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Centrality indices are an essential concept in network analysis. For those based on shortest-
path distances the computation is at least quadratic in the number of nodes, since it usually
involves solving the single-source shortest-paths (SSSP) problem from every node. Therefore,
exact computation is infeasible for many large networks of interest today. Centrality scores can
be estimated, however, from a limited number of SSSP computations. We present results from
an experimental study of the quality of such estimates under various selection strategies for the
source vertices.
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1. Introduction

An essential tool in the analysis of complex net-
works are centrality indices defined on the vertices
or edges of the underlying graph [Koschützki et al.,
2005a, 2005b]. Depending on the type of network
studied, they are proxies for the structural impor-
tance of an element for the overall functioning of the
network. Many popular centrality indices are based
on shortest paths, measuring, e.g. the average dis-
tance from other vertices, or the ratio of shortest
paths a vertex lies on. Our impression is that the
majority of network-analytic studies relies at least
in part on an evaluation of such indices.

With the rapidly increasing amount of data
gathered and made available in electronic form,
there is a likewise increasing demand for the com-
putation of centrality indices on networks that are
orders of magnitude larger than before. Although
exact centrality index computation is tractable in
the conventional sense that there exist polynomial
time and space algorithms, these are not practical.

It is therefore of considerable interest to eval-
uate the practical performance of methods for

estimating centrality indices. For most feedback-
based indices defined via systems of linear equa-
tions there is a natural method of approximation
inherent in iterative solvers for linear equations and
eigenproblems. For the discrete concepts of central-
ity based on shortest paths, these are not applicable.
In fact, approximation of betweenness centrality
(defined below) is stated as an important open
problem, e.g. in [Carpenter et al., 2002].

We here present an experimental study of esti-
mators for the two most commonly used shortest-
path centralities, closeness and betweenness. The
estimates are based on a restricted number of
single-source shortest-paths computations from a
set of selected pivots. For doing so, we general-
ize an approach of Eppstein and Wang [2004] in
a number of ways (explained in Sec. 3), and test it
experimentally.

This paper is organized as follows. The basic
concepts needed are defined in Sec. 2, and algo-
rithms for estimating shortest-path centralities
using pivots are given in Sec. 3. In Sec. 4 we intro-
duce several pivot selection strategies. The results
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2304 U. Brandes & C. Pich

of our experimental study are presented in Sec. 5,
and we conclude in Sec. 6.

2. Shortest-Path Centralities

Indices for measuring the structural importance
of nodes in a network abound (see [Brandes &
Erlebach, 2005] for an overview). Two of the indices
most commonly used in the social sciences are
closeness centrality [Beauchamp, 1965; Sabidussi,
1966] and betweenness centrality [Anthonisse, 1971;
Freeman, 1977]. Both are based on shortest-path
distances, but while a node has high closeness
centrality if its total (and therefore, also average)
distance to all other vertices is small, a high
betweenness centrality score indicates that a node
is contained in relatively many shortest paths
connecting pairs of others.

2.1. Definition

Throughout this paper the topology of a network
will be represented by a graph G = (V,E), where
V is a set of vertices, and E ⊆ “V

2

”
is a set of

edges, i.e. unordered pairs of vertices. In particu-
lar, we do not allow directions, self-loops, multiple
edges between the same pair of vertices, or weights
on the edges; i.e. our graphs are simple, undirected
and unweighted. If not stated otherwise, n = |V |
denotes the number of vertices and m = |E| the
number of edges. A vertex v ∈ V is called incident
to an edge e ∈ E, if v ∈ e, and two vertices are
called adjacent, if they are incident to a common
edge.

A path is an alternating sequence of vertices
and edges, such that edges in the sequence appear
between their two incident vertices. The length of
a path is simply its number of edges. Two vertices
s, t ∈ V are connected, if there exists a path start-
ing at one and ending at the other; such a path is
also called an st-path. A graph is called connected,
if every pair of vertices is connected.

We restrict ourselves to connected graphs (oth-
erwise the connected components can be treated
individually).

The distance d(s, t) between two vertices s, t ∈
V is the length of the shortest path connecting
them. In particular, d(s, t) = d(t, s), since the rever-
sal of an st-path yields a ts-path, and d(s, s) = 0,
since the path s is an alternating sequence with no
edges. The largest distance between any two ver-
tices of a graph is called the diameter of G, diam(G).

Closeness centrality [Beauchamp, 1965;
Sabidussi, 1966] measures how close a vertex is
to all other vertices in the graph. To obtain large
values for small sums of distances, it is defined as
the inverse of the total distance,

cC(v) =
1∑

t∈V

d(v, t)
. (1)

Thus, the distance from a vertex of high close-
ness centrality to any other vertex is short on aver-
age. These vertices are considered to be structurally
important, because they can easily reach or be
reached by others.

An alternative concept of centrality is based on
the idea of control over the connections between
other pairs of vertices. Denote by σ(s, t) the num-
ber of different shortest st-paths, and by σ(s, t|v)
the number of shortest st-paths that contain v as
an inner vertex, i.e. v �= s, t or σ(s, t|s) = 0 =
σ(s, t|t). Betweenness centrality [Anthonisse, 1971;
Freeman, 1977] measures the degree to which a
vertex is needed by others when connecting along
shortest paths,

cB(v) =
∑

s �=v �=t

σ(s, t|v)
σ(s, t)

. (2)

There are many other structural indices that
are based on similar notions of importance. For
instance, we can replace the sum of distances in
closeness centrality by the maximum distance to
any other vertex [Harary & Hage, 1995], or subtract
each distance from an upper bound rather than
taking the inverse [Botafogo et al., 1992; Valente
et al., 1998]. Variants of betweenness count all
shortest paths equally [Shimbel, 1953] or use max-
imum network flow instead of shortest paths [Free-
man et al., 1991]. Natural variants of closeness
and betweenness are also obtained by replacing the
spread along shortest paths with current flow [New-
man, 2005; Brandes & Fleischer, 2005]. A differ-
ent class of measures is based on feedback, i.e.
the centrality of a vertex directly influences that
of its neighbors. Well-known members of this class
are eigenvector centrality [Bonacich, 1972], Google’s
PageRank [Brin & Page, 1998], and hubs & author-
ities [Kleinberg, 1999].

For most of these measures, generalizations
have been proposed for directed, nonsimple,
weighted, and unconnected graphs, and there is a
similar range of indices that value the importance
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Estimating Centrality 2305

of edges rather than vertices. We refer to [Brandes
& Erlebach, 2005] for a comprehensive survey.

In this paper, we focus on shortest-path close-
ness and betweenness for vertices in simple, undi-
rected, connected graphs without weights as defined
by Eqs. (1) and (2). Note, however, that our results
also apply to more general settings.

2.2. Computation

For sparse networks, which we loosely define as
those for which m ∈ O(n log n), i.e. in which the
number of actual edges is small compared to the
number of potential edges, the closeness centrality
index is best computed by solving a single-source
shortest-path (SSSP) problem from every vertex. In
each iteration, we may sum up all distances found
and invert the total to obtain the centrality score of
the source. Using standard breadth-first search, the
running time per source is bounded by O(n + m),
and thus O(nm) in total.

For betweenness centrality, the computation is
less straightforward, since we do not have to evalu-
ate lengths, but numbers of shortest path between
pairs with given intermediates. We reformu-
late (2) by introducing the dependency δ(s, t|v) =
σ(s, t|v)/σ(s, t) of a pair s, t ∈ V on v ∈ V and
summing out all targets t,

cB(v) =
∑

s �=v �=t

σ(s, t|v)
σ(s, t)

=
∑

s �=v �=t

δ(s, t|v) =
∑
s �=v

δ(s|v),

where δ(s|v) =
∑

t�=v δ(s, t|v) is the one-sided
dependency of s on v. In [Brandes, 2001] it is shown
how to compute the one-sided dependencies of all
v ∈ V for a given s ∈ V by solving an SSSP. There-
fore, betweenness centrality can be computed in the
same asymptotic time bounds, and in fact using
essentially the same basic algorithm, as closeness
centrality.

A notable feature of the above SSSP-based
algorithms is that the space requirement is linear,
since the quadratic distance matrix is needed only
row-wise. All distance-information computed dur-
ing one iteration can be discarded before starting
the next.

3. Approximate Computation

For large graphs, the exact computation of centrali-
ties as described in the previous section is too costly
since the running time is Ω(n2) even for the sparsest
connected graphs.

On the other hand, the computation consists
of solving n single-source shortest-paths problems,
one for each vertex, and each SSSP contributes one
summand to the result. This contribution is the dis-
tance to the source for closeness, and the one-sided
dependency of the source for betweenness. The ver-
tices for which an SSSP is solved are called piv-
ots. Based on an idea put forward by Eppstein and
Wang [2004], the exact centrality value can be esti-
mated by extrapolating the contributions obtained
from just a few SSSP computations, i.e. from a small
set of pivots.

The foundation of this idea is a bound on
the deviation of the average of a given number
of bounded random variables from its expecta-
tion. Hoeffding [1963] proves that for independent
identically distributed random variables X1, . . . ,Xk

with 0 ≤ Xi ≤ M (i = 1, . . . , k) and an
arbitrary ξ ≥ 0,

P

(∣∣∣∣X1 + · · · + Xk

k
− E

(
X1 + · · · + Xk

k

)∣∣∣∣ ≥ ξ

)

≤ e−2k( ξ
M)2

. (3)

If pivots are selected at random, the contribu-
tions of different SSSP computations to the cen-
trality of a single vertex can be considered the
result of a random experiment. In the following two
subsections, we derive estimates for closeness and
betweenness using this idea.

3.1. Closeness centrality

The contribution of an SSSP computation from
pivot pi ∈ V to the centrality of a vertex v ∈ V
is d(pi, v) = d(v, pi). In order to extrapolate from k
such samples, let

Xi(v) =
n

n − 1
· d(v, pi) (4)

be the random variable associated with the random
experiment of selecting pivot pi. Let

M =
n

n − 1
· diam(G)

ξ = ε · diam(G).

Since the expectation of estimate (1/k)(X1(v) +
· · · + Xk(v)) is the sum of distances of all vertices
from v, Hoeffding’s bound (3) guarantees that its
error is bounded from above by ε · diam(G) with
probability at least exp{−2k(ε(n − 1)/n)2}.

Eppstein and Wang [2004] concludes that
in graphs with constantly bounded diameter,
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2306 U. Brandes & C. Pich

k ∈ O(log n) pivots are sufficient to estimate close-
ness centrality up to a constant with high proba-
bility. In the sequel of this paper, we will consider
four generalizations with respect to this approach.
Pivot-based estimation will also be computed

• on graphs of arbitrary diameter,
• using fewer pivots,
• using deterministic pivot-selection, and
• for betweenness centrality.

Clearly, we can trade estimator accuracy and confi-
dence for running time by increasing or decreasing
the number of pivots.

3.2. Betweenness centrality

When computing betweenness, the contribution of
a pivot pi ∈ V to the centrality of a vertex v ∈ V
is δ(pi|v). Again, to extrapolate from the average
contribution of k pivots, we use

Xi(v) =
n

n − 1
· δ(pi|v) (5)

for a single estimate. Setting

M =
n

n − 1
· (n − 2)

ξ = ε(n − 2),

we can again apply Hoeffding’s bound as above.
Note that one-sided dependencies are bounded by 0
from below and by n − 2 from above. While the
assumption of constantly bounded or at least small
diameter made for closeness is reasonable for many
practical examples, a one-sided dependency of n−2
is easily attained (simply consider a vertex with
a neighbor that has degree one and is chosen for
pivoting). It can thus be suspected that estima-
tion of (non-normalized) betweenness is much more
difficult and unreliable than estimation of (non-
normalized) closeness.

4. Pivot Selection

To ensure that pivot contributions Xi(v) are inde-
pendent, pivots need to be selected at random.
This appears to be a technical assumption intro-
duced only to make sure that (3) holds in general.
For practical purposes it might be advantageous
to choose pivots deterministically, e.g. by spread-
ing them uniformly over the graph. We used the
following strategies in our experiments described in
the next section. See also Table 1.

Table 1. Pivot-selection strategies (first pivot selected at
random).

Strategy Rule

Random Uniformly at random
RanDeg Random proportional to degree
MaxMin Nonpivot maximizing minimum distance to

previous pivots
MaxSum Nonpivot maximizing sum of distances to

previous pivots
MinSum Nonpivot minimizing sum of distances to

previous pivots
Mixed Alternatingly MaxMin, MaxSum, and Random

All strategies are supposed to select k distinct
pivots p1, . . . , pk ∈ V , such that the results obtained
by solving an SSSP from every pivot are represen-
tative for solving it from every vertex in V .

The most straightforward strategy, call it Ran-
dom, is to select the pivots uniformly at random.
Since high-degree vertices are likely to be hubs in
many shortest paths, a potentially useful alterna-
tive is to choose pivots with a probability propor-
tional to their degree. This strategy will be called
RanDeg.

In the following, deterministic strategies, the
first pivot p1 is chosen uniformly at random from V .
For i = 0, . . . , k, let Pi = {p1, . . . , pi} be the first
i pivots, and Vi = V \Pi−1 be the set of nonpivots
from which pi may be chosen.

MaxMin. To spread pivots uniformly over the
entire graph, this strategy selects the next pivots
to be as far away from any previous pivot as pos-
sible. It thus places a pivot in a region not covered
well. Formally, pi is chosen to be a vertex v ∈ Vi

maximizing

min
p∈Pi−1

d(p, pi). (6)

This strategy is a well-known 2-approximation (and
best possible unless P = NP) for the k-center prob-
lem in facility location, in which the goal is to find
a set of k vertices, the centers, such that the dis-
tance from any vertex to the closest center is mini-
mized [Hochbaum & Shmoys, 1986].

MaxSum. Intuitively, the sum of distances is an
even better indicator of how badly covered a ver-
tex is by the current set of pivots. We may there-
fore wish to select the next pivot pi from Vi by
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Estimating Centrality 2307

maximizing ∑
p∈Pi−1

d(p, pi) (7)

rather than the minimum. Note that this corre-
sponds to selecting a vertex that is among the most
peripheral with respect to the current estimates of
closeness centrality.

MinSum. The above strategies favor the selection
of vertices in the periphery of the graph, thus creat-
ing a tendency to overestimate distances. The dual
approach is to choose new pivots to be the most
central with respect to the closeness estimate among
the nonpivots, i.e. by minimizing (7). Note that this
strategy grows a connected set of pivots around
the initial one. Since the corresponding variant of
MaxMin exhibits the same behavior only with the
added randomness of choosing any vertex connected
to the current set of pivots, we did not include it in
our experiments.

Mixed. Note that it is easy to construct examples
in which the deterministic strategies are signifi-
cantly off for at least some vertices, even if the num-
ber of pivots is large. To balance systematic errors
while hopefully maintaining the desired reduction
in the number of pivots needed, we also consider a
mixed strategy that combines Random, MaxMin
and MinSum in a round-robin fashion.

5. Experiments

We have conducted an extensive suite of exper-
iments on both generated and observed data to
assess the quantitative and qualitative behavior of
pivot-based centrality estimation. To be able to
compute the exact centrality scores for baseline
comparison, the experiments are restricted to net-
works of relatively small size (order of 1000 vertices
and 10 000 edges). See Table 2 for a summary.

5.1. Data

There are numerous models for generating random
graphs with specific structural characteristics [Bau-
mann & Stiller, 2005]. We have selected three of the
more common ones.

Random Graphs. The basic random graph model
of Gilbert [1959]1 is defined by two parameters,
the number of vertices n and an edge probabil-
ity 0 < p < 1. Between each of the

(n
2

)
pairs of

the n vertices, an edge is created with probabil-
ity p independently. Graphs generated from this
model are typically very balanced, with similar ver-
tex degrees, little clustering and relatively short
distances.

Small Worlds. Watts and Strogatz [1998] intro-
duced a model in which a ring of n vertices, in
which every vertex is connected to its 2r near-
est neighbors, is modified by rewiring each edge,
randomly and independently, with probability 0 <
p < 1. Despite its sparsity, the initial struc-
ture exhibits high local clustering, which is main-
tained while the average distance is reduced by
rewiring.

Preferential Attachment. A model for generat-
ing graphs with heavy-tailed degree distributions is
described by Barabási and Albert [1999] and made
rigorous by Bollobás et al. [2001]. The n vertices of
a graph are added one at a time, and for each of
them a fixed number of edges connecting to previ-
ously created vertices with probability proportional
to their degree.

Efficient algorithms for generating graphs from
these models are presented in [Batagelj & Brandes,
2005]. As for observed data, we selected the follow-
ing three examples for their varying size, structure,
and origin.

Table 2. Networks used in the experiments.

Network n m Source

Random Graphs 1,000 ≈10,000 Gilbert [1959]
Small Worlds 1,000 10,000 Watts and Strogatz [1998]
Preferential Attachment 1,000 20,000 Barabási and Albert [1999]
Protein Interaction 2,114 4,480 Jeong et al. [2001]
Needle Exchange 4,259 61,693 Courtesy of R. Foreman and T. Valente
Ticker News 13,332 148,039 Courtesy of S. Corman

1Note that this model is frequently named after Erdős and Rényi [1959], who introduced a model with essentially equal
asymptotic characteristics in which a fixed number of edges is drawn uniformly at random from all pairs of vertices.
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2308 U. Brandes & C. Pich

Fig. 1. Protein interaction network. Node dimensions indicate exact (width) and estimated (height) closeness centrality using
MaxMin for pivot (blue) selection. Other colors emphasize under- (red) and overestimation (green).

Protein Interaction. This data is taken from
[Jeong et al., 2001] and consists of proteins found in
the yeast Saccharomyces cerevisiae. The edges rep-
resent protein-protein interactions, and it can be
seen in Fig. 1 that the network has a sparse core
with many dangling trees. Note that the centrality
that the authors argue to be an indicator of lethal-
ity is degree centrality, i.e. simply the number of
edges incident to a vertex.

Needle Exchange. Valente et al. [1998] studied a
network of intravenous drug users participating in a
needle exchange program. Edges indicate that one
person obtained a needle that another one returned.
Even though the data gives rise to a weighted
multigraph, we only use its simple undirected ver-
sion. Except for a significant number of degree-one
vertices, this network has much fewer biconnected
components than the protein interaction network.
Hence, there is a qualitative difference in distances
and path numbers.

Ticker News. Reuters ticker news following the
terrorist attacks of September 11, 2001, have been
transformed into a network text representation

proposed by Corman et al. [2002]. Vertices repre-
sent words appearing in noun phrases, and edges
are introduced between pairs of vertices that appear
in the same noun phrase, or consecutively within
a sentence. By construction, these networks have
very few dangling tree structures, and many locally
dense subgraphs (see Fig. 9). This is the only graph
for which multiple edges are used in the between-
ness computations; they have no relevance for
closeness.

5.2. Method

Since the speed-up obtained is directly propor-
tional to the number of pivots, implementation
details and actual running times are irrelevant for
its assessment.

For each combination of six graphs and six
strategies we carried out twenty repetitions of the
following experiment. The vertices of the graph are
ordered according to the pivot strategy, and divided
in twenty intervals to produce increasingly large sets
of pivots. For each of these sets, the centrality esti-
mates are computed. In the experiments on gener-
ated graphs, a new one is generated for each run.
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Estimating Centrality 2309

Fig. 2. Needle exchange network (the apparent clustering is caused by two established and one recently opened exchange
location).

Since one is mostly interested in the central-
ity ranking of a network, the results of each exper-
iment are scaled to sum of one. This way, we
do not have to worry about systematic under- or
overestimation, sample sizes, or normalization of
centralities.

The normalized centrality indices obtained for
the different strategies are compared to the exact
centrality index using their Euclidean and also the
inversion distance. The Euclidean distance is to
assess the overall deviation in relative scores, and
the inversion distance, i.e. the number of pairs that
are in wrong rank order, is to assess the usefulness of
the estimates in ordering the vertices according to
their centrality. Though the numerical values may

be far off, it could be that the ranking is already
accurate, and vice versa.

5.3. Results

The results of the above experiments are presented
in Figs. 3–8.

For random graphs (Fig. 3), the results are
mostly as expected or even hoped for. All strategies
yield accurate estimates already with few pivots.
So most of the computation in exact algorithms
is spent on minor improvements. Moreover, the
deterministic strategies choosing peripheral ver-
tices outperform random selection, if only slightly.
It is no surprise that Random and RanDeg
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Fig. 9. MinSum fails to utilize larger number of pivots on ticker news network (white – non-pivots, blue — first 1000 pivots,
red — next 1000 pivots).

perform similarly, since the degree variance is small
in random graphs.

The situation is entirely different for small
worlds and preferential attachment graphs (Figs. 4
and 5). While MaxMin yields the most accu-
rate results for small numbers of pivots in small
worlds, it becomes one of the worst strategies
when the number of pivots is increased. For pref-
erential attachment graphs, it is outperformed
almost immediately. Random strategies, on the

other hand, are surprisingly consistent on both
classes of graphs. They exhibit essentially the same
behavior as on random graphs. The most striking
observation, however, is the performance of Min-
Sum for betweenness on preferential attachment
graphs, where the worst numerical estimates yield
the best rankings. We have no convincing explana-
tion so far.

Supporting the motivation behind those mod-
els, the results on observed data do not resemble
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those on random graphs. In particular, Random
appears to be the most reliable choice. The protein-
protein interaction network causes the deterministic
strategies to rank with irregular quality, most likely
because of its many dangling trees. See Fig. 6 and
also Fig. 1, which confirm that the initial pivots
are placed in leaves of such trees, causing overesti-
mation for vertices on the path to the center, and
underestimation for those in the center. Figure 8
also shows that the variance over different runs is
small for all strategies (recall that the first pivot is
selected at random).

Again, we see that MinSum performs well in
terms of inversion distance for betweenness. Given
that all three observed networks have a note-
worthy number of high-degree nodes, this is at
least consistent with the observation for preferen-
tial attachment graphs. The reason for the counter-
intuitive quality reduction for larger numbers of
pivots on the ticker news text network is illus-
trated in Fig. 9. Observe that after filling the
center with the first 1000 pivots, MinSum con-
tinues to grow the connected set of pivots, but
this extension is forced to fill a region of the
graph that yields unbalanced contributions to all
vertices.

6. Conclusion

We have conducted a series of experiments to assess
the practicality of heuristic methods for centrality
computation.

Our experiments suggest that selecting pivots
uniformly at random is superior to more sophis-
ticated selection strategies, because structural
imbalance present in most networks cause determin-
istic strategies to run into traps, even to the point
that the estimates become worse when adding more
pivots.

It is also important to note that, experimen-
tally, the accuracy of random pivot selection is
largely monotonic in the number of pivots used, and
that the variance in quality over different runs is
very small.

An alternative strategy to improve over our
estimates is to use more sophisticated techniques
than our simple random sampling estimators
[Thompson, 2002]. While we have not performed
a thorough study, it seems, though, that reasonable
and efficient estimators are difficult to design and
subject to the same problems exhibited by skewed
pivot selection strategies.

Since we can compute the exact closeness cen-
trality of any particular vertex by solving one SSSP,
a reasonable strategy to determine the k most cen-
tral vertices is to estimate closeness using a suffi-
ciently large number of pivots, followed by exact
computations for those vertices ranked among the
top k′, k′ > k, to determine their correct order. Note
that this approach does not apply to betweenness
centrality.
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