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Bose—Einstein condensation, fluctuations, and recurrence relations
in statistical mechanics

W. J. Mullin and J. P. Fernandez
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003

(Received 7 November 2002; accepted 13 December)2002

We calculate certain features of Bose—Einstein condensation in the ideal gas by using recurrence
relations for the partition function. The grand canonical ensemble gives inaccurate results for certain
properties of the condensate that are accurately provided by the canonical ensemble. Calculations in
the latter can be made tractable for finite systems by means of the recurrence relations. The ideal
one-dimensional harmonic Bose gas provides a particularly simple and pedagogically useful model
for which detailed results are easily derived. An analysis of the Bose system via permutation cycles
yields insight into the physical meaning of the recurrence relation20@ American Association of

Physics Teachers.

[DOI: 10.1119/1.1544520

[. INTRODUCTION frequencyw of the potential in such a way that the maximum
density—proportional tw’N, whered is the spatial dimen-
The achievement of Bose—Einstein condensatgHC) in sion of the system—remains constafitAlthough this limit
alkali gases was a remarkable feat in atomic and low- is not physically realized and finite systems have no real
temperature physics. The gases are most often trapped maghase transitions, the experimental transformation of the sys-
netically in potentials accurately approximated by harmoniaem into its lowest state is still rather sudden. Nevertheless,
oscillator wells. The result has been a deluge of theoreticahe existence of a mathematically sharp phase transition is
papers on BEC in harmonic potentials, both for ideal anchot crucial to the description of real systems. What is impor-
interacting gase$ Experimentally, the gases are sufficiently tant is the appearance of a “condensation,” by which we
dilute and weakly interacting that the ideal gas is a good firsinean the rapid accumulation of a substantial fraction of the
approximation for their description, making the subject morey particles into the ground statevithout big fluctuations
accessible to students even in their first statistical physicgpqayt this averagavhen the temperature falls below a cer-
course. _tain finite value. We will show that even a finite one-

A basic problem with the standard presentation of BEC isjjmensional ideal Bose gas in a harmonic potential has this
that the grand canonical ensemble misrepresents sever operty.

physical quantities when a condensate is present. For ex- The choice of the canonical ensemble and the use of the

ggﬂgtgr?r?g ﬁig?unggﬁkgngfr?ﬁée ggg}%‘gﬁgg{‘; gzﬁggrovﬂécurrence relations are particularly suitable for the study of
though, because of their isolation, the most realistic descri f_|n|te systems. Thus a simple model with physical properties

tion of the experimentally condensed gases is via the micro<'31menable to calculation is available to be exploited for peda-
P y 9 gical or other purposes.

. . ' 0
canonical ensemble, the canonical ensemble gives equalgl In Sec. Il we will review the standard grand canonical

accurate results. In the latter the system of interest is in CON: semble treatment of the one-dimensiofi) harmonic
tact with a heat bath but the particle number is kept fixed

ideal Bose gas and identify a temperature below which there

which is crucial. : ; ) ! .
Calculations using the canonical ensemble are avoided ga substantial accumulation of particles in the ground state.

most elementary treatments of BEC because of mathematic e will also identify the physically unrealistic fluctuations in .
complications. The grand canonical ensemble removes the e ground-state occupation that appear m_the grand canoni-
cal ensemble description. In Sec. Il we will show how the

complications by putting the system in contact with a particle .
bath. Unfortunately, when there is a condensate, the de Brd:2 BOS€ gas can be treated by developing a recurrence rela-

glie wavelength can be larger than the system size, makir;%;” for the partition function. More g_enere_ll recurrence re_Ia-
the distinction between system and bath meaningless arfPns for the average _n_umber o_f particles in a smgle—partlcle
leading to the fluctuation inaccuracy mentioned. MoreoverState and for the partition function are developed in Sec. IV.
the trapped Bose systems of current interest consist of reldifmed with these tools, we compare canonical ensemble cal-
tive]y few partic|es_ There exist Simp|e methods using recur.CUlatlonS with their grand canonical ensemble eqUIvalentS.
rence relations that have been exploited often in recent workor @ finite system there are only small differences in the
to treat finite systems in the canonical ensemble; howevemean values; however, there are large differences in the root-
these relations are not well known outside the research lithean-square fluctuations. In Sec. V we look at the conden-
erature. It is these techniques that we want to discuss heresation problem from a quite different point of view, namely
Because the experimental trapped systems are finite, théhat of permutation cyclesla Feynmar. Such a view gives

are not equivalent to systems in the thermodynamic limita physical explanation to several mathematical formulations
The trapped systems have a nonuniform distribution estalfound in the previous sections and especially to the partition
lished by the external harmonic potential. The true thermofunction recurrence relation. From this point of view we also
dynamic limit in these systems would require that as thesee that the grand canonical ensemble misrepresents the con-
particle numbeiN is increased, we also would decrease thedensate, while the canonical ensemble treats it accurately.
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We find the somewhat surprising result that the condensate i 5% T | T T
made up of equally probable permutation cycles of all
lengths up to the condensate number. 400k 4
GCE

Function

[I. GRAND CANONICAL TREATMENT

300 -

on

We first consider a grand canonical ensemble treatment o:
BEC in a one-dimensional D) harmonic well. Although our
approach is typical of most statistical physics textbooks, we;
know of only one such book that actually covers this particu- 100 - _
lar example’ The harmonic potential leads to equally spaced
single-particle energy levels given by

200 -

Distribut

0.0 0.5 1.0 15 2.0 25
e,=pPA, 1
p=P (o 1,
with p a non-negative integer. The zero-point energy, omit-
ted in Eq (1), can be restored to any physical quantity at theFig. 1. Grand canonical ensemble calculation of the number of particles in
NS : ; _the two lowest states versligT, for the 1D harmonic Bose gas. The results
?nnodni%f at.r;Zu(ig:’ch:‘ Laéﬁghc-;hﬁyczllsfgaftls related to the har shown for all the figures are fay=500.
In the grand canonical ensemblihe average number of

particlesN is given by the relation

1 tion of theN particles in the ground state. From Ed@) this
N=Ep P 1 (2)  requirement implies that Bu=(yN) <1, wherey is a

number of order unity. If we invert Ed5), we obtain
where 8=1/kgT and u is the chemical potential. In Bose
problems the denominator is often expanded in powers of 1—e—BN’A=eBM~1+BM, (8)
e Al 1o yield
% % o so thatBN'A~In yN. BecauseN' is of orderN at the tran-
N= 2 e|BM2 e AlpA_ 2 eBrz,(Bl), (3) sition, we find thafc the condensate will be large for tempera-
=1 p=o =1 tures belowT, defined by*°

where - NA
O kgInN"

9

Z,(BhH= 1 o A5 (4)

is the one-body partition function at the effective inverse. . We can show that t_he density of the systgm IS propor-

temperaturgdl. In Sec. V we will see that the sum ovien tional to NA, so that, in the thermodynamic limit, we keep

Eq. (3) represents a sum over permutation cycles. the numeratoNA constant while lettingf\— o, A—0. Then
For the very weak potentials used to tipparticles ex- the characteristic temperature will go to zero as llmhich

perimentally, the harmonic oscillator states are very closelys small Org)l/l for extremely largeN. In actual 1D
spaced {w<kgT). Thus to a good approximation we can €xperiments>** where N is about 10, the logarithm re-
replace the sum ovep in Eq. (3) by an integral[Alterna-  duces this characteristic temperature only by a factor of order
tively, we could directly replace the sum in E) by an 10 compared tdNA/kg, an experimentally accessible value.
integral to arrive at the same reslilBecausefdp e A2  Nevertheless, we say that there is a “quasicondensation”
=(BIA)L, we find rathe_:r than a real one. For a two-dl_mensmmm ideal gas _
' we find that an actual phase transition occurs; however, in
1 & gl kgT 5 accord with the Hohenberg thgore’fmhis transition disap-
I Fr=— 3 In(d-e™). (5)  pears if there are particle—particle interactions. On the other
B hand, some authors have claimed that the 1D and 2D finite
The sum in Eq(5) is one of the Bose integrafswhich in  interacting systems at sufficiently low temperature have a
this case can be evaluated analytically. Of course, changingue condensation, because the coherence length becomes
the sum to an integral is valid only if the summand is alarger than the finite condensate stz&3 (Moreover, in 2D
smooth function ofp; we then lose the contribution of the we expect a true phase transition of the Kosterlitz—Thouless
lowest state when it becomes occupied with orblepar- variety* at a temperature of orde¥/N.)

N~N’

ticles. HenceN' in Eq. (5) is just the contribution of the It is straightforward to solve Eq(3) numerically for the
excited states, and we obtain the total numbéday including ~ chemical potentiak and compute the exact condensate num-
the ground-state population: ber from Eq.(7) for some given averagd value. In Fig. 1
, we show the occupation of the first two energy levels for
N=no+N", (6) N=500. We see thal, provides a fairly good estimate of
where the quasicondensation temperature.

P Many textbooks compute particle-number fluctuations in
No=(e O @ the grand canonical ensembl@he grand partition function
We want to identify a Bose—Einstein “transition tempera- for any ideal Bose gas with stateg each occupied by,
ture,” that is, one below which there will be a sizable frac- particles i$
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* IIl. ONE-DIMENSIONAL BOSE GAS BY THE
Z=> ZyePN=]] > e Alep=mm CANONICAL ENSEMBLE
N p np=0

1 We next examine the 1D ideal Bose gas by using the ca-

:H —— e (10) nonical ensemble. There is a simple recurrence relation for

p 1—e Flor the partition function of this model. As we will see in Sec.
IV, there are more general recurrence relations by which
whereZ, is the canonical partition function of ax-particle ~ other problemsfor example, the 3D ideal Bose gasan be

System_ The average square deviation of the occupation nurﬁ'_eated. The Conn_ection between the two formulat_ions turns
bern,, is out to be a special case of a famous theorem in number

theory as we demonstrate in Sec. IV.
If we let z=e®#, the grand partition function of Eq10)
(1))  can be written as

Z=> Z\N=2, > ZNe BAZpPny (14)
With no condensate we have,<1 for all except a negli- N N n}

gible number of excited states, smN2=2pAnf)~Epﬁp where the prime in the sum ovén} implies a sum over all

=N, and we have a normal distribution with No,N1,N,,...=0,1,2,... such thak,n,=N. If we definex
=e A2 the last exponential in E¢14) can be written ag"
W with M=E/A=X,p n, and Z becomes
=0O(N~Y3), (12) )
N 2=2 XM= > on(M) XM, (15
N {n} N M
However, with a condensate of orddr we have wherecy(M) is the degeneracy factor for the energy stdte
of N particles.
F In the 1D oscillator problem, this degeneracy factor
Mo _o(1) (13 cy(M) has a very interesting mathematical propéft§?—32
N ' It is just the number of ways that one can partition the inte-

ger M into N or less integers. For exampl® =4 can be

that is, the fluctuations of the condensate are as large as tR@'titioned in five ways: +1+1+1, 1+1+2, 1+3, 2+2,
condensate itself—a manifestly unphysical result. This prob@nd 4, which is equivalent to the number of ways that four

lem is not new>8but has received a large amount of recentB0Se particles can be set in equally spaced states 0, 1, 2, 3, 4
attention!”~?’ including the invention of a new “fourth” to have four units of energy. Euler, Gauss, Hardy, Ramanu-

ensemble—the so-called “Maxwell demon” ensemble—tolan, and many other famous mathematicians have contrib-
take care of it? uted theorems on partitiors.

There are various explanations of what goes wrong with Ve do not need an explicit expression f(M). We can
the grand canonical ensemble. Grossmann and Hothﬁauslde”“fy the canonical partition function in E¢L5) as
state that {T]he relative mean square fluctuations of the

ground state population, and thus the relative fluctuations of ~ Zy= >, cy(M)xM. (16)
the total particle number, approach unity: as a result of par- M

ticle exchange with the reservoir, the uncertainty of the numye also have from Eq10) that

ber of particles becomes comparable w{tk) itself. This

fluctuation catastrophe is related to the divergency of the Z(z):H 1 _ 1 1 1 (17)
guantum coherence lengily for T—0. When\ 1 vastly ex- p 1-zxX* 1-z1-2zx 1-zx%

ceeds the length scale characterizing the system under co\rh .
sideration, a rigid distinction between ‘system’ and ‘reser-'/€ Next replace in 2(z) by xz so that

voir’is no longer practical.” The difficulty also can be stated 1 1

in more mathematical terms. The grand canonical ensemble  2(x2)= 71—~ 7——7"""=(1-2)Z(2), (18
often is shown to be equivalent to the canonical ensemble by

using the method of steepest descéhishich evaluates the or

canonical partition function by an approximation to a com-

plex integral of the grand canonical partition function. Wilk- SN y(M)XMINNN=(1-2)> > ¢ (M)xMZN,
ens and Weigs state that “The most common procedure is N M N ™

to evaluate the contour integral in a stationary phase approxi- (19
mation. _In leading order one recovers the grand—canonlce‘;\/e equate equal powers fto obtain

formulation. However, below , fluctuations are badly rep-
resented in this approach. The reason is that, for Iargee MEN_ M M
saddle point is located within a distan@1/N) from the %: Cn(M)X _EM: Cu(M)X EM: Cn-1(M)X
branch point while the Gaussian approximation for the fluc- (20
tuations assumes a much larger range of valigigg/N/?).”

We will not pursue the cause of this difficulty further, but S0 that
will avoid it by using the canonical ensemble. xMZy=Zn—Zn-1s (21
663 Am. J. Phys., Vol. 71, No. 7, July 2003 W. J. Mullin and J. P. Fadez 663
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' ' ' ' ' ' ' IV. MORE RECURRENCE RELATIONS

o8 T It is possible to go beyond the 1D harmonic case and

derive canonical recurrence relations valid for any ideal gas.

§ 06 7 We first derive relations for the distribution functions follow-
z ing a method due to Schmitft,who showed how the stan-
£ o4l - dard Fermi and Bose distribution functions in the grand ca-
& nonical ensemble could be obtained by this means. We have
0.2 4
M(N) Zy= 2, npe AEemgy s o (25)
{n} (]
0.0 1 1 1 1 1 1 1
0003 s 20 23 0033 where the Kronecker delta restricts the sumNtgarticles.

T/T,
0 Let n,=n,+1 andn;=n for k#p. Then

Fig. 2. Heat capacity per particlen units ofkg) for the 1D ideal harmonic
Bose gas. This quantity is identical to the same quantity for a 1D ideal Na(N)Zy= n+1 e*B(ZkEknli+ep)5 , 26
harmonic Fermi ga¢Ref. 38. p(N)Zy {%} (np+1) N-13%n;- (26)

The term corresponding nm,’)= —1 does not contribute and
the right side involves standard partition function sums cor-

and responding taN—1 particles. We have
N(N) Zy=[Np(N=1)Zy_1+Zy_1]e" P, (27)
Zn=7=n N1 22
;I;irilri]s recurrence relation is trivial to solve explictly. We ob- ﬁp(N):ef,Bep Z;;l[l‘f-ﬁp(N— 1], (28)
N 1 N Whichdis Schhmidt’T_ re(_:ur[re]zncl_et rel?ﬁi“%%{?ﬂon(Z? a_lp-_
ZN:k[[l m:kﬂl 22l BK). @3 Figggeasr:lfrie ?r?;mlepzl\lln—l)irll_,irsl) ar.1d use ?ﬁg r;g;/izn

o _ _ Zn=ePN, whereFy, is the Helmholtz free energy arfél
Many derivations and uses of this result are found in the_ Fr_1~dFy/dN=pu, to find

current research literatuté18222334=36though the result

itself has been around for many yeff8-313'The above _ 1 1
derivation is.from Ref. 30. Equatioi23) is applicable to thg Np(N)= &Pz 1Zy 11 TPl M1
1D harmonic Bose gas. However, in a recent article, . i o
Schamhamme® showed that an almost identical relation We end up with a canonical derivation of the standard grand
holds for the 1D ideal harmoniEermi gas. His derivation canonical ensemble distribution functiog17 for bosons. An
can easily be adapted to work for bosons. The Fermi partianalogous derivation is valid for fermiofi&’ B

tion function differs only in having a factoe #Fo, where Unfortunately, the assumption thaip(N—1)~ny(N)
Eo=N(N—1)A/2 is the Fermi zero-point energy. This result leads back to the same fluctuation inaccuracies inherent in
means that the internal energies, given-by In Z /4, dif- the grand canonical ensemble. But we need not make this

fer only by E, and that the two systems have identical hea?SSUMPtion; Eq(28) has a direct solution. By using the ob-
capacitie® 32 given by vious starting valuesj,(0)=0 andZ,=1, we can prove by

(29

inductiorf® that
dE N (BkA)2ePKA N z
= — " _I
C a7 kBkZ,l (a2 (24) np(N)=|=§l efep ZNN ) (30

As shown in Fig. 2, this quantity is linear if at low tem-  To use this relation, we need the partition functions involved.
peraturegthat is, forA<kgT<T,) and approacheNkg at  If we sum the relation over afp, we get
T>T,. The relation between fermions and bosons for this N 7
system was first pointed out in Ref. 29. N=2 W(N)=E 2 eBepl | ZNT1
There is a curious asids% tgzthis relation between Bose and p " =1 Zy
Fermi partition functionS:****The 1D harmonic gas has a quantity in square brackets is just the one-body canoni-
constant density of states, which leads to the equality of the | partition funct t the effective i ¢ A
heat capacities. Consider instefzee particles in 2D where cal partition function at the efiective |r?verse emperajgre
the single-particle states ae%=p2/2m and the density of and a recurrence relation fa results:
states is a constant becayse p=m de. One can show by 1 N
using standard grand canonical ensemble techniques that the ZN=NE Zy(BHZy- - (32
2D free Fermi and Bose gases have identical heat capacities. =1
This result is rather remarkable considering the considerablghis relation was apparently first derived by Landsb®rg,
difference between the Fermi and Bose derivationgCof  but appears many times in the current research litera-

Moreover, the 2D Fermi/Bose heat capacity is fit extremelyture?22334:36:48=59¢ \was derived in this journal by Ford,
well by Eq. (24). although he made no application of it. Ford showed that such

(31)
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Fig. 3. Comparison of the grand canonical ensemble and canonical er=ig- 4. Root-mean-square fluctuation of the number of particles in the

semble calculations of the number of particles in the two lowest stateground state of the 1D harmonic Bose gas for the grand canonical and
versusT/T, for the 1D harmonic Bose gas. canonical ensembles. The fluctuations in the condensate in the grand canoni-

cal ensemble become as large as the occupation itself, which is unphysical.
The canonical ensemble result is more reasonable.

a result stems from the relation of Fermi and Bose partitionThe series in the second exponential on the right can be

functions to symmetric polynomials. Recently Schmidt andreplaced byN—n and e_x'tracted ffom the sum; the remaining
Schnack” extended this idea. factor becomes a partition function fdk—n particles or

The use of Eqs(28) and (32) allows us to determine the
canonical distribution functions for the finite 1D harmonic
Bose system(We could as easily find the properties of the
finite 3D harmonic Bose ggsWe start the recurrence in Eq. The equivalent quantity can be derived for the grand canoni-
(32 with Zy=1 and find every, , L<N. These values are cal ensemble. We find
then put into Eq(28), starting withn,(0)=0 to find each Po(n)=(1— efr)enbr
distribution functionn,(L), L<N, in sequence. The results
are shown in Fig. 3. There is a small disagreement between ) i )
the results for the canonical ensemble and the grand canonlN® tWo Po(n) functions are plotted in Fig. 5 foff
cal ensemble foN=500, but these become smaller for =0-12To. We see that the canonical ensemble value is

larger N. The real difference between the two ensemblesSharply peaked around the average value while the grand
arises in the fluctuations. canonical ensemble function is incorrectly wide and mono-

We can, in the same way, develop a recurrence relation fdP
the mean square distribution. We find

Zn—
Po(n)ze*BA(N*”)% (canonical ensembje (35)
N

(grand canonical ensemble
(36)

nic.

If we include interactions, the fluctuations in the grand
canonical ensemble are tempered to a more physically rea-
sonable valué® However, we would still prefer to be able to
treat the ideal gas correctly for its conceptual and pedagogi-
cal importance and because experimentalists can now reduce
With this relation and Eq(28) we obtain the root-mean- the effective interactions to near zero by use of Feshbach

square fluctuation in the ground-state distribution functiorfésonances.
for the canonical ensemble, which can be compared to the , ,

Z”’1[1+ﬁp(N—1)+m(N—1)z]. (33

2 — o Be
no(N)=e" P Zn

same result for the grand canonical ensemble as given by Ec
(11). The results are shown in Fig. 4. As expected, we see
that the grand canonical ensemble result goes to the tote 13 T=0.12T,
number of particles a§ becomes small, while that of the
canonical ensemble goes to zero after peaking near the qu
sitransition temperaturg,. g 10|
We can sharpen the distinction concerning fluctuations by§
deriving the probablilityP,(n) of finding n particles in the GCE
state withey=0. For the 1D harmonic gas in the canonical sk
ensemble this quantity is given by
— 1 2 —BA(Ny+2ny+3ng+:--+) [T  atateiele
PO(n) - Z_Nno,nl, o € 5n,n05N,2i:0ni 00 100 200
1 n
= Z_ E e AA(nz*2ng*3ngt:-) Fig. 5. The probability of findingn particles in the ground state versusor
NMy.nz, .. the 1D harmonic Bose gas &t=0.12T, for both the canonical ensemble

X ef,BA(nfr np+ng+-

665

V.)‘SN—n,Ei:lni-

Am. J. Phys., Vol. 71, No. 7, July 2003

(34

(solid line) and grand canonical ensemifgotted ling. The result for the

grand canonical ensemble is unphysical.
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One might argue that the microcanonical ensemble, irAgain there is a connection to the theory of numbers. The
which the system of interest is isolated, is more nearlysum in Eq.(39) is over the number of ways of partitioning

equivalent to the actual experimental conditions of Ref. 1the integer N

into smaller integers. An example of

than the canonical ensemble. However, it can be shown bg(q,,q,,...) is thebreaking of particles 1,2,...,5 into a two-
use of the recurrence relations for the microcanonicatycle and a three-cycle, that is, partitioning 5 inte 2. With

ensembl&?? that the microcanonical and canonical en-
sembles give almost identical results.

V. PERMUTATION CYCLES

The sums in Eqs(3) and (32) have a physical interpreta-

five particles there are several ways of doing this: We can
take particles 1 and 2 in the two-cycle with 3, 4, and 5 in the
three-cycle, or take particles 1 and 3 in the two-cycle with
the remaining particles in the three-cycle, etc. In all there are
C=5!/(2'31111)=20 distinct ways of doing this, as the
reader can verify.

For the case of the 1D harmonic Bose gas, we can com-

tion as sums over permutation cycles. This view of BEC wadine Egs.(4), (23), and(39) to find an interesting relation:

first developed by Matsubathand Feynman,and was re-
cently discussed in this journal by one of dere we ex-

amine permutation cycles in the context of recurrence rela-

tions. The bosoM-body wave function is symmetric and the

density matrix can be written in terms of symmetrical per-

mutations of particle3.The partition function is the trace of

the density matrix and involves a sum over all permutations

1
ZN:W; f drl...drN <rp1,...,rpN|e7BH|r1,...,rN>,
(37

where the variablep; represents the coordinate of the par-
ticle interchanged with particlg in permutationP.

Any N-particle permutation can be broken up into smaller

permutation cycle$®® For example, forN=7 we might
have a three-particle permutation cycles2—3—1 plus a
four-particle cycle 4-5—6—7—4. The corresponding ma-
trix element in Eq.(37) breaks up into a product of cycle
terms:

(3125674 PH|123456F

=(312e P"3|123(5674e F"4|4567)
=2 e ¥%, e Pm=2,(3)Z,(4B),  (39)
p m

where, for exampleHz;=h;+h,+h; with eachh; being a

N
zN=k[[1 Z4(BK)

!

T 5y 192% g 1, H Zy(B1)Y (42)
or
1
(1=x)(1=x?)---(1=x")
1 1
" partifans ofn 191292 _qql gl (1-x)(1—x2)% "
(43

Equation (43) is known as Car%ley’s decomposition in the
theory of partitions of numberS.A simple special case is
1U(1-x)(1—x?) = 1(1—x)%2+ 1/(1—x?)].

The right-hand side of Eq42) is, in fact, the solution of
the recurrence relatio(32). This solution tells us how to
interpret the recurrence relation itself. The sum in 89) is
a sum over permutation cycles: We can generateNtimdy
partition function for the Bose system by adding a particle
either as a singletZ;(B)) with the otherN—1 particles
grouped independentlyZ(,_,), or as part of a pair-exchange
cycle (Z1(2B)) with the otherN—2 particles in all their
possible combinationsZ(,_,), or as part of a triple cycle,

one-body Hamiltonian. We have reduced the cycle matrixand so on, with each configuration having equal probablity

elements to one-body partition functions at an effective tem
perature. The details of this derivation are given in Ref. 59
Every term in the sum of Eq37) can be reduced in this way

1/N. (The work of Laloeet al®®®! on interacting gases is
closely related to this approagh.
A further useful quantity is the average numipe=q;l of

to a product of permutation cycles represented by products Qfarticles involved in permutation cycles of length This
one-body partition functions. A single configuration will con- nymper is found by using E¢32):

sist of g, loops of length 19, loops of length 2, etc., and
may be arranged i©(q4,q,,...) different ways. Thus we
can write

1 <,
Zn=y7, 2 ClAnga..) 1] zuBh™, (39
SRCIRCPINS: I

where the prime on the sum implies that it is over all com-

binations of permutation cycles such that

> ql=N.

(40)
Feynman has given an argumeritepeated in Ref. 59to
show that

N!
C(91.92,...)= 1%2%  qg,! g,!..."

(41)
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z

N=2 =2 Z(B) 5, (44
| | N
which tells us that
AN
Pi=Zy(B) 5 (45)
N

We can easily plofp,, but before we do, it is useful to
separate out the contributionspg from the condensate and
the excited states. From E(0) we have

AN

=2 ——,

VAN

(46)

so thatp{®)=2Zy_,/Z, is the contribution of the condensate
to the average particle number in the permutation cycle of
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' ' ] rather in how it breaks into permutation cycles, with its par-
ticles having an equal probability of being in cycles of all
i sizes up to the condensate number itself.

T VI. DISCUSSION

20

. Our goals in this paper have been multipla! lllustrate
the inadequacies of the grand canonical ensemble in its de-
. piction of fluctuations in a Bose-condensed systdinShow
GCE: T'Ty = 0.12 how the canonical ensemble can do a much better job in
_____ , | . describing a condensed syste). Find recurrence relations
— - / - that allow simple treatments of finite ideal Bose syste(uks.
' ' AN Study a simple model system, the 1D harmonically trapped
ideal Bose gas, which illustrates all of the important ele-
ments of BEC in a finite system and has its own particularly
Fig. 6. The number of particles in permutation cycles of lerigtersud for ~ Simple recurrence relatiorte) Delve deeper into the intrica-
the canonical ensemblésolid line9 at various temperatures for the 1D cies of BEC to find the physical meaning of the recurrence
harmonic Bose gas. Also shown by the dotted line is the same quantity at theelations by looking at permutation cyclg$) lllustrate the
lowest temperature for the grand canonical ensemble. close relation between Bose and Fermi systems for cases
where the density of states is constant.

All our work here involves non-interacting Bose systems.

) o ) _ _ Although real gases have non-negligible physical effects due
of order N. On the other hand, for small in the one- over to the interacting reginf@:5%5360-64ajthough it is
dimensional oscillatoiZ,(B1)~1/(BlIA) in Eq. (45) [cf. EQ.  probably not possible to develop recurrence relations for in-
(5)], which is the contribution of the non-condensate to theteracting system®, the idea of the condensate involving all
permutation cycles. Figure 6 showgs versusl for the ca-  sizes of permutation cycles, the usefulness of even a 1D
nonical ensemble. Notice the rapid drop-offmffor smalll, model of a Bose gas, and the close relation between the 1D
corresponding to the noncondensate. However, for low temBose and Fermi gases, are ideas that are still expected to hold
peratures(that is, when there is a large condengapg  for interacting systems. _
mﬁfO)%l out to a value equal to the condensate nurier An important feature of the present paper is that the 1D

whereP; must drop off to satisfy Eq(46). We might have model is so simple that instructors can use it in elementary

uessed before the calculation that the condensate consi cg)urses In statistical physics without sacrificing much impor-
9 : . Taht physics. The computer programs needed to carry out the
only of very long permutation cycles of approximately

il hat this i i d recurrence relations are simple and can be coded by the stu-
particles. Now we see that this is not true; the condensaltgeng themselves. There are thought to be few models where
the canonical ensemble is soluble, but we have seen here that

TIT, = 0.62 TT,=0.12

particles have equal probability of being in singles, pair

cycles, triple cycles, and so on out to agrcycle. any ideal system where the single-particle energies are
The dotted line in Fig. 6 is the grand canonical ensemblgnown is actually tractable. Usually one does not care so
estimate ofp, . We find this estimate from E¢3), whichwe  mych about using the canonical ensemble because the grand
can show” also to be a sum over permutation cycles. Thus canonical ensemble makes the math easier. However, we
have seen that for the case of BEC the grand canonical en-

D =l Br i
pi=€7#Z,(Bl) (grand canonical ensemble  (47) T always accurate and the canonical ensemble

We also have becomes not only accessible but necessary.
1 oo
noze,Blez efr! (grand canonical ensemble ~ ACKNOWLEDGMENTS
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