

(
M

cN~M !xM1N5(
M

cN~M !xM2(
M

cN21~M !xM

~20!

so that

xMZN5ZN2ZN21 , ~21!
663W. J. Mullin and J. P. Ferna´ndez
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ZN5
1

12xN ZN21 . ~22!

This recurrence relation is trivial to solve explictly. We o
tain

ZN5)
k51

N
1

12xk 5)
k51

N

Z1~bk!. ~23!

Many derivations and uses of this result are found in
current research literature.17,18,22,23,34–36although the result
itself has been around for many years.6,29–31,37The above
derivation is from Ref. 30. Equation~23! is applicable to the
1D harmonic Bose gas. However, in a recent artic
Schönhammer38 showed that an almost identical relatio
holds for the 1D ideal harmonicFermi gas. His derivation
can easily be adapted to work for bosons. The Fermi pa
tion function differs only in having a factore2bE0, where
E05N(N21)D/2 is the Fermi zero-point energy. This resu
means that the internal energies, given by2] ln ZN /]b, dif-
fer only by E0 and that the two systems have identical h
capacities29,32 given by

C5
dE

dT
5kB(

k51

N
~bkD!2ebkD

~ebkD21!2 . ~24!

As shown in Fig. 2, this quantity is linear inT at low tem-
peratures~that is, forD!kBT!T0) and approachesNkB at
T@T0 . The relation between fermions and bosons for t
system was first pointed out in Ref. 29.

There is a curious aside to this relation between Bose
Fermi partition functions.6,39–42The 1D harmonic gas has
constant density of states, which leads to the equality of
heat capacities. Consider insteadfree particles in 2D where
the single-particle states areep5p2/2m and the density of
states is a constant becausep dp5m de. One can show by
using standard grand canonical ensemble techniques tha
2D free Fermi and Bose gases have identical heat capac
This result is rather remarkable considering the consider
difference between the Fermi and Bose derivations ofC.
Moreover, the 2D Fermi/Bose heat capacity is fit extrem
well by Eq. ~24!.

Fig. 2. Heat capacity per particle~in units ofkB) for the 1D ideal harmonic
Bose gas. This quantity is identical to the same quantity for a 1D id
harmonic Fermi gas~Ref. 38!.
664 Am. J. Phys., Vol. 71, No. 7, July 2003
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IV. MORE RECURRENCE RELATIONS

It is possible to go beyond the 1D harmonic case a
derive canonical recurrence relations valid for any ideal g
We first derive relations for the distribution functions follow
ing a method due to Schmidt,43 who showed how the stan
dard Fermi and Bose distribution functions in the grand
nonical ensemble could be obtained by this means. We h

n̄p~N! ZN5(
$n%

npe2b(keknkdN,S i ni
, ~25!

where the Kronecker delta restricts the sum toN particles.
Let np5np811 andnk85nk for kÞp. Then

n̄p~N!ZN5(
$n8%

~np811!e2b((keknk81ep)dN21,S i ni8
. ~26!

The term corresponding tonp8521 does not contribute and
the right side involves standard partition function sums c
responding toN21 particles. We have

n̄p~N! ZN5@ n̄p~N21!ZN211ZN21#e2bep, ~27!

or

n̄p~N!5e2bep
ZN21

ZN
@11n̄p~N21!#, ~28!

which is Schmidt’s recurrence relation.43 Equation~28! ap-
peared much earlier in the literature.31,44–46 These deriva-
tions assume thatn̄p(N21)'n̄p(N) and use the relation
ZN5ebFN, whereFN is the Helmholtz free energy andFN

2FN21']FN /]N5m, to find

n̄p~N!5
1

ebepZN /ZN2121
5

1

eb(ep2m)21
. ~29!

We end up with a canonical derivation of the standard gra
canonical ensemble distribution function for bosons.
analogous derivation is valid for fermions.43,47

Unfortunately, the assumption thatn̄p(N21)'n̄p(N)
leads back to the same fluctuation inaccuracies inheren
the grand canonical ensemble. But we need not make
assumption; Eq.~28! has a direct solution. By using the ob
vious starting values,n̄p(0)50 andZ051, we can prove by
induction46 that

n̄p~N!5(
l 51

N

ebepl
ZN2 l

ZN
. ~30!

To use this relation, we need the partition functions involv
If we sum the relation over allp, we get

N5(
p

n̄p~N!5(
l 51

N F(
p

ebepl G ZN2 l

ZN
. ~31!

The quantity in square brackets is just the one-body can
cal partition function at the effective inverse temperatureb l ,
and a recurrence relation forZN results:

ZN5
1

N (
l 51

N

Z1~b l !ZN2 l . ~32!

This relation was apparently first derived by Landsberg46

but appears many times in the current research lite
ture.22,23,34,36,48–55It was derived in this journal by Ford,56

although he made no application of it. Ford showed that s

l
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a result stems from the relation of Fermi and Bose partit
functions to symmetric polynomials. Recently Schmidt a
Schnack57 extended this idea.

The use of Eqs.~28! and ~32! allows us to determine the
canonical distribution functions for the finite 1D harmon
Bose system.~We could as easily find the properties of th
finite 3D harmonic Bose gas.! We start the recurrence in Eq
~32! with Z051 and find everyZL , L<N. These values are
then put into Eq.~28!, starting with n̄p(0)50 to find each
distribution functionnp(L), L<N, in sequence. The result
are shown in Fig. 3. There is a small disagreement betw
the results for the canonical ensemble and the grand can
cal ensemble forN5500, but these become smaller f
larger N. The real difference between the two ensemb
arises in the fluctuations.

We can, in the same way, develop a recurrence relation
the mean square distribution. We find

np
2~N!5e2bep

ZN21

ZN
@11n̄p~N21!1n̄p~N21!2#. ~33!

With this relation and Eq.~28! we obtain the root-mean
square fluctuation in the ground-state distribution funct
for the canonical ensemble, which can be compared to
same result for the grand canonical ensemble as given by
~11!. The results are shown in Fig. 4. As expected, we
that the grand canonical ensemble result goes to the
number of particles asT becomes small, while that of th
canonical ensemble goes to zero after peaking near the
sitransition temperatureT0 .

We can sharpen the distinction concerning fluctuations
deriving the probablilityP0(n) of finding n particles in the
state withe050. For the 1D harmonic gas in the canonic
ensemble this quantity is given by

P0~n!5
1

ZN
(

n0 ,n1, . . .
e2bD(n112n213n31¯)dn,n0

dN,S i 50ni

5
1

ZN
(

n1 ,n2, . . .
e2bD(n212n313n41¯)

3e2bD(n11n21n31¯)dN2n,S i 51ni
. ~34!

Fig. 3. Comparison of the grand canonical ensemble and canonica
semble calculations of the number of particles in the two lowest st
versusT/T0 for the 1D harmonic Bose gas.
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The series in the second exponential on the right can
replaced byN2n and extracted from the sum; the remainin
factor becomes a partition function forN2n particles or

P0~n!5e2bD(N2n)
ZN2n

ZN
~canonical ensemble!. ~35!

The equivalent quantity can be derived for the grand cano
cal ensemble. We find

P0~n!5~12ebm!enbm ~grand canonical ensemble!.
~36!

The two P0(n) functions are plotted in Fig. 5 forT
50.12T0 . We see that the canonical ensemble value
sharply peaked around the average value while the gr
canonical ensemble function is incorrectly wide and mon
tonic.

If we include interactions, the fluctuations in the gra
canonical ensemble are tempered to a more physically
sonable value.20 However, we would still prefer to be able t
treat the ideal gas correctly for its conceptual and pedag
cal importance and because experimentalists can now re
the effective interactions to near zero by use of Feshb
resonances.2

n-
s

Fig. 4. Root-mean-square fluctuation of the number of particles in
ground state of the 1D harmonic Bose gas for the grand canonical
canonical ensembles. The fluctuations in the condensate in the grand ca
cal ensemble become as large as the occupation itself, which is unphy
The canonical ensemble result is more reasonable.

Fig. 5. The probability of findingn particles in the ground state versusn for
the 1D harmonic Bose gas atT50.12T0 for both the canonical ensembl
~solid line! and grand canonical ensemble~dotted line!. The result for the
grand canonical ensemble is unphysical.
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One might argue that the microcanonical ensemble
which the system of interest is isolated, is more nea
equivalent to the actual experimental conditions of Ref
than the canonical ensemble. However, it can be shown
use of the recurrence relations for the microcanon
ensemble22,23 that the microcanonical and canonical e
sembles give almost identical results.

V. PERMUTATION CYCLES

The sums in Eqs.~3! and ~32! have a physical interpreta
tion as sums over permutation cycles. This view of BEC w
first developed by Matsubara58 and Feynman,5 and was re-
cently discussed in this journal by one of us.59 Here we ex-
amine permutation cycles in the context of recurrence r
tions. The bosonN-body wave function is symmetric and th
density matrix can be written in terms of symmetrical p
mutations of particles.5 The partition function is the trace o
the density matrix and involves a sum over all permutatio

ZN5
1

N! (P
E dr1 ...drN ^r P1 ,...,r PNue2bHur1 ,...,rN&,

~37!

where the variabler P j represents the coordinate of the pa
ticle interchanged with particlej in permutationP.

Any N-particle permutation can be broken up into smal
permutation cycles.5,59 For example, forN57 we might
have a three-particle permutation cycle 1→2→3→1 plus a
four-particle cycle 4→5→6→7→4. The corresponding ma
trix element in Eq.~37! breaks up into a product of cycl
terms:

^3 125 674ue2bHu1 234 567&

5^312ue2bH3u123&^5674ue2bH4u4567&

5(
p

e23bep(
m

e24bem5Z1~3b!Z1~4b!, ~38!

where, for example,H35h11h21h3 with eachhi being a
one-body Hamiltonian. We have reduced the cycle ma
elements to one-body partition functions at an effective te
perature. The details of this derivation are given in Ref.
Every term in the sum of Eq.~37! can be reduced in this wa
to a product of permutation cycles represented by product
one-body partition functions. A single configuration will co
sist of q1 loops of length 1,q2 loops of length 2, etc., and
may be arranged inC(q1 ,q2 ,...) different ways. Thus we
can write

ZN5
1

N! ( 8
$q1 ,q2 ,...%

C~q1 ,q2 ,...! )
l

Z1~b l !ql, ~39!

where the prime on the sum implies that it is over all co
binations of permutation cycles such that

(
l

ql l 5N. ~40!

Feynman5 has given an argument~repeated in Ref. 59! to
show that

C~q1 ,q2 ,...!5
N!

1q12q2...q1! q2!...
. ~41!
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Again there is a connection to the theory of numbers. T
sum in Eq.~39! is over the number of ways of partitionin
the integer N into smaller integers. An example o
C(q1 ,q2 ,...) is thebreaking of particles 1,2,...,5 into a two
cycle and a three-cycle, that is, partitioning 5 into 213. With
five particles there are several ways of doing this: We c
take particles 1 and 2 in the two-cycle with 3, 4, and 5 in t
three-cycle, or take particles 1 and 3 in the two-cycle w
the remaining particles in the three-cycle, etc. In all there
C55!/(21311!1!)520 distinct ways of doing this, as th
reader can verify.

For the case of the 1D harmonic Bose gas, we can c
bine Eqs.~4!, ~23!, and~39! to find an interesting relation:

ZN5)
k51

N

Z1~bk!

5 (
$q1 ,q2 ,...%

8
1

1q12q2...q1! q2!... )l
Z1~b l !ql ~42!

or

1

~12x!~12x2!¯~12xN!

5 (
partitions ofN

1

1q12q2...q1! q2!...

1

~12x!q1~12x2!q2 . . .
.

~43!

Equation ~43! is known as Cayley’s decomposition in th
theory of partitions of numbers.33 A simple special case is
1/(12x)(12x2)5 1

2@1/(12x)211/(12x2)#.
The right-hand side of Eq.~42! is, in fact, the solution of

the recurrence relation~32!. This solution tells us how to
interpret the recurrence relation itself. The sum in Eq.~32! is
a sum over permutation cycles: We can generate theN-body
partition function for the Bose system by adding a parti
either as a singlet (Z1(b)) with the otherN21 particles
grouped independently (ZN21), or as part of a pair-exchang
cycle (Z1(2b)) with the otherN22 particles in all their
possible combinations (ZN22), or as part of a triple cycle
and so on, with each configuration having equal probab
1/N. ~The work of Laloëet al.60,61 on interacting gases is
closely related to this approach.!

A further useful quantity is the average numberp̄l5q̄l l of
particles involved in permutation cycles of lengthl . This
number is found by using Eq.~32!:

N5(
l

p̄l5(
l

Z1~b l !
ZN2 l

ZN
, ~44!

which tells us that

p̄l5Z1~b l !
ZN2 l

ZN
. ~45!

We can easily plotp̄l , but before we do, it is useful to
separate out the contributions top̄l from the condensate an
the excited states. From Eq.~30! we have

n̄05(
l

ZN2 l

ZN
, ~46!

so thatp̄l
(0)5ZN2 l /ZN is the contribution of the condensa

to the average particle number in the permutation cycle
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length l . However, this quantity is essentially unity untill is
of order N. On the other hand, for smalll in the one-
dimensional oscillator,Z1(b l )'1/(b lD) in Eq. ~45! @cf. Eq.
~5!#, which is the contribution of the non-condensate to
permutation cycles. Figure 6 showsp̄l versusl for the ca-
nonical ensemble. Notice the rapid drop-off ofp̄l for small l ,
corresponding to the noncondensate. However, for low t
peratures~that is, when there is a large condensate! p̄l

' p̄l
(0)'1 out to a value equal to the condensate numbern̄0 ,

where p̄l must drop off to satisfy Eq.~46!. We might have
guessed before the calculation that the condensate con
only of very long permutation cycles of approximatelyn̄0
particles. Now we see that this is not true; the condens
particles have equal probability of being in singles, p
cycles, triple cycles, and so on out to ann̄0-cycle.

The dotted line in Fig. 6 is the grand canonical ensem
estimate ofp̄l . We find this estimate from Eq.~3!, which we
can show59 also to be a sum over permutation cycles. Th

p̄l5elbmZ1~b l ! ~grand canonical ensemble!. ~47!

We also have

n05
1

e2bm21
5(

l 51

`

ebm l ~grand canonical ensemble!.

~48!

The summandebm l is the condensate contribution top̄l in the
grand canonical ensemble. The dotted line in the plot sh
that the grand canonical ensemble does not do a very g
job of representing the true nature of condensate permuta
cycles in the Bose gas.

Because the condensate contribution top̄l must drop off at
n̄0 , we could estimaten̄0 by finding the value ofl for which
p̄l'0.5. For the lowest temperature 0.12T0 in Fig. 6 this
estimate givesn̄05472, whereas the exact result is 471. Th
approach also allows us to estimaten̄0 in path-integral
Monte Carlo simulations involving trapped interacting pa
ticles, where no standard estimators ofn̄0 exist.62–64

The picture we have then of the condensate is that it d
indeed fluctuate wildly,not in overall particle number, as
would be suspected from the grand canonical ensemble

Fig. 6. The number of particles in permutation cycles of lengthl versusl for
the canonical ensemble~solid lines! at various temperatures for the 1D
harmonic Bose gas. Also shown by the dotted line is the same quantity a
lowest temperature for the grand canonical ensemble.
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rather in how it breaks into permutation cycles, with its p
ticles having an equal probability of being in cycles of a
sizes up to the condensate number itself.

VI. DISCUSSION

Our goals in this paper have been multiple:~a! Illustrate
the inadequacies of the grand canonical ensemble in its
piction of fluctuations in a Bose-condensed system.~b! Show
how the canonical ensemble can do a much better job
describing a condensed system.~c! Find recurrence relations
that allow simple treatments of finite ideal Bose systems.~d!
Study a simple model system, the 1D harmonically trapp
ideal Bose gas, which illustrates all of the important e
ments of BEC in a finite system and has its own particula
simple recurrence relation.~e! Delve deeper into the intrica
cies of BEC to find the physical meaning of the recurren
relations by looking at permutation cycles.~f! Illustrate the
close relation between Bose and Fermi systems for ca
where the density of states is constant.

All our work here involves non-interacting Bose system
Although real gases have non-negligible physical effects
to interactions, many of the ideas we have developed c
over to the interacting regime.49,50,53,60–64Although it is
probably not possible to develop recurrence relations for
teracting systems,65 the idea of the condensate involving a
sizes of permutation cycles, the usefulness of even a
model of a Bose gas, and the close relation between the
Bose and Fermi gases, are ideas that are still expected to
for interacting systems.

An important feature of the present paper is that the
model is so simple that instructors can use it in element
courses in statistical physics without sacrificing much imp
tant physics. The computer programs needed to carry ou
recurrence relations are simple and can be coded by the
dents themselves. There are thought to be few models w
the canonical ensemble is soluble, but we have seen here
any ideal system where the single-particle energies
known is actually tractable. Usually one does not care
much about using the canonical ensemble because the g
canonical ensemble makes the math easier. However,
have seen that for the case of BEC the grand canonical
semble is not always accurate and the canonical ensem
becomes not only accessible but necessary.
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