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1. Introduction

For integers k ≥ 3, N, M > 0 choose a Boolean formula Φ = Φk(N, M) =
Φ1 ∧ · · · ∧ ΦM in conjunctive normal form with clauses Φi = Φi1 ∨ · · · ∨ Φik, 
Φij ∈ {x1, ¬x1, . . . , xN , ¬xN} uniformly at random out of all (2N)kM possible such 
formulas. Since the early 1990s experimental work has supported the hypothesis that for 
any k ≥ 3 there is a sharp threshold for satisfiability [8,30]. That is, there exists a number 
rk-SAT > 0 such that as the formula for density M/N passes rk-SAT, the probability of 
that the random formula Φ is satisfiable drops from asymptotically 1 to asymptotically 
0 as N → ∞. An impressive bulk of theoretical work has since been devoted to estab-
lishing the existence and location of this threshold rk-SAT as well as the existence of 
similar “satisfiability thresholds” in other random constraint satisfaction problems (see, 
e.g., [3] and the references therein). In fact, pinning the satisfiability threshold rk-SAT
has become one of the best-known benchmark problems in probabilistic combinatorics.

From its early days the random k-SAT problem has drawn the attention of statistical 
physicists. Through the physics lens, random k-SAT is an example of a “disordered sys-
tem”. Over the past decades, physicists have developed a systematic albeit non-rigorous 
approach to this type of problem called the cavity method [36]. More specifically, the 
so-called 1-step replica symmetry breaking (“1RSB”) installment of the cavity method, 
which is centered around the Survey Propagation message passing procedure [37], pre-
dicts that [35]

rk-SAT = 2k ln 2 − 1 + ln 2
2 + ok(1). (1.1)

From the viewpoint of the cavity method as well as from a rigorous perspective, ran-
dom k-SAT is by far the most challenging problem among the standard examples of 
random CSPs. The reason is that there is a fundamental asymmetry between the role 
that the Boolean values ‘true’ and ‘false’ play. More specifically, consider the thought ex-
periment of first generating a random formula Φ and then sampling a random satisfying 
assignment σ of Φ. Then the local “shape” of Φ provides significant clues as to the prob-
ability that a given variable x takes the value ‘true’ under the random assignment σ. For 
instance, if x appears many more times positively than negatively in Φ, then we should 
expect that the probability that x takes the value ‘true’ under σ is greater than 1/2. 
This is in contrast to, e.g., the graph coloring problem, where all the colors have the 
same “meaning”. In fact, the probability that a given vertex takes a particular color in 
a random coloring is just uniform, simply because we can permute the color classes. 
Similarly, the k-NAESAT (“Not-All-Equal-Satisfiability”) problem, which asks for a sat-
isfying assignment whose inverse assignment is also satisfying, is perfectly symmetric by 
its very definition.1

1 Formally, we could call a random CSP symmetric if in a random problem instance for each variable the 
marginal distribution over the possible values that the variable can take (‘true’ or ‘false’ in satisfiability; 
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The inherent asymmetry is the reason why the gap between best previous upper and 
lower bounds on the k-SAT threshold is significantly larger than in other well-studied 
random problems. To elaborate, let us say that the random formula Φ enjoys a property 
E with high probability (w.h.p.) if limN→∞ P [Φ ∈ E ] = 1. Friedgut [24] established the 
existence of sharp threshold sequence rk-SAT(N) for any k ≥ 3. That is, for any fixed 
ε > 0, Φ = Φk(N, M) is satisfiable w.h.p. if M/N < (1 − ε)rk-SAT(N) and unsatisfiable 
w.h.p. if M/N > (1 + ε)rk-SAT(N). With respect to the location of rk-SAT(N), a “first 
moment” argument [31] shows that

lim sup
N→∞

rk-SAT(N) ≤ 2k ln 2 − 1 + ln 2
2 + ok(1). (1.2)

This upper bound coincides with the prediction (1.1). Furthermore, Achlioptas and 
Peres [4] used the “second moment method” to prove that

lim inf
N→∞

rk-SAT(N) ≥ 2k ln 2 − k ln 2
2 −

(
1 + ln 2

2

)
− ok(1). (1.3)

Thus, the upper bound (1.2) and the lower bound (1.3) differ by k ln 2
2 + 1

2 + ok(1), 
a gap that diverges as a function of k. By comparison, in the (symmetric) random 
graph k-coloring problem, the gap between the best lower and upper bounds is about 
2 ln 2 − 1 ≈ 0.39, i.e., a small absolute constant [16]. Moreover, in random k-NAESAT 
the best upper and lower bounds differ by a mere εk = 2−(1+ok(1))k, a term that decays 
exponentially in terms of k [14]. In the present paper we prove a corresponding result 
for the (asymmetric) random k-SAT problem.

Theorem 1.1. There exists εk = ok(1) such that

2k ln 2 − 1 + ln 2
2 − εk ≤ lim inf

N→∞
rk(N) ≤ lim sup

N→∞
rk(N) ≤ 2k ln 2 − 1 + ln 2

2 + εk. (1.4)

In fact, the proof of Theorem 1.1 shows that (1.4) holds with εk = 2−k/2+o(k).
Theorem 1.1 establishes (1.1) rigorously. The proof is based on a novel type of second 

moment argument that directly incorporates several insights from the cavity method as 
well as parts of the Survey Propagation calculations. For instance, while in prior work [2,
4] the second moment method was applied to the number of satisfying assignments (with 
certain additional “symmetry properties”), a crucial feature of the present approach is 
that it is based on a “relaxed” concept of satisfying assignments called covers. This 
notion plays a key role in the 1RSB cavity method. We expect that this idea generalizes 
to a host of other problems.

the colors in graph coloring, etc.) converges to the uniform distribution. For a more detailed discussion of 
symmetry see Appendix A.
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In comparison to the extended abstract versions [12,15], this full version of the paper 
contains a more streamlined proof. For instance, the definition of the random variable 
and the formulas that emerge in the first/second moment calculations are simpler. Ad-
ditionally, the proof is based primarily on analytic arguments, rather than a blend of 
analytic and combinatorial considerations; this enhanced argument yields the aforemen-
tioned explicit and exponentially small value for εk. Finally, this paper corrects an error 
in the definition of the relevant random variables in [12], which mistakenly forced the 
first moment to be prohibitively small.

After this paper was submitted, in a remarkable work Ding, Sly and Sun [22] proved 
the satisfiability conjecture for all k ≥ k0 for some (unspecified) constant k0 ≥ 3. In 
fact, they established the location of the threshold rk-SAT for k ≥ k0, thereby verifying 
the 1RSB prediction. Ding, Sly and Sun build on two key ideas from this paper (and 
introduce many new ones). First, [22] harnesses the idea of representing covers by means 
of a “color code” on the edges of the bipartite factor graph of the k-SAT formula (whose 
vertices correspond to the variables and clauses). Second, [22] uses the notion of judicious 
configurations, a vital trick to keep the second moment under control in the asymmetric 
case (cf. Section 4). In a nutshell, while in the present work we construct a random vari-
able that incorporates one iteration of the Survey Propagation equations (corresponding 
to conditioning on the direct neighborhood of variables/clauses in the factor graph), 
Ding, Sly and Sun manage to deal with any bounded number of iterations.

After a discussion of related work, in Section 3 we give an outline of the main ideas 
behind the proof of Theorem 1.1. There we also elaborate on the physics intuition upon 
which the proof is based.

2. Related work

2.1. The physics perspective

Originally motivated by the study of “disordered systems” such as glasses or spin 
glasses, physicists have turned the cavity method into an analytic but non-rigorous ma-
chinery for the study of problems in which the interactions between variables are induced 
by a sparse random graph or hypergraph. The random k-SAT problem is a prime exam-
ple. Additionally, the cavity method has been applied to a wealth of problems, ranging 
from classical physics models to low-density parity check codes to compressive sensing. 
Hence the importance of providing a solid mathematical foundation for this approach. 
For an excellent introduction to the physics work we refer to [36].

The cavity method comes in two installments. In addition to the aforementioned 1RSB 
variant, there is a simpler version called the replica symmetric ansatz. Its key ingredient 
is the Belief Propagation message passing technique. Applied to the random k-SAT 
problem, the replica symmetric ansatz predicts upper and lower bounds, namely [39]

rk-cond = 2k ln 2 − 3 ln 2 − ok(1) ≤ rk-SAT ≤ 2k ln 2 − ln 2/2. (2.1)
2
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However, the replica symmetric ansatz is insufficient to obtain the precise k-SAT thresh-
old. The reason for this is a phenomenon called condensation [32], which we will also 
encounter in the proof of Theorem 1.1, and which has a dramatic impact on the proba-
bilistic nature of the problem.

The 1RSB cavity method can be used to put forward a prediction as to the precise 
value of limN→∞ rk-SAT(N) of the sharp threshold sequence (which is not rigorously 
known to converge) for any k ≥ 3. This prediction comes in terms of the solution to an 
intricate fixed point problem on the (infinite-dimensional) space of probability measures 
on the 3-simplex [35,37]. A proof of this exact formula for any k ≥ 3 remains an open 
problem.

2.2. Other rigorous work

This is one of the first papers to vindicate the 1RSB cavity method rigorously, and 
the first to do so in an asymmetric problem. In [14] we obtained a result similar to 
Theorem 1.1 for the (symmetric) random k-NAESAT problem. Of course, in symmet-
ric problems many of the maneuvers that we are going to have to go through (e.g., 
clause/variable types, see Section 4) are unnecessary. Independently of the present work, 
Ding, Sly and Sun [21,20] verified the 1RSB prediction in the random regular k-NAESAT 
problem (where each variable appears exactly d times), and in the independent set prob-
lem in random regular graphs. Both of these problems are symmetric. The proofs in [21,
20] are based on the second moment method applied to a notion of “cover” appropriate 
for NAESAT/independent sets, while [14] relies on an ad-hoc concept called “heavy so-
lutions”. Furthermore, in [13] we applied the methods from [16] to obtain a precise result 
on the k-colorability “threshold” in random regular graphs for infinitely many values 
of k.

In all other random constraint satisfaction problems where the threshold for the ex-
istence of solutions is known it matches the prediction of the replica symmetric version 
of the cavity method. An example of this is the random k-XORSAT problem (random 
linear equations mod 2) [23,40]. Furthermore, the exact satisfiability threshold is known 
in random 2-SAT [9,28]. This is, of course, a special case, as 2-SAT admits a simple crite-
rion for (un)satisfiability, on which the proofs hinge. In several other examples the replica 
symmetric predictions have been validated rigorously (see, e.g., [36, Chapters 15–17]).

As mentioned earlier, the best prior bounds on the k-SAT threshold were obtained 
by far simpler second moment arguments. The use of the second moment method was 
pioneered in this context by Frieze and Wormald [26] and Achlioptas and Moore [2], 
who got within (about) a factor of two of the k-SAT threshold. Subsequently, this result 
was improved by Achlioptas and Peres [4], who established the aforementioned lower 
bound (1.3). In both of these papers the inherent asymmetry of the k-SAT problem is 
sidestepped by applying the second moment method to a random variable that counts 
satisfying assignments with additional symmetry properties. Indeed, [2] applies the sec-
ond moment method to satisfying assignments σ whose inverse assignment σ̄ is also 
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satisfying. Moreover, in [4] symmetry is enforced by counting “balanced” satisfying as-
signments under which exactly half the literal occurrences in the formula are set to true. 
However, as pointed out in [4], it impossible to remove the k ln 2

2 gap in (1.3) by consider-
ing such a symmetrized random variable. The best current algorithms for random k-SAT 
find satisfying assignments w.h.p. for densities up to ≈ 1.817 · 2k/k (better for small k) 
resp. 2k ln k/k (better for large k) [10,25], a factor of Θ(k/ ln k) below the satisfiability 
threshold.

The notion of covers, which plays a key role in the 1RSB cavity method, has so far 
received only limited attention in rigorous work. In an important conceptual contribution, 
Maneva, Mossel and Wainwright [33] introduced a similar concept (“core assignments”) 
to show that (generalized) Survey Propagation can be viewed as Belief Propagation on 
a modified Markov random field. Furthermore, Maneva and Sinclair [34] used covers to 
prove a (conditional) upper bound on the 3-SAT threshold in uniformly random formulas. 
A similar method was applied in [11] to the random graph coloring problem.

3. Outline

3.1. The second moment method

As pointed out in the seminal paper by Achlioptas and Moore [2], the second moment 
method can be used to prove lower bounds on the k-SAT threshold. The general strategy 
is as follows. Suppose that Y = Y (Φ) ≥ 0 is a random variable such that Y (Φ) > 0 only 
if Φ = Φk(N, M) is satisfiable. Assume, moreover, that there is a number C = C(k) > 0
that may depend on k but not on n such that

0 < E[Y 2] ≤ C · E[Y ]2. (3.1)

Then the Paley–Zygmund inequality P [Y > 0] ≥ E[Y ]2/E[Y 2] implies that

lim inf
n→∞

P [Φ is satisfiable] ≥ lim inf
n→∞

P [Y > 0] ≥ 1/C > 0. (3.2)

The following consequence of Friedgut’s sharp threshold theorem turns (3.2) into a lower 
bound on rk-SAT. From here on out, we always let M = 
rN� for some number r > 0, 
the density, that remains fixed as N → ∞.

Lemma 3.1. (See [24].) If r > 0 is such that lim infN→∞ P [Φ is satisfiable] > 0, then 
lim infN→∞ rk-SAT(N) ≥ r.

Thus, we “just” need to come up with a random variable Y that satisfies (3.1).
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3.2. The majority vote

The obvious candidate for such a random variable seems to be the total number Z of 
satisfying assignments of Φ. Then the second moment E[Z2] is nothing but the expected 
number of pairs of satisfying assignments. In effect, a necessary condition for the success 
of the second moment method turn out to be that in a random pair (σ, τ) of satisfying 
assignments of Φ, σ, τ “look uncorrelated”. In particular, as shown in [2,4], (3.1) can only 
hold if the average Hamming distance of σ, τ is (1 + o(1))n2 . However, in random k-SAT 
this is not the case [2]. In effect, (3.1) does not hold for Y = Z for any density r > 0.

As observed in [2,4], the source of these correlations is the asymmetry of the k-SAT 
problem. More precisely, let Dxi

denote the degree of the variable xi, i.e., number of 
times that xi occurs positively in the formula Φ, and let D¬xi

be the degree of ¬xi, i.e., 
number of times that xi occurs negatively in Φ. Furthermore, consider the majority vote
assignment σmaj, where we let σmaj(xi) = 1 if Dxi

> D¬xi
, σmaj(xi) = 0 if Dxi

< D¬xi
, 

and, say, choose σmaj(xi) ∈ {0, 1} randomly if Dxi
= D¬xi

. Here and throughout, we 
represent ‘true’ by 1 and ‘false’ by 0. Clearly, if the only information that we are given 
about Φ is the literal degrees Dx1 , D¬x1 , . . . , Dxn

, D¬xn
, then σmaj is the assignment 

with the greatest probability of being satisfying. This is because σmaj maximizes the 
total number of true literal occurrences throughout the formula. To be precise, out of 
the kM literals a

wmaj = 1
kM

N∑
i=1

max {Dxi
, D¬xi

}

fraction set to true under σmaj. Moreover, if we draw an assignment σ at random, then 
the closer σ is to σmaj in Hamming distance the larger the expected number of true 
literal occurrences. As a consequence, we expect that most satisfying assignments “lean 
towards” the majority assignment σmaj. This induces a subtle correlation amongst pairs 
of satisfying assignments, which dooms the second moment method.

This issue was sidestepped in [2,4] by considering an artificially symmetrized random 
variable. For instance, Achlioptas and Moore [2] apply the second moment method to 
the number ZNAE of satisfying assignments σ : {x1, . . . , xN} → {0, 1} whose inverse 
assignment σ̄ : x �→ 1 − σ(x) is satisfying as well. Satisfying assignments of this type 
are called Not-All-Equal-assignments, because under σ every clause must contain both a 
literal that is true under σ and one that is false. Intuitively, the Not-All-Equal require-
ment prevents the assignments from pandering towards σmaj, because moving σ towards 
σmaj makes it less likely that σ̄ is satisfying. As a consequence, it turns out that ZNAE

satisfies (3.1) for densities r ≤ 2k−1 ln 2 − 1+ln 2
2 + ok(1), about a factor of two below 

the k-SAT threshold. Moreover, (3.1) cannot hold for much larger densities, because for 
r > 2k−1 ln 2 − ln 2

2 + ok(1), the first moment E[ZNAE], and in effect P [ZNAE > 0], tends 
to 0 as N → ∞.
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A more subtle approach was suggested by Achlioptas and Peres [4]. They apply the 
second moment method to the number Zbal of balanced satisfying assignments, i.e., sat-
isfying assignments σ such that the fraction of true literal occurrences is about 1/2; 
formally,

1
KM

N∑
i=1

σ(xi)Dxi
+ (1 − σ(xi))D¬xi

= 1
2 + O(N−1/2). (3.3)

Technically, Achlioptas and Peres use an elegant weighting scheme to enforce (3.3). The 
dominant contribution to Zbal comes from satisfying assignments at Hamming distance 
about N/2 from σmaj. Thus, considering balanced assignments stems the drift towards the 
majority vote assignment. The condition (3.1) holds for r ≤ 2k ln 2 − k ln 2

2 − (1 + ln 2
2 ) −

ok(1). Conversely, it is pointed out in [4] that E[Zbal] tends to 0 as N → ∞ for r >

2k ln 2 − k ln 2
2 − ln 2

2 + ok(1). Thus, to bridge the gap of about k ln 2
2 between this lower 

bound and the upper bound (1.2), it is inevitable to deal with satisfying assignments 
that lean towards σmaj.

3.3. Condensation

But according to the cavity method, near the k-SAT threshold satisfying assignments 
are subject to far more severe correlations than just via the subtle drift towards σmaj. To 
explain this, we sketch the physics predictions [32] as to the geometry of the set S(Φ)
of satisfying assignments of Φ. According to the cavity method, already for densities 
r > (1 + ok(1))2k ln k/k, way below the k-SAT threshold, w.h.p. the set S(Φ) has a de-
composition S(Φ) =

⋃Σ
i=1 Ci into an exponential number Σ = exp(Ω(N)) of “clusters” Ci. 

These clusters are well-separated. That is, any two assignments in different clusters have 
Hamming distance Ω(N). More specifically, if σ1, . . . , σl ∈ S(Φ) is a sequence of satis-
fying assignments such that σ1 and σl belong to different clusters, then there is a step 
1 ≤ i < l such that σi and σi+1 have Hamming distance Ω(n). Furthermore, within each 
cluster Ci most variables (say, at least 0.99N) are frozen, i.e., they take the same truth 
value under all the assignments in Ci. Finally, each cluster is expected to be internally 
“well-connected”. That is, one can walk within the cluster Ci from any σ ∈ Ci to any 
other τ ∈ Ci by only altering, say, lnN variables at each step. The existence of clusters 
and frozen variables has by now been established rigorously [1,5,38].

As the density r increases, both the individual cluster sizes and the total number of 
satisfying assignments decrease. But the cavity method predicts that the total number of 
satisfying assignments drops at a faster rate [32]. More specifically, the prediction is that 
there exists a critical density rk-cond = 2k ln 2 − 3

2 ln 2 + ok(1) such that for r < rk-cond, 
each cluster Ci contains only an exp(−Ω(N)) fraction of the entire set S(Φ). In effect, if 
r < rk-cond and we draw two satisfying assignments σ, τ of Φ independently at random, 
then most likely they belong to different clusters. Thus, we expect σ, τ to have a large 
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Hamming distance. In particular, it is conceivable that they “look uncorrelated”, apart, 
of course, from the inevitable drift towards σmaj.

By contrast, for rk-cond < r < rk-SAT the largest cluster is expected to contain a con-
stant, i.e., Ω(1) fraction of the set S(Φ) w.h.p. This phenomenon is called condensation
in physics jargon. Consequently, if we draw two satisfying assignments σ, τ independently 
at random, then there is a good chance that σ, τ belong to the same cluster. In that case, 
they will be heavily correlated, because they coincide on all variables that are frozen in 
that cluster. Though there is currently no rigorous proof that condensation occurs in 
random k-SAT, the phenomenon has been established rigorously in other, symmetric 
problems [16,17].

The correlations that condensation induces not only derail the second moment 
method, but also the physicists’ “replica symmetric ansatz”. The 1RSB cavity method 
surmounts this obstacle by switching to a different random variable, namely the number 
Σ of clusters. Provably, Σ must remain exponentially large w.h.p. right up to the k-SAT 
threshold [5]. Hence, as clusters are well-separated, there might be a chance that two 
random clusters decorrelate, even as two randomly chosen satisfying assignments do not. 
We are going to turn this intuition into a rigorous proof.

To this end, we represent each cluster Ci by a map ζi : {x1, . . . , xN} → {0, 1, ∗} in 
which each variable either takes a Boolean value 0, 1 or the “joker value” ∗. The idea 
is that ζi(xj) = 1 means that xj is frozen to the value 1 in the cluster Ci. Similarly, 
ζi(xj) = 0 indicates that xj is frozen to 0. By contrast, ζi(xj) = ∗ means that xj is 
unfrozen in Ci. In other words, xj takes the value 1 in some of the assignments in Ci and 
the value 0 in others. Fortunately, there is a neat description of the resulting “relaxed 
assignments” that does not depend on a precise technical definition of “clusters”, “frozen 
variables” etc.

Definition 3.2. (See [7,34].) A map ζ : {x1, . . . , xN} → {0, 1, ∗} is a cover of Φ =
Φ1 ∧ · · · ∧ Φm if the following two conditions are satisfied. Extend ζ to a map from the 
set of literals to {0, 1, ∗} by letting ζ(¬xj) = ¬ζ(xj), with ¬0 = 1, ¬1 = 0, ¬∗ = ∗. Then

CV1: each clause either contains a literal that takes the value 1 under ζ, or two literals 
that take the value ∗,

CV2: any literal l such that ζ(l) = 1 occurs in a clause whose other literals are all set 
to 0.

In terms of the cluster intuition, CV1 provides that each clause either contains one 
literal that is frozen to ‘true’, or at least two literals that are unfrozen (for no unfrozen 
literal l may occur in a clause whose other k − 1 literals are frozen to 0, as that clause 
would freeze l to 1). In addition, CV2 ensures that each variable mapped to 0 or 1 is 
frozen to this value, meaning that there is a clause Φi whose other k − 1 literals are 
frozen to values that do not satisfy Φi. Hence, we expect that the clusters and covers of 
Φ are (essentially) in one-to-one correspondence, and our proof vindicates this notion.
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The proof strategy in this work is to perform a second moment argument for the 
number of covers.2 Yet matters are far from straightforward as the asymmetry of the 
k-SAT problem implies, much like for satisfying assignments, that covers lean towards 
σmaj and thus are subtly correlated. In effect, as we previously saw in the case of satisfying 
assignments, a “vanilla” second moment argument cannot succeed.

To accommodate the drift towards σmaj we will employ the physicists’ Survey Propa-
gation technique. Survey Propagation is a message passing procedure for (heuristically) 
calculating the marginal probability that a fixed variable xj takes each value 0, 1, ∗ in a 
random cover ζ of Φ [6,36]. The details of Survey Propagation are intricate (e.g., they 
involve a seriously complicated fixed point problem on the space of probability measures 
on the 3-simplex), and the result is not explicit. However, asymptotically the dominant 
terms result from the literal degrees Dxj

, D¬xj
. Indeed, for densities rk-cond < r < rk-SAT

Survey Propagation predicts that

P
[
ζ(xj) = z |Dxj

, D¬xj

]
= ϑz(Dxj

−D¬xj
) + ok(2−k), where (3.4)

ϑz(δ) =

⎧⎪⎨
⎪⎩

1
2 + δ

2k+1 − 2−k−2 if z = 1,
1
2 − δ

2k+1 − 2−k−2 if z = 0,
2−k−1 if z = ∗.

(3.5)

The probability term on the l.h.s. of (3.4) refers to choosing a random formula Φ and 
then a random cover ζ of Φ, given the degrees of xj, ¬xj . The approximation (3.4) is 
expected to be valid so long as |Dxj

− D¬xj
| = ok(2k), a condition that holds w.h.p. 

for the vast majority of the variables. Observe that the formula (3.5) is very much in 
line with our intuition that covers lean towards σmaj. In Section 4 we are going to craft 
a random variable around (3.5) that allows us to incorporate this drift, and thus to 
perform a second moment argument for the number of covers.

3.4. Preliminaries and notation

We conclude this section by introducing some notation and a few basic facts that 
will be used repeatedly throughout the paper. For a natural number Q we denote by 
[Q] the set {1, . . . , Q}. Moreover, we continue to denote by Φi the ith clause of the 
random formula Φ and by Φij the jth literal of Φi (i ∈ [M ], j ∈ [k]). Furthermore, 
we let V = V (N) = {x1, . . . , xN} be the set of variables of Φ and L = L(N) =
{x1,¬x1, . . . , xN ,¬xN} the set of literals. For each literal l ∈ L we let |l| signify the 
underlying variable; that is |xi| = |¬xi| = xi for i ∈ [N ].

Unless otherwise specified, we always assume that k, N are sufficiently large for our 
various estimates to hold. We use asymptotic notation with respect to both N and k. 
More precisely, the plain notation f = O(g) denotes asymptotics in N , while asymptotics 

2 Dimitris Achlioptas suggested the general strategy of applying the second moment method to “covers” as 
early as 2007/8. But at the time it was not clear (to us) how to carry out such a second moment argument.
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is k is denoted by f = Ok(g). In addition to the standard symbols, o, O, Ω, Θ, we write 
f = Õk(g) to denote the fact that there exist k1, C > 0 such that for all k > k1 we have 
|f(k)| ≤ kC |g(k)|. Similarly, f = Ω̃k(g) signifies that there exist k1, C > 0 such that for 
all k > k1 we have f(k) ≥ k−C |g(k)|. In particular, f = Ω̃k(1) means that there exist 
k1, C > 0 such that for all k > k1 we have f(k) ≥ k−C . Finally, we write f ∼ g for 
f = (1 + o(1))g.

Additionally, to avoid rounding issues it will be convenient to use the follow-
ing notation. Fixing a large enough constant Ck > 0, we write f(N) .= g(N) if 
exp(−Ck/N)f(N) ≤ g(N) ≤ exp(Ck/N)f(N).

For a finite set X we let P(X ) denote the set of probability distributions on X . We 
identify P(X ) with the set of all vectors (px)x∈X with entries px ∈ [0, 1] such that ∑

x∈X px = 1. For p ∈ P(X ) we let

H(p) = −
∑
x∈X

px ln px

signify the entropy of p; here and throughout, we use the convention that 0 ln 0 = 0. 
Further, if p, q ∈ P(X ), then

DKL (q‖p) =
∑
x∈X

qx ln qx

px

denotes the Kullback–Leibler divergence of q, p (with the usual convention that 0 ln 0
0 = 0

and that DKL (q‖p) = ∞ if there is x ∈ X such that qx > 0 = px).
If we fix an element x0 ∈ X , then a probability distribution p ∈ P(X ) is actually 

determined by the vector p0 = (px)x∈X\{x0} (because the entries px, x ∈ X , must sum 
to 1). Therefore, for notational convenience, we sometimes just write p0 instead of p. 
In particular, we use the shorthands H(p0) = H(p) and DKL (q0‖p0) = DKL (q‖p) if 
q ∈ P(X ) is another probability distribution. Thus, for p, q ∈ [0, 1] we let

H(p) = H(p, 1 − p) = −p ln p− (1 − p) ln(1 − p),

DKL (q‖p) = DKL ((q, 1 − q)‖(p, 1 − p)) = q ln q

p
+ (1 − q) ln 1 − q

1 − p
.

We recall that the Kullback–Leibler divergence is non-negative and convex. The deriva-
tives of its generic summand are

∂

∂q
q ln q

p
= 1 + ln q

p
,

∂

∂p
q ln q

p
= −q

p
, (3.6)

∂2

∂q2 q ln q

p
= 1

q
,

∂2

∂p2 q ln q

p
= q

p2 ,
∂2

∂p∂q
q ln q

p
= −1

p
. (3.7)
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If X = X1 ×X2 and p = (p(x1,x2))x1∈X1,x2∈X2 ∈ P(X ), then for A1 ⊂ X1, A2 ⊂ X2 we let

pA1 · =
∑

x1∈A1

∑
x2∈X2

p(x1,x2), p ·A2 =
∑

x1∈X1

∑
x2∈A2

p(x1,x2).

If A1 = {a1}, then we just write pa1 · instead of p{a1} · , and similarly for A2. We also 
write px1x2 instead of p(x1,x2).

We will frequently use the following facts. The entropy function is well-known to yield 
the exponential part of the multinomial coefficient.

Fact 3.3. Let X be a finite set and suppose that (pn)n is a sequence of probability distri-
butions on X such that np(x) is an integer for every x ∈ X and all n. Then

(
n

(npxn)x∈X

)
= exp(nH(pn) + O(lnn)) as n → ∞. (3.8)

If, furthermore, there is a fixed ε > 0 such that for all n we have minx∈X pxn > ε, then
(

n

(npxn)x∈X

)
= exp

(
nH(pn) − ((|X | − 1) lnn)/2 + O(1)

)
as n → ∞. (3.9)

Proof. Stirling’s formula yields n! ∼
√

2πnnn exp(−n). Moreover, for all x ∈ X such 
that px > 0 we have [42]

√
2πpxn(npx)np

x

exp(−npx) ≤ (npx)! ≤
√

2πpxn(npx)np
x

exp(1/(12npx) − npx).
(3.10)

Since X is finite, multiplying (3.10) up over x ∈ X and canceling yields (3.8). Now, 
assume that minx∈X pxn > ε. Then npx ≥ εn for all n and thus 

√
2πpxn = Θ(

√
n). 

Hence, (3.9) follows from (3.10). �
The Kullback–Leibler divergence enters our analysis as the rate function of the multi-

nomial distribution (cf. [19, Section 2.1]). Both assertions made below follow immediately 
from Fact 3.3.

Fact 3.4. Let X be a finite set, let q ∈ P(X ) be a probability distribution such that qx > 0
for all x ∈ X and let (pn)n be a sequence of probability distributions on X such that npxn
is an integer for all x ∈ X , n ≥ 1. Then

(
n

(npxn)x∈X

) ∏
x∈X

(qx)np
x
n = exp(−nDKL (pn‖q) + O(lnn)) as n → ∞.

Moreover, if for a fixed ε > 0 we have minx∈X pxn > ε for all n, then
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(
n

(npxn)x∈X

) ∏
x∈X

(qx)np
x
n = exp(−nDKL (pn‖q) − ((|X | − 1) lnn)/2 + O(1))

as n → ∞.

The following is a special case of the local limit theorem for sums of independent 
random vectors from [18, Theorem 3] tailored for our needs.

Theorem 3.5. Let X ⊂ Zd be a finite set and let (Xn)n≥1 be a sequence of i.i.d. random 
variables with values in X . With 1j ∈ Zd denoting the vector whose jth component is 1
and whose other components are 0, assume that there is a number α > 0 such that

∀n ≥ 1, j ∈ [d] : max
x∈X

min{P [Xn = x] ,P [Xn = x + 1j ]} ≥ α.

Then for the sequence (Sn)n≥1 with Sn = X1 + · · ·+Xn the following statement is true. 
Let μn = E[Sn] and let Σ be the d × d-covariance matrix of X1. Let ψ denote the density 
function of the normal distribution with mean 0 and covariance matrix Σ. Then

lim
n→∞

sup
s∈Zd

∣∣∣∣nd/2
P [Sn = s] − ψ

(
s− μn√

n

)∣∣∣∣ = 0.

We also need the following well-known Chernoff bound (e.g., [27]).

Lemma 3.6. Let ϕ(x) = (1 + x) ln(1 + x) − x. Let X be a binomial or a Poisson random 
variable with mean μ > 0. Then for any t > 0 we have

P [X > E [X] + t] ≤ exp(−μ · ϕ(t/μ)), P [X < E [X] − t] ≤ exp(−μ · ϕ(−t/μ)).

In particular, for any t > 1 we have P [X > tμ] ≤ exp [−tμ ln(t/e)].

If A, B are n × n matrices, then A � B means that B − A is positive semidefinite. 
Finally, in Appendix D we present a listing of the most important pieces of notation that 
is used throughout the paper.

4. Colors, types and shades

The aim in this section is to design the random variable upon which the proof of 
Theorem 1.1 is based. We also summarize the result of the first and the second moment 
analysis. Let M = 
rN� for r = 2k ln 2 − 1+ln 2

2 − εk with εk = Õk(2−k/2).

4.1. The pruning step

The approximate Survey Propagation formula (3.4) only applies to literals l such 
that both Dl, D¬l are close to their expected value kr/2. However, w.h.p. the random 
formula Φ features a few literals whose degrees deviate from kr/2 significantly. In fact, 
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it is well-known that the random formula Φ can be viewed as the result of the following 
experiment, known as the “Poisson cloning model” [29]. First, we choose the vector 
D = (Dl)l∈L of literal degrees. Its distribution is described easily: let D′ = (D′

l)l∈L be 
a family of independent Poisson variables, each with mean kr/2. Then the distribution 
of D is identical to that of D′ given 

∑
l D

′
l = kM . Further, given D, we obtain Φ as 

follows. Let L(D) =
⋃

l {l} × [Dl] be a set that contains Dl “clones” of each literal 
l ∈ L. Moreover, let I(M, k) = [M ] × [k] be a set representing the kM “slots” in the 
formula where the literals are placed (k slots for each clause). Now, choose a bijection 
Φ(D) : I(M, k) → L(D), (i, j) �→ Φij(D) uniformly at random. Then we obtain Φ by 
letting Φij be the literal l such that Φij(D) ∈ {l} × [Dl]. Intuitively, one could think of 
L(D) as a deck of cards that contains Dl copies of each literal l. The random formula Φ
is obtained by shuffling the cards and reading the literals out in the resulting order.

Since D is closely related to the vector D′ of independent Poisson variables, the 
random formula Φ is likely to contain a small but linear (in N) number of literals whose 
degrees deviate substantially from kr/2. To get rid of these literals, we subject Φ to a 
pruning operation. More precisely, we perform the following three steps.

PR1: Initially, let U be the set of all variables x such that

max {|Dx − kr/2|, |D¬x − kr/2|} > k32k/2. (4.1)

PR2: While there is a clause that features at least three variables from U ,
• remove all such clauses from the formula, and
• add to U each variable x such that (in the reduced formula) either the degree 

of x or the degree of ¬x differs by more than k32k/2 from kr/2.
PR3: Remove the variables in U from all the remaining clauses.

Let Φ′ denote the formula obtained via PR1–PR3 and let V ′ = V \ U be its variable 
set. Let L′ = {x,¬x : x ∈ V ′} be the set of literals of Φ′. Moreover, for x ∈ V ′ let dx, d¬x

denote the degrees of the literals x, ¬x in Φ′. By construction,

|dx − 1
2kr|, |d¬x − 1

2kr| ≤ k32k/2 for all x ∈ V ′. (4.2)

The following proposition summarizes the effect of the pruning operation.

Proposition 4.1. W.h.p. the random formula Φ has the following properties.

(1) Any satisfying assignment σ′ of Φ′ extends to a satisfying assignment of Φ.
(2) We have |V ′| ≥ (1 − exp(−k2))N and 

∑
x/∈V ′ Dx + D¬x ≤ exp(−k2)N .

(3) If d+, d− are integers such that |d+ − kr/2|, |d− − kr/2| ≤ k32k/2, then

Ω(1) ≤ |{l ∈ L′ : dl = d+, d¬l = d−}|
2N

= P
[
Po(kr/2) = d+]

P
[
Po(kr/2) = d−

]
+ Ok(exp(−k2)).
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The proof of Proposition 4.1, which is very much based on standard arguments, can 
be found in Appendix B.

Let n = |V ′|. We assume without loss of generality that the variable set of Φ′ is 
V ′ = {x1, . . . , xn}. Further, let us denote the clauses that the pruned formula Φ′ consists 
of by Φ′

1, . . . , Φ′
m. In particular, in the rest of the paper m is going to signify the number 

clauses of Φ′. For each i ∈ [m] we let ki ∈ {k − 2, k − 1, k} denote the length of Φ′
i, 

i.e., the number of literals that the clause contains. Let D be the σ-algebra generated 
by the random variables n, m, dl, ki (l ∈ L′, i ∈ [m]). Proposition 4.1 implies that 
lim infn→∞ P[Φ is satisfiable] ≥ lim infn→∞ E[P[Φ′ is satisfiable|D]]. Therefore, we are 
left to prove that

lim inf
n→∞

E
[
P[Φ′ is satisfiable|D]

]
> 0. (4.3)

By the principle of deferred decisions, the distribution of Φ′ given D can characterized 
be as follows.

Fact 4.2. Given D, Φ′ is a uniformly random formula with variables x1, . . . , xn, literal 
degrees dxi

, d¬xi
, and m clauses of lengths k1, . . . , km.

In light of Fact 4.2, we can describe the distribution of Φ′ by means of an experi-
ment that resembles the Poisson cloning model (or the “configuration model” of random 
graphs, e.g., [27]). Let L′ =

⋃
l∈L′ {l}× [dl] be a set that contains dl clones (l, j), j ∈ [dl], 

of each literal l. Moreover, let I ′ =
⋃

i∈[m] {i} × [ki] be the set of all literal slots of Φ′. 
Given D, let

Φ̂ : I ′ → L′, (i, j) �→ Φ̂ij (4.4)

be a uniformly random bijection. Then we obtain

Φ′ =
∧

i∈[m′]
∨

j∈[ki] Φ
′
ij

by letting Φ′
ij be the literal l such that Φ̂ij ∈ {l} × [dl].

The rest of the paper is devoted to the proof of (4.3). Throughout, we always use the 
characterization of Φ′ by way of Φ̂. It may be helpful to think of Φ̂ in graph-theoretic 
terms: Φ̂ is nothing but a (uniformly random) perfect matching between the set I ′ of 
clause slots and the set L′ of literal clones.

4.2. The color code

To prove (4.3) we are going to perform a second moment argument over the number 
of covers of Φ′. By comparison to satisfying assignments, covers involve one significant 
twist. While condition CV1 is similar in spirit to the notion of a “satisfying assignment”,
CV2 imposes the additional requirement that each literal set to 1 be “frozen”. In effect, 
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critical clauses, i.e., clauses that contain one literal set to 1 while all other literals are 
set to 0, play a special role: each literal that is set to 1 must occur in one of them.

To accommodate the significance of critical clauses we introduce a “color code”. If ζ is 
a cover of Φ′, then we use the perfect matching Φ̂ upon which Φ′ is based to extend ζ to 
a map ξ from the set L′ of literal clones to the colors red, blue, green, yellow (r, b, g, y, 
for short). The semantics is as follows. All clones (l, j) ∈ L′ such that ζ(l) = ∗ are colored 
green and all (l, j) ∈ L′ such that ζ(l) = 0 are colored yellow. Moreover, clones (l, j) such 
that ζ(l) = 1 are colored either red or blue: if (l, j) occurs in a critical clause then it is 
colored red, otherwise blue. The colorings that emerge in this way admit the following 
neat characterization.

Definition 4.3. A map ξ : L′ → {r, b, g, y} is a shade if the following conditions are 
satisfied.

SD1: For any literal l ∈ L′ exactly one of the following is true:
• all clones of both l and ¬l are colored green under ξ.
• all clones of l are colored either red or blue, and all clones of ¬l are colored 

yellow under ξ.
• all clones of l are colored yellow, and all clones of ¬l are colored red or blue 

under ξ.
SD2: There is no literal l ∈ L′ all of whose clones are colored blue under ξ.

Condition SD2 is to ensure that a literal set to 1 is “frozen” by a critical clause, 
represented by a red clone.

It will be convenient to introduce two additional colors: a clone is cyan (‘c’) if it is blue 
or green and purple (‘p’) if it is red, blue or green. Thus, c = {b, g}, p = {r, b, g}. We 
will frequently work with vectors q = (qz)z∈{r,b,g,y} (for example representing probability 
distributions) indexed by the above colors. For such vectors let

q1 = qb + qr, q0 = qy, q∗ = qg, qc = q{b,g} = qb + qg,

qp = q{r,b,g} = qr + qb + qg.

In view of this notation we may think of 1 = {r, b} as being an auxiliary color as well. 
In terms of the coloring we can express easily when a shade ξ corresponds to a cover.

Definition 4.4. A shade ξ is valid in Φ̂ if the following two conditions are satisfied.

V1: If a clause contains a red clone, then all its other clones are yellow.
V2: Any clause without a red clone contains at least two cyan clones.

In particular, under a valid cover each clause contains at least one purple clone. 
Definition 4.4 ensures that a valid shade ξ : L′ → {r, b, g, y} gives rise to a cover 
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ξ̂ : L′ → {0, 1, ∗} by setting ξ̂(l) = 1 if ξ(l, 1) ∈ {r, b}, ξ̂(l) = 0 if ξ(l, 1) = y and ξ̂(l) = ∗
if ξ(l, 1) = g. Thus, there is a one-to-one correspondence between the valid shades of Φ̂
and the covers of Φ′. Hence, we are going to perform a second moment argument for the 
number of valid shades of Φ̂.

4.3. Types

As explained in Section 3, a key issue with this idea is the drift towards the majority 
vote assignment. To deal with this, we are going to define an appropriate “slice” within 
the set of all shades such that two randomly chosen valid shades “look uncorrelated” 
within this slice. In order to define the slice, we are going to assign to each literal a “type” 
that provides for each clone of that literal a probability distribution over {r, b, g, y}. 
Additionally, we will assign each clause a type that comprises the types of the literals 
that the clause contains. Ultimately, the construction will involve the Survey Propagation 
“guess” (3.5) as to the marginal probability that a given literal is set to each of the 
values 0, 1, ∗ under a randomly chosen cover. For the sake of clarity, we shall describe 
the construction in relative generality and we will fix the parameters later. The starting 
point is the following definition.

Definition 4.5. A type assignment of Φ̂ is a map θ : L′ → P({r, b, g, y}), (l, j) �→ θl,j =
(θzl,j)z∈{r,b,g,y} that satisfies the following conditions:

TY1: for any l ∈ L′ and any j, j′ ∈ [dl] we have θzl,j = θzl,j′ for all z ∈ {0, 1, ∗}.
TY2: for any l ∈ L′, any j ∈ [dl] and any j′ ∈ [d¬l] we have θ∗l,j = θ∗¬l,j′ and θ1

l,j = θ0
¬l,j′ .

Thus, a type assignment maps each literal clone to a probability distribution over 
{r, b, g, y}. The conditions TY1–TY2 provide a degree of consistency between the dis-
tributions assigned to the clones of a literal l ∈ L′ and of the clones of ¬l. Namely,
TY1 provides that for any two j, j′ ∈ [dl] we have θyl,j = θ

y
l,j′ , θ

g
l,j = θ

g
l,j′ and 

θrl,j + θbl,j = θrl,j′ + θbl,j′ . Thus, only the partition of the probability mass between the 
colors r, b may vary between the different clones of the same literal. Additionally, TY2
ensures that the distributions assigned to the clones are in line with the notion that the 
Boolean value assigned to ¬l must be the opposite of that assigned to l.

Example 4.6. The ideal example of a type assignment of Φ̂ is the following. For each 
clone (l, j) ∈ L′ and every color z ∈ {r, b, g, y}, let θzl,j be the number of valid shades ξ
of Φ̂ such that ξ(l, j) = z divided by the total number of valid shades (provided that it 
is positive). In other words, θzl,j is the marginal probability that (l, j) takes color z in a 

randomly chosen valid shade of Φ̂. Clearly, this map satisfies TY1–TY2. However, it is 
very difficult to get a handle on this ideal type assignment. Therefore, we will ultimately 
use the Survey Propagation prediction (3.5) to design an approximation.
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Let θ be a type assignment of Φ̂. The θ-type of a literal l ∈ L′ is the tuple θl =
(dl, d¬l, (θl,j)j∈[dl], (θ¬l,j)j∈[d¬l]). Thus, the θ-type comprises the degree of l, the degree 
of its negation ¬l, and the distributions on {r, b, g, y} associated with each clone of l
and ¬l. Let Tθ = {θl : l ∈ L′} be the set of all θ-types. For each t ∈ Tθ we introduce the 
notation dt = dl, tj = θl,j for j ∈ [dl], and ¬t = θ¬l, where l is any literal such that 
t = θl. Thus, tj ∈ P({r, b, g, y}) for all j ∈ [dt]. Furthermore, condition TY1 vindicates 
the notation

t1 = t11, t0 = t01, t∗ = t∗1.

Thus, (t1, t0, t∗) ∈ P({0, 1, ∗}). Moreover, for t ∈ Tθ and j ∈ [dt] we let

L′
t = {l ∈ L′ : θl = t} , L′

t,j = {(l, j) ∈ L′ : l ∈ L′
t} , nt = |L′

t| , πt = nt

2n.

As a next step, we define clause types. Let i ∈ [m] and let (li,j , hi,j) = Φ̂ij for j =
1, . . . , ki. Then we call

�(i) = ((θli,1 , hi,1), . . . , (θli,ki
, hi,ki

))

the θ-type of the clause Φ′
i. Thus, �(i) contains the θ-types of all the literals that appear 

in Φ′
i, and also indicates which clone of a literal of that type appears in the clause. Let 

T ∗
θ = {�(i) : i ∈ [m]}. Further, for � ∈ T ∗

θ let

M� = {i ∈ [m] : �(i) = �} , m� = |M�| , π� = m�

m
.

Thus, each clause type � ∈ T ∗
θ is a tuple ((t(1), h(1)), . . . , (t(k�), h(k�))) with t(1), . . . ,

t(k�) ∈ Tθ and h(j) ∈ [dt(j)] for j ∈ [k�]. We always write k� for the length of this 
tuple. Since k� is nothing but the length of any corresponding clause in Φ′, the pruning 
step ensures that k� ∈ {k − 2, k − 1, k} for all � ∈ T ∗

θ . Further, for j ∈ [k�] we write 
∂(�, j) = (t(j), h(j)) for the jth component of �. Additionally, recalling that th(j)(j) is 
a probability distribution on {r, b, g, y} for each j ∈ [k�], we let �j = t(j)h(j). Hence, 
�j ∈ P({r, b, g, y}).

In summary, given a type assignment θ, we have assigned each literal and each clause 
a θ-type. The definition of the literal/clause types is such that the matching Φ̂ “respects 
the types”. More precisely, let � ∈ T ∗

θ be a clause type. Then for each i ∈ M�, j ∈ [k�] we 
have

Φ̂ij ∈ L′
∂(�,j). (4.5)

Conversely, for a literal type t ∈ Tθ and h ∈ [dt] we define ∂(t, h) = {(�, j) : � ∈ T ∗
θ ,

j ∈ [k�], (t, h) = ∂(�, j)}. In words, ∂(t, h) is the set pairs (�, j) such that the hth clone of 
a literal of type t may appear in the jth position of a clause of type �. Thus, we obtain 
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a bipartite “type graph” whose vertices are the pairs (t, h) with t ∈ Tθ and h ∈ [dt] and 
(�, j) with � ∈ T ∗

θ and j ∈ [k�]. Every vertex (�, j) has a unique neighbor, namely ∂(�, j). 
But for each vertex (t, h) the neighborhood ∂(t, h) may contain several vertices.

As a next step, we will explain how the literal/clause types identify a “slice” within 
the set of all valid shades. The following definition basically provides that the empirical 
distribution of the colors is as prescribed by the types.

Definition 4.7. Let θ be a type assignment of Φ̂. A shade ξ is called a θ-shade of Φ̂ if 
the following conditions are satisfied.

(1) For any t ∈ Tθ, h ∈ [dt], z ∈ {r, b, g, y} we have |{l ∈ L′
t : ξ(l, h) = z}| .= ntt

z
h.

(2) For any � ∈ T ∗
θ , j ∈ [k�], z ∈ {r, y} we have |{i ∈ M� : ξ(Φ̂ij) = z}| .= m��

z
j .

In words, in a θ-shade for each type t ∈ Tθ, every h ∈ [dt] and all colors z ∈ {r, b, g, y}, 
the fraction of literals l of type t whose hth clone is colored z is (about) tzh. Additionally, 
for each clause type � and each j ∈ [k�] the fraction of clauses of type � whose jth clone 
has color z ∈ {r, y} is (approximately) equal to �zj . This second requirement corresponds 
to the “judicious” condition from [15]. The purpose is to restrict the impact of asymmetry 
to direct neighborhoods.

4.4. An educated guess

We are going to apply the second moment method to the number of valid θ-shades 
for a type assignment θ that provides a good enough approximation to the “ideal” type 
assignment from Example 4.6. In this section we construct this type assignment. The 
starting point is the map ϑ : Z → P({0, 1, ∗}) from (3.5). Following the Survey Propa-
gation intuition, for each literal l we let ϑl = ϑ(dl − d¬l) ∈ P({0, 1, ∗}). We call ϑl the 
signature of l. Crucially, the signature of l is determined by dl, d¬l only.

While ϑl is a distribution over {0, 1, ∗} for each literal l, our aim is to construct a 
type assignment that provides a distribution over {r, b, g, y} for each clone (l, h). This 
distribution will depend on the signatures of the other literals that get matched to the 
same clause as (l, h). More precisely, for i ∈ [m] we call the vector

ϑi = (ϑΦ′
i,1
, . . . , ϑΦ′

i,ki
) ∈ P({0, 1, ∗})ki

the signature of Φ′
i. In words, ϑi consists of the signatures of the ki literals that appear in 

clause Φ′
i. In order to turn the signature ϑi into probability distributions on {r, b, g, y}, 

we define a map

Λ :
k⋃

κ=k−2

{ϑl : l ∈ L′}κ →
k⋃

κ=k−2

P({r, b, g, y})κ,

(t1, . . . , tκ) �→
(
Λ1(t1, . . . , tκ), . . . ,Λκ(t1, . . . , tκ)

)
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by letting for j ∈ [κ]

Λr
j(t1, . . . , tκ) = (t1j + t∗j )

∏
j′ �=j

t0j′ , Λb
j(t1, . . . , tκ) = t1j − (t1j + t∗j )

∏
j′ �=j

t0j′ , (4.6)

Λy
j(t1, . . . , tκ) = tyj , Λg

j(t1, . . . , tκ) = tgj . (4.7)

The definition is motivated by the fact that the jth clone of a clause must be colored 
red if all other clones are set to 0. Because t1j , t

0
j = 1

2 + Õk(2−k/2) and t∗j = Ok(2−k)
for all j, Λj(t1, . . . , tκ) is a probability distribution for sufficiently large k. Moreover, 
Λz
j (t1, . . . , tκ) = tzj for z ∈ {0, 1, ∗}. Finally, for i ∈ [m] and j ∈ [ki] we define

θΦ̂ij
= Λj(ϑi) ∈ P({r, b, g, y}). (4.8)

Thus, at this point we have constructed a type assignment θ = θ(Φ̂) : L′ →
P({r, b, g, y}).

In the rest of the paper, we are exclusively going to work with the type assignment 
from (4.8). Therefore, we are consistently going to drop the index θ from symbols such 
as Tθ, T ∗

θ and just write T, T ∗ etc. instead. Having constructed the type assignment, we 
obtain the θ-types of the literals/clauses via the framework described in the previous 
section. Let T ⊃ D denote the coarsest σ-algebra with respect to which all types θl, �i
(l ∈ L′, i ∈ [m]) are measurable. The conditional distribution of the random formula Φ̂
given T admits the following neat description as a “type-preserving random matching” 
(cf. (4.5) and the subsequent discussion).

Fact 4.8. Given T , Φ̂ : I ′ → L′ is a uniformly random bijection subject to the condition 
that Φ̂ij ∈ L′

∂(�,j) for all � ∈ T ∗, i ∈ M�, j ∈ [k�].

4.5. The random variable

In this section we define the precise random variable to which we apply the second 
moment method and summarize the result of the first/second moment calculations. At 
this point, the obvious choice seems to be the number Z ′ of valid θ-shades of Φ̂. However, 
there are two more technical issues that we need to tackle.

First, we saw that any valid shade ξ of Φ̂ gives rise to a cover ξ̂ of Φ′. But of course 
our overall goal is to exhibit a satisfying assignment of Φ′, not merely a cover. Hence, we 
call ξ extendible if Φ′ has a satisfying assignment σ such that σ(l) = ξ̂(l) for all literals l
such that ξ̂(l) ∈ {0, 1}. Thus, we can think of σ as being obtained by substituting actual 
truth values for l such that ξ̂(l) = ∗.

Additionally, we introduce a condition to facilitate the second moment computation. 
According to the physics picture, we expect that covers are “well-separated”. To hard-wire 



A. Coja-Oghlan, K. Panagiotou / Advances in Mathematics 288 (2016) 985–1068 1005
this geometry into our random variable, we call a valid shade ξ of Φ̂ separable if there 
are no more than E[Z ′|T ] valid θ-shades ζ of Φ̂ such that

1
2n

∣∣∣{l ∈ L′ : ξ̂(l) �= ζ̂(l)
}∣∣∣ /∈ [

1
2 − 2−0.49k,

1
2 + 2−0.49k

]
.

Definition 4.9. A θ-shade ξ is good in Φ̂ if it is valid, extendible and separable.

Let Z denote the number of good θ-shades of Φ̂. In Section 5 we will calculate the 
first moment of Z to prove

Proposition 4.10. There is εk = Θk(2−k/2) such that for r = 2k ln 2 − 1+ln 2
2 − εk we have 

E[Z|T ] = exp(Ω(n)) w.h.p.

Furthermore, in Section 6 we estimate the second moment to establish the following.

Proposition 4.11. If εk = Õk(2−k/2) is such that for r = 2k ln 2 − 1+ln 2
2 − εk we have 

E[Z|T ] = exp(Ω(n)) w.h.p., then E[Z2|T ] ≤ O(E[Z|T ]2) w.h.p.

Proof of Theorem 1.1 (assuming Propositions 4.10–4.11). With εk and r from Propo-
sition 4.10 we obtain from Propositions 4.10 and 4.11 that E[Z|T ] ≥ exp(Ω(n)) and 
E[Z2|T ] ≤ O(E[Z|T ]2) w.h.p. Hence, the Paley–Zygmund inequality yields

lim inf
N→∞

E[P [Z > 0|T ]] > 0. (4.9)

Since Z counts good, and thus extendible shades, Φ̂ is satisfiable if Z > 0. Hence, (4.9)
implies that

lim inf
N→∞

E[P[Φ̂ is satisfiable|T ]] > 0. (4.10)

As T ⊃ D, (4.10) yields lim infN→∞ E 
[
P[Φ′ is satisfiable|D]

]
> 0, i.e., (4.3) is estab-

lished. Finally, Theorem 1.1 follows from Proposition 4.1. �
4.6. A few observations

We conclude this section with a few basic observations that will be important in due 
course.

Lemma 4.12. For any � ∈ T ∗, j ∈ [k�] we have �rj = �
p
j

∏
j′ �=j �

y
j = 2−k� + Õk(2−3k/2).

Proof. The first equality sign is immediate from (4.6)–(4.7) and the fact that �pj = �1j+�∗j . 
The second one follows from (3.5), since the pruning step (4.2) guarantees that �pj′ , �

y
j′ =

1/2 + Õk(2−k/2) for all j′ ∈ [k�] and k� ∈ {k − 2, k − 1, k}. �
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Lemma 4.13. W.h.p. we have πt, π� = Ω(1) for all t ∈ T, � ∈ T ∗.

Proof. Let A be the set of all pairs (d+, d−) of integers such that |d+−kr/2|, |d−−kr/2| ≤
k32k/2. Proposition 4.1 shows that for any (d+, d−) ∈ A the set L′(d+, d−) of literals l
such that dl = d+, d¬l = d− has size Ω(n) w.h.p. Furthermore, the construction in (4.8)
ensures that the type of a literal l is determined by dl, d¬l and the degrees of the literals 
that appear in the clauses that contain l. Because Φ′ is uniformly random given D and 
A is bounded, any possible constellation appears Ω(n) times w.h.p. Hence, πt = Ω(1)
for all t ∈ T w.h.p. Similarly, the type of a clause Φ′

i is governed by the degrees of the 
literals that the clause contains and the degrees of the literals that appear in a clause 
that contains a literal l such that either l or ¬l appears in Φ′

i. Once more because Φ′ is 
uniformly random given D, any possible constellation appears Ω(m) times w.h.p. Hence, 
π� = Ω(1) for all � ∈ T ∗. �

For a set T0 ⊂ T define Vol(T0) =
∑

t∈T0
πt. Similarly, for M ⊂ T ∗ let Vol(M) =∑

�∈M π�. The formula Φ′ inherits certain discrepancy properties from the plain random 
formula Φ.

Lemma 4.14. W.h.p. Φ′ enjoys the following properties. For � ∈ T ∗ we write ∂� =
{∂(�, j) : j ∈ [k�]}.

DISC1: Assume that A ⊂ T is such that Vol(A) ≥ 0.01. Let M be the set of all � ∈ T ∗

such that |∂� ∩A| ≥ 0.001k. Then Vol(M) ≥ 1 − exp(−Ωk(k)).
DISC2: Assume that A, B ⊂ T are disjoint sets of types such that Vol(A), Vol(B) ≥ 0.47. 

Let M be the set of all � ∈ T ∗ such that |∂� ∩ A| ≥ 0.4k and |∂� ∩ B| ≥ 0.4k. 
Then Vol(M) ≥ 1 − k−9.

DISC3: Assume that A ⊂ T has satisfies Vol(A) ≤ k−9. Let M be the set of all � ∈ T ∗

such that |∂� ∩A| ≥ 0.9k. Then Vol(M) ≤ Õk(2−k)Vol(A).

The proof of Lemma 4.14, which is very much based on standard arguments, can be 
found in Appendix C. Finally, we define [T ] = {{t,¬t} : t ∈ T}.

In the rest of the paper we tacitly assume that πt = Ω(1) and π� = Ω(1) for all t ∈
T , � ∈ T ∗, that statements (2) and (3) of Proposition 4.1 hold, and that Φ′ satisfies 
DISC1–DISC3 from Lemma 4.14. In addition, we assume that r = M/N = 2k ln 2 −(1 +
ln 2)/2 − εk with εk = Õk(2−k/2), and that k is sufficiently large for various estimates 
to hold.

5. The first moment

5.1. An explicit formula

The aim in this section is to prove Proposition 4.10, i.e., to compute a lower bound 
for the expected number of good θ-shades. To this end, we are first going to provide an 
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st = 1 −
∏

h∈[dt]

(1 − qrt,h), gc� = 1 −
∏

j∈[k�]

qy�,j −
∑

j∈[k�]

qp�,j

∏
j′∈[k�]\{j}

qy�,j′ , gr�,j = qp�,j

∏
j′∈[k�]\{j}

qy�,j′ ,

ert,h =
t1qrt,h

st
, ep�,j = �rj +

qp�,j

gc�

⎛
⎝1 −

∑
j′∈[k�]

�rj′

⎞
⎠
⎛
⎝1 −

∏
j′∈[k�]\{j}

qy�,j′

⎞
⎠ .

Fig. 1. The formulas for Proposition 5.1.

exact, explicit formula for the first moment. Let Z ′ denote the number of valid θ-shades 
of Φ′. We sometimes use the notation PT [ · ] = P [ · |T ] (Φ), ET [ · ] = E [ · |T ] (Φ).

Proposition 5.1. There exist unique numbers qrt,h, q
p
�,j ∈ (0, 1) such that with qy�,j = 1 −qp�,j

the numbers ert,h, e
p
�,j defined in Fig. 1 satisfy

ert,h = trh for all t ∈ T, h ∈ [dt], e
p
�,j = �

p
j for all � ∈ T ∗, j ∈ [k�].

Furthermore, with the expressions from Fig. 1,

1
n

lnET [Z ′] = −C lnn

n
+
∑
t∈T

πt

[
H(t0, t1, t∗) + 2ϕocc,t

]
+ m

n

∑
�∈T∗

π�ϕval,� + O(1/n),

where

C = |{{t,¬t} : t ∈ T}| +
∑
�∈T∗

k�
2 +

∑
t∈T

∑
h∈[dt]

|∂(t, h)| − 1
2 ,

ϕocc,t = t1 ln st + t∗ ln(1 − st) +
∑

h∈[dt]

DKL
(
trh/t

p
h‖qrt,h

)
,

ϕval,� = −DKL
(
�r1, . . . , �

r
k�
, 1 − �r1 − · · · − �rk�

‖gr�,1, . . . , gr�,k�
, gc�

)
+

∑
j∈[k�]

DKL

(
�
p
j‖q

p
�,j

)
. (5.1)

To prove Proposition 5.1, we express the property of being a valid θ-shade as a com-
bination of events that are easy to describe in terms of independent random variables. 
The basic idea is to separate the property of being valid, which concerns how the colors 
are distributed amongst the clauses, from the property of being a θ-shade, which deals 
with how the clones of the individual literals are colored. Due to condition V2 from 
Definition 4.4, this last point introduces a smidgen of an occupancy problem into our 
analysis. More specifically, we prove Proposition 5.1 in the following three subsections, 
dealing first with the entropy, then with the validity probability (corresponding essen-
tially to the ϕval,� terms) and finally with the occupancy aspect (corresponding to the 
ϕocc,t terms).
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5.1.1. The entropy
We saw that any valid θ-shade ξ of Φ̂ induces a cover ξ̂ of Φ′. In fact, Definition 4.7

pins down the fraction of literals of each type that are set to 0, 1, ∗ under ξ̂. Particularly, 
|{l ∈ L′

t : ξ̂(l) = z}| .= ntt
z for all z ∈ {0, 1, ∗}. Furthermore, the map ξ̂ clearly has the 

property that ξ̂(¬l) = ¬ξ̂(l) for all l ∈ L′. We begin by counting maps with these two 
properties.

Lemma 5.2. W.h.p. the total number of maps ζ : L′ → {0, 1, ∗} such that

|{l ∈ L′
t : ζ(l) = z}| .= ntt

z for all z ∈ {0, 1, ∗}, t ∈ T (5.2)

and such that ζ(¬l) = ¬ζ(l) for all l ∈ L′ is Θ 
(
n−|[T ]|) exp

[
n
∑

t∈T πtH(t0, t1, t∗)
]
, 

where [T ] = {{t,¬t} : t ∈ T}.

Proof. We introduce an equivalence relation on T by letting t ≡ t′ if t = ¬t′. Then [T ]
is the set of equivalence classes. Let t1, . . . , tν ∈ T be a sequence that contains precisely 
one representative from each equivalence class. Due to the condition ζ(¬l) = ¬ζ(l), we 
just need to count maps ζi : L′

ti → {0, 1, ∗} such that |{l ∈ L′
ti : ζ(l) = z}| .= ntit

z
i for 

all z ∈ {0, 1, ∗}. There are two cases.

Case 1: ti �= ¬ti: by Fact 3.3, the total number of ways of setting ntit
z
i + O(1) literals 

l ∈ L′
ti to z for each z ∈ {0, 1, ∗} is

O(1) ·
(

nti

ntit
0
i , ntit

1
i , ntit

∗
i

)
= Θ(n−1

ti ) exp
[
ntiH(t0i , t1i , t∗i )

]
= Θ(n−1) exp

[
2nπtiH(t0i , t1i , t∗i )

]
. (5.3)

Case 2: ti = ¬ti: we merely get to pick the values ζ(l) for variables xi ∈ L′
ti (as ζ(¬xi)

is implied). Therefore, the number of possible maps comes to

O(1) ·
(

nti/2
ntit

0
i /2, ntit

1
i /2, ntit

∗
i /2

)
= Θ(n−1) exp

[
nπtiH(t0i , t1i , t∗i )

]
. (5.4)

Multiplying (5.3) and (5.4) up for i = 1, . . . , ν completes the proof. �
5.1.2. The validity probability

Fix a map ζ : L′ → {0, 1, ∗} that satisfies (5.2) such that ζ(¬l) = ¬ζ(l) for all l ∈ L′. 
If Φ̂ has a valid θ-shade ξ such that ζ = ξ̂, then the following two events occur for every 
clause type � ∈ T ∗. First, to satisfy condition (2) in Definition 4.7, for each � ∈ T ∗ the 
event

B�(ζ) =
{
∀j ∈ [k�] :

∣∣{i ∈ M� : ζ(Φ′
ij) = 0

}∣∣ .= �yjm�

}
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must occur. Let B(ζ) =
⋂

�∈T∗ B�(ζ). To define the second event, let

Γr
�,j(ζ) =

∣∣{i ∈ M� : ζ(Φ′
ij) ∈ {∗, 1} and ζ(Φ′

ij′) = 0 for all j′ ∈ [k�] \ {j}
}∣∣ , j ∈ [k�],

Γc
�(ζ) =

∣∣{i ∈ M� : ∃1 ≤ j1 < j2 ≤ k� : ζ(Φ′
ij1), ζ(Φ

′
ij2) ∈ {∗, 1}

}∣∣ . (5.5)

In words, Γr
�,j is the number of clauses of type � such that the jth literal takes value 

either 1 or ∗, while all other literals are set to false. Moreover, Γc
� is the number of clauses 

of type � that contain at least two literals assigned 1 or ∗. Set

S�(ζ) =
{
∀j ∈ [k�] : Γr

�,j(ζ)
.= �rjm� and Γc

�(ζ) = m� −
∑
j∈[k�]

Γr
�,j(ζ)

}

and S(ζ) =
⋂

�∈T∗ S�(ζ). If ζ = ξ̂ for a valid θ-shade ξ, then B(ζ) ∩S(ζ) occurs (however, 
the converse is not true).

Lemma 5.3. Let � ∈ T ∗. For each j ∈ [k�] there exist qp�,j , q
y
�,j ∈ (0, 1) such that qp�,j +

qy�,j = 1 and such that with ep�,j from Fig. 1 we have ep�,j = �pj. With these qp�,j , q
y
�,j we 

have, again with the notation from Fig. 1,
1
m�

lnPT [S�(ζ)|B(ζ)] = −DKL
(
�r1, . . . , �

r
k�
, 1 − �r1 − · · · − �rk�

‖gr�,1, . . . , gr�,k�
, gc�

)

+
k�∑
j=1

DKL

(
�
p
j‖q

p
�,j

)
− k� lnn

2m�
+ O(1/n),

1
n

lnPT [B(ζ)] = O(1/n) −
∑
t∈T

∑
h∈[dt]

(|∂(t, h)| − 1) lnn

2n .

In the rest of this section we prove Lemma 5.3. We begin with calculating the proba-
bility of the event B(ζ).

Claim 5.4. We have 1
m�

lnPT [B(ζ)] = O(1/n) −
∑

t∈T

∑
h∈[dt]

(|∂(t,h)|−1) ln n
2m�

.

Proof. Due to the requirement that ζ satisfies (5.2), we can write down an explicit 
formula for PT [

⋂
� B�(ζ)]. Namely,

PT [B(ζ)] = Θ (1)
∏
t∈T

∏
h∈[dt]

∏
(�,j)∈∂(t,h)

(
m�

�
y
jm�

)
(

nt

ntt0

) . (5.6)

Note that the construction of the clause types ensures that �yj = t0 if (�, j) ∈ ∂(t, h) for 
some h ∈ [dt]. Fact 3.3 and the fact nt =

∑
(�,j)∈∂(t,h) m� show that for any t, h,

(
nt

ntt0

)−1 ∏
(�,j)∈∂(t,h)

(
m�

�
y
jm�

)
= Θ(n(1−|∂(t,h)|)/2).

The assertion follows then form (5.6). �
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To derive the desired formula for PT [S�(ζ)|B(ζ)], we fix a clause type � ∈ T ∗. We 
need to establish the existence of the parameters qp�,j , q

y
�,j .

Claim 5.5. There is a unique vector q� = (qp�,j , q
y
�,j)j∈[k�] such that qp�,j + qy�,j = 1, qp�,j =

�pj − 2−k�−1 + Õk(2−3k/2) and ep�,j = �
p
j for all j ∈ [k�].

Proof. Consider the map (see also Fig. 1)

e
p
� : (0, 1)k� → (0, 1)k� ,

(qp�,j)j∈[k�] �→ (ep�,j)j∈[k�] =

⎛
⎝�rj +

q
p
�,j

gc�

(
1 −

∑
j′∈[k�]

�rj′
)(

1 −
∏

j′∈[k�]\{j}
q
y
�,j′

)⎞⎠
j∈[k�]

.

If |qp�,j − 1/2| ≤ Õk(2−k/2) for all j ∈ [k�], then we verify that ep�,j = 1/2 + Õk(2−k/2)
and

∂e
p
�,j

∂q
p
�,j

= 1 + Õk(2−k/2),
∂e

p
�,j

∂q
p
�,j′

= Õk(2−k/2) for all j, j′ ∈ [k�] \ {j}.

Thus, the Jacobian is (strictly) diagonally dominant and invertible, and the assertion 
follows readily from the inverse function theorem. �

To calculate P [S�(ζ)|B(ζ)] we introduce a new probability space in which the colors 
of the individual literal clones correspond to independent random variables. Let χ� =
(χ�,j(i))i∈[m�],j∈[k�] be a random vector whose entries are independent random variables 
with values in {p, y} such that P 

[
χ�,j(i) = p

]
= q

p
�,j for each i ∈ [m�], j ∈ [k�]. We 

further introduce the random variables

bz�,j =
∣∣{i ∈ [m�] : χ�,j = z

}∣∣ , z ∈ {p, y},

Gr
�,j =

{
i ∈ [m�] : χ�,j = p and χ�,j′ = y for all j′ ∈ [k�] \ {j}

}
,

Gc
� =

{
i ∈ [m�] : ∃1 ≤ j < j′ ≤ k� : χ�,j = χ�,j′ = p

}
,

G
y
� =

{
i ∈ [m�] : ∀j ∈ [k�] : χ�,j = y

}
.

Define the events

B� = {∀j ∈ [k�] : by�,j
.= �yjm�},

S� =
{
∀j ∈ [k�] : |Gr

�,j |
.= �rjm� and |Gc

� | = m� −
k�∑

|Gr
�,j |

}
.

j=1
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This construction ensures that

1
m�

lnPT [S�(ζ)|B(ζ)] = 1
m�

lnP [S�|B�] + O(1/n). (5.7)

Crucially, since the entries of χ� are independent, P [S�], P [B�] are easy to calculate.

Claim 5.6. With gc� , gr�,j as in Fig. 1

1
m�

lnP [S�] = −DKL
(
�r1, . . . , �

r
k�
, 1 − �r1 − · · · − �rk�

‖gr�,1, . . . , gr�,k�
, gc�

)
− k� lnn

2m�
+O(1/n).

Proof. Because the entries χ�,j(i) are mutually independent, the random vector 
(|Gr

�,1|, . . . , |Gr
�,k�

|, |Gc
� |, |G

y
� |) is multinomially distributed with

E[|Gr
�,j |] = m�g

r
�,j , E[|Gc

� |] = m�g
c
� ,

E[|Gy
� |] = m�

∏
j∈[k�] q

y
�,j = m�

(
1 − gc� −

∑
j∈[k�] g

r
�,j

)
.

Hence, the assertion follows from Fact 3.4. �
Claim 5.7. We have 1

m�
lnP[B�] = −k� ln n

2m�
+
∑

j∈[k�] DKL

(
�
p
j‖q

p
�,j

)
+ O(1/n).

Proof. Once more due to the independence of the χ�,j(i), the vector (by�,j)j∈[k�] consists of 
independent binomial variables with means E[b�,j ] = qy�,jm�. Since �pj+�yj = qp�,j+qy�,j = 1, 
the claim follows from Fact 3.4. �

To calculate the conditional probability P [S�|B�], we use Bayes’ formula, according 
to which

P [S�|B�] = P [B�|S�]
P [B�]

· P [S�] . (5.8)

We first compute P [B�|S�].

Claim 5.8. We have 1
m�

lnP [B�|S�] = −k� ln n
2m�

+ O(1/n).

Proof. Let Gr
� = Gr

�,1 ∪ · · · ∪ Gr
�,k�

. Given that S� occurs and given the set Gr
� , the 

vectors χ�(i) = (χ�,j(i))j∈[k�] with i ∈ [m�] \Gr
� are mutually independent. Thus, b′�,j =∑

i∈[m�]\Gr
�
1χ�,j(i)=p is a sum of independent random variables for each j ∈ [k�]. Hence, 

the vector (b′�,j)j∈[k�] satisfies the assumptions of Theorem 3.5. Furthermore, since ep�,j =
�
p
j by the choice of the parameters qp�,j , q

y
�,j , we have

E[b′�,j |S�]
.=
q
p
�,j

gc�

⎛
⎝1 −

∏
′

q
y
�,j′

⎞
⎠
⎛
⎝1 −

∑
′

�rj′

⎞
⎠m� = (e�,j − �rj)m�. (5.9)
j ∈[k�]\{j} j ∈[k�]
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Since given S� we have bp�,j
.= b′�,j + �rjm� and because by�,j = m� − b

p
�,j , (5.9) and 

Theorem 3.5 imply that P [B�|S�] = Θ(n−k�/2), as desired. �
Finally, Lemma 5.3 follows from (5.7), (5.8) and Claims 5.6–5.8. We conclude this 

section with the following statement that will prove useful later.

Corollary 5.9. For � ∈ T ∗ and j ∈ [k�] let μ�,h be the number of clauses of type � that 
contain precisely k� − j yellow clones. Let I = [

(
k
j

)
2−1−k, 

(
k
j

)
21−k]. Then PT [μ�,h/m� /∈

I|S(ζ), B(ζ)] ≤ exp(−Ω(n)).

Proof. Let ν�,j be the number of indices i ∈ [m�] such that 
∣∣{h ∈ [k�] : χ�,h(i) = y

}∣∣ = j. 
Then (5.7) implies that

PT [μ�,h/m� /∈ I|S(ζ),B(ζ)] ≤ O(P [ν�,h/m� /∈ I|S�, B�]). (5.10)

Furthermore, Claim 5.8 entails that

P [ν�,h/m� /∈ I|S�, B�] = exp(o(n))P [ν�,h/m� /∈ I|S�] . (5.11)

In addition, since �yh = 1
2 + Õk(2−k/2) and thus qy�,h = 1

2 + Õk(2−k/2) for all h ∈ [k�] by 
Claim 5.5, we see that

E[ν�,j |S�] = (1 + ok(1))m�

(
k

h

)
2−k. (5.12)

Further, given S�, ν�,h is a sum of m� independent random variables. Therefore, the 
Chernoff bound and (5.12) imply that P [ν�,h/m� /∈ I|S�] ≤ exp(−Ω(n)). Hence, the 
assertion follows from (5.10) and (5.11). �
5.1.3. The occupancy probability

Assume that ζ : L′ → {0, 1, ∗} is a map such that ζ(¬l) = ¬ζ(l) for all l ∈ L′ and 
such that (5.2) holds and such that the events B(ζ), S(ζ) occur. We saw that these are 
necessary conditions for the existence of a valid θ-shade ξ such that ζ = ξ̂. But there 
is a further important necessary condition. Namely, with Γr

�,j(ζ) the sets from (5.5), we 
define

Γr
t,h(ζ) =

⋃
(�,j)∈∂(t,h)

{
Φ′

ij : i ∈ Γr
�,j(ζ)

}
for each t ∈ T , h ∈ [dt].

In words, Γr
t,h(ζ) is the set of all literals of type t that are assigned either ∗ or 1 and 

whose hth clone appears in a clause where all other literals are set to 0. Then SD1–SD2
from Definition 4.3 require that the following two conditions hold for any t ∈ T :
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RED1: If l ∈ L′
t is such that ζ(l) = 1, then there is h ∈ [dt] such that l ∈ Γr

t,h(ζ).
RED2: If l ∈ L′

t is such that ζ(l) = ∗, then for all h ∈ [dt] we have l /∈ Γr
t,h(ζ).

Let Rt(ζ) be the event that RED1–RED2 hold for t ∈ T and let R(ζ) =
⋂

t∈T Rt(ζ). 
We will prove the following statement in this subsection.

Lemma 5.10. For t ∈ T there exists a unique vector qrt = (qrt,h)h∈[dt] with entries qrt,h =
trh/t

1 + Õk(4−k) such that with the notation of Fig. 1 we have ert,h = trh for all h ∈ [dt]. 
In terms of these vectors qrt we have

1
n

lnPT [R(ζ)|S(ζ),B(ζ)]

=
∑
t∈T

2πt

⎡
⎣t1 ln st + t∗ ln(1 − st) + (t1 + t∗)

∑
h∈[dt]

DKL
(
trh‖qrt,h

)⎤⎦+ O(1/n).

As in the previous section, we are going to introduce a new probability space in which 
the individual clones of the literals of any particular type correspond to independent 
events. Let t ∈ T and set nz

t = |{l ∈ L′
t : ζ(l) = z} for z ∈ {0, 1, ∗}. Then nz

t
.= tznt due 

to (5.2). Let np
t = n1

t + n∗
t .

Claim 5.11. There is a unique vector qrt = (qrt,h)h∈[dt] with entries qrt,h = trh/t
1 + Õk(4−k)

such that ert,h = trh for all h ∈ [dt].

Proof. We consider the map (see also Fig. 1)

ert : (0, 1)dt → (0, 1)dt , (qrt,h)h∈[dt] �→ (ert,h)h∈[dt] = (t1qrt,h/st)h∈[dt],

where st = 1 −
∏

h∈[dt](1 − qrt,h). If |qrt,h − trh/t
1| ∈ ok(1) for all h ∈ [dt], then ert,h =

trh + ok(2−k) and

∂ert,h
∂qrt,h

= t1 + Õk(2−k),
∂ert,h
∂qrt,h′

= Õk(4−k) for all h, h′ ∈ [dt], h �= h′.

As in the proof of Claim 5.5, the assertion follows from the inverse function theorem. �
Equipped with the vector qrt = (qrt,h)h∈[dt] from Claim 5.11, we let ρ =

(ρt,h(i))h∈[dt],i∈[np
t] be a vector whose entries are independent random variables with 

values in {r, c} such that P 
[
ρt,h(i) = r

]
= qrt,h for all i ∈ [np

t ], h ∈ [dt]. We are going to 
consider the random variables

brt,h =
∣∣{i ∈ [np

t ] : ρt,h(i) = r
}∣∣ , h ∈ [dt].

Let Bt,h be the event that brt,h
.= trhnt and let Bt =

⋂
h∈[dt] Bt,h. Moreover, let R1

t be 
the event that for each i ∈ [n1

t ] there exists h ∈ [dt] such that ρt,h(i) = r. Further, let 
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R∗
t be the event that for any i ∈ [np

t ] \ [n1
t ] and any h ∈ [dt] we have ρt,h(i) = c, and let 

Rt = R1
t ∩R∗

t . This construction ensures that

1
n

lnP [R(ζ)|B(ζ),S(ζ)] = O(1) + 1
n

∑
t∈T

lnP [Rt|Bt] . (5.13)

To calculate the r.h.s. we are going to compute P [Rt], P [Bt] and P [Bt|Rt].

Claim 5.12. We have lnP [Rt] = np
t (t1 ln st + t∗ ln(1 − st)) + O(1).

Proof. Due to the independence of the entries ρt,h(i), st is simply the probability that 
for a given i ∈ [np

t ] there is h ∈ [dt] such that ρt,h(i) = r. Thus, the assertion follows 
from the fact that n1

t
.= t1nt and n∗

t
.= t∗nt. �

Claim 5.13. We have lnP [Bt] = dt ln n
2 − np

t

∑
h∈[dt] DKL

(
trh‖qrt,h

)
+ O(1).

Proof. Because the entries ρt,h(i) are independent, the random variables brt,h are inde-
pendent and binomially distributed with mean np

tq
r
t,h+O(1). Hence, the assertion follows 

from Fact 3.4. �
Claim 5.14. We have lnP [Bt|Rt] = dt ln n

2 + O(1).

Proof. Given that Rt occurs, each brt,h is a sum of independent random variables, namely 
brt,h =

∑
i∈[n1

t ] 1ρt,h(i)=r. Furthermore, as ert,h = trh we see that E[brt,h|Rt] 
.= ntt

r
h. Hence, 

the assertion follows from Theorem 3.5. �
Finally, Lemma 5.10 follows from (5.13) and Claims 5.12–5.14.

Proof of Proposition 5.1. Let ζ : L′ → {0, 1, ∗} be a map as in Lemma 5.2. Then Φ̂ has 
a valid θ-shade ξ such that ξ̂ = ζ iff the events B(ζ), S(ζ) and R(ζ) occur. Therefore, 
Proposition 5.1 follows from Lemmas 5.2, 5.3 and 5.10. �
5.2. The asymptotic expansion

To prove Proposition 4.10 we derive the following asymptotic expansion of the formula 
from Proposition 5.1.

Corollary 5.15. W.h.p. we have 1
n lnE[Z ′|T ] = εk2−k + Õk(2−3k/2).

To prove Corollary 5.15 we derive asymptotic formulas for the entropy, the validity 
probability and the occupancy probability separately.

Claim 5.16. W.h.p. we have 
∑

t∈T πtH(t0, t1, t∗) = ln 2 + 2−k−1 + Õk(2−3k/2).
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Proof. Let δt = dt−d¬t for any t ∈ T . Since t∗ = 2−k−1 and t1 = 1/2 +δt2−k−1−2−k−2

we infer with Proposition 4.1 that w.h.p.
∑
t∈T

πtH(t) = −
∑
t∈T

πt(t0 ln t0 + t1 ln t1 + t∗ ln t∗)

= (k + 1) ln 2
2k+1 −

∑
t∈T

πt(t0 ln t0 + t1 ln t1) + Õk(2−3k/2)

= (k + 1) ln 2
2k+1 −

∑
t∈T

πt

[
t0 ln

(
1
2 − δt

2k+1 − 1
2k+2

)

+ t1 ln
(

1
2 + δt

2k+1 − 1
2k+2

)]
+ Õk(2−3k/2)

=
(

1 + k

2k+1

)
ln 2 −

∑
t∈T

πt

[
t0 ln

(
1 − 1 + 2δt

2k+1

)
+ t1 ln

(
1 − 1 − 2δt

2k+1

)]

+ Õk(2−3k/2).

Let xt = 2−k−1(1 + 2δt) and yt = 2−k−1(1 − 2δt). Using the expansion ln(1 + x) =
x − x2/2 + O(x3) as x → 0, we obtain

− t0 ln
(

1 − 1 + 2δt
2k+1

)
− t1 ln

(
1 − 1 − 2δt

2k+1

)

= −1
2 [(1 − xt) ln(1 − xt) + (1 − yt) ln(1 − yt)]

= xt + yt
2 − x2

t + y2
t

4 + Õk(2−3k/2) = 2−k−1 − δ2
t

22k+1 + Õk(2−3k/2).

Since part (3) of Proposition 4.1 implies that 
∑

t πtδ
2
t = k2k ln 2 + Õ(2k/2), the assertion 

follows. �
Claim 5.17. W.h.p. we have 

∑
� π�ϕval,� = −2−k − 2−2k−1 + k2−2k + Õk(2−5k/2).

Proof. Recall that for � ∈ T ∗

ϕval,� = −DKL
(
�r1, . . . , �

r
k�
, 1 − �r1 − · · · − �rk�

‖gr�,1, . . . , gr�,k�
, gc�

)
+

∑
j∈[k�]

DKL

(
�
p
j‖q

p
�,j

)
,

cf. (5.1). Claim 5.5 asserts that q
p
�,j = �

p
j − 2−k�−1 + Õk(2−3k/2). Using that 

DKL (x‖x + δ) = δ2

2x(1−x) + O(δ3) for 1/4 ≤ x ≤ 3/4 and δ → 0 and recalling that 
�
p
j = 1/2 + Õk(2−k/2) yields

DKL

(
�
p
j‖q

p
�,j

)
= 2−2k�−1 + Õk(2−5k/2). (5.14)
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Further, note that since qp�,j = �
p
j − 2−k�−1 + Õk(2−3k/2) and qy�,j = �

y
j + 2−k�−1 +

Õk(2−3k/2)

gr�,j = �rj + εj ,where εj = Õk(2−2k)

and gc� = 1 −
∑
j∈[k�]

�rj + εk�+1, where εk�+1 = −
∏

j∈[k�]

q
y
�,j + Õk(2−2k).

Using that x log
(
x+δ
x

)
= x − δ2

2x + O(δ3/x2) for any x > 0 and δ > −x we obtain that 
the first term in the expression for ϕval,� equals

∑
j∈[k�+1]

εj −
∑
j∈[k�]

ε2
j

2�rj
−

ε2
k�+1

2(1 −
∑

j∈[k�] �
r
j)

+ Õk(2−3k).

Note that 
∑

j∈[k�+1] εj = − 
∏

j∈[k�] q
y
�,j . Using that εj = Õk(2−2k) and �rj = O(2−k) for 

j ∈ [k�] we obtain that

−DKL
(
�r1, . . . , �

r
k�
, 1 − �r1 − · · · − �rk�

‖gr�,1, . . . , gr�,k�
, gc�

)
= −

∏
j∈[k�]

q
y
�,j −

1
2

( ∏
j∈[k�]

q
y
�,j

)2
+ Õk(2−3k)

= −
∏

j∈[k�]

q
y
�,j − 2−2k�−1 + Õk(2−5k/2). (5.15)

Since qy�,j = 1 − q
p
�,j = 1 − �

p
j + 2−k�−1 + Õk(2−3k/2)

∏
j∈[k�]

q
y
�,j =

∏
j∈[k�]

(1 − �
p
j) + k�2−2k� + Õk(2−5k/2).

By plugging this into (5.15) and using (5.14) we arrive with Proposition 4.1 at the 
expression

∑
�∈T∗

π�ϕval,� = −(k + 1)2−2k−1 −
∑
�∈T∗

π�

∏
j∈[k�]

(1 − �
p
j) + Õk(2−5k/2). (5.16)

For each clause type � and every j, the value �pj is determined merely by the signature 
of the jth literal. Thus, for integers d+, d− let ρ(d+, d−) = |{(l, j) ∈ L′ : dl = d+,

d¬l = d−}|/(2n). Then Proposition 4.1 implies that w.h.p. for all d+, d− we have

ρ(d+, d−) = d+
P
[
Po(kr/2) = d+]

P
[
Po(kr/2) = d−

]
+ Ok(exp(−k2)).
kr/2



A. Coja-Oghlan, K. Panagiotou / Advances in Mathematics 288 (2016) 985–1068 1017
Furthermore, for a sequence (d+
1 , d

−
1 , . . . , d

+
k , d

−
k ) let m(d+

1 , d
−
1 , . . . , d

+
k , d

−
k ) be the num-

ber of indices i ∈ [m] such that dΦ′
ij

= d+
j , d¬Φ′

ij
= d−j for all j ∈ [k]. Then by 

Proposition 4.1 w.h.p.

m(d+
1 , d

−
1 , . . . , d

+
k , d

−
k )/m = Ok(exp(−k2)) +

∏
j∈[k]

ρ(d+
j , d

−
j ).

Letting s =
∑

d+,d−≥0
2d+ϑ0(d+−d−)

kr · (kr/2)d
++d−

(d+)!(d−)! exp(kr) , we obtain from (5.16)

∑
�∈T∗

π�ϕval,� = −(k + 1)2−2k−1 − sk + Õk(2−5k/2).

By plugging in the definition of ϑ0(d+ − d−) we obtain s = 1
2(1 − 3 · 2−k−1) and the 

claim follows. �
Claim 5.18. W.h.p. we have 2 

∑
t∈T πtϕocc,t = −2−k − k2−k ln 2 + Õk(2−3k/2).

Proof. Note that DKL (x‖x + δ) = δ2

2x(1−x) + O(x−1δ3) for x ∈ (0, 1/2). Using 
Lemma 4.12 and Claim 5.11, we obtain

∑
h∈[dt]

DKL
(
trh/t

p
h‖qrt,h

)
= dtÕk(8−k) = Õk(2−3k/2) for any t ∈ T . (5.17)

Further, note that Claim 5.11 guarantees that

qrt,h = 2−kt+1 + Õk(2−3k/2)

for any t ∈ T and some kt ∈ {k − 2, k − 1, k}. Invoking Lemma 4.12 and (4.2), we 
find st = 1 −

∏
h∈[dt](1 − qrt,h) = 1 − 2−kt + Õk(2−3k/2) for any t ∈ T . The expansion 

ln(1 − x) = −x + O(x2) as x → 0 then yields

t1 ln(st) = −2−kt−1 + Õk(2−3k/2) for any t ∈ T . (5.18)

In a similar fashion we obtain by applying again (4.2)

t∗ ln(1 − st) = 2−k−1
∑

h∈[dt]

ln(1 − qrt,h) = −k2−kt−1 ln 2 + Õk(2−3k/2) for any t ∈ T .

(5.19)

Note that the number of types t ∈ T such that kt �= k is in exp(−Ok(k2))n, by Proposi-
tion 4.1. Combining (5.17)–(5.19) and summing over all t ∈ T completes the proof. �

Finally, Corollary 5.15 follows from Claims 5.16, 5.17 and 5.18.
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5.3. Extendibility

The aim in this section is to establish

Lemma 5.19. Let Z ′′ be the number of valid θ-shades that fail to be extendible. Then 
ET [Z ′′] = o(ET [Z ′]) w.h.p.

To prove Proposition 5.19, we are going to argue that given that ξ is a valid θ-shade, 
the probability that ξ is extendible is 1 − o(1). Thus, let ξ be a θ-shade, and let V be the 
event that ξ is valid. To extend ξ to a satisfying assignment, we need to assign actual 
truth values to literals l such that ξ̂(l) = ∗ in such a way that all clauses are satisfied. 
In the course of this we just need to watch out for clauses that contain yellow and green 
clones only, because all other clauses already contain a literal set to 1 under ξ̂. Thus, let 
Y� be the number of clauses of type � containing green and yellow clones only. We begin 
by showing a rough estimate regarding yellow clones only.

Claim 5.20. For � ∈ T ∗ and j ∈ [k�] let μ�,j be the number of clauses of type � that contain 
precisely k� − j yellow clones. Then PT [

(
k
j

)
2−1−k ≤ μ�,h/m� ≤

(
k
j

)
21−k | V] = 1 − o(1)

w.h.p.

Proof. Let Z̃ be the number of valid θ-shades such that the number of clauses of 
type � that contain precisely k� − j yellow clones does not lie in the interval I =
[
(
k
j

)
2−1−km�, 

(
k
j

)
21−km�]. Recall the events B(ξ), S(ξ) that are defined in Section 5.1.2

and the event R(ξ) from Section 5.1.3. Then V = B(ξ) ∩ S(ξ) ∩ R(ξ). Moreover, by 
Corollary 5.9 the probability of the event I(ξ) that the number of clauses of type �
with precisely k� − j yellow clones does not belong to I satisfies PT [I(ξ)|B(ξ),S(ξ)] ≤
exp(−Ω(n)). We thus obtain

PT [μ�,h/m� /∈ I | V] = PT [I(ξ),B(ξ),S(ξ),R(ξ)]
PT [V] = PT [I(ξ),R(ξ) | B(ξ),S(ξ)]

PT [V]

Note that the events I(ξ), R(ξ) are independent upon conditioning on B(ξ), S(ξ); the 
claimed bound follows. �

We continue with a rough bound on the number Y� of clauses of type � containing 
only green and yellow clones.

Claim 5.21. Let � ∈ T ∗. Then PT [Y� ≤ k32−3km� | V] = 1 − o(1) w.h.p.

Proof. Let μ�,j be the number of clauses of type � that contain precisely k� − j yellow 
clones. By Claim 5.20 w.h.p.

(
k
)

2−1−k ≤ μ�,j ≤
(
k
)

21−k for all 2 ≤ j ≤ k�. (5.20)

j m� j
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If a clause contains k� − j yellow clones for some 2 ≤ j ≤ k�, then the other j clones 
are colored either green or blue (and there is no red clone). Let Y�,j be the number of 
clauses of type � with precisely j green clones and k� − j yellow clones. Since for each 
type t ∈ T we have tb = 1

2 + ok(1) and tg = 2−k−1, we see that

ET [Y�,j |V] ≤ (1 + ok(1))2−kjμ�,j . (5.21)

Furthermore, since nt = Ω(n) for all t ∈ T , the events that for two given clauses of type 
� with k� − j yellow clones the other j clones are green are asymptotically independent. 
Hence,

ET [Y 2
�,j |V] = (1 + o(1))ET [Y�,j |V]2.

Combining this with (5.21), we conclude that

PT [Y�,j ≤ (1 + ok(1))2−kjμ�,j |V] = 1 − o(1). (5.22)

Since Y� =
∑k�

j=2 Y�,j , combining (5.22) and (5.20) yields Y� ≤ k32−3km� w.h.p., as 
desired. �

Equipped with Claim 5.21, we are going to reduce the problem of extending ξ to a 
satisfying assignment of Φ̂ to a 2-SAT problem. More precisely, let Φ̃ be the 2-SAT 
formula obtained from Φ̂ as follows:

• remove all clauses that contain a blue or a red clone.
• turn all the remaining clauses (that consist of yellow clones and at least two green 

clones each) into clauses of length two by only keeping the first two green clones.

To satisfy Φ̃, we borrow an argument from prior work on random 2-SAT [9,28]. Namely, 
for h ≥ 1 we call a literal sequence l0, . . . , lh+1 ∈ ξ̂−1(∗) an h-bicycle if the following 
conditions are satisfied.

BC1: For any i = 0, . . . , h the 2-clause ¬li ∨ li+1 occurs in Φ̃.
BC2: The variables |l1|, . . . , |lh| are distinct.
BC3: We have |l0|, |lh+1| ∈ {|l1|, . . . , |lh|}.

It is well-known that a 2-SAT formula is satisfiable unless it contains an h-bicycle for 
some h ≥ 1. Thus, let Ch be the number of h-bicycles in Φ̃. To get a handle on Ch, we 
use the following lemma.

Lemma 5.22. There is an event A with PT [A] = 1 − o(1) such that the following 
is true. Let 1 ≤ h ≤ ln2 n be an integer and let C ′

h be the number of sequences 
l = (¬l1, j1), (l2, j′2), (¬l2, j2), . . . , (lh−1, j′h−1), (¬lh−1, jh−1), (lh, j′h) of distinct literal 
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clones in ξ−1(g) such that Φ̃ contains clauses consisting of the clones (¬li, ji), (li+1, j′i+1)
for all 1 ≤ i < h. Then ET [C ′

h|A, V] ≤ nÕk(2−k)h w.h.p.

Proof. Let A be the event that Y� ≤ k38−km� for all � ∈ T ∗. Then PT [A|V] = 1 − o(1)
by Lemma 5.21. We can estimate ET [C ′

h|A, V] as follows. Let l1 be a literal and let 
j = (j1, j′2, j2, . . . , j′h−1, jh−1, jh) ∈ [k2k], i = (i1, i2, . . . , ih) ∈ [k] be sequences of indices. 
Given l1, j, i, we attempt to construct a sequence l2, . . . , lh of literals as follows. If 
j1 ≤ d¬l1 , then l2 is the i1th literal of the clause of Φ̂ that (¬l1, j1) occurs in, provided 
that i1 does not exceed the length of that clause. Similarly, assuming that la has been 
defined already for some 1 < a < h and that ja ≤ d¬la , let la+1 be the iath literal of the 
clause of Φ̂ that the clone (¬la, ja) occurs in. For b ∈ [h] let Eb(l1, i, j) be the event that 
the above construction yields a literal sequence (l1, . . . , lh), that for each a ∈ [b] the clause 
that (¬la, ja) appears in contains green and yellow clones only, and that ξ(la, ja) = g for 
all a ∈ [b]. Further, let E(l1, i, j) =

⋂
b∈[h] Eb(l1, i, j). We claim that

PT [Eb+1(l1, i, j)|A,V, Eb(l1, i, j)] ≤ Õk(4−k) for all b < h. (5.23)

Indeed, let �b+1 be the type of the clause that (¬lb, jb) appears in. Given that ξ(lb, jb) = g, 
the probability that the clause contains green and yellow clones only is Õk(4−k) (due to 
our conditioning on A). Multiplying (5.23) up for b < h, we obtain

PT [E(l1, i, j)|A,V] = Õk(4−k)h−1. (5.24)

To complete the proof, we use the union bound. The total number of ways of choosing 
i, j is bounded by Õk(2k)h (note that we do not have to choose the indices j′a+1; they 
are implied by ¬la, ja, ia). Further, the total number of ways of choosing a literal l1 with 
ξ̂(l1) = ∗ is Õk(2−k)n. Combining these bounds with (5.24) yields the assertion. �
Proof of Proposition 5.19. Assume that Φ̃ contains an h-bicycle for some h > lnn. Then 
there is a sequence l = (¬l1, j1), (l2, j′2), (¬l2, j2), . . . , (lh∗ , j′h∗) of length h∗ = �lnn� of 
distinct clones in ξ−1(g) such that Φ̃ contains clauses consisting of (¬li, ji), (li+1, j′i+1)
for all 1 ≤ i < h∗. But by Lemma 5.22 the probability of this event is o(1). Thus, w.h.p. 
there is no h-bicycle with h > lnn.

We are left to show that w.h.p. Ch = 0 for all 1 ≤ h < lnn. Note that the number of 
choices for l0 and lh+1 is bounded by O(ln2 n). Moreover, the number of the respective 
clones, and the positions where they appear in the corresponding clauses is bounded by 
Õk(2k). Once more by Lemma 5.22, for any such h we have E[Ch|V, A] ≤ O(ln2 n/n). 
Taking the union bound over all 1 ≤ h < lnn completes the proof. �
5.4. Separability

The aim of this section is to prove the following statement.
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Lemma 5.23. Let Z ′′′ be the number of valid θ-shades that are not separable. Then 
E[Z ′′′|T ] = o(E[Z ′|T ]) w.h.p.

In the proof we consider the set Y(Φ) of all maps ξ : L → {0, 1, ∗} that enjoy the 
following properties.

(i) ξ(¬l) = ¬ξ(l) for all literals l ∈ L.
(ii) |ξ−1(∗)| .= 2−kN .
(iii) Call a clause critical under ξ if it contains one literal that is set to 1 under ξ, while 

all others are set to 0 then the number clauses of Φ that are critical under ξ is 
(k2−k + Õk(2−3k/2))M .

(iv) The restriction ξ|L′ is a cover of Φ′.

Further, for two maps ξ1, ξ2 : L → {0, 1, ∗} and z1, z2 ∈ {0, 1, ∗} define

Oz1z2(ξ1, ξ2) =
∣∣ξ−1

1 (z1) ∩ ξ−1
2 (z2)

∣∣
2N and O(ξ1, ξ2) = (Oz1z2(ξ1, ξ2))z1,z2∈{0,1,∗}.

Let Π =
{
O(ξ1, ξ2) : ξ1, ξ2 : L → {0, 1, ∗}, |ξ−1

1 (∗)|, |ξ−1
2 (∗)| .= 2−kN

}
. There are certain 

affine relations amongst the entries of O ∈ Π that are implied by properties (i) and (ii):

O10 = O01, O1∗ = O0∗ = O∗1 = O∗0, (5.25)

O11 + O10 + O1∗ .= 1
2 − 2−k−1, O00 + O01 + O0∗ .= 1

2 − 2−k−1,

O∗∗ .= 2−k − 2O1∗. (5.26)

Here A 
.= B shall be understood as |A − B| = O(N−1). Note that due to these affine 

relations we can express all the entries of O in terms of O10, O1∗.
For O ∈ Π let Y (O) be the set of pairs ξ1, ξ2 ∈ Y(Φ) with O(ξ1, ξ2) = O. Moreover, 

for z ∈ {0, 1, ∗} we set Oz · =
∑

y∈{0,1,∗} Ozy, O · z =
∑

y∈{0,1,∗} Oyz. Further, we let 
g = g(O) = (gyy, grg, ggr, gry, gyr) with

gyy = k(k − 1)O10O01(O00)k−2, grg = ggr = kO1∗((O0 · )k − (O00)k),

gry = gyr = kO10((O0 · )k−1 − (O00)k−1 − (k − 1)(O01 + O0∗)(O00)k−2),
gcc = 1 − (O0 · )k − (O · 0)k + (O00)k − k(O∗ · + O1 · )(O0 · )k−1

− k(O · ∗ + O1 · )(O · 0)k−1 + k(k − 1)(O∗0 + O10)(O0∗ + O01)(O00)k−2

+ k(O∗∗ + O∗1 + O1∗ + O11)(O00)k−1.

Additionally, let Γ(O) be the set of all vectors γ = (γyy, γrg, γry, γgr, γyr, γcc) with non-
negative entries such that γyy + γrg + γry + γgr + γyr + γcc = 1 and
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γyy + γry ≥ 2N
M

O10 − 8−k, γyy + γyr ≥ 2N
M

O01 − 8−k,

γrg ≥ 2N
M

O1∗ − 8−k, γgr ≥ 2N
M

O∗1 − 8−k.

Set ψ(O, γ) = H(O) − M
N DKL (γ‖g) − 2−k.

Claim 5.24. W.h.p. we have 1
N lnET |Y (O)| ≤ maxγ∈Γ(O) ψ(O, γ) + Õk(2−3k/2).

Proof. Let ξ1, ξ2 : L → {0, 1, ∗}. Under (ξ1, ξ2), a clause Φ′
i of length ki = k is a

• (y, y)-clause if there exist j1, j2 ∈ [k], j1 �= j2, such that ξ1(Φ′
ij1) = 1, ξ2(Φ′

ij1) = 0, 
ξ1(Φ′

ij2) = 0, ξ2(Φ′
ij1) = 1, and ξ1(Φ′

ij) = ξ2(Φ′
ij) = 0 for all j ∈ [k] \ {j1, j2}.

• (r, g)-clause if there exist j1 �= j2 such that ξ1(Φ′
ij1) = 1, ξ2(Φ′

ij1) = ∗, ξ2(Φ′
ij2) �= 0

and ξ1(Φij) = 0 for all j �= j1.
• (g, r)-clause if there exist j1 �= j2 such that ξ2(Φ′

ij1) = 1, ξ1(Φ′
ij1) = ∗, ξ1(Φ′

ij2) �= 0
and ξ2(Φij) = 0 for all j �= j1.

• (r, y)-clause if there exist distinct indices j1, j2, j3 such that ξ1(Φ′
ij1) = 1, 

ξ2(Φ′
ij1) = 0, ξ2(Φ′

ij2), ξ2(Φ
′
ij3) �= 0 and if ξ1(Φij) = 0 for all j �= j1.

• (y, r)-clause if there exist distinct indices j1, j2, j3 such that ξ2(Φ′
ij1) = 1, 

ξ1(Φ′
ij1) = 0, ξ1(Φ′

ij2), ξ1(Φ
′
ij3) �= 0 and if ξ2(Φij) = 0 for all j �= j1.

• (c, c)-clause if there exist j1, j2, j′1, j′2 such that j1 �= j2, j′1 �= j′2 such that 
ξ1(Φ′

ij1), ξ1(Φ
′
ij2) �= 0 and ξ2(Φ′

ij′1
), ξ2(Φ′

ij′2
) �= 0.

For a set M ⊂ [M ] of size |M| ≥ (1 − exp(−k2))M let E(γ, M, ξ1, ξ2) be the event that

• for any (z1, z2) ∈ {(y, y), (r, g), (g, r), (r, y), (y, r), (c, c)} there are γz1z2 |M| indices 
i ∈ M such that Φi is a (z1, z2)-clause under (ξ1, ξ2), and

• there are (2−k + Ok(2−3k/2)M indices i ∈ M such that Φi is critical under ξ1.

By the independence of the clauses we have

lnP [Φ ∈ E(γ,M, ξ1, ξ2)] ≤ −|M|DKL (γ‖g) + o(1). (5.27)

Further, let N (O) be the set of all pairs (ξ1, ξ2) such that ξ1, ξ2 : L → {0, 1, ∗} satisfy 
(i) and O(ξ1, ξ2) = O. Then by Fact 3.3,

|N (O)| = exp(NH(O) + o(N)). (5.28)

In addition, for a set W of literals such that ξ1(l) = 1 for all l ∈ W and |W | ≥ (1 −
Ok(2−k))N let B(W, ξ1) be the event that each w ∈ W occurs in a clause of Φ that is 
critical under ξ1. Then

lnP [Φ ∈ B(W, ξ1)|E(γ,M, ξ1, ξ2)] ≤ N(−2−k + Õk(2−3k/2)). (5.29)
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Indeed, given E(γ, M, ξ1, ξ2) there are (2−k + Ok(2−3k/2))M = (k ln 2 + Ok(2−k/2))N
clauses that are critical under ξ1. If we think of these clauses as “red balls” that are 
tossed into bins corresponding to the literals W , then a short calculation shows that the 
probability that no bin remains empty is exp(−|W |(2−k + Ok(2−3k/2))).

By Proposition 4.1 we may assume that |V ′| ≥ N(1 − exp(−k2)) and 
∑

x/∈V ′ Dx +
D¬x ≤ exp(−k2)N . If so, then there exist M, W , γ ∈ Γ(O) such that B(W, ξ1) ∩
E(γ, M, ξ1, ξ2) occurs for all (ξ1, ξ2) ∈ Y (O). To see this, let M be the set of all 
i ∈ [M ] such that ki = k. If ξ1, ξ2 are covers of Φ′, then every Φi with i ∈ M must 
be a (z1, z2)-clause for some (z1, z2) ∈ {(y, y), (r, g), (g, r), (r, y), (y, r), (c, c)}. In ad-
dition, let L′′ be the set of all literals l ∈ L′ that do not occur in clauses Φi with 
i /∈ M. Then each l ∈ L′′ with ξ1(l) = 1, ξ2(l) = ∗ must occur in a (r, g)-clause. 
Hence, there are at least (2O1∗ − Ok(exp(−k2)))N (r, g)-clauses. Arguing similarly 
for (y, y), (r, y), (y, r), (g, r)-clauses, we conclude that there is γ ∈ Γ(O) such that 
E(γ, M, ξ1, ξ2) occurs. Further, for W = {l ∈ L′′ : ξ1(l) = 1} the event B(W, ξ1) oc-
curs. Finally, the assertion follows from (5.28)–(5.29) and the union bound. �

For O ∈ Π we set Δ(O) = 1 −
∑

z∈{0,1,∗} Ozz.

Claim 5.25. Assume that Δ(O) ∈ [2−0.99k, 12 − 2−0.49k] ∪ [ 12 + 2−0.49k, 1]. Then 
supγ∈Γ(O) ψ(O, γ) < −Ωk(2−k).

Proof. We claim that

1
N

lnET |Y (O)| ≤ H(O) + M

N
ln
[
1 − (O0 · )k − (O · 0)k + (O00)k

]
+ o(1). (5.30)

Indeed, it is straightforward to check that gz1z2 ≤ 1 − (O0 · )k − (O · 0)k + (O00)k for all 
(z1, z2). Hence, (5.30) follows from Claim 5.24. Further, because O0 · = 1

2 +Ok(2−k), we 
find

ln
[
1 − (O0 · )k − (O · 0)k + (O00)k

]
≤ ln

[
1 − 21−k + (O00)k

]
+ Õk(2−k). (5.31)

In addition, because |ξ−1
1 (∗)|, |ξ−1

2 (∗)| .= 2−kN , we have H(O) ≤ Õk(2−k) + H(Δ(O)). 
Combining this estimate with (5.30) and (5.31), we obtain

1
N

lnE[Y (O)] ≤ H(Δ(O)) + M

N
ln
[
1 − 21−k + ((1 − Δ(O))/2)k

]
+ Õk(2−k). (5.32)

Finally, it is elementary to verify that for all y ∈ [2−0.99k, 12 − 2−0.49k] ∪ [ 12 + 2−0.49k, 1],

H(y) + M

N
ln
[
1 − 21−k + ((1 − y)/2)k

]
< −2−(1−Ωk(1))k. (5.33)

The assertion follows from (5.32) and (5.33). �
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Let Γ′(O) be the set of all γ ∈ Γ(O) such that

γyy + γry = 2N
M

O10, γyy + γyr = 2N
M

O01, γrg = 2N
M

O1∗, γgr = 2N
M

O∗1.

Claim 5.26. If O ∈ Π is such that Δ(O) ≤ 2−0.99k, then supγ∈Γ(O) ψ(O, γ) ≤
supγ∈Γ′(O) ψ(O, γ) + Õk(2−3k/2).

Proof. If Δ(O) ≤ 2−0.99k, then O00 = 1/2 + Ok(2−2k/3) follows from the relations 
(5.25)–(5.26). We find that

gyy = (O10)2Õk(2−k), (O1∗)2Ω̃k(2−k) ≤ grg, ggr ≤ O1∗2−k−Ωk(k), (5.34)

gcc = 1 − Õk(2−k), (O10)22−k−Ωk(k) ≤ gry, gry = O102−k−Ωk(k). (5.35)

Now, let γ ∈ Γ(O) and obtain γ̂ ∈ Γ(O) from γ by increasing the (y, y), (r, g), (g, r)
entries such that

γ̂yy + γ̂ry = max{2N
M O10, γyy + γry} γ̂yy + γ̂yr = max{2N

M O10, γyy + γyr},

γ̂rg = max{2N
M O1∗, γrg} γ̂gr = max{2N

M O∗1, γgr}

and by setting γcc = 1 − γ̂yy − γ̂ry − γ̂yr − γ̂rg − γ̂gr. The bounds (5.34)–(5.35) imply 
that for any α ∈ [0, 1] at the point γ̃ = αγ̂ + (1 − α)γ we have

∂DKL (g‖γ̃)
∂γ̃yy

= ln γyy − 2 lnO10 + Õk(1),

∂DKL (g‖γ̃)
∂γ̃rg

= ln γrg − 2 lnO1∗ + Õk(1), ∂DKL (g‖γ̃)
∂γ̃gr

= ln γgr − 2 lnO1∗ + Õk(1).

Integrating the above up for α ∈ [0, 1] reveals that

DKL (γ̂‖g) = DKL (γ‖g) + Õk(4−k). (5.36)

Finally, obtain γ̇ ∈ Γ′(O) from γ̂ by decreasing the (y, y), (r, y), (y, r), (r, g), (g, r)
entries. Then (5.34)–(5.35) imply that DKL (γ̇‖g) ≤ DKL (γ̂‖g). Thus, the assertion 
follows from (5.36). �

Recall that we can express all the entries of O in terms of O10, O1∗. With this sub-
stitution we obtain the following bound on the differential of ψ.

Claim 5.27. If γ ∈ Γ′(O) and α ∈ [0, 1] is such that γyy = α 2N
M O10, then

(
∂ψ

∂O10 ,
∂ψ

∂O1∗

)
=
(
−Ωk(k) − (1 − α) ln O10

O10 + O1∗ ,−Ωk(k) − ln O1∗

O10 + O1∗

)
.
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Proof. Because γ ∈ Γ′(O), the choice of α ensures that

γry = (1 − α)2N
M

O10, γyr = (1 − α)2N
M

O10.

For (y1, y2) �= (c, c) we obtain

∂H(O)
∂O10 = 2 lnO11 − 2 lnO10,

∂H(O)
∂O1∗ = 2 lnO11 + 2 lnO∗∗ − 4 lnO1∗,

−M

N

∂

∂gy1y2
DKL (γ‖g) ∂g

y1y2

∂O10 = Ok(1), −M

N

∂

∂gy1y2
DKL (γ‖g) ∂g

y1y2

∂O1∗ = Ok(1).

Further,

−M

N

∂

∂gcc
DKL (γ‖g) ∂gcc

∂O10 = −Ωk(k), −M

N

∂

∂gcc
DKL (γ‖g) ∂gcc

∂O1∗ = −Ωk(k).

In addition,

−M

N

∂

∂γyy
DKL (γ‖g) ∂γyy

∂O10 = 2α
[
lnO10 + lnα + Ok(ln k)

]
,

−M

N

∂

∂γry
DKL (γ‖g) ∂γry

∂O10 = 2(1 − α)
[
2 ln(O10 + O1∗) + ln(1 − α) + Ok(ln k)

]
,

−M

N

∂

∂γrg
DKL (γ‖g) ∂γrg

∂O1∗ = 2 ln(O10 + O1∗) + Ok(ln k),

−M

N

∂

∂γcc
DKL (γ‖g) ∂γcc

∂O10 = Ok(1), −M

N

∂

∂γcc
DKL (γ‖g) ∂γcc

∂O1∗ = Ok(1).

Combining these estimates yields the assertion. �
Claim 5.28. If O ∈ Π is such that Δ(O) ≤ 2−0.99k, then supγ∈Γ(O) ψ(O, γ) ≤ εk2−k +
Õk(2−3k/2).

Proof. By Claim 5.26 it suffices to show that supγ∈Γ′(O) ψ(O, γ) ≤ εk2−k + Õk(2−3k/2). 
To bound ψ(O, γ) for γ ∈ Γ′(O), let O0 be such that Δ(O0) = 0 and γ0 such that γcc0 = 1. 
Integrating the bound on the differential of ψ from Claim 5.27 along the straight line 
from (O, γ) to (O0, γ0), we obtain

sup
γ∈Γ′(O)

ψ(O, γ) ≤ ψ(O0, γ0) + Õk(2−3k/2).

Finally, an elementary calculation yields ψ(O0, γ0) = εk2−k + Õk(4−k). �
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Proof of Lemma 5.23. Let X be the number of pairs (ξ1, ξ2) ∈ Y(Φ)2 such that 
Δ(O(ξ1, ξ2)) /∈ I = [ 12 − 2−0.49k, 12 + 2−0.49k]. Claims 5.24, 5.25 and 5.28 imply that

P

[
1
N

lnE[X|T ] ≤ εk2−k + Õk(2−3k/2)
]

= 1 − o(1). (5.37)

If ξ is a valid θ-shade that fails to be separable, then there are E[Z ′|T ] θ-shades ζ such 
that Δ(O(ξ̂, ζ̂)) /∈ I. Therefore, if E[Z ′′′|T ] ≥ E[Z ′|T ]/N with a non-vanishing probabil-
ity, then X ≥ E[Z ′|T ]2/N with a non-vanishing probability. But this contradicts (5.37), 
as Corollary 5.15 shows that 1

N lnE[Z ′|T ] = εk2−k + Õk(2−3k/2) w.h.p. �
Proof of Proposition 4.10. The proposition is immediate from Corollary 5.15, Lemma 5.19
and Lemma 5.23. �
6. The second moment

6.1. The overlap

The aim is to calculate the second moment ET [Z2] of the number Z of good θ-shades 
of Φ̂. Let Ξ denote the set of all θ-shades. Of course, the second moment is nothing but 
the expected number of pairs (ξ1, ξ2) of good θ-shades. As outlined in Section 3, what 
we need to show is that w.h.p. the dominant contribution to the second moment comes 
from pairs ξ1, ξ2 that “look uncorrelated”.

Thus, we need a measure of how “similar” two θ-shades ξ1, ξ2 ∈ Ξ are. For any literal 
type t ∈ T and z1, z2 ∈ {0, 1, ∗} we let ωz1z2

t (ξ1, ξ2) be the fraction of literals l of type t
such that ξ̂1(l) = z1 and ξ̂2(l) = z2. That is,

ωz1z2
t (ξ1, ξ2) = 1

nt

∣∣∣{l ∈ L′
t : ξ̂1(l) = z1, ξ̂2(l) = z2

}∣∣∣.
In addition, for t ∈ T , h ∈ [dt] and (z1, z2) ∈ {(r, r), (r, c), (c, r), (r, y), (y, r)} we let

ωz1z2
t,h (ξ1, ξ2) = 1

nt
|{l ∈ L′

t : ξ1(l, h) = z1, ξ2(l, h) = z2}|.

Further, for a clause type � ∈ T ∗, j ∈ [k�] and z1, z2 ∈ {p, y} we let

ωz1z2
�,j (ξ1, ξ2) = 1

m�

∣∣∣{i ∈ M� : ξ1(Φ̂ij) = z1, ξ2(Φ̂ij) = z2

}∣∣∣ .
The literal overlap of ξ1, ξ2 is the vector ω(ξ1, ξ2) comprising all of the above. Let 
Ω = {ω(ξ1, ξ2) : ξ1, ξ2 ∈ Ξ}. Given two θ-shades ξ1, ξ2, we can think of each literal clone 
(l, h) ∈ L as a “domino” adorned with two colors (ξ1(l, j), ξ2(l, j)). Of course, if (ξ1, ξ2)
are good, then the placement of the dominos in the clauses has to satisfy certain con-
straints. More precisely, every clause must satisfy one of the following seven conditions.
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Definition 6.1. Let � ∈ T ∗ be a clause type and let i ∈ M�. Let j, j′ ∈ [k�], j �= j′. We 
call Φ̂i a

(i) (r, r, j)-clause if the domino in the j position is colored (r, r) and all other dominos 
are colored (y, y). (Formally, ξ1(Φ̂ij) = ξ2(Φ̂ij) = r and ξ1(Φ̂ij′) = ξ2(Φ̂ij′) = y
for all j′ �= j.)

(ii) (y, y, j, j′)-clause if the domino in position j is colored (r, y), the domino in position 
j′ is colored (y, r), and all others are colored (y, y).

(iii) (r, c, j)-clause if the domino in position j is colored (r, c), all other dominos are 
colored either (y, y) or (y, c), and there occurs at least one domino colored (y, c).

(iv) (r, y, j)-clause if the domino in position j is colored (r, y), all others are colored 
either (y, y) or (y, c), and there occur at least two dominos colored (y, c).

(v) (c, r, j) if the domino in position j is colored (c, r), all other dominos are colored 
either (y, y) or (c, y), and there occurs at least one domino colored (c, y).

(vi) (y, r, j)-clause if the domino in position j is colored (y, r), all others are colored 
either (y, y) or (c, y), and there occur at least two dominos colored (c, y).

(vii) (c, c)-clause if all dominos are colored either (c, c), (c, y), (y, c) or (y, y) and if there 
exist j1j2, j′1, j′2 ∈ [k�], j1 �= j2, j′1 �= j′2, such that the dominos in positions j1, j2
are colored either (c, c) or (c, y), and the dominos in positions j′1, j′2 are colored 
either (c, c) or (y, c).

For � ∈ T ∗ and j ∈ [k�] let γrr�,j(ξ1, ξ2) denote the fraction of (r, r, j)-clauses among 
the clauses of type �, i.e.,

γrr�,j(ξ1, ξ2) = 1
m�

∣∣∣{i ∈ M� : Φ̂i is a (r, r, j)-clause
}∣∣∣.

We define γz1z2
�,j (ξ1, ξ2) for (z1, z2) ∈ {(r, c), (r, y), (c, r), (y, r)} analogously. For j1, j2 ∈

[k�], j1 �= j2 we let γyy�,j1,j2(ξ1, ξ2) signify the fraction of (y, y, j1, j2)-clauses among the 
clauses of type �. In addition, let γcc� (ξ1, ξ2) be the fraction of (c, c)-clauses. Set

γ�(ξ1, ξ2) =
(
γrr�,j(ξ1, ξ2), γrc�,j(ξ1, ξ2), γ

ry
�,j(ξ1, ξ2), γ

cr
�,j(ξ1, ξ2), γ

yr
�,j(ξ1, ξ2), γ

yy
�,j1,j2

(ξ1, ξ2),

γcc� (ξ1, ξ2)
)
j,j1 �=j2

and let γ(ξ1, ξ2) = (γ�(ξ1, ξ2))�∈T∗ . We call γ(ξ1, ξ2) the clause overlap of ξ1, ξ2. For 
ω ∈ Ω let

Γ(ω) = {γ(ξ1, ξ2) : ξ1, ξ2 are good θ-shades with ω(ξ1, ξ2) = ω} .

There are some immediate affine relations between the entries of the literal and the 
clause overlap. More specifically, we have
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Fact 6.2. If ω ∈ Ω and γ ∈ Γ(ω), then for each t ∈ T and h ∈ [dt] we have

ωrr
t,h =

∑
(�,j)∈∂(t,h)

m�

nt
γrr�,j , ωrc

t,h =
∑

(�,j)∈∂(t,h)

m�

nt
γrc�,j , ωcr

t,h =
∑

(�,j)∈∂(t,h)

m�

nt
γcr�,j ,

ω
ry
t,h =

∑
(�,j)∈∂(t,h)

m�

nt

⎡
⎣γry�,j +

∑
j′ �=j

γ
yy
�,j,j′

⎤
⎦ , ω

yr
t,h =

∑
(�,j)∈∂(t,h)

m�

nt

⎡
⎣γyr�,j +

∑
j′ �=j

γ
yy
�,j′,j

⎤
⎦ .

Furthermore,

ω11
t + ω1∗

t + ω∗1
t + ω∗∗

t =
∑

(�,j)∈∂(t,h)

m�

nt
ωpp
�,j , ω10

t + ω∗0
t =

∑
(�,j)∈∂(t,h)

m�

nt
ωpy
�,j ,

ω01
t + ω0∗

t =
∑

(�,j)∈∂(t,h)

m�

nt
ω
yp
�,j , ω00

t =
∑

(�,j)∈∂(t,h)

m�

nt
ω
yy
�,j .

In addition, for each y ∈ {0, 1, ∗} we have

ty
.=

∑
z∈{0,1,∗}

ωyz
t

.=
∑

z∈{0,1,∗}
ωzy
t .

Finally, for all � ∈ T ∗ and j ∈ [k�],

�
p
j
.= ω

pp
�,j + ω

py
�,j , �

p
j
.= ω

pp
�,j + ω

yp
�,j , �

y
j
.= ω

yy
�,j + ω

yp
�,j , �

y
j
.= ω

yy
�,j + ω

py
�,j ,

�rj =
∑

z∈{r,c,y}
γr�,j +

∑
j′ �=j

γ
yy
�,j,j′ =

∑
z∈{r,c,y}

γr�,j +
∑

j′∈[k�]\{j}
γ
yy
�,j,j′ .

The ultimate goal is show that the second moment ET [Z2] is dominated by pairs 
(ξ1, ξ2) whose overlap is close to the “uncorrelated” value ω̄, ̄γ defined by

ω̄z1z2
t = tz1tz2 , (t ∈ T, z1, z2 ∈ {0, 1, ∗}),

ω̄z1z2
t,h = tz1h tz2h , (t ∈ T, h ∈ [dt], z1, z2 ∈ {(r, r), (r, c), (r, y), (c, r), (y, r)}),

ω̄z1z2
�,j = �z1j �z2j , (� ∈ T ∗, j ∈ [k�], z1, z2 ∈ {p, y}),

γ̄z1z2
�,j = �z1j �z2j , (� ∈ T ∗, j ∈ [k�], (z1, z2) ∈ {(r, r), (r, c), (c, r)}),

γ̄yy�,j,j′ = �rj�
r
j′ , (� ∈ T ∗, j, j′ ∈ [k�], j �= j′),

γ̄
ry
�,j = γ̄

yr
�,j = �rj(1 − �

p
j) − �rj

∑
j′∈[k�]\{j}

�rj′ , (� ∈ T ∗, j ∈ [k�]).

To accomplish this task, we are going to deal due to technical reasons with two cases 
separately.

Definition 6.3. We call (ω, γ) tame if for all � and all j ∈ [k�] the following conditions 
are satisfied.
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TM1: ω
yy
�,j = 1

4 + Ok(k−9).
TM2: γrc�,j , γ

cr
�,j = (1 + Ok(k−9))γ̄rc�,j .

TM3: γyy�,j,j′ = (1 + Ok(k−9))γ̄yy�,j,j′ .
TM4: γrr�,j = (1 + Ok(k−9))γ̄rr�,j .

Otherwise, we call (ω, γ) wild.

As a next step, we estimate the expected number of pairs (ξ1, ξ2) of good θ-shades 
with a given overlap. This task is of a similar nature as the derivation of the formula for 
the first moment in Section 5.

6.2. The expected number of pairs with a given overlap

Let Z(ω, γ) be the number of pairs (ξ1, ξ2) of θ-shades with ω(ξ1, ξ2) = ω and 
γ(ξ1, ξ2) = γ. Assuming that ω, γ are such that ET [Z(ω, γ)] > 0, we aim to derive 
an asymptotic formula for 1

n lnET [Z(ω, γ)]. More specifically, the aim in the following is 
to identify an explicit function F (ω, γ) such that ET [Z(ω, γ)] = O(exp(nF (ω, γ))). To 
this end, we follow the program that we used in Section 5 to derive such a formula for 
the first moment, although the details are more involved.

6.2.1. The entropy
Let Ξ̂(ω) be the set of all pairs (ζ1, ζ2) such that ζ1, ζ2 : L′ → {0, 1, ∗} are maps that 

satisfy ζ1(¬l) = ¬ζ1(l), ζ2(¬l) = ¬ζ2(l) for all l ∈ L′ and such that |ζ−1
1 (z1) ∩ ζ−1

2 (z2) ∩
L′
t| = ωz1z2

t nt for all t ∈ T , z1, z2 ∈ {0, 1, ∗}. Let

Fent(ω) = 1
n

ln
∣∣∣Ξ̂(ω)

∣∣∣ .
We have the following basic estimate of Fent(ω). Recall that H( · ) denotes the entropy 
and that [T ] = {{t,¬t} : t ∈ T}.

Lemma 6.4. For ω ∈ Ω let

fent(ω) =
∑
t∈T

πtH(ωz1z2
t )z1,z2∈{0,1,∗}.

Then Fent(ω) = fent(ω) + o(1). In fact, if (ω, γ) is tame, then Fent(ω) = fent(ω) −
4 |[T ]| lnn/n + O(1/n).

Proof. Since (ωz1z2
t )z1,z2∈{0,1,∗} is a probability distribution, the assertion follows from 

Fact 3.4 (cf. the proof of Lemma 5.2). �
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6.2.2. The discrepancy
To proceed, fix (ζ1, ζ2) ∈ Ξ̂(ω). Let

ω
pp
t =

∑
z1,z2∈{1,∗}

ωz1z2
t , ω

py
t =

∑
z∈{1,∗}

ωz0
t , ω

yp
t =

∑
z∈{1,∗}

ω0z
t , ω

yy
t = ω00

t .

Further, let

Fdisc(ω) = 1
n

lnPT
[
∀� ∈ T ∗, j ∈ [k�], z1, z2 ∈ {p, y} :∣∣∣{i ∈ M� : ζ1(Φ̂ij) = z1, ζ2(Φ̂ij) = z2

}∣∣∣ = ωz1z2
�,j m�

]
,

i.e., the probability that for all clause types � and all j ∈ [k�] the distribution of 
the (p, p), (p, y), (y, p), (y, y)-dominos over the clauses of type � is as prescribed by 
(ωz1z2

�,j )z1,z2∈{p,y}.

Lemma 6.5. For ω ∈ Ω let

fdisc(ω) = −
∑
t∈T

∑
h∈[dt]

∑
(�,j)∈∂(t,h)

m�

n
DKL

(
ω
pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖ω

pp
t , ω

py
t , ω

yp
t , ω

yy
t

)
.

Then Fdisc(ω) = fdisc(ω) + o(1). In fact, if (ω, γ) is tame, then

Fdisc(ω) = fdisc(ω) −
∑
t∈T

∑
h∈[dt]

3(|∂(t, h)| − 1) lnn

2n + O(1/n).

Proof. Once more, this is immediate from Fact 3.4. �
6.2.3. The validity probability

Fix a clause type � ∈ T ∗. Let X�(ω�) be the set of all vectors (X�,j(i, ω�))j∈[k�],i∈[m�]
with entries in {p, y} such that

|{i ∈ [m�] : X�,j(i, ω�) = (z1, z2)}| .= ωz1z2
�,j m� for all j ∈ [k�], z1, z2 ∈ {p, y} .

Further, let X�(ω�) be a uniformly random element of X�(ω�). For a given vector X�(ω�) ∈
X�(ω�) let Grr

�,j(X�(ω�)) be set of indices i ∈ [m�] such that the “domino sequence” 
(X�,1(i, ω�), . . . , X�,k�

(i, ω�)) satisfies the condition for being a (r, r, j)-clause. Define Grc
�,j

etc. analogously. Further, let Grr
�,j(ω�) = |Grr

�,j(X�(ω�))|/m� etc. and set

Fval,�(ω�, γ�) = 1
n

lnP [G� = γ�] for � ∈ T ∗, Fval(ω, γ) =
∑
�∈T∗

m�

n
Fval,�(ω�, γ�).
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e
pp
�,j = γ

rr
�,j + γ

rc
�,j + γ

cr
�,j +

γcc
� q

pp
�,j

gcc
�

⎡
⎣1 −

∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
y ·
�,j′ +

∏
j′ �=j

q
yy
�,j′

⎤
⎦ ,

e
py
�,j = γ

ry
�,j +

γcc
� qpy�,j

gcc
�

[
1 −

∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
y ·
�,j′ −

∑
j′ �=j

q
· p
�,j′

∏
j′′ �=j,j′

q
· y
�,j′′ +

∏
j′ �=j

q
yy
�,j′ +

∑
j′ �=j

q
yp
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

]

+
∑
j′ �=j

[
γcr
�,j′q

py
�,j

gcr
�,j′

∏
j′′ �=j,j′

q
· y
�,j′′ +

γ
yr
�,j′q

py
�,j

g
yr
�,j′

⎡
⎣ ∏
j′′ �=j′

q
· y
�,j′′ −

∏
j′′ �=j′

q
yy
�,j′′

⎤
⎦ + γ

yy
�,j,j′

]
,

e
yp
�,j = γ

yr
�,j +

γcc
� qyp�,j

gcc
�

[
1 −

∏
j′ �=j

q
y ·
�,j′ −

∏
j′ �=j

q
· y
�,j′ −

∑
j′ �=j

q
p ·
�,j′

∏
j′′ �=j,j′

q
y ·
�,j′′ +

∏
j′ �=j

q
yy
�,j′ +

∑
j′ �=j

q
py
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

]

+
∑
j′ �=j

[
γrc
�,j′q

yp
�,j

grc
�,j′

∏
j′′ �=j,j′

q
y ·
�,j′′ +

γ
ry
�,j′q

yp
�,j

gry
�,j′

⎡
⎣ ∏
j′′ �=j′

q
y ·
�,j′′ −

∏
j′′ �=j′

q
yy
�,j′′

⎤
⎦+γ

yy
�,j′,j

]
.

Fig. 2. The vector e�.

Lemma 6.6. Let � ∈ T ∗ and let q� = (qz1z2�,j )j∈[k�],z1,z2∈{p,y} be a vector with entries in 
[0, 1] such that

∑
z1,z2∈{p,y}

qz1z2�,j = 1 for all j ∈ [k�].

Assume that with the expressions from Fig. 2 we have

epp�,j = ωpp
�,j , e

py
�,j = ωpy

�,j , e
yp
�,j = ωyp

�,j for all j ∈ [k�]. (6.1)

With g� = g�(q�) from Fig. 3, let

fval,�(ω�, γ�, q�) = −DKL (γ�‖g�) +
∑
j∈[k�]

DKL

(
ω
pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖q

pp
�,j , q

py
�,j , q

yp
�,j , q

yy
�,j

)
.

Then Fval,�(ω�, γ�) = fval,�(ω�, γ�, q�) + o(1). Indeed, if (ω, γ) is tame, then

Fval,�(ω�, γ�) = fval,�(ω�, γ�, q�) −
(
(
k�

2
)

+ 5k�) lnn

2n + O(1/n).

To prove Lemma 6.6, we consider a random vector χ� = (χ�,j(i))j∈[k�],i∈[m�] whose en-
tries χ�,j(i) are independent random variables with values in {(p, p), (p, y), (y, p), (y, y)}
such that

P[χ�,j(i) = (z1, z2)] = qz1z2�,j (j ∈ [k�], i ∈ [m�], z1, z2 ∈ {p, y}).

Let S� be the event that G�(χ�) = γ�. Furthermore, for j ∈ [k�] and z1, z2 ∈ {p, y} let

bz1z2�,j = |{i ∈ [m�] : χ�,j(i) = (z1, z2)}| . (6.2)
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g
rr
�,j(q�) = q

pp
�,j

∏
j′ �=j

q
yy
�,j′ , g

yy
�,j,j′ (q�) = q

py
�,jq

yp
�,j′

∏
j′′ �=j,j′

q
yy
�,j′ ,

g
rc
�,j(q�) = q

pp
�,j

⎡
⎣ ∏
j′ �=j

q
y ·
�,j′ −

∏
j′ �=j

q
yy
�,j′

⎤
⎦ , g

cr
�,j(q�) = q

pp
�,j

⎡
⎣ ∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
yy
�,j′

⎤
⎦

g
ry
�,j(q�) = q

py
�,j

⎡
⎣ ∏
j′ �=j

q
y ·
�,j′ −

∏
j′ �=j

q
yy
�,j′ −

∑
j′ �=j

q
yp
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

⎤
⎦ ,

g
yr
�,j(q�) = q

yp
�,j

⎡
⎣ ∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
yy
�,j′ −

∑
j′ �=j

q
py
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

⎤
⎦ ,

g
cc
� (q�) = 1 −

∏
j∈[k�]

q
y ·
�,j −

∑
j∈[k�]

q
p ·
�,j

∏
j′ �=j

q
y ·
�,j′ −

∏
j∈[k�]

q
· y
�,j −

∑
j∈[k�]

q
· p
�,j

∏
j′ �=j

q
· y
�,j′

+
∏

j∈[k�]

q
yy
�,j +

∑
j∈[k�]

(1 − q
yy
�,j)

∏
j′ �=j

q
yy
�,j′ +

∑
j1 �=j2

q
py
�,j1

q
yp
�,j2

∏
j �=j1,j2

q
yy
�,j .

Fig. 3. The vector g�(q�).

Moreover, let B� be the event that bz1z2�,j = ωz1z2
�,j m� for all j ∈ [k�] and all z1, z2 ∈ {p, y}. 

Given that B� occurs, χ� has the same distribution as the random vector X�. Therefore,

PT [G� = γ�] = P [S�|B�] . (6.3)

As in the previous instances where we used a similar approach, it turns out that P [S�]
and P [B�] are easy to compute due to the independence of the entries of χ�.

Claim 6.7. We have 1
m�

lnP [S�] = −DKL (γ�‖g�)+O(lnn/n). Moreover, if (ω, γ) is tame, 
then

1
m�

lnP [S�] = −DKL (γ�‖g�) −
(
(
k�

2
)

+ 5k�) lnn

2m�
+ O(1/n).

Proof. Because the entries of χ� are independent, the entries of g� are the probabilities 
that the sequence (χ�,j(i))j∈[k�] satisfies the various conditions from Definition 6.1. Thus, 
the assertion follows from Fact 3.4. �
Claim 6.8. We have

1
m�

lnP [B�] = −
∑
j∈[k�]

DKL

(
ω
pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖q

pp
�,j , q

py
�,j , q

yp
�,j , q

yy
�,j

)
+ O(lnn/n).

Moreover, if (ω, γ) is tame, then

1
m�

lnP [B�] = −3k� lnn

2m�
−

∑
j∈[k�]

DKL

(
ω
pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖q

pp
�,j , q

py
�,j , q

yp
�,j , q

yy
�,j

)
+ O(1/n).

Proof. This follows from Fact 3.4 and the independence of the entries of χ�. �
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Claim 6.9. For any j ∈ [k�] we have E[bpp�,j |S�] = e
pp
�,jm�, E[bpy�,j |S�] = e

py
�,jm�, E[byp�,j |S�] =

eyp�,jm�.

Proof. Once more, this is immediate from the independence of the entries of χ�. �
Claim 6.10. We have P[B�|S�] = exp(o(n)). Moreover, if (ω, γ) is tame, then

1
n

lnP[B�|S�] = −3k� lnn

2n + O(1/n).

Proof. Given that S� occurs, the random variables bz1z2�,j are sums of Θ(m�) indepen-
dent contributions. Furthermore, by Claim 6.9 the expectation of each bz1z2�,j is precisely 
the value ωz1z2

�,j m� required by the event B�. Thus, the assertion follows from Theo-
rem 3.5. �
Proof of Lemma 6.6. Lemma 6.6 is now immediate from Claims 6.7–6.10 and Bayes’ 
formula. �
Lemma 6.11. Let � ∈ T ∗ and assume that |ωz1z2

�,j − 1/4| ≤ k−4 for all z1, z2 ∈ {p, y}, 
j ∈ [k�]. Then there exists a unique q� = q�(ω�, γ�) such that (6.1) holds and |qz1z2�,j −
ωz1z2
�,j | = Ok(2−k) for all j ∈ [k�], z1, z2 ∈ {p, y}. Further,

∂qz1z2�,j

∂ωz1z2
�,j

= 1 + Õk(2−k),
∂qz1z2�,j

∂ω
z′
1z

′
2

�,j′

= Õk(2−k) if (j, z1, z2) �= (j′, z′1, z′2) (6.4)

and for all j′, j′′ ∈ [k�], (z1, z2) ∈ {(r, r), (r, c), (r, y), (c, r), (y, r)} we have

∂qz1z2�,j

∂γy1y2
�,j′

,
∂qz1z2�,j

∂γyy�,j′,j′′
= Õk(1). (6.5)

In addition, ∂2qz1z2�,j /∂x∂y = Õk(1) for all x, y and

∂2qz1z2�,j

∂ω
z′
1z

′
2

�,j′ ∂ω
z′′
1 z′′

2
�,j′′

= Õk(2−k) for all j, j′, j′′ ∈ [k�] and all z1, z
′
1, z

′′
1 , z2, z

′
2, z

′′
2 ∈ {p, y}.

(6.6)

Proof. Let

e� = (epp�,j − ω
pp
�,j , e

py
�,j − ω

py
�,j , e

yp
�,j − ω

yp
�,j , e

yy
�,j − ω

yy
�,j , γ

rr
�,j , γ

rc
�,j , γ

ry
�,j , γ

cr
�,j , γ

yr
�,j , γ

yy
�,j,j′ , ω

pp
�,j , ω

py
�,j ,

ω
yp
�,j , ω

yy
�,j)j �=j′ .
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Then a solution q� to the equation

(q�, γrr�,j , γrc�,j , γ
ry
�,j , γ

cr
�,j , γ

yr
�,j , γ

yy
�,j,j′ , ω

pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j)

= e−1
� (0, . . . , 0, γrr�,j , γrc�,j , γ

ry
�,j , γ

cr
�,j , γ

yr
�,j , γ

yy
�,j,j′ , ω

pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j)

satisfies (6.1). If we order the variables as qpp�,j , q
py
�,j , q

yp
�,j , γ

rr
�,j , γ

rc
�,j , γ

cr
�,j , γ

yy
�,j,j′ , ω

pp
�,j , ω

py
�,j , ω

yp
�,j ,

ωyy
�,j , we find

De� =
[
D1 D2
0 id,

]
,

where D1 = id − D3 with D3 a matrix with all entries Õk(2−k). All entries of D2 are 
Õk(1). Hence,

(De�)−1 =
[
D−1

1 −D−1
1 D2

0 id

]
, and D−1

1 = id +
∞∑
ν=1

Dν
3= 2id −D1 +

∑
ν≥2

Dν
3 .

(6.7)

Therefore, (6.4) and (6.5) follow from the inverse function theorem. Further, a straight-
forward calculation yields

∂2ez1z2�,j

∂q
z′
1z

′
2

�,j′ ∂q
z′′
1 z′′

2
�,j′′

= Ok(2−k)

for all j, j′, j′′ ∈ [k�], z1, z2, z
′
1, z

′
2, z

′′
1 , z

′′
2 ∈ {p, y}, (z1, z2) �= (y, y). (6.8)

Finally, combining (6.7), (6.8) and applying the chain rule, we find

∂2qz1z2�,j

∂ω
z′
1z

′
2

�,j′ ∂ω
z′′
1 z′′

2
�,j′′

= ∂

∂ω
z′
1z

′
2

�,j′

(D−1
1 )(j,z1,z2),(j′,z′

1,z
′
2)

= − ∂

∂ω
z′
1z

′
2

�,j′

∂ez1z2�,j

∂q
z′′
1 ,z′′

2
�,j′′

+
∑
ν≥2

∂

∂ω
z′
1z

′
2

�,j′

(Dν
3 )(j,z1,z2),(j′′,z′′

1 ,z′′
2 )

= −
∑

j′′′,z′′′
1 ,z′′′

2

∂q
z′′′
1 ,z′′′

2
�,j′′′

∂ω
z′
1z

′
2

�,j′

∂2ez1z2�,j

∂q
z′′
1 ,z′′

2
�,j′′ ∂q

z′′′
1 ,z′′′

2
�,j′′′

+ Õk(2−k) = Õk(2−k),

whence (6.6) follows. �
To deal with wild overlaps, it will be convenient to have a rough upper bound on 

Fval,�(ω�, γ�) without having to solve for q�. The following lemma provides such an upper 
bound.
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Lemma 6.12. For any � ∈ T ∗ and any (ω, γ) we have Fval,�(ω�, γ�) ≤ −DKL (γ�‖g�(ω�))+
o(1).

Proof. Consider a random vector η� = (η�,j(i))j∈[k�],i∈[m�] whose entries are independent 
with distribution

P[η�,j(i) = (z1, z2)] = ωz1z2
�,j (j ∈ [k�], i ∈ [m�], z1, z2 ∈ {p, y}). (6.9)

Let S�, B� be as above. Then

PT [G� = γ�] = Pη�
[S�|B�] ≤ Pη�

[S�] /Pη�
[B�] . (6.10)

Furthermore,

1
m�

lnP [η� ∈ S�] = −DKL (γ�‖g�(ω�)) + o(1). (6.11)

In addition, (6.9) ensures that

E |{i ∈ [m�] : η�,j(i) = (z1, z2)}| = ωz1z2
�,j m� for any j ∈ [k�], z1, z2 ∈ {p, y}. (6.12)

Because the entries η�,j(i) are independent, (6.12) and Theorem 3.5 imply that P [B�] =
exp(o(n)). Thus, the assertion follows from (6.10) and (6.11). �
6.2.4. The occupancy problem

Fix two maps (ζ1, ζ2) ∈ Ξ̂(ω). For a type t ∈ T let Xt(ω) be the set of all vectors Xt =
(Xt,h(l))l∈Lt,h∈[dt] with entries Xt,h(l) ∈ {r, c, y} × {r, c, y} that satisfy the following 
conditions.

OCC1: For each h ∈ [dt] and any z1, z2 ∈ {r, c, y} we have |{l ∈ L′
t : Xt,h(l) = (z1, z2)}| =

ωz1z2
t,h nt.

OCC2: Let l ∈ Lt. If ζ1(l) = 0, then Xt,h(l) ∈ {y} × {r, c, y} for all h ∈ [dt]. Similarly, 
if ζ2(l) = 0, then Xt,h(l) ∈ {r, c, y} × {y} for all h ∈ [dt].

OCC3: Let l ∈ Lt. If ζ1(l) �= 0, then Xt,h(l) ∈ {r, c}×{r, c, y} for all h ∈ [dt]. Moreover, 
if ζ2(l) �= 0, then Xt,h(l) ∈ {r, c, y} × {r, c} for all h ∈ [dt].

Let Xt be a uniformly random element of Xt(ω). We are interested in the event that, in 
addition to OCC1–OCC3, Xt also satisfies the following.

OCC4: If l ∈ Lt is such that ζ1(l) = ∗, then Xt,h(l) ∈ {c} × {r, c, y} for all h ∈ [dt]. 
Moreover, if l ∈ Lt is such that ζ1(l) = ∗, then Xt,h(l) ∈ {r, c, y} × {c} for all 
h ∈ [dt].
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s
11
t = 1 −

∏
h∈[dt]

(
1 − q

rr
t,h − q

rc
t,h

)
−

∏
h∈[dt]

(
1 − q

rr
t,h − q

cr
t,h

)
+

∏
h∈[dt]

(1 − q
rr
t,h − q

rc
t,h − q

cr
t,h),

s
1∗
t =

∏
h∈[dt]

(1 − q
rr
t,h − q

cr
t,h) −

∏
h∈[dt]

(1 − q
rr
t,h − q

rc
t,h − q

cr
t,h),

s
∗1
t =

∏
h∈[dt]

(
1 − q

rr
t,h − q

rc
t,h

)
−

∏
h∈[dt]

(1 − q
rr
t,h − q

rc
t,h − q

cr
t,h), s

∗∗
t =

∏
h∈[dt]

(1 − q
rr
t,h − q

rc
t,h − q

cr
t,h),

s
10
t = 1 −

∏
h∈[dt]

(1 − q
ry
t,h), s

∗0
t =

∏
h∈[dt]

(1 − q
ry
t,h), s

01
t = 1 −

∏
h∈[dt]

(1 − q
yr
t,h), s

0∗
t =

∏
h∈[dt]

(1 − q
yr
t,h).

Fig. 4. The expression for Lemma 6.13.

e
rr
t,h =

ω11
t qrrt,h

s11
t

, e
rc
t,h =

ω11
t qrct,h

s11
t

⎡
⎣1 −

∏
h′ �=h

(
1 − q

rr
t,h′ − q

cr
t,h′

)⎤⎦ +
ω1∗

t qrct,h

s1∗
t

∏
h′ �=h

(1 − q
rr
t,h′ − q

cr
t,h′ ),

e
cr
t,h =

ω11
t qcrt,h

s11
t

⎡
⎣1 −

∏
h′ �=h

(
1 − q

rr
t,h′ − q

rc
t,h′

)⎤⎦ +
ω∗1

t qcrt,h

s∗1
t

∏
h′ �=h

(1 − q
rr
t,h′ − q

rc
t,h′ ),

e
ry
t,h =

ω10
t qryt,h

s10
t

, e
yr
t,h =

ω10
t qyrt,h

s10
t

.

Fig. 5. The expressions for Lemma 6.13.

OCC5: If l ∈ Lt is such that ζ1(l) = 1, then there exists h ∈ [dt] such that Xt,h(l) ∈
{r} × {r, c, y}. Analogously, if l ∈ Lt is such that ζ2(l) = 1, then there exists 
h ∈ [dt] such that Xt,h(l) ∈ {r, c, y} × {r}.

Let

Focc,t(ωt) = 1
nt

lnP [Xt satisfies OCC4–OCC5] and Focc(ω) =
∑
t∈T

πtFocc,t(ωt).

We will show the following.

Lemma 6.13. Let t ∈ T . Assume that for any h ∈ [dt] there exist qrrt,h, qrct,h, q
ry
t,h, q

cr
t,h, q

yr
t,h,

qcct,h ∈ [0, 1] such that qcct,h = 1 − qrrt,h − qrct,h − qcrt,h and such that with the expressions from 
Fig. 5 we have

ez1z2t,h = ωz1z2
t,h for all (z1, z2) ∈ {(r, r), (r, c), (r, y), (c, r), (y, r)} . (6.13)

With the expressions from Fig. 4, let

focc,t(ωt, qt) =
∑

(z1,z2)∈{0,1,∗}2\{(0,0)}

ωz1z2
t ln sz1z2t +

∑
h∈[dt]

ωpy
t,hDKL

(
ω
ry
t,h

ω
py
t,h

‖qryt,h

)

+ ω
yp
t,hDKL

(
ω
yr
t,h

ω
yp
t,h

‖qyrt,h

)
+ ω

pp
t,hDKL

(
ωrr
t,h

ω
pp
t,h

,
ωrc
t,h

ω
pp
t,h

,
ωcr
t,h

ω
pp
t,h

‖qrrt,h, qrct,h, qcrt,h

)
.
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Then Focc,t(ωt) = focc,t(ωt, qt) + o(1). In fact, if (ω, γ) is tame, then Focc,t(ωt) =
focc,t(ωt, qt) + O(1/n).

To prove Lemma 6.13 we introduce an auxiliary probability space. Namely, let 
χt = (χt,h(l))l∈Lt,h∈[dt] be a random vector with mutually independent entries χt,h(l) ∈
{r, c, y} × {r, c, y} that are distributed as follows.

• If ζ1(l), ζ2(l) ∈ {1, ∗}, then P 
[
χt,h(l) = (z1, z2)

]
= qz1z2t,h for all h ∈ [dt] and z1, z2 ∈

{r, c}.
• If ζ1(l) ∈ {1, ∗}, ζ2(l) = 0, then P 

[
χt,h(l) = (z, y)

]
= q

zy
t,h for all h ∈ [dt] and z ∈

{r, c}.
• If ζ1(l) = 0, ζ2(l) ∈ {1, ∗}, then P 

[
χt,h(l) = (y, z)

]
= q

yz
t,h for all h ∈ [dt] and z ∈

{r, c}.
• If ζ1(l) = ζ2(l) = 0, ζ2(l) =∈ {1, ∗}, then χt,h(l) = (y, y) with certainty.

Let St be the event that the following four conditions hold.

(i) If ζ1(l) = 1, then there exists h ∈ [dt] such that χt,h(l) ∈ {r} × {r, c, y}.
(ii) If ζ2(l) = 1, then there exists h ∈ [dt] such that χt,h(l) ∈ {r, c, y} × {r}.
(iii) If ζ1(l) = ∗, then χt,h(l) ∈ {c} × {r, c, y} for all h ∈ [dt].
(iv) If ζ2(l) = ∗, then χt,h(l) ∈ {r, c, y} × {c} for all h ∈ [dt].

Further, for z1, z2 ∈ {r, c, y} and h ∈ [dt] define bz1z2t,h =
∣∣{l ∈ L′

t : χt,h(l) = (z1, z2)
}∣∣. 

Let Bt be the event that for all z ∈ {c, y} we have brrt,h = ωrr
t,h, b

rz
t,h = ωrz

t,h, b
zr
t,h = ωrz

t,h. 
Then

P [Xt satisfies OCC4–OCC5] = P [St|Bt] . (6.14)

Claim 6.14. We have 1
nt

lnP [St] =
∑

(z1,z2)∈{0,1,∗}2\{(0,0)} ω
z1z2
t ln sz1z2t .

Proof. This is immediate from the independence of the entries of Xt. �
Claim 6.15. We have − ln P[Bt]

nt
= Δ + O(lnn/n), where

Δ =
∑

h∈[dt]

ωpy
t,hDKL

(
ω
ry
t,h

ω
py
t,h

‖qryt,h

)
+ ωyp

t,hDKL

(
ω
yr
t,h

ω
yp
t,h

‖qyrt,h

)

+ ω
pp
t,hDKL

(
ωrr
t,h

ω
pp
t,h

,
ωrc
t,h

ω
pp
t,h

,
ωcr
t,h

ω
pp
t,h

‖qrrt,h, qrct,h, qcrt,h

)
.

In fact, if (ω, γ) is tame, then − ln P[Bt] = Δ − 5dt lnn + O(1/n).
nt 2n
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Proof. Once more, this is immediate from the independence of the entries of Xt and 
Fact 3.4. �
Claim 6.16. We have P [Bt|St] = exp(o(n)). In fact, if (ω, γ) is tame, then 1

nt
lnP [Bt|St] =

−5dt

2n lnn + O(1/n).

Proof. For any h ∈ [dt], (z1, z2) ∈ {(r, r), (r, c), (r, y), (c, r), (y, r)} we have E[bz1z2t,h |St] =
ez1z2t,h nt. Moreover, being sums of independent contributions, the vectors (bz1z2t,h )z1,z2 sat-
isfy the assumptions of Theorem 3.5, whence the assertion follows. �
Proof of Lemma 6.13. The assertion is immediate from (6.14) and Claims 6.14–6.16. �

We conclude this section by showing that under certain conditions the equation (6.13)
has a solution.

Lemma 6.17. Let ω ∈ Ω, t ∈ T and assume that there are no more than dt/k4 indices 
h ∈ [dt] such that

max{|ωrc
t,h − ω̄rc

t,h|, |ωcr
t,h − ω̄cr

t,h|, |ω
ry
t,h − ω̄

ry
t,h|, |ω

yr
t,h − ω̄

yr
t,h|} > k−52−k.

Further, assume that |ωz1z2
t − 1

4 | ≤ 1/k for all z1, z2 ∈ {0, 1}. Then there exists a unique 
vector qt = qt(ωt) such that (6.13) is satisfied and

qrrt,i = (1 + Õk(2−k))
ωrr
t,i

ω11
t

, qrct,i = (1 + Õk(2−k))
ωrc
t,i

ω11
t

, qcrt,i = (1 + Õk(2−k))
ωcr
t,i

ω11
t

,

(6.15)

q
ry
t,i = (1 + Õk(2−k))

ωry
t,i

ω10
t

, q
yr
t,i = (1 + Õk(2−k))

ωyr
t,i

ω01
t

. (6.16)

Moreover,

∂qrrt,i
∂ωrr

t,i

,
∂qrct,i
∂ωrc

t,i

,
∂qcrt,i
∂ωcr

t,i

= 1
ω11
t

+ Õk(2−k),
∂qryt,i
∂ω

ry
t,i

= 1
ω10
t

+ Õk(2−k),

∂q
yr
t,i

∂ωyr
t,i

= 1
ω01
t

+ Õk(2−k),

∂qz1z2t,i

∂ω
z′
1z

′
2

t,i′

= Õk(4−k) if (i, z1, z2) �= (i′, z′1, z′2),

∂qz1z2t,i

∂ωy1y2
t

= Õk(2−k) for all y1, y2 ∈ {0, 1, ∗}.

In addition, if (ω, γ) is tame, then
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∂2qz1z2t,h

∂ω
z′
1z

′
2

t,h′ ∂ω
z′′
1 z′′

2
t,h′′

=
{
Õk(2−k) if (h, z1, z2) ∈ {(h′, z′1, z

′
2), (h′′, z′′1 , z

′′
2 )},

Õk(4−k) otherwise,

∂2qrzt,h

∂ωz1z2
t ∂ω

z′
1z

′
2

t

,
∂2qzrt,h

∂ωz1z2
t ∂ω

z′
1z

′
2

t

= Õk(2−k) for z1, z
′
1, z2, z

′
2 ∈ {0, 1, ∗}, z ∈ {r, c, y},

∂2qz1z2t,h

∂ω
z′
1z

′
2

t,h′ ∂ω
z′′
1 z′′

2
t

=
{
Õk(1) if h = h′,

Õk(2−k) otherwise.

Proof. Consider qt = (qrrt,h, qrct,h, qcrt,h, q
ry
t,h, q

yr
t,h)h∈[dt] such that 0 ≤ qz1z2t,h ≤ Ok(2−k) for 

all h, z1, z2 and such that for no more than dt/k4 indices h ∈ [dt] we have max{|qrct,h −
2−k|, |qcrt,h − 2−k|, |qryt,h − 2−k|, |qyrt,h − 2−k|} > k−52−k. A straightforward and tedious 
calculation reveals that

∂errt,i
∂qrrt,i

,
∂erct,i
∂qrct,i

,
∂ecrt,i
∂qcrt,i

= 1
ω11
t

+ Õk(2−k),
∂eryt,i
∂q

ry
t,i

= 1
ω10
t

+ Õk(2−k),

∂e
yr
t,i

∂q
yr
t,i

= 1
ω01
t

+ Õk(2−k),

∂ez1z2t,i

∂q
z′
1z

′
2

t,i′

= Õk(4−k) if (i, z1, z2) �= (i′, z′1, z′2),

∂ez1z2t,i

∂ωy1y2
t

= Õk(2−k) for all y1, y2 ∈ {0, 1, ∗}.

Hence, the inverse function theorem yields the existence of a unique qt that satisfies (6.13)
and (6.15)–(6.16) along with the bounds on the first partial derivatives of qz1z2t,i . Finally, 
the bounds on the second derivatives follow by calculating the second differentials of 
ez1z2t,i and using the chain rule. �
6.2.5. Putting things together

Letting

F (ω, γ) = Fent(ω) + Fdisc(ω) + Fval(ω, γ) + Focc(ω),

we finally arrive at the following statement.

Fact 6.18. For any (ω, γ) we have ET [Z(ω, γ)] ≤ exp(nF (ω, γ) + o(n)). Moreover, if 
(ω, γ) is tame, then E[Z(ω, γ)|T ] ≤ O(exp(nF (ω, γ))).

In the following two sections we are going to estimate F (ω, γ). In Section 6.3 we deal 
with the case that (ω, γ) is tame. Then, in Section 6.4 we will deal with wild (ω, γ) and 
complete the proof of Proposition 4.11.
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6.3. Tame overlaps

In this section we estimate the contribution of tame (ω, γ) to the second moment.

Lemma 6.19. Let Ω′ be the set of all tame (ω, γ). Then 
∑

(ω,γ)∈Ω′ exp(nF (ω, γ)) ≤
O(ET [Z]2).

To prove Lemma 6.19 we approximate F (ω, γ) by means of the functions fent, fdisc,

fval, focc from Section 6.2. Indeed, assume that (ω, γ) is tame. Then Lemmas 6.11
and 6.17 provide canonical vectors qt, q� for t ∈ T , � ∈ T ∗. For the sake of brevity, 
we write fval,�(ω�, γ�) = fval,�(ω, γ, q�), focc,t(ωt) = focc,t(ωt, qt) and

fval(ω, γ) =
∑
�∈T∗

m�

n
fval,�(ω, γ, q�), focc(ω) =

∑
t∈T

πtfocc,t(ωt, qt).

Let

f(ω, γ) = fent(ω) + fdisc(ω) + fval(ω, γ) + focc(ω).

The lemmas from the previous section show that F (ω, γ) = f(ω, γ) + o(1). Thus, we 
need to study f . We are going to show that on the set of tame overlaps, f is strictly 
concave with its maximum attained at (ω̄, ̄γ). Throughout, it is understood that we take 
differentials within the polytope defined by the affine relations from Fact 6.2.

6.3.1. The first derivative
Here we calculate the first derivative of the function f to prove

Lemma 6.20. We have Df(ω̄, ̄γ) = 0.

Indeed, we are going to show that Dfent(ω̄), Dfdisc(ω̄), Dfval(ω̄, ̄γ), Dfocc(ω̄, ̄γ) = 0.

Claim 6.21. We have Dfent(ω̄) = Dfdisc(ω̄) = 0.

Proof. Each component of ω̄ is a product measure. Indeed, for any t ∈ T , z1, z2 ∈
{0, 1, ∗} we have ω̄z1z2

t = tz1tz2 . Therefore, subject to the relations from Fact 6.2, 
(ω̄z1z2

t )z1,z2∈{0,1,∗} is the maximizer of the entropy term fent. Hence, Dfent(ω̄) = 0. In 
addition, since for any � ∈ T ∗, j ∈ [k�], z1, z2 ∈ {p, y} we have ωz1z2

�,j = �z1j �z2j , we see that 
fdisc(ω̄) = 0. Since 0 is the global maximum of fdisc, we conclude that Dfdisc(ω̄) = 0. �
Claim 6.22. We have Dfval(ω̄, ̄γ) = 0.

Proof. We are going to show that Dfval,�(ω̄�, ̄γ�) = 0 for all � ∈ T ∗. While we could 
directly calculate Dfval,�(ω̄�, ̄γ�), it is more elegant to argue by way of the combinatorial 
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interpretation of fval,�. Thus, let X�(ω�) be as in Section 6.2.3. Furthermore, again with 
the notation from Section 6.2.3, let S�(ω�, γ�) be the set of all X� ∈ X�(ω) such that 
G�(X�) = γ�. Then by Lemma 6.6 for tame (ω, γ) we have

fval,�(ω�, γ�) = Fval,�(ω�, γ�) + o(1) = 1
m�

ln |S�(ω�, γ�)|
|X�(ω�)|

+ o(1)

= ln |S�(ω�, γ�)| − ln |X�(ω�)|
m�

+ o(1). (6.17)

By Fact 3.3,

1
m�

ln |X�(ω�)| =
∑
j∈[k�]

H(ω�,j) + o(1). (6.18)

Let X̃� be the set of all maps χ� : [m�] × [k�] → {p, y}, (i, j) �→ χ�,j(i) such that for any 
j ∈ [k�] we have |{i ∈ [m�] : χ�,j(i) = y}| .= �

y
jm�. Then X�(ω�) ⊂ X̃� × X̃� for all ω�. In 

effect,

1
m�

ln |X�(ω�)| ≤
2
m�

ln |X̃�| =
∑
j∈[k�]

H(ω̄y
�,j) + o(1). (6.19)

Analogously, let S̃� be the set of χ� ∈ X̃� such that for any i ∈ [m�] there 
is j ∈ [k�] such that χ�,j(i) = p and such that for any j ∈ [k�] we have 
|{i ∈ [m�] : χ�,j(i) = p ∧ ∀j′ �= j : χ�,j′(i) = y}| .= �rjm�. Then S�(ω�, γ�) ⊂ S̃� × S̃� for 
any (ω�, γ�). Hence, Proposition 5.1 and Lemma 5.3 show that

1
m�

ln |S�(ω�, γ�)|
|X̃� × X̃�|

≤ 2
m�

ln |S̃�|
|X̃�|

= 2ϕ� + o(1) = fval,�(ω̄�, γ̄�) + o(1);

to obtain the last equation, we verify that at the point ω̄�, ̄γ�, the implicit parameters in 
Lemma 5.3 and Lemma 6.6 satisfy the relation qz1z2�,j = qz1�,jq

z2
�,j for all j ∈ [k�], z1, z2 ∈

{p, y}. Hence,

1
m�

ln |S�(ω�, γ�)| ≤ fval,�(ω̄�, γ̄�) +
∑
j∈[k�]

H(ω̄y
�,j) + o(1).

Combining (6.18) and (6.19), we see that ω� �→ 1
m�

ln |X�(ω�)| =
∑

j∈[k�] H(ωy
�,j) +o(1) at-

tains its global maximum at a point ω̂� such that ‖ω̂� − ω̄�‖∞ = o(1). Analogously, there 
is (ω̃�, ̃γ�) such that ‖ω̃� − ω̄�‖∞ , ‖γ̃� − γ̄�‖∞ = o(1) where (ω�, γ�) �→ 1

m�
ln |S�(ω�, γ�)| =

fval,�(ω̄�, ̄γ�) +
∑

j∈[k�] H(ω̄y
�,j) +o(1) attains its maximum. Because their difference fval,�

has continuous derivatives, (6.17) implies Dfval,�(ω̄�, ̄γ�) = 0. �
Claim 6.23. We have Dfocc(ω̄) = 0.
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Proof. We are going to show that Dfocc,t(ω̄�) = 0 for all t ∈ T . Once more we use a 
combinatorial argument. We use the notion from Section 6.2.4. Let St(ωt) be the set of 
all Xt ∈ Xt(ω) that satisfy OCC4–OCC5. Then for tame (ω, γ) we have

focc,t(ωt) = Focc,t(ωt) + o(1) = 1
nt

ln |St(ωt)|
|Xt(ωt)|

+ o(1)

= ln |St(ωt)| − ln |Xt(ωt)|
nt

+ o(1). (6.20)

As in the proof of Claim 6.22, by considering the entropy we see that the maximizer ω̂t

of |Xt( · )| satisfies ω̂t
.= ω̄t. Similarly, if ω̃t is such that |St( · )| is maximum, then ω̃t

.= ω̄t. 
Hence, (6.20) implies that Dfocc,t(ω̄t) = 0. �

Finally, Lemma 6.20 is immediate from Claims 6.21–6.23.

6.3.2. The second derivative
In this section we establish the following statement about the second derivative of f .

Lemma 6.24. There is a number β = Ω(1) such that for all tame (ω, γ) we have 
D2f(ω, γ) � −βid.

In the rest of this section we tacitly assume that (ω, γ) is tame. As a first step we estimate 
the second derivative of fent, which is a function of (ωz1z2

t )t∈T,z1,z2∈{0,1,∗}.

Lemma 6.25. We have D2fent � −J , where J is a diagonal matrix with entries

Jω
z1z2
t ω

z1z2
t

=
{

Ωk(1) if z1, z2 ∈ {0, 1} ,
Ωk(2k) if z1 = ∗ or z2 = ∗.

Proof. The second derivative of the generic summand of the entropy function is 
∂2

∂p2 p ln p = 1/p. Furthermore, together with the affine relations from Fact 6.2, the 
assumption that (ω, γ) is tame implies that ωz1z2

t = 1
4 + ok(1) if z1, z2 ∈ {0, 1} and 

ωz1z2
t ≤ Ok(2−k) if z1 = ∗ or z2 = ∗. �

Lemma 6.26. We have D2fdisc(ω, γ) � 0

Proof. This is immediate from the fact that the Kullback–Leibler divergence is con-
vex. �

As a next step we estimate the second derivative of fval,� for any � ∈ T ∗. We can 
view fval,� as a function of γrr�,j , γrc�,j , γcr�,j , γ

yy
�,j,j′ , ω

pp
�,j with j, j′ ∈ [k�], j �= j′. Indeed, let 

V� be the set containing these variables. Then the variables V� determine the remaining 
components of ω�, γ� via the affine relations from Fact 6.2.
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Lemma 6.27. Let � ∈ T ∗. There is a matrix J = (Jxy)x,y∈V�
with diagonal entries

Jγrr
�,jγ

rr
�,j

= Ω̃k(4k), Jγ
yy
�,j,j′γ

yy
�,j,j′

= Ω̃k(4k),

Jγrc
�,jγ

rc
�,j
,Jγcr

�,jγ
cr
�,j

= Ω̃k(2k), Jω
pp
�,jω

pp
�,j

= Ok(k−992−k) (6.21)

and with all off-diagonal entries equal to 0 such that for all tame (ω, γ) we have 
D2fval,�(ω�, γ�) � −J .

To prove Lemma 6.27 we determine D2DKL (γ�‖g�) and D2DKL (ω�‖q�) separately.

Claim 6.28. There is a diagonal matrix J = (Jxy)x,y∈V�
with entries as in (6.21) such 

that −D2DKL (γ�‖g�) � −J .

Proof. Let G be the set of variables gcc� , grr�,j , g
rc
�,j , g

ry
�,j , g

cr
�,j , g

yr
�,j , g

yy
�,j,j′ , γ

cc
� , γrr�,j , γ

rc
�,j , g

ry
�,j ,

γcr�,j , γ
yr
�,j , γ

yy
�,j,j′ . To compute the second derivative with respect to x, y ∈ V�, we use the 

chain rule:

−∂2 DKL (γ�‖g�)
∂x∂y

= −
∑
G∈G

∂DKL (γ�‖g�)
∂G

∂2G

∂x∂y
−

∑
G,G′∈G

∂2DKL (γ‖g)
∂G∂G′

∂G

∂x

∂G′

∂y
.

(6.22)

Letting M = (Mxy) signify the matrix with entries Mxy = − 
∑

G∈G
∂DKL(γ‖g)

∂G
∂2G
∂x∂y , we 

obtain from (3.6)

Mxy = γcc�
gcc�

∂2gcc�
∂x∂y

+
k�∑
j=1

γrr�,j
grr�,j

∂2grr�,j
∂x∂y

+
γrc�,j
grc�,j

∂2grc�,j
∂x∂y

+
γ
ry
�,j

gry�,j

∂2g
ry
�,j

∂x∂y
+

γcr�,j
gcr�,j

∂2gcr�,j
∂x∂y

+
γ
yr
�,j

gyr�,j

∂2g
yr
�,j

∂x∂y

+
∑
j′ �=j

γ
yy
�,j,j′

g
yy
�,j,j′

∂2g
yy
�,j,j′

∂x∂y
.

Since (ω, γ) is tame, we verify that

γrr�,j
grr�,j

,
γ
yy
�,j,j′

g
yy
�,j,j′

,
γrc�,j
grc�,j

,
γcr�,j
gcr�,j

,
γ
ry
�,j

g
ry
�,j

,
γ
yr
�,j

g
yr
�,j

,
γcc�
gcc�

= 1 + ok(1). (6.23)

Furthermore, a direct calculation reveals that

∂2grr�,j
∂ω

pp
�,j1

∂ω
pp
�,j2

, . . . ,
∂2gcc�

∂ω
pp
�,j1

∂ω
pp
�,j2

= Õk(4−k),

∂2grr�,j
∂x∂y

,
∂2grc�,j
∂x∂y

, . . . ,
∂2gcc�
∂x∂y

= Õk(2−k) for all x, y.
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Thus, we obtain

Mxy = Õk(2−k) for all x, y, and in fact

Mω
pp
�,j ω

pp
�,j′

= Õk(4−k) for all j, j′ ∈ [k�]. (6.24)

Further, let M = − 
[∑

g,g′∈G
∂g
∂x

∂g′

∂y
∂2DKL(γ‖g)

∂g∂g′

]
x,y

denote the second summand in (6.22). 
We find that

∂g

∂x
= Õk(2−k) for all x, g ∈ {gcc� , grr�,j , g

rc
�,j , g

ry
�,j , g

cr
�,j , g

yr
�,j , g

yy
�,j,j′ : j �= j′},

∂g

∂ω
pp
�,j

= Õk(4−k) for g ∈ G. (6.25)

Moreover, due to our assumption that (ω, γ) is tame and (3.7),

∂2DKL (γ‖g)
∂γrr 2

�,j

= 1
γrr�,j

= Θk(4k),
∂2DKL (γ‖g)

∂γ
yy 2
�,j,j′

= 1
γ
yy
�,j,j′

= Θk(4k),

∂2DKL (γ‖g)
∂γrc 2

�,j

= 1
γrc�,j

= Θk(2k),
∂2DKL (γ‖g)

∂γcr 2
�,j

= 1
γcr�,j

= Θk(2k),

∂2DKL (γ‖g)
∂grr 2

�,j

,
∂2DKL (γ‖g)
∂γrr�,j∂g

rr
�,j

= Ok(4k),
∂2DKL (γ‖g)

∂g
yy 2
�,j,j′

,
∂2DKL (γ‖g)
∂γ

yy
�,j,j′∂g

yy
�,j,j′

= Ok(4k),

∂2DKL (γ‖g)
∂grc 2

�,j

,
∂2DKL (γ‖g)
∂γrc�,j∂g

rc
�,j

= Ok(2k),
∂2DKL (γ‖g)

∂gcr 2
�,j

,
∂2DKL (γ‖g)
∂γcr�,j∂g

cr
�,j

= Θk(2k).

Combining these bounds with (6.25), we see that there is a diagonal matrix J with 
entries

Jγrr
�,jγ

rr
�,j
, Jγyy

�,j,j′γ
yy
�,j,j′

= Ω̃k(4k), Jγrc
�,jγ

rc
�,j
, Jγcr

�,jγ
cr
�,j

= Ω̃k(2k), Jωpp
�,jω

pp
�,j

= Õk(4−k)

such that M � −J . Together with (6.24), this bound implies the assertion. �
Claim 6.29. If (ω, γ) is tame, then

D2DKL

(
ω
pp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖q

pp
�,j , q

py
�,j , q

yp
�,j , q

yy
�,j

)
� J,

where J is a diagonal matrix with entries Jωpp
�,jω

pp
�,j

= Õk(2.1−k) and Jxx = Õk(1.9k) for 
all other x ∈ V�.

Proof. Let Q = DKL

(
ωpp
�,j , ω

py
�,j , ω

yp
�,j , ω

yy
�,j‖q

pp
�,j , q

py
�,j , q

yp
�,j , q

yy
�,j

)
for brevity. By the chain 

rule,



A. Coja-Oghlan, K. Panagiotou / Advances in Mathematics 288 (2016) 985–1068 1045
D2Q = T1 + T2,

where T1 =
(∑

y

∂Q
∂y

∂2y

∂x∂x′

)
x,x′

, T2 =

⎛
⎝∑

y,y′

∂2Q
∂y∂y′

∂y

∂x

∂y′

∂x′

⎞
⎠

x,x′

. (6.26)

Because Lemma 6.11 ensures that |ωz1z2
�,j − qz1z2�,j | ≤ Õk(2−k) for all z1, z2 ∈ {p, y} and 

as qyy�,j = 1 − q
pp
�,j − q

py
�,j − q

yp
�,j , we see that |∂Q∂y | = Õk(2−k) for all y. Hence, (6.6) implies 

that T1 � J ′ for a diagonal matrix J ′ such that

J ′
ω
pp
�,jω

pp
�,j

= Õk(2.1−k), J ′
xx = Õk(1.9k) for all other x ∈ V�.

With respect to T2, we obtain from (3.7) and (6.4)–(6.5) that

∑
y,y′

∂2Q
∂y∂y′

∂y

∂x

∂y′

∂x′ =

⎧⎪⎪⎨
⎪⎪⎩
Õk(4−k) if x, x′ ∈

{
ω
pp
�,j : j ∈ [k�]

}
,

Õk(2−k) if x′ ∈
{
ω
pp
�,j : j ∈ [k�]

}
,

Õk(1) otherwise.

Hence, there is a diagonal matrix J ′′ with

J ′′
ω
pp
�,jω

pp
�,j

= Õk(2.1−k), J ′′
xx = Õk(1.9k) for all other x ∈ V�

such that T2 � J2. Setting J = J ′ + J ′′ completes the proof. �
Finally, Lemma 6.27 follows from Claims 6.28–6.29.
Next, we estimate the second derivative of focc. For any t ∈ T , focc,t is a func-

tion of ωz1z2
t with z1, z2 ∈ {0, 1, ∗} and of ωz1z2

t,h with h ∈ [dt] and (z1, z2) ∈
{(r, r), (r, c), (r, y), (c, r), (y, r)}. Let Vt be the set containing these variables.

Lemma 6.30. Let t ∈ T and h ∈ [dt]. Then D2focc,t(ω) � J , where J is a diagonal 
matrix with entries

Jω
z1z2
t ω

z1z2
t

= Õk(2−k/64) for z1, z2 ∈ {0, 1, ∗}, (6.27)

Jωrr
t,hω

rr
t,h

= Õk(415k/16) and Jω
z1z2
t,h ω

z1z2
t,h

= Õk(215k/16)

for (z1, z2) ∈ {(r, c), (c, r), (r, y), (y, r)} , h ∈ [dt]. (6.28)

The proof of Lemma 6.30 consists of several steps.

Claim 6.31. There is a diagonal matrix J with entries as in (6.27)–(6.28) such that

D2
∑
z1,z2

ωz1z2
t ln sz1z2t � J .
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Proof. Let Y =
∑

z1,z2
ωz1z2
t ln sz1z2t . Because the function (a, b) ∈ R≥0 �→ a ln b is 

concave, we have

D2Y � M =

⎛
⎝ ∑

z1,z2∈{0,1,∗}:(z1,z2) �=(0,0)

∂Y
∂sz1z2t

∂2sz1z2t

∂x∂y

⎞
⎠

x,y∈Vt

. (6.29)

Further, an elementary calculation based on Lemma 6.17 and our assumption that (ω, γ)
is tame yields

∂Y
∂sz1z2t

∂2sz1z2t

∂x∂y
≤ Õk(2−k) for all z1, z2, x, y. (6.30)

The bound (6.30) implies bounds on the Frobenius norms of the four blocks of M. 
Namely, the Frobenius norm of the diagonal block corresponding to the variables ωz1z2

t , 
z1, z2 ∈ {0, 1, ∗}, is Õk(2−k). Moreover, the Frobenius norm of the diagonal block ωz1z2

t,h

with h ∈ [dt] and z1, z2 ∈ {r, c, y} is Õk(1). Finally, the Frobenius norm of the off-
diagonal blocks comes to Õk(2−k/2). Because the Frobenius norm is an upper bound on 
the spectral norm, these estimates and (6.29) yield the assertion. �
Claim 6.32. There exists a diagonal matrix J such that (6.27) and (6.28) are satisfied 
and such that

D2
∑

h∈[dt]

ω
py
t DKL

(
ω
ry
t,h

ω
py
t

‖qryt,h

)
+ ω

yp
t DKL

(
ω
yr
t,h

ω
yp
t

‖qyrt,h

)

+ ωpp
t DKL

(
ωrr
t,h

ω
pp
t

,
ωrc
t,h

ω
pp
t

,
ωcr
t,h

ω
pp
t

‖qrrt,h, qrct,h, qcrt,h
)

� J .

Proof. Let X = {(r, r), (r, c), (c, r)}. For (z1, z2) ∈ X let pz1z2t,h = ωz1z2
t,h /ω

pp
t . Further, let

Qt,h = DKL

(
(pz1z2t,h )(z1,z2)∈X ‖(qz1z2t,h )(z1,z2)∈X

)
and Qt =

∑
h∈[dt]

Qt,h.

Let At,h be the set of variables pz1z2t,h , qz1z2t,h with (z1, z2) ∈ X . Then by the chain rule, 
D2Qt = M + N , where

M =

⎛
⎝ ∑

h∈[dt]

∑
a∈At,h

∂Qt,h

∂a

∂2a

∂x∂y

⎞
⎠

x,y∈Vt

, N =

⎛
⎝ ∑

h∈[dt]

∑
a,b∈At,h

∂2Qt,h

∂a∂b

∂a

∂x

∂b

∂y

⎞
⎠

x,y∈Vt

.

To bound M we consider three cases. For starters, we note that because (ω, γ) is tame, 
Lemma 6.17, the affine relations

ωrr
t,h
pp +

ωrc
t,h
pp +

ωcr
t,h
pp +

ωcc
t,h
pp = 1, qrrt,h + qrct,h + qcrt,h + qcct,h = 1
ωt ωt ωt ωt
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and (3.6) yield ∂Qt,h/∂a = Õk(2−k) for any a ∈ At,h.

Case 1: x, y ∈ {ωz1z2
t,h : h ∈ [dt] , (z1, z2) ∈ X}: suppose x = ωz11z12

t,h1
, y = ωz21z22

t,h2
. For 

summands h /∈ {h1, h2} Lemma 6.17 yields ∂2a/∂x∂y = Õk(4−k), whilst 
∂2a/∂x∂y = Õk(2−k) if h ∈ {h1, h2}. Hence, Mxy = Õk(4−k).

Case 2: x ∈ {ωz1z2
t : z1, z2 ∈ {0, 1, ∗}}, y ∈ {ωz1z2

t,h : h ∈ [dt] , (z1, z2) ∈ X}: suppose that 
x = ωz11z12

t , y = ωz21z22
t,h2

. For a ∈ {pz1z2t,h : z1, z2 ∈ X} and h = h2
we have ∂2a/∂x∂y = Õk(1), while ∂2a/∂x∂y = 0 if h �= h2. Further, if 
a ∈ {qz1z2t,h : z1, z2 ∈ X}, then Lemma 6.17 yields ∂2a/∂x∂y = Õk(1) if h = h2
and ∂2a/∂x∂y = Õk(2−k) otherwise. Hence, Mxy = Õk(2−k).

Case 3: x, y ∈ {ωz1z2
t : z1, z2 ∈ {0, 1, ∗}}: Lemma 6.17 yields ∂2a/∂x∂y = Õk(2−k) for 

all a. Therefore, the bound ∂Qt,h/∂a = Õk(2−k) entails that Mxy = Õk(2−k).

Combining these three estimate, we see that M � J for a diagonal matrix J with 
entries as detailed in (6.27) and (6.28).

With respect to N Lemma 6.17 and (3.7) yield

∂2Qt,h

∂qz1z2 2
t,h

+ ∂2Qt,h

∂pz1z2 2
t,h

+ 2 ∂2Qt,h

∂pz1z2t,h ∂qz1z2t,h

= Õk(1). (6.31)

To estimate the entries Nxy we treat three cases separately.

Case 1: x, y ∈ {ωz1z2
t,h : h ∈ [dt] , (z1, z2) ∈ X}: let x = ωz11z12

t,h1
, y = ωz21z22

t,h2
. Lemma 6.17

shows that for the summand h = h1 = h2 we have ∂a/∂x, ∂b/∂y = Õk(1), whilst 
(∂a/∂x)(∂b/∂y) = Õk(4−k) if either h �= h1 or h �= h2. Therefore, (6.31) yields 
Nxy = Õk(1)1{h1 = h2} + Õk(2−k).

Case 2: x ∈ {ωz1z2
t : z1, z2 ∈ {0, 1, ∗}}, y ∈ {ωz1z2

t,h : h ∈ [dt] , (z1, z2) ∈ X}: suppose that 
x = ωz11z12

t , y = ωz21z22
t,h2

. Then by Lemma 6.17 the summand h = h2 is Õk(2−k), 
while all other summands are Õk(4−k). Hence, Nxy = Õk(2−k).

Case 3: x, y ∈ {ωz1z2
t : z1, z2 ∈ {0, 1, ∗}}: then Lemma 6.17 yields Nxy = Õk(2−k).

Hence, N � J for a diagonal matrix J that satisfies (6.27) and (6.28).
A similar argument applies to the other two terms DKL

(
ω
ry
t,h/ω

py
t ‖qryt,h

)
,

DKL

(
ω
yr
t,h/ω

yp
t ‖qyrt,h

)
. �

Lemma 6.30 is immediate from Claims 6.31–6.32.

Proof of Lemma 6.24. This follows from Lemmas 6.25, 6.26, 6.27 and 6.30 and the affine 
relations from Fact 6.2. �
Proof of Lemma 6.19. Lemma 6.19 follows from Lemmas 6.20 and 6.24 via a standard 
application of the Laplace method. More specifically, let Ω′ be the set of all tame over-
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laps (ω, γ). Moreover, for a large enough number c′′ = c′′(k) let Ω′′ be the set of all 
(ω, γ) ∈ Ω′ such that for all t ∈ T, � ∈ T ∗, j ∈ [k�], h ∈ [dt],

‖ωt − ω̄t‖∞ , ‖ωt,h − ω̄t,h‖∞ , ‖ω�,j − ω̄�,j‖∞ , ‖γ� − γ̄�‖∞ ≤ c′′n−1/2.

Lemmas 6.20 and 6.24 imply that

S′ =
∑

(ω,γ)∈Ω′

exp(nF (ω, γ)) ≤ O(1)
∑

(ω,γ)∈Ω′′

exp(nF (ω, γ)). (6.32)

Further, let C ′ = 4 |[T ]| +
∑

�∈T∗ 4k� +
(
k�

2
)
. Then the affine relations from Fact 6.2

imply that the set Ω′′ is contained in the affine image of the set of integer lattice points 
in a C ′-dimensional cube with side lengths O(

√
n). (Indeed, once we fix for each t ∈ T

the parameters ωz1z2
t with z1, z2 ∈ {0, 1} and for every � ∈ T ∗, j, j′ ∈ [k�], j �= j′ the 

parameters ωpp
�,j , γrr�,j , γrc�,j , γcr�,j , γ

yy
�,j,j′ , the remaining components of (ω, γ) are implied.) 

Therefore, with C the number from (5.1), Lemmas 6.20 and 6.24 and the Laplace method 
yield

S′′ =
∑

(ω,γ)∈Ω′′

exp(nF (ω, γ)) ≤ O(n−2C) exp(nf(ω̄, γ̄)). (6.33)

Hence, we need to compare f(ω̄, ̄γ) with the formula from Proposition 5.1. To this end, we 
observe that at the point (ω̄, ̄γ) the parameters (qz�,j)z∈{p,y} and qrt,h from Proposition 5.1
and the implicit parameters (qz1z2�,j )z1,z2∈{p,y}, (qz1z2t,h )z1,z2 from Lemmas 6.6 and 6.13
satisfy

qz1z2�,j = qz1�,jq
z2
�,j , qrrt,h = (qrt,h)2,

qrct,h = qcrt,h = qrt,h(1 − qrt,h), q
ry
t,h = q

yr
t,h = qrt,h.

As a consequence, it is straightforward to check that

S′′ = O(ET [Z]2). (6.34)

Combining (6.32)–(6.34), we conclude that S′ ≤ O(E[Z|T ]2), as desired. �
6.4. Wild overlaps

The aim in this section is to prove

Lemma 6.33. Assume that (ω, γ) fails to be tame but

∑
t∈T

πtω
00
t = 1

4 + Õk(2−0.49k). (6.35)

Then there exists a tame (ω̃, ̃γ) such that F (ω, γ) ≤ F (ω̃, ̃γ) − Ω(1).
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Throughout, we tacitly assume that ω satisfies (6.35). Moreover, we let S(ω) ={
t ∈ T : |ω00

t − 1/4| > k−99}.

6.4.1. A rough bound
To prove Lemma 6.33 we proceed in two steps. First, we argue that the contribution 

of (ω, γ) that satisfy (6.35) but for which ω00
t differs significantly from 14 for a large share 

of types t is negligible. The proof of this is based on a rough upper bound on F (ω, γ). 
Subsequently we are going to derive a more accurate bound on those (ω, γ) that fail to 
be tame but for which ω00

t is close to 1/4 for most t.

Lemma 6.34. We have sup
{
F (ω, γ) : Vol(S(ω)) > exp(−

√
k)
}
< 0.

The proof of Lemma 6.34 is based on the following very rough upper bound on F (ω, γ).

Claim 6.35. Let

f̂(ω) =
∑
t∈T

πtH(ωz1z2
t )z1,z2∈{0,1,∗} + m

n

∑
�∈T∗

π� ln

⎡
⎣1 − 2

∏
j∈[k�]

�
y
j +

∏
j∈[k�]

ω
yy
�j

⎤
⎦ .

Then supγ F (ω, γ) ≤ f̂(ω) + o(1).

Proof. Consider a random vector χ = (χ�,j(i))�∈T∗,j∈[k�],i∈[m�] whose entries are inde-
pendent random variables with values in {(p, p), (p, y), (y, p), (y, y)} such that

P
[
χ�,j(i) = (z1, z2)

]
= ωz1z2

�j
. (6.36)

Let S be the event that for all � ∈ T ∗ and i ∈ [m�] there exist j1, j2 ∈ [k�] such that 
χ�,j1(i) ∈ {(p, p), (p, y)} and χ�,j2(i) ∈ {(p, p), (y, p)}. Furthermore, let Y z1z2

�,j = |{i ∈
[m�] : χ�,j(i) = (z1, z2)}| and set Y z1z2

t = (dtnt)−1 ∑
h∈[dt]

∑
(�,j)∈∂(t,h) Y

z1z2
�,j . Let B be 

the event that Y z1z2
t = ωz1z2

t for all t ∈ T and any z1, z2 ∈ {y, p} and that Y y ·
�,j , Y

· y
�,j

.= �yj
for all �, j. Then by the construction of F ,

sup
γ

F (ω, γ) ≤
∑
t∈T

πtH(ωz1z2
t )z1,z2∈{0,1,∗} + 1

n
lnP [S|B] . (6.37)

As (6.36) ensures that EY z1z2
�,j = ωz1z2

�j
m�, Lemma 3.5 implies that P [B] = exp(o(n)). 

Hence, by (6.37),

sup
γ

F (ω, γ) ≤
∑
t∈T

πtH(ωz1z2
t )z1,z2∈{0,1,∗} + 1

n
lnP [S] + o(1). (6.38)
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} >
Furthermore, as ωyy
�j

+ ω
yp
�j
, ωyy

�j
+ ω

py
�j

.= �yj for all �, j by Fact 6.2, we see that

1
n

lnP [S] = m

n

∑
�∈T∗

π� ln

⎡
⎣1 − 2

∏
j∈[k�]

�yj +
∏

j∈[k�]

ωyy
�j

⎤
⎦+ o(1). (6.39)

Finally, the assertion follows from (6.38) and (6.39). �
Claim 6.36. Let T0 = T0(ω) denote the set of all types t ∈ T such that min{ωpp

t , ωpy
t , ωyp

t , ωyy
t

0.01. Then

sup{f̂(ω) : ω satisfies Vol(T0) < 0.01} < 0.

Proof. Assume that Vol(T0) < 0.01. Because t0, t1 = 1
2 + Õk(2−k/2) for all t, (6.35)

implies that

∑
t∈T

πtω
z1z2
t = 1

4 + Õk(2−0.49k) for all z1, z2 ∈ {p, y} . (6.40)

Set δ = 0.01 + 1/k and let T1 = {t ∈ T : ωyy
t < δ}, T2 = {t ∈ T : ωyy

t > 1/2 − δ}. Since 
Vol(T0) < 0.01, (6.40) implies that Vol(T1) ≥ 0.48, Vol(T2) ≥ 0.48. Now, let M be the 
set of all clause types � that feature at least 0.4k literals of type T1 and at least 0.4k
literals of type T2. Then for any � ∈ M we have

1 − 2
∏

j∈[k�]

�
y
j +

∏
j∈[k�]

ω
yy
�j

≤ 1 − 21−k� + Õk(2−3k/2). (6.41)

Furthermore, DISC2 (from Lemma 4.14) implies that Vol(M) ≥ 1 − k−9 w.h.p. Hence, 
(6.41) yields

m

n

∑
�∈M

π� ln

⎡
⎣1 − 2

∏
j∈[k�]

�
y
j +

∏
j∈[k�]

ω
yy
�j

⎤
⎦ ≤ −2 ln 2 + ok(1). (6.42)

By comparison, since Vol(T0) ≤ 0.01, we find

∑
t∈T

πtH(ωz1z2
t )z1,z2∈{0,1,∗} ≤ 1.9 ln 2 + ok(1). (6.43)

Combining (6.42) and (6.43), we conclude that f̂(ω) < 0. �
Proof of Lemma 6.34. Let ε = k−99 and δ = exp(−

√
k). Let T2 be the set of all types 

t such that |ωyy
t − 1/4| > ε. Assume that Vol(T2) > δ. By Claim 6.36 and DISC1, we 
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may assume that the set M of all clause types � with k� = k that contain at least 0.01k
literals from T0 satisfies Vol(M) = 1 − exp(−Ωk(k)). Furthermore, for any � ∈ M,

1 − 2
∏

j∈[k�]

�
y
j +

∏
j∈[k�]

ω
yy
�j

≤ 1 − 21−k(1 + exp(−Ωk(k))). (6.44)

Now, obtain ω̂ from ω by setting ω̂z1z2
t = tz1tz2 for all z1, z2 ∈ {0, 1, ∗}, t ∈ T2. In 

particular, ω̂yy
t = t0t0 for t ∈ T2. Hence, (6.44) implies

f̂(ω̂) − f̂(ω) = exp(−Ωk(k)) +
∑
t∈T2

πt

[
H(ω̂z1z2

t )z1,z2∈{0,1,∗} −H(ωz1z2
t )z1,z2∈{0,1,∗}

]

≥ exp(−Ωk(k)) + Vol(T2)Ωk(ε2) ≥ exp(−k0.51). (6.45)

On the other hand, a direct calculation shows that f̂(ω̂) ≤ Õk(2−k). Hence, (6.45) implies 
that f̂(ω) < 0. Finally, the assertion follows from Claim 6.35. �
6.4.2. Reducing the discrepancy

In the following we enhance the bound from Lemma 6.34 to prove Lemma 6.33. We 
begin with the following statement.

Lemma 6.37. Assume that (ω, γ) is such that Vol(S(ω)) ≤ exp(−
√
k) but the following 

condition is violated.

For all t ∈ T \ S(ω), h ∈ [dt], (�, j) ∈ ∂(t, h) we have |ωyy
�,j − ω00

t | ≤ 2−k/3. (6.46)

Then there exists ω̂ such that F (ω̂, γ) > F (ω, γ) + Ω(1).

The proof of Lemma 6.37 is based on a local variations argument. Let t ∈ T \ S(ω), 
h ∈ [dt] and assume that |ωyy

�,j − ω00
t | > 2−k/3 for some (�, j) ∈ ∂(t, h). Then there 

exists (�′, j′) ∈ ∂(t, h) such that |ωyy
�′,j′ − ω00

t | ≥ Ω(1) and such that sign(ωyy
�′,j′ − ω00

t ) �=
sign(ωyy

�,j−ω00
t ). Now, pick a number δ with sign(δ) = sign(ωyy

�,j−ω00
t ) of sufficiently small 

absolute value and let δ′ = δm�/m�′ . Further, let ω̂ be such that ω̂yy
�,j

.= ωyy
�,j − δ, ω̂yy

�′,j′
.=

ω
yy
�,j + δ′, ω̂yy

�′′,j′′
.= ωyy

�′′,j′′ if (�′′, j′′) /∈ {(�, j), (�′, j′)}, ωt = ω̂t for all t ∈ T and such that 
the affine relations from Fact 6.2 hold. Then

Fent(ω̂) = Fent(ω), Focc(ω̂) = Focc(ω). (6.47)

Moreover, differentiating the Kullback–Leibler divergence, we see that

Fdisc(ω̂) − Fdisc(ω) ≥ δm�

n′ Ωk(2−k/3). (6.48)
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Claim 6.38. We have

Fval,�(ω̂�, γ�) ≥ Fval,�(ω�, γ�) + δm�

n′ Õk(2−k), (6.49)

Fval,�′(ω̂�′ , γ�′) ≥ Fval,�′(ω�′ , γ�′) + δ′m�′

n′ Õk(2−k). (6.50)

Proof. We prove (6.49) in detail; the very same argument yields (6.50). For α ∈ [0, 1] we 
let ω�(α) be the vector obtained from ω� by replacing ω�,j by (1 − α)ω�,j + αω̂�,j . Using 
the notation from the definition of Fval,� in Section 6.2.3, we are going to “interpolate” 
between the probability spaces X�(ω�(0)) and X�(ω�(1)). Let Xα

� denote a uniformly 
random element of X�(ω�(α)).

Let us fix disjoint sets Gz1z2
�,h , Gyy

�,h,h′ ⊂ [m�], (z1, z2) ∈ {(r, r), (r, c), (c, r), (r, y), (y, r)}, 
h, h′ ∈ [k�], h �= h′, such that |Gz1z2

�,h | = m�γ
z1z2
�,h and |Gyy

�,h,h′ | = m�γ
yy
�,h,h′ . Let G denote 

the union of all of these sets. Further, let R(α) ⊂ X�(ω�(α)) be the event that

• for all (z1, z2), h ∈ [k�], i ∈ Gz1z2
�,h , Xα

� (i) is a (z1, z2, j)-clause,
• for all h �= h′, i ∈ Gyy

�,h,h′ , Xα
� (i) is a (y, y, h, h′)-clause.

Additionally, let C(α) be the event that Xα
� (i) is a (c, c)-clause for all i ∈ [m�] \ G. 

Because the distribution of the random vector Xα
� (i) is invariant under permutations of 

the clause indices i, we see that

Fval,�(ω̂�, γ�) − Fval,�(ω�, γ�) = 1
m�

[lnP [R(1) ∩ C(1)] − lnP [R(0) ∩ C(0)]] . (6.51)

To estimate the r.h.s. of (6.51), we are going to work out (roughly speaking) the derivative 
of P [R(α) ∩ C(α)] for α ∈ [0, 1]. To deal with the issue that R(α), C(α) are dependent, we 
are going to identify an event E(α, u) such that R(α), C(α) are independent given E(u). 
More specifically, if u� = (uz1z2

�,h )z1,z2∈{p,y},h∈[k�] is such that (uz1z2
�,h )z1,z2∈{p,y} is a prob-

ability distribution for each h ∈ [k�], then we let E(u�) be the event that

∀h ∈ [k�] :
∣∣{i ∈ G : Xα

�,h(i) = (z1, z2)
}∣∣ = uz1z2

�,h |G|.

Then for any u� such that P [E(u�)] > 0 we have

P [R(α) ∩ C(α)|E(u�)] = P [R(α)|E(u�)]P [C(α)|E(u�)]P [E(u�)] . (6.52)

Thus, we need to get a handle on P [R(α)|E(u�)] , P [C(α)|E(u�)] , P [E(u�)].
Because given E(u�) we know the precise statistics of the “dominos” placed in clauses 

with indices in G, we have

P [R(α)|E(u�)] = P [R(0)|E(u�)] . (6.53)
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Further, letting ũ� = (m� − |G|)−1 (m�ω�(α) − |G|u�), we obtain from Fact 3.4

1
m�

lnP [E(u�)] ∼ −
∑
j

|G|
m�

DKL (u�,j‖ω�,j(α))

+
(

1 − |G|
m�

)
DKL (ũ�,j‖ω�,j(α)) ; (6.54)

here j ranges over indices such that ω�,j �= ω̂�,j . Differentiating (6.54) using Fact 6.2, we 
find that

− ∂

∂α
DKL (u�,j‖ω�,j(α)) =

∑
z1,z2∈{p,y}

uz1z2
�,j

ωz1z2
�,j (α)

∂ωz1z2
�,j (α)
∂α

= δ

[
u
py
�,j

ω
py
�,j(α)

+
u
yp
�,j

ω
yp
�,j(α)

−
u
yy
�,j

ω
yy
�,j(α)

−
u
pp
�,j

ω
pp
�,j(α)

]
, (6.55)

− ∂

∂α
DKL (ũ�,j‖ω�,j(α)) =

∑
z1,z2∈{p,y}

ũz1z2
�,j

ωz1z2
�,j (α)

∂ωz1z2
�,j (α)
∂α

−
∂ũz1z2

�,j

∂α
ln

ũz1z2
�,j

ωz1z2
�,j (α)

= δ

[
ũpy�,j

ω
py
�,j(α)

+
ũ
yp
�,j

ω
yp
�,j(α)

−
ũ
yy
�,j

ω
yy
�,j(α)

−
ũ
pp
�,j

ω
pp
�,j(α)

]

+ δm�

m� − |G|

[
ln

ũ
yy
�,j

ω
yy
�,j(α)

+ ln
ũ
pp
�,j

ω
pp
�,j(α)

− ln
ũ
py
�,j

ω
py
�,j(α)

− ln
ũ
yp
�,j

ω
yp
�,j(α)

]
. (6.56)

We claim that

∂

∂α
− |G|

m�
DKL (u�‖ω�(α)) −

(
1 − |G|

m�

)
DKL (ũ�‖ω�(α)) ≥ −|δ|Õk(2−k). (6.57)

Indeed, if ωz1z2
�,j ≥ 1/k, then the logarithmic terms from (6.56) contribute |δ|Õk(2−k)

to (6.57). Hence, assume that ωz1z2
�,j < 1/k. Then δ < 0 if z1 = z2 and δ > 0 if z1 �= z2. 

Assume without loss that z1 = z2. If ũz1z2
�,j ≤ ωz1z2

�,j (α), then the contribution of the 
logarithmic terms from (6.56) is non-negative. Otherwise the definition ensures that 
ũz1z2
�,j ≤ (1 + Õk(2−k))ωz1z2

� (α), whence the contribution of the logarithmic term is 
|δ|Õk(2−k). Further, the contribution of the non-logarithmic terms from (6.55)–(6.56)
to (6.57) comes to

(−1)1{z1 �=z2} δ

ωz1z2
�,j (α)

[
|G|
m�

uz1z2
�,j + m� − |G|

m�
ũz1z2
�,j

]
= (−1)1{z1 �=z2}δ.

Summing over z1, z2 yields (6.57).
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As a next step, we calculate the derivative of Q(α, u�) = 1
m�

lnP [C(α)|E(u�)]. This is 
via a similar argument as in the proof of Lemma 6.6. More specifically, we are going to 
calculate the derivative of

gcc� = 1 −
∏

j∈[k�]

q
y ·
�,j −

∑
j∈[k�]

q
p ·
�,j

∏
j′ �=j

q
y ·
�,j′ −

∏
j∈[k�]

q
· y
�,j −

∑
j∈[k�]

q
· p
�,j

∏
j′ �=j

q
· y
�,j′

+
∏

j∈[k�]

q
yy
�,j +

∑
j∈[k�]

(1 − q
yy
�,j)

∏
j′ �=j

q
yy
�,j′ +

∑
j1 �=j2

q
py
�,j1

q
yp
�,j2

∏
j �=j1,j2

q
yy
�,j

for an appropriately defined q�,j = q�,j(α, u�). To determine q�,j , we let

ê
pp
�,j =

q
pp
�,j

gcc�

⎡
⎣1 −

∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
y ·
�,j′ +

∏
j′ �=j

q
yy
�,j′

⎤
⎦ ,

ê
py
�,j =

q
py
�,j

gcc�

[
1 −

∏
j′ �=j

q
· y
�,j′ −

∏
j′ �=j

q
y ·
�,j′ −

∑
j′ �=j

q
· p
�,j′

∏
j′′ �=j,j′

q
· y
�,j′′ +

∏
j′ �=j

q
yy
�,j′

+
∑
j′ �=j

q
yp
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

]
,

êyp�,j =
q
yp
�,j

gcc�

[
1 −

∏
j′ �=j

qy ·
�,j′ −

∏
j′ �=j

q · y
�,j′ −

∑
j′ �=j

qp ·
�,j′

∏
j′′ �=j,j′

qy ·
�,j′′ +

∏
j′ �=j

qyy�,j′

+
∑
j′ �=j

q
py
�,j′

∏
j′′ �=j,j′

q
yy
�,j′′

]
.

For any q = (q�,j)j∈[k�] such that qy ·
�,j , q

· y
�,j = 1

2 + Ok(k−2) we find Dê�,j = id + M�,j , 
where M�,j is a matrix all of whose entries are Õk(2−k). Hence, by the inverse function 
theorem there exists q� = q�(α, u�) such that ez1z2�,j = ũz1z2

�,j . With this choice of q�, we 
have

1
m�

lnP [C(α)|E(u�)] ∼
(

1 − |G|
m�

)⎡
⎣ln gcc� +

∑
h∈[k�]

DKL (ũ�,h‖q�,h)

⎤
⎦ . (6.58)

Once more by the inverse function theorem, we have Dq�,j = id + N�,j , where N�,j is 
another matrix all of whose entries are Õk(2−k). Using this estimate to differentiate the 
r.h.s. of (6.58), we see that

∂

∂α
ln gcc� +

∑
h∈[k�]

DKL (ũ�,h‖q�,h) = δÕk(2−k) +
∑

h,z1,z2

∂ũz1z2
�,h

∂α
ln

êz1z2�,h

qz1z2�,h

−
∂qz1z2�,h

∂α

êz1z2�,h

qz1z2�,h

= δÕk(2−k). (6.59)
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Finally, combining (6.52)–(6.54) and (6.57)–(6.59) and integrating over α ∈ [0, 1], we 
conclude that

1
m�

[lnP [R(1) ∩ C(1)] − lnP [R(0) ∩ C(0)]] ≥ δÕk(2−k).

Thus, the claim follows from (6.51). �
Proof of Lemma 6.37. The assertion is immediate from Claim 6.38 and equations (6.47), 
(6.48). �
6.4.3. Increasing the entropy

Assume that (ω, γ) is such that S(ω) �= ∅. Let S ′(ω) be the set of all pairs (�, j) such 
that there exist t ∈ S(ω) and h ∈ [dt] such that (�, j) ∈ ∂(t, h) and let S̃(ω) be the 
set of all � such that (� × [k�]) ∩ S ′(ω) �= ∅. Moreover, let ω̃ be such that ω̃t = ω̄t for 
all t ∈ S(ω) and ω̃�,j

.= ω̄�,j for all (�, j) ∈ S ′(ω), while ω̃t = ωt for all t /∈ S(ω) and 
ω̃�,j

.= ω�,j for all (�, j) /∈ S ′(ω). Further, let γ̃�,j
.= γ�,j for all � /∈ S̃(ω), j ∈ [k�] and let 

γ̃�,j for � ∈ S̃(ω), j ∈ [k�] be such that Fval,�(ω̃�, ̃γ�) is maximum subject to the affine 
relations from Fact 6.2.

Lemma 6.39. Assume that (ω, γ) is such that (6.35) and (6.46) are satisfied and 
Vol(S(ω)) ≤ exp(−

√
k). Then

F (ω̃, γ̃) − Focc(ω̃) ≥ F (ω, γ) − Focc(ω) + Ω̃k(1)Vol(S̃(ω)).

The rest of this section is devoted to the proof of Lemma 6.39. We begin with the 
following statement. Let S ′′(ω) be the set of all clause types � ∈ T ∗ such that |({�} ×
[k�]) ∩ S ′(ω)| ≥ 0.9k.

Claim 6.40. We have 
∑

�∈S′′(ω)
m�

n Fval,�(ω̃�, ̃γ�) = Õk(2−k)Vol(S̃(ω)).

Proof. Since Vol(S(ω)) ≤ exp(−
√
k), DISC3 implies that

∑
�∈S′′(ω)

m�/n ≤ Õk(1)Vol (S(ω)) . (6.60)

Let � ∈ S ′′(ω). Since ω̃�, ̃γ� satisfy the assumptions of Lemma 6.11, we obtain q�(ω̃�, ̃γ�)
such that Fval,�(ω̃�, ̃γ�) = fval,�(ω̃�, ̃γ�, q�(ω̃�, ̃γ�)) +o(1). Furthermore, Lemma 6.11 entails 
that |qz1z2�,j − 1/4| ≤ k−2 for all j ∈ [k�], z1, z2 ∈ {p, y}. Therefore, we verify that 
fval,�(ω̃�, ̃γ�, q�(ω̃�, ̃γ�)) = Õk(2−k). Hence, (6.60) implies

∑
�∈S′′(ω)

m�

n
Fval,�(ω̃�, γ̃�) = Õk(2−k)Vol(S(ω)). (6.61)

Because dt = Θk(k2k) for all t ∈ T , the assertion follows from (6.61). �
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Claim 6.41. We have 
∑

�/∈S′′(ω)
m�

n [Fval,�(ω̃�, γ̃�) − Fval,�(ω�, γ�)] ≤ exp (−Ωk(k))×
Vol(S̃(ω)).

Proof. Fix � ∈ S̃ (ω) \ S ′′ (ω). To compare Fval,�(ω̃�, ̃γ�) and Fval,�(ω�, γ�), we pro-
ceed in five steps. Let ϕ0 be such that m�

n ϕ0 = Fval,�(ω�, γ�). Moreover, let ϕ1 =
−DKL (γ�‖g�(ω�)). Then ϕ0 ≤ ϕ1 + o(1) by Lemma 6.12. Further, let

ϕ2 = ln

⎡
⎣1 −

∏
j∈[k�]

ω
y ·
�,j −

∏
j∈[k�]

ω
· y
�,j +

∏
j∈[k�]

ω
yy
�,j

⎤
⎦ .

Since the sum of all entries of g�(ω�) is no greater than 1 −
∏

j∈[k�] ω
y ·
�,j −

∏
j∈[k�] ω

· y
�,j +∏

j∈[k�] ω
yy
�,j , we see that ϕ2 ≥ ϕ1. Moreover, let

ϕ3 = ln

⎡
⎣1 −

∏
j∈[k�]

ω̃
y ·
�,j −

∏
j∈[k�]

ω̃
· y
�,j +

∏
j∈[k�]

ω̃
yy
�,j

⎤
⎦ .

To compare ϕ3 and ϕ2, we note that by Fact 6.2 and the construction of ω̃ we have

ω
y ·
�,j , ω̃

y ·
�,j , ω

· y
�,j , ω̃

· y
�,j

.= �yj .

Furthermore, because � /∈ S ′′(ω) we have 
∏

j∈[k�] ω
yy
�,j ≤ 2−Ωk(k) ∏

j∈[k�] �
y
j . Additionally, 

the construction of ω̃ ensures that 
∏

j∈[k�] ω̃
yy
�,j ≤ 2−k−Ωk(k). Consequently, there exists a 

fixed number c1 < 1/2 such that ϕ3 ≥ ϕ2 − ck1 . To proceed, we observe that Lemma 6.11
applies to (ω̃, ̃γ); let q� = q�(ω̃�, ̃γ�) be the vector produced by Lemma 6.11 and set

ϕ4 = ln

⎡
⎣1 −

∏
j∈[k�]

qy ·
�,j −

∏
j∈[k�]

q · y
�,j +

∏
j∈[k�]

qyy�,j

⎤
⎦ .

Because Lemma 6.11 guarantees that

|qz1z2�,j − ω̃z1z2
�,j | = Ok(2−k) for all j ∈ [k�], z1, z2 ∈ {p, y},

we conclude that ϕ4 ≥ ϕ3 − ck2 for some fixed c2 < 1/2. Finally, let ϕ5 be such that 
fval,�(ω̃�, ̃γ�, q�) = m�

n ϕ5. Then Fval,�(ω̃�, ̃γ�) = m�

n ϕ5 + o(1). Moreover, the choice of γ̃�
ensures the existence of c3 < 1/2 such that ϕ5 ≥ ϕ4 − ck3 . Combining all of the above 
estimates, we obtain

Fval,�(ω�, γ�) = m�

n
ϕ0 ≤ m�

n

[
ϕ5 + 2−k−Ωk(k)

]
. (6.62)

Summing (6.62) over � /∈ S ′′(ω) and recalling that m/n ≤ 2k completes the proof. �
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Proof of Lemma 6.39. By direct inspection,

Fent(ω̃, γ̃) + Fdisc(ω̃, γ̃) ≥ Fent(ω, γ) + Fdisc(ω, γ) + Ω̃k(1)Vol(S(ω))

≥ Ω̃k(1)Vol(S̃(ω)). (6.63)

The assertion follows by combining (6.63) with Claims 6.40–6.41. �
6.4.4. The occupancy probability

Let (ω̃, ̃γ) be as in Section 6.4.3 and let Ŝ(ω, γ) be the set of all � ∈ T ∗ \ S̃(ω, γ) for 
which there is j ∈ [k�] such that

max{|γrc�,j − γ̄rc�,j |, |γcr�,j − γ̄cr�,j |, |γ
ry
�,j − γ̄ry�,j |, |γ

yr
�,j − γ̄yr�,j |} > k−252−k. (6.64)

Moreover, let (ω̂, ̂γ) be such that for all t ∈ T , h ∈ [dt], � ∈ T ∗ and j ∈ [k�]

γ̂�
.=
{
γ̄� if � ∈ Ŝ(ω),
γ̃� if � /∈ Ŝ(ω),

ω̂z1z2
t = ω̃z1z2

t for z1, z2 ∈ {0, 1, ∗}, ω̂z1z2
�,j = ω̃z1z2

�,j for z1, z2 ∈ {p, y},

ω̂z1z2
t,h =

∑
(�′,j′)∈∂(t,h)

m�′

nt
γ̂z1z2
�′,j′ for all (z1, z2) ∈ {(r, r), (r, c), (c, r)},

ω̂
ry
t,h =

∑
(�′,j′)∈∂(t,h)

m�′

nt

⎡
⎣γ̂ry�′,j′ +

∑
j′′ �=j′

γ̂
yy
�,j′,j′′

⎤
⎦ ,

ω̂
yr
t,h =

∑
(�′,j′)∈∂(t,h)

m�′

nt

⎡
⎣γ̂yr�′,j′ +

∑
j′′ �=j′

γ̂
yy
�′,j′′,j′

⎤
⎦ .

In this section we prove

Lemma 6.42. If (ω, γ) is such that (6.35) and (6.46) hold and Vol(S(ω)) ≤ exp(−
√
k )

but Ŝ(ω, γ) �= ∅, then F (ω̂, ̂γ) ≥ F (ω, γ) + Ω(1).

For t ∈ T let Yt be the set of all � ∈ Ŝ(ω, γ) ∪ S̃(ω, γ) such that (�, j) ∈ ∂(t, h) for 
some h ∈ [dt], j ∈ [k�]. Let Yt = m

nt
Vol(Yt).

Claim 6.43. For all � ∈ Ŝ(ω, γ) we have Fval,�(ω̂�, ̂γ�) − Fval,�(ω̃�, ̃γ�) ≥ Ω̃k(2−k).

Proof. Let � ∈ Ŝ(ω, γ). For α ∈ [0, 1] let γ�(α) = αγ̂�+(1 −α)γ̃�. Lemma 6.11 implies that 
there exists q�(α) = q�(ω̃�, γ�(α)) such that Fval,�(ω̃�, γ�(α)) = fval,�(ω̃�, γ�(α), q�(α)) +
o(1). In particular,

Fval,�(ω̂�, γ̂�) − Fval,�(ω̃�, γ̃�) = fval,�(ω̃�, γ�(1), q�(1)) − fval,�(ω̃�, γ�(0), q�(0)). (6.65)
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Estimating the differentials of the implicit parameter q�(α) via Lemma 6.11, we find

∂

∂α
fval,�(ω̃�, γ�(α), q�(α)) = Ω̃k(2−k). (6.66)

The claim follows by combining (6.65) and (6.66). �
Claim 6.44. Assume that t ∈ T is such that Yt < 2k/4. Then Focc,t(ω̂, ̂γ) − Focc,t(ω, γ) ≤
YtÕk(4−k).

Proof. For (z1, z2) ∈ {(r, c), (c, r), (r, y), (y, r)} let Iz1z2t be the set of all i ∈ [dt] such 
that |ωz1z2

t,i − ω̄z1z2
t,i | ≥ k−20. Then

k−20|Iz1z2t | ≤
∑
i∈[dt]

|ωz1z2
t,i − ω̄z1z2

t,i | =
∑
i∈[dt]

∣∣∣∣∣∣ω̄z1z2
t,i −

∑
(�,j)∈∂(t,i)

m�

nt
ωz1z2
�,j

∣∣∣∣∣∣
≤

∑
i∈[dt]

∑
(�,j)∈∂(t,i)

m�

nt

∣∣∣ω̄z1z2
t,i − ωz1z2

�,j

∣∣∣ ≤ dt
k25 + 22−kYt ≤ 2dt/k25.

Hence, the set It = Irct ∪Iryt ∪Icrt ∪Iyrt has size |It| ≤ dt/k
4. Moreover, we have |ωz1z2

t − 1
4 | <

1/k for all z1, z2 ∈ {0, 1} because otherwise � ∈ S̃(ω) for all � that feature a literal of type 
t and thus Yt > 2k/4. Therefore, Lemma 6.17 guarantees that for any α ∈ [0, 1] there 
exists qt(α) such that Focc,t((1 −α)ω+αω̂) = focc,t((1 −α)ω+αω̂, qt(α)) +o(1). Further, 
since |ω̂z1z2

t,h −ωz1z2
t,h | = Ok(2−k) for all z1, z2 ∈ {(r, r), (r, c), (c, r), (r, y), (y, r)}, a direct 

calculation based on Fact 6.2 and the estimates of the derivatives of qt(α) provided by 
Lemma 6.17 yields

∂

∂α
focc,t((1 − α)ω + αω̂, qt(α)) ≤ YtÕk(4−k).

Hence, Focc,t(ω̂, ̂γ) − Focc,t(ω, γ) = focc,t(ω̂t, qt(ω̂t)) − focc,t(ωt, qt(ωt)) + o(1) ≤
YtÕk(4−k). �
Proof of Lemma 6.42. Lemma 6.17 implies that for any t ∈ T there exists a vector 
qt(ω̂, ̂γ) such that Focc,t(ω̂) = focc,t(ω̂, qt(ω̂, ̂γ)) + o(1). Furthermore, the construction of 
ω̂, ̂γ ensures that focc,t(ω̂, qt(ω̂, ̂γ)) = Ok(k2−k) for all t ∈ T . Hence,

Focc,t(ω̂, γ̂) = Ok(k2−k) for all t ∈ T. (6.67)

Let T0 be the set of all t ∈ T such that Yt < 2k/4 and let T1 = T \ T0. Combining 
Claim 6.44 and (6.67), we find
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Focc(ω̂) − Focc(ω) =
∑
t∈T

πt[Focc,t(ω̂, γ̂) − Focc,t(ω, γ)]

≤ Õk(2−1.1k)
∑
t∈T0

πtYt + Ok(k2−k)Vol(T1) ≤ Õk(2−1.1k)
∑
t∈T

πtYt

≤ Õk(2−1.1k)m
n

Vol(Ŝ(ω, γ) ∪ S̃(ω, γ)). (6.68)

On the other hand, let Δ = F (ω̂, ̂γ) − Focc(ω̂) − (F (ω, γ) − Focc(ω)). Lemma 6.39 and 
Claim 6.43 imply that

Δ ≥ m

n
Ω̃k(2−k)Vol(Ŝ(ω, γ) ∪ S̃(ω, γ)). (6.69)

Combining (6.68) and (6.69) completes the proof. �
Proof of Lemma 6.33. Assume that (ω, γ) is a wild overlap such that F (ω, γ) is maximum. 
Then Lemmas 6.34, 6.37, 6.39 and 6.42 imply that either S(ω) ∪ S̃(ω, γ) ∪ Ŝ(ω, γ) = ∅, 
or there exists a tame overlap (ω̇, γ̇) such that F (ω̇, γ̇) ≥ F (ω, γ) + Ω(1). In the latter 
case we are done. Hence, let us assume that S(ω) ∪ S̃(ω, γ) ∪ Ŝ(ω, γ) = ∅. Then (ω, γ)
satisfies conditions TM1–TM2 from the definition of tame and violates either TM3 or
TM4.

If S(ω) ∪ S̃(ω, γ) ∪ Ŝ(ω, γ) = ∅, then Lemmas 6.11 and 6.17 show that there exist 
qt, q� for each t ∈ T , � ∈ T ∗ such that Fval,�(ω�, γ�) = fval,�(ω�, γ�, q�) + o(1), Focc,t(ωt) =
focc,t(ωt, qt) + o(1). Therefore, if TM3 is violated for (�, j, j′), we obtain

∣∣∣∣∣
(

∂

∂γ
yy
�,j,j′

− ∂

∂γ
ry
�,j

− ∂

∂γ
yr
�,j′

)
fval,�(ω�, γ�, q�)

∣∣∣∣∣ = Ω̃k(1).

Similarly, if (�, j) is a pair for which TM4 is violated, then subject to the affine relations 
from Fact 6.2,

∣∣∣∣∣
(

∂

∂γrr�,j
− ∂

∂γrc�,j
− ∂

∂γcr�,j

)
fval,�(ω�, γ�, q�)

∣∣∣∣∣ = Ω̃k(1),

(
∂

∂γrr�,j
− ∂

∂γrc�,j
− ∂

∂γcr�,j

)
focc,t(ωt, qt) = m�

nt
Õk(4−k).

Hence, in either case there exists an overlap (ω′, γ′) such that F (ω′, γ′) ≥ F (ω, γ) +
Ω(1). �
Proof of Proposition 4.11. Because the total number of wild overlaps (ω, γ) is bounded 
by a polynomial in n, the assertion is immediate from Fact 6.18 and Lemmas 6.19
and 6.33. �
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Appendix A. Symmetric and asymmetric problems

There is a relatively general and natural way of defining the notion of a symmetric 
problem. As asymmetry generally poses a substantial difficulty in random constraint 
satisfaction problems, and particularly so in random k-SAT, we discuss this concept 
here in a bit of detail. Suppose that we are given a sequence (FN)N of distributions over 
instances of a constraint satisfaction problem. For instance, think of FN as a random 
k-CNF on N variables with a fixed density r ∼ M/N . Suppose that the set of variables in 
the problem instance FN is a set VN of size N , and assume that each of these variables can 
take a value from a finite set X of possible “spins” (in k-SAT, this would be X = {0, 1}). 
Let S(FN ) be the set of solutions of the random problem instance FN , i.e., the set of 
assignments σ : Vn → {X} under which all the constraints are satisfied.

Suppose that we fix a problem instance F = FN such that S(FN ) �= ∅. Then we can 
define the marginal distribution μx,F of a variable x ∈ VN by letting

μx,F (c) = |{σ ∈ S(FN ) : σ(x) = c}|
|S(FN )| (c ∈ X ).

Thus, μx,F is a probability distribution over X .
Formally, we could call (FN )N symmetric if there is a fixed probability distribution p

on X such that

lim
N→∞

1
N

∑
x∈VN

E
[
‖μx,FN

− p‖TV |S(FN ) �= ∅
]

= 0. (A.1)

Here ‖ · ‖TV denotes the total variation distance (although any other norm would do, 
because X is finite). In words, (A.1) means that the marginal distribution μx,FN

is 
independent of the variable x, at least asymptotically in the limit of large N . Of course, 
problems such as random graph coloring or random k-NAESAT satisfy (A.1), with p the 
uniform distribution over the set X of “spins”. In addition, also the random k-XORSAT 
problem satisfies (A.1) (up to the threshold for the existence of solutions). By contrast, 
in the uniformly random k-CNF Φ (A.1) does not hold.

While (A.1) refers to the plain set of solutions, it is also natural to ask if there is 
symmetry with respect to covers. Of course, the appropriate definition of “cover” varies 
from one CSP to another, as does the notion of what a solution is. But there are natural 
ways of defining this term in many problems. The problem of finding a cover of Fn can 
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then itself be viewed as a random constraint satisfaction problem, where the joker value 
∗ is added to the set X of spins. The notion of symmetry can thus be extended to covers.

Interestingly, some problems that are symmetric at the levels of solutions fail to be 
symmetric at the level of covers.3 This is because the marginal probability of being 
unfrozen (i.e., the probability mass assigned to ∗) may vary from variable to variable. 
An example of this seems to be the graph coloring problem on the Erdős–Rényi ran-
dom graph G(n, m) (see [32,36] and the references therein). By contrast, the random 
graph coloring problem on random regular graph is conjectured to be symmetric both 
on the level of covers and solutions. Similarly, the problem of finding a cover in random 
k-NAESAT is asymmetric in uniformly random formulas but symmetric in random reg-
ular formulas [14,21]. The symmetry on the level of solutions is what greatly simplifies 
the proof in [14] by comparison to the present work. In addition, the independent set 
problem on random graphs G(n, m) is asymmetric in the sense of “solutions” as well as 
in the sense of covers. By contrast, it is symmetric in terms of covers on random regular 
graphs [20].

There is a relatively natural symmetric version of the random k-SAT problem. Namely, 
let Φk,d−reg denote a k-CNF on the variables V = {x1, . . . , xN} in which each of the 
2N literals x1, ¬x1, . . . , xN , ¬xN occurs exactly d times, chosen uniformly at random 
among all such formulas. Hence, Dxi

= D¬xi
= d for all i. In this model, there is no 

drift towards the (trivial) majority vote assignment.
In effect, it is possible to obtain a “sharp” result in this case. More precisely, the cavity 

method predicts that near the k-SAT threshold all clusters correspond to covers with no 
more than 2−kN variables set to ∗. Thus, let Σ′(Φk,d−reg) be the number of covers of 
the random formula Φk,d−reg with at most 2−kN variables assigned ∗, and let

Ξ(k, d) = limN→∞
1
N lnE[Σ′(Φk,d−reg)].

The arguments that we used to prove Proposition 5.1 imply that the limit exists. Further-
more, it is possible to perform a second moment argument along the lines of Section 6. 
(Actually, both the first and the second moment argument greatly simplify because there 
is only a single type.) The result of this analysis is

Theorem A.1. There is a constant k0 ≥ 3 such that the following is true for all k ≥ k0.

(1) If d is such that Ξ(k, d) ≥ 0, then Φk,d−reg has an assignment σ : V → {0, 1} that 
satisfies all but o(n) clauses w.h.p.

(2) If d is such that Ξ(k, d) < 0, then w.h.p. under any assignment σ : V → {0, 1} at 
least Ω(n) clauses are unsatisfied.

3 This was brought to our attention by Florent Krzakala.
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The random regular k-SAT problem was previously studied via the “vanilla” second 
moment method by Rathi, Aurell, Rasmussen and Skoglund [41]. In terms of the degree d, 
Theorem A.1 improves the bounds that they obtained by an additive constant.

Remark A.2. In the first part of Theorem A.1, we obtain an assignment that satisfies a 
1 −o(1)-fraction of all clauses rather than an actual satisfying assignment. This is because 
there is no counterpart to Lemma 3.1 in random regular formulas. However, we expect 
that Φk,d−reg has an actual satisfying assignment w.h.p. if d such that Ξ(k, d) > 0.

Appendix B. Proof of Proposition 4.1

The proof follows arguments developed in [1,17]. We continue to let D′ = (D′
l)l∈L be 

a family of independent Poisson variables with mean E[D′
l] = kr/2 for all l. We recall 

the following well-known fact.

Lemma B.1. There is a number C = C(k) > 0 such that for any sequence (yl)l∈L of 
integers we have

P [∀l ∈ L : Dl = yl] = P

[
∀l ∈ L : yl = D′

l

∣∣∣∣∑l∈L D′
l = kM

]
≤ C

√
N ·P [∀l ∈ L : D′

l = yl] .

Proof. The first equality is immediate. The second one follows because 
∑

l∈L D′
l is Pois-

son with mean kM . �
Lemma B.2. Let U ′

1 be the set of all variables x such that max {|Dx − kr/2|, |D¬x − kr/2|}
> k32k/2−1. Then |U ′

1| ≤ exp(−k3.9)n w.h.p.

Proof. Let U ′′
1 = {l ∈ L : |D′

l − kr/2| > t}, t = k32k/2−1. Since the (D′
l)l∈L are indepen-

dent, |U ′′
1 | is a binomial random variable. Its mean is bounded by

E|U ′′
1 | ≤ NP [|Po(kr/2) − kr/2| > t] ≤ N exp

(
t−(kr/2+t) ln(1+2t/kr)

)
≤ N exp(−k4).

Consequently, applying the Chernoff bound to |U ′′
1 |, we obtain P 

[
|U ′′

1 | > exp(−k3.9)N
]
≤

exp(−Ω(N)). Thus, the assertion follows from Lemma B.1. �
Lemma B.3. W.h.p. the set U of variables removed by PR1–PR2 satisfies |U | ≤
exp(−k3)N .

Proof. Let us consider a modified process in which step PR1 is replaced by

PR1′: Initially, let U = U ′
1 be the set from Lemma B.2.

Clearly, the set U of variables removed by PR1–PR2 is contained in the set U ′ of 
variables removed by executing PR1′ and then PR2.
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Hence, assume that |U ′| > exp(−k3)N and let U ′
2 ⊂ U ′ \ U ′

1 contain the first 
exp(−k3)N variables that get removed by PR2. Set α = exp(−k3) and β = k32−1+k/2. 
By construction, each x ∈ U ′

2 occurs in at least β clauses that each feature three or 
more variables from U ′

1 ∪ U ′
2. Hence, there are at least αβN/k such clauses. Since by 

Lemma B.2 we know that w.h.p. |U ′
1| ≤ αN , it suffices to prove the following statement.

W.h.p. the random formula Φ does not admit a set Y ⊂ V of size y ≤ 2αN
and at least yβ/(2k) clauses contain at least three variables from Y . (B.1)

To prove (B.1), we note that there are 
(
N
y

)
ways of choosing y variables and 

(
M

yβ/(2k)
)

ways of choosing yβ/(2k) clauses. Further, the probability that a random clause contains 
at least three variables from Y is bounded by 

(
k
3
)
(y/N)3. Thus, by the union bound, the 

independence of the clauses, and our choice of α, β, we obtain

P [there is Y as in (B.1)] ≤
∑

y≤2αN

(
N

y

)(
M

yβ/(2k)

)[(
k

3

)
(y/N)3

]yβ/(2k)

≤
∑

y≤2αN

[( e
2

)2
(

ek4r

β

)β/k ( y

N

) 2β
k −2

]y/2

= o(1),

thereby proving (B.1). �
Corollary B.4. Let U be the set of variables removed by PR1–PR3. Then 

∑
x∈U Dx +

D¬x ≤ exp(−k2)N w.h.p.

Proof. Let S =
∑

l∈L Dl1Dl>4k . Moreover, let S′ =
∑

l∈L D′
l1D′

l>4k . The Chernoff 
bound shows that E[S′] ≤ exp(−k4)N (with room to spare). Moreover, since S′ is a sum 
of independent random variables with E[S′] = Θk(N) and Var[S′] = Θk(N), Chebyshev’s 
inequality yields P 

[
S′ > exp(−k3)n

]
≤ Ok(N−1). Therefore, by Lemma B.1

P
[
S > exp(−k3)N

]
≤ C

√
N · P

[
S′ > exp(−k3)N

]
= o(1).

Since w.h.p. |U | ≤ 2 exp(−k3)N by Lemmas B.2 and B.3, we see that w.h.p.
∑
x∈U

dx + d¬x ≤ S +
∑
x∈U

1dx≤4kdx + 1d¬x≤4kd¬x ≤ S + 4k|U | ≤ exp(−k2)N,

as desired. �
Lemma B.5. If d+, d− are such that |d± − kr/2| ≤ k32k/2, then |{l ∈ L′ : dl = d+,

d¬l = d−}| = Ω(N).

Proof. Let X be the set of variables x with Dx = d+, D¬x = d−. Combining Lemma B.1
with the Chernoff bound, we see that |X | = Ω(N) w.h.p. Further, with U the set of 
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variables removed by PR1–PR3, let X ′ be the set of all x ∈ X \ U with dx = Dx, 
d¬x = D¬x. Thus, X ′ contains all x ∈ X that remain unscathed by the process PR1–PR3.

Think of PR2 as removing one clause (that contains at least three variables from U) 
at a time. By the principle of deferred decisions, at the time when that clause is removed 
its remaining literals are random subject to the degree distribution of the literals x, ¬x
(x ∈ V \ U). Therefore, Corollary B.4 implies that E|X ′| = Ω(N). Finally, a standard 
martingale argument implies that |X | = E|X ′| + o(n) w.h.p. �
Lemma B.6. W.h.p. any satisfying assignment of Φ′ extends to a satisfying assignment 
of Φ.

Proof. We begin by proving the following fact.

W.h.p. there are no sets I ⊂ [M ] and S ⊂ V such that |I| = |S| = αN with 
0 < α ≤ exp(−k2)N and each clause Φi, i ∈ I, contains at least three variables 
from S.

(B.2)

Indeed, by the union bound for any 0 < α ≤ exp(−k2) the probability that there exist 
I, S as above is bounded by

(
N

αN

)(
M

αN

)[(
k

3

)
α3
]αN

≤
[ e
α
· er
α

· (kα)3
]αN

≤
[
e2krα

]αN
.

Summing over α = i/N ≤ exp(−k2), we obtain (B.2).
To complete the proof let I ⊂ [M ] be the set of all indices of clauses that PR2

removes. By Corollary B.4 we have w.h.p. |I| ≤ exp(−k2)N . Moreover, each clause Φi, 
i ∈ I, contains at least three variables from U . Hence, (B.2) implies together with the 
marriage theorem that we can match each clause Φi, i ∈ I, to a variable in U . This 
variable can be set such that Φi is satisfied; we conclude that any satisfying assignment 
of Φ′ can be extended to a satisfying assignment of Φ. �
Proof of Proposition 4.1. The first assertion follows from Lemma B.6 and Corollary B.4
implies the second part of Proposition 4.1. The third claim follows from Lemma B.5 and 
Corollary B.4. �
Appendix C. Proof of Lemma 4.14

Because w.h.p. Φ̂ is obtained from Φ by removing no more than 8−kN vertices and 
8−kM edges, it suffices to establish certain expansion properties for the random for-
mula Φ. More specifically, to obtain Lemma 4.14 it suffices to prove that Φ enjoys the 
following three (stronger) properties w.h.p.
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(i) Assume that A ⊂ L is a set of literals such that |A| ≥ 0.01N . Let M be the set 
of all clause indices i ∈ [M ] such that Φi contains at least 0.002k literals from A. 
Then |M|/M ≥ 1 − exp(−Ωk(k)).

(ii) Assume that A, B ⊂ L are disjoint sets of literals such that |A|, |B| ≥ 0.93N . Let 
M be the set of all i ∈ [m] such that Φi contains at least 0.41k literals from A and 
at least 0.41k literals from B. Then |M|/M ≥ 1 − k−10.

(iii) Assume that A ⊂ L has size |A| ≤ k−8N . Let M be the set of all i ∈ [M ] such that 
Φi contains at least 0.9k literals from A. Then |M| ≤ |A|.

To prove (i), let a = 0.01. By the Chernoff bound there exists γ > 0 such 
that P [Bin(k, a/2) < 0.002k] ≤ exp(−γk). We may assume that, say, γ ≤ 0.1. Let 
β = exp(−γk/2). The probability that (i) is violated can be bounded as follows. There are ( 2N
2aN

)
ways to choose a set A of 2aN literals and 

(
M
βM

)
ways to choose β = exp(−Ωk(k))

clauses. Moreover, the probability that none of these βM clauses contains 0.002k literals 
from A is bounded by exp(−γk ·βM), because the literals are chosen independently and 
uniformly at random. So, the probability that (i) is violated is at most

p =
(

2N
2aN

)(
M

βM

)
exp(−γkβM).

By Fact 3.3 and the inequality H(x) ≤ x(1 − ln x) we obtain

ln p

N
∼ 2H(a) + M

N
(H(β) − βγk) ≤ 2 + βM

N
(1 − ln β − γk) .

However, the last expression is negative whenever k is sufficiently large because M/N =
Ωk(2k) and, say, β ≥ 2−k/2. Thus, the probability that (i) is violated is bounded by 
exp(−Ω(N)).

With respect to (ii), fix two sets A, B. Then by the Chernoff bound the probability that 
a random clause fails to contain at least 0.41k literals from either A or B is bounded 
by 2P [Bin(k, 0.465) < 0.41k] ≤ exp(−γk) for some constant γ > 0. Hence, the total 
number X(A, B) of clauses with this property is a binomial random variable with mean 
E[X(A, B)] ≤ exp(−γk)M . Consequently, once more by the Chernoff bound and because 
M/N = Ωk(2k)

P
[
X(A,B) ≥ M/k10] ≤ exp

[
−M/k10] ≤ 5−N .

Since the total number of ways of choosing A, B is bounded by 4N , (ii) holds w.h.p.
To establish (iii), fix a set A of size |A| = 2aN with 0 < a ≤ k−8. Let X(A) be 

the number of clauses with at least 0.9k literals from A. Then X(A) has distribution 
Bin(M, q) with q = P [Bin(k, a) ≥ 0.9k]. The Chernoff bound guarantees that q ≤ a0.8k

whenever k is sufficiently large. Therefore, applying Chernoff once more, we find
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P [X(A) ≥ aN ] ≤ exp
[
−aN ln aN

eqM

]
≤ exp(0.7ak ln a ·N).

Since the number of possible sets A is bounded by 
( 2N
2aN

)
≤ exp(2a(1 − ln a)N), the 

assertion follows from the union bound.

Appendix D. Notation index

Symbol Description Definition
Random formulas:
Φ Random K-SAT formula with N variables and M

clauses
Section 1

Φ′ Pruned random formula Section 4.1
n Number of variables of Φ′ Section 4.1
m Number of variables clauses Φ′ Section 4.1
dl Degree of literal l in Φ′ Section 4.1
L′ Set of literal clones, L′ =

⋃
l∈L′ {l} × [dl] Section 4.1

Φ̂ Random formula (configuration model) Eq. (4.4)

Colors:
r Red, representing a true and “blocking” literal 

occurrence
Section 4.2

b Blue, representing a true but “non-blocking” 
literal occurrence

Section 4.2

1 = {r, b} Represents a true literal occurrence Section 4.2
g Green, an occurrence of a literal set to the joker 

value ∗
Section 4.2

y Yellow, an occurrence of a false literal Section 4.2
c = {b, g} Cyan: either blue or green Section 4.2
p = {r, b, g} Purple: either red, blue or green Section 4.2

Types:
θl Type of literal l, comprising of dl, d¬l and 

distributions (θl,j)j∈[dl], (θ¬l,j)j∈[d¬l]

Section 4.3

T Set of literal types Definition 4.5
[T ] Set of pairs {t, ¬t}, t ∈ T Section 4.6
T ∗ Set of clause types, consisting of all litelat types in 

the clause
Section 4.3

k� Length of a clause of type �; k� ∈ {k − 2, k − 1, k} Section 4.3
tz Probability of color z under t ∈ T Eqs. (4.8)
�zj Probability of color z under �j , � ∈ T ∗ Eq. (4.6)–(4.7)
∂(t, h) Set of “clause slots” (�, j) where the hth clone of a 

type t literal may occur
Section 4.3
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First moment computation:
qp�,j , q

y
�,j Auxiliary parameters associated with clause type 

� and j ∈ [k�]
Proposition 5.1

qrt,h Auxiliary parameters associated with literal type t
and h ∈ [dt]

Proposition 5.1

st Probability that a literal of type t set to 1 is 
“blocked”

Fig. 1

gc� Probability that a clause of type � contains two 
cyan literals

Fig. 1

gr�,j Probability of containing a red literal in position j
and yellow ones elsewhere

Fig. 1

Second moment computation:
ω, γ Overlaps Section 6.1
ω̄, ̄γ Average overlaps Section 6.1
qz1z2�,j Auxiliary parameters associated with clause type 

�, j ∈ [k�] and z1, z2 ∈ {p, y}
Lemma 6.11

gz1z2�,j Success probability for the validity problem Fig. 3
gyy�,j,j′ Success probability for the validity problem Fig. 3
qz1z2t,h Auxiliary parameters associated with literal type 

t, h ∈ [dt] and colors z1, z2

Lemma 6.17

sz1z2t Success probabilities for the occupancy problem Fig. 4
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