
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 43, No. 5, pp. S592--S611

SCALABLE ALGORITHMS FOR MULTIPLE NETWORK
ALIGNMENT\ast 

HUDA NASSAR\dagger , GEORGIOS KOLLIAS\ddagger , ANANTH GRAMA\S , AND DAVID F. GLEICH\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Multiple network alignment is the problem of identifying similar and related regions
in a given set of networks. While there are a large number of effective techniques for pairwise
problems with two networks that scale in terms of edges, these cannot be readily extended to align
multiple networks as the computational complexity will tend to grow exponentially with the number
of networks. In this manuscript we introduce a new multiple network alignment algorithm and
framework that is effective at aligning thousands of networks with thousands of nodes. The key
enabling technique of our algorithm is identifying an exact and easy to compute low-rank tensor
structure inside of a principled heuristic procedure for pairwise network alignment called IsoRank.
This can be combined with a new algorithm for k-dimensional matching problems on low-rank tensors
to produce the alignment. We demonstrate results on synthetic and real-world problems that show
our technique (i) is as good as or better than, in terms of quality, existing methods, when they work
on small problems, while running considerably faster, and (ii) is able to scale to aligning a number
of networks unreachable by current methods.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . multiple network alignment, network alignment, low-rank tensor, k-partite match-
ing, k-dimensional matching

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 05C85, 90B10, 68R10

\bfD \bfO \bfI . 10.1137/20M1345876

1. Introduction. Pairwise global network alignment (PNA) is the problem of
matching pairs of nodes in two input graphs such that the pairing identifies common
structures in both graphs. Algorithms for and applications of this problem are ex-
tensively discussed in the literature [8, 18, 25, 27, 1, 29, 2, 16, 26, 19, 13]. A more
general problem is that of multiple global network alignment (MNA) [10, 23, 24, 30],
where we are interested in finding a common subgraph present in more than two input
networks (illustrated in the top panel of Figure 1). Applications of this problem arise
in comparative proteomics (where the networks are protein interactions from multi-
ple species), entity resolution (where the networks reflect different records), subject
registration (where the networks reflect multiple measured views), and other applied
machine learning tasks.

Both PNA and MNA are related to the subgraph isomorphism problem, which
is known to be NP-hard [5]. That said, MNA is a harder problem in practice due
to the combinatorial explosion of possible aligned pairs. As an illustration of this
point, consider a common strategy in PNA algorithms [16, 17, 8, 26, 2, 27]: (i) score
each potential matched pair of nodes between the graphs based on a topological
similarity measure; and (ii) perform a maximum weight bipartite matching (or a
closely related algorithm) on the set of scores. Simple extensions of these principled
procedures to MNA with k networks cannot easily scale to more than a handful of
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SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT S593

networks because the set of data in step (i) becomes O(nk) when each network has
O(n) nodes, and the obvious generalization of max weight bipartite matching (step
(ii)) is k-dimensional matching, which is also NP-complete for k \geq 3 [15]. There
are approximation algorithms for k-dimensional matching [14], but they still require
exponential data from step (i).

Despite the computational difficulty, there are only a few existing algorithms that
navigate the computational and memory requirements. In order to do so, they of-
ten make strong assumptions or use heuristic ideas that compromise general-purpose
quality. For instance, a straightforward solution is to consider sequences of pairwise
network alignment problems, or to use pairwise network alignment data to infer multi-
network alignments. This can be problematic if there is an ordering of the graphs
that will produce poor alignment results initially and will end up biasing the overall
alignment. Another straightforward solution is to restrict the set of possible align-
ments to those inferred through prior information or metadata about the nodes. Such
information often speeds up the computation drastically and guides the algorithm
to a meaningful solution [24]; however, when such information is not available, the
algorithms often run out of memory or fail to return any useful information.

In this paper, we focus on the case when such information is not present and
there is no reduction to pairwise alignments. In this regime existing techniques take
too long, run out of memory, or give bad results as explained below. We note that
a number of important applications, e.g., aligning protein/gene interaction networks
from specific tissues or pathologies, lie in this regime. We return to this point that
motivates the need for new methods (section 2.1) after a brief introduction to multiple
network alignment (section 2).

2. Multiple network alignment. The multiple network alignment problem
can be idealized in many different ways. The formulation of the problem we assume is
that there is some core graph shared among all the different given networks and that
finding this shared graph is the alignment task. This core graph will have its edges
present in all of the different realizations. The resulting formulation of the multiple
network alignment problem we use for three networks is

(2.1)

maximize
\sum 

i,j,k

\sum 
r,s,t AirBjsCktXijkXrst

subject to
\sum 

j,k Xijk \leq 1 for all i;
\sum 

i,k Xijk \leq 1 for all j;\sum 
i,j Xijk \leq 1 for all k;Xi,j,k \in \{ 0, 1\} for all i, j, k.

Throughout the paper, we use the notation of bold underlined capital letters (e.g.,
\bfitX ) to denote tensors, and here, Xijk = 1 indicates that node i in network A matches
to node j in network B and node k of network C, \bfitA ,\bfitB ,\bfitC are the adjacency matrices
for the three undirected and unweighted networks, and the number of vertices of these
networks gives the summation limits in the above expression. The objective function
can be read as follows: nodes i, j, k are matched and nodes r, s, t are matched; the
edges (i, r) in A, (j, s) in B, and (k, t) in C are all simultaneously preserved. That is,
the product of all of these expressions is 1 when all the edges exist and they match,
and 0 otherwise. The constraints express the fact that any node in any of the three
networks can be part of at most one matching triplet. The extension to k networks
will be straightforward once we introduce some notation.

If we use the notation x = vec(\bfitX ) to denote the vectorization procedure of
a tensor \bfitX , as used in [11, section 12.4.11], i.e., vectorize the tensor column by
column, then the objective function is xT (\bfitC \otimes \bfitB \otimes \bfitA )x. (This is an instance of
the mixed-product property for Kronecker products and tensors; see, e.g., equation
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S594 H. NASSAR, G. KOLLIAS, A. GRAMA, AND D. GLEICH

We build a similarity tensor for each possible set of aligned vertices via a novel 
genalization of the IsoRank method. We show, in theory, this is low-rank.

Tensor entries       represent an estimated similarity among nodes from each 
graph. 

+...++=

rank = t rank = 1 rank = 1 rank = 1

Section 3: Generalized IsoRank

We then use the 
low rank factors:

, , and
to solve a low-rank k-
dimensional matching 
problem

Section 4: K-dimensional matching

overlapped
edge

Multiple network alignment for 3 networks seeks an assignment between 
vertices that maximizes joint overlap. 

The alignment 
indicated by the 
vertex positions has 
7 overlapped edges.

Section 2: Multiple network alignment

Fig. 1. A visualization of the pipeline of this paper. The multiple network alignment problem
is illustrated in the top panel and discussed in section 2. Our solution is to form a low-rank repre-
sentation of a high dimensional tensor (middle panel, section 3), and then perform k-dimensional
matching on the low-rank factors (bottom panel, section 4).

12.4.19 in [11].) The constraints can be written in terms of the tensor flattening or
unfolding operator \flat j that turns \bfitX into a matrix by unfolding along dimension j
(see [11, section 12.4.5] and [6]). Then, we have the three and k-network problems:

maximize xT (\bfitC \otimes \bfitB \otimes \bfitA )x

subject to \flat 1(\bfitX )e \leq e; \flat 2(\bfitX )e \leq e; \flat 3(\bfitX )e \leq e
Xi,j,k \in \{ 0, 1\} for all i, j, k.

(2.2)

maximize xT (\bfitA k \otimes \cdot \cdot \cdot \otimes \bfitA 1)x

subject to \flat 1(\bfitX )e \leq e; . . . ; \flat k(\bfitX )e \leq e
Xi,j,...,k \in \{ 0, 1\} for all indices.

(2.3)

Here e is the vector of all ones of appropriate dimension. Throughout, we frequently
interchange between tensor representations of data \bfitX and their vectorized represen-
tations x = vec(\bfitX ).

2.1. The need for new methods. Existing MNA methods include FUSE [10],
IsoRankN [23], MultiMagna++ [30], FLAN [24], and ProgNatalie++ [24]. These are
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SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT S595

discussed in detail in section 5. To the best of our knowledge, the highest number
of networks an existing MNA method aligns is 10, from the ProgNatalie++ method.
What we propose is the first multiple network alignment algorithm that can scale
to thousands of networks with thousands of nodes in a reasonable runtime (about 3
hours for 1000 networks with 1000 nodes; see details in section 7.2).

To motivate the need for new algorithms that can run without prior known sim-
ilarity, we demonstrate a simple MNA problem with one of the most recent MNA
methods, MultiMagna++ [30]. In the problem setup, we use three graphs of size
n = 500. We generate the three input graphs as random perturbations of a single
preferential attachment graph of size 500 and average degree 8. Each perturbation is
formed by randomly removing edges with a probability 0.5/n (more detail on synthetic
graph generation can be found in section 6.3). When we give this problem as input to
MultiMagna++, it does not produce any meaningful results, and the relative number
of overlapped edges (illustrated in the top panel of Figure 1) to the ground truth
alignment's overlapped edges is consistently less than 1\%. In contrast, our method
consistently produces a relative overlap higher than 80\% (a detailed analysis of our
method's performance is provided in the Experiments; see section 6). ProgNatalie++
and FLAN are more resistant to the absence of prior known similarity due to these
algorithms using the input similarity information as topological similarity and not bi-
ological similarity, but the running time of these algorithms is extreme (for example,
they would take multiple hours for aligning 5 small networks of size 100 nodes each),
and the reason for their slow speed is that they are using a Lagrangian relaxation
approach to solve an NP-hard problem at each step.

2.2. Technical overview of our improvements. The two main technical
innovations are (i) a specific multinetwork generalization of the pairwise network
alignment algorithm IsoRank [29] that enables us to compute a representation of the
O(nk), k-way alignment data efficiently, and (ii) an extremely efficient k-dimensional
matching algorithm with an a posteriori approximation bound when the matching
information is given by a low-rank tensor. We summarize our contributions here:
\bullet We generalize the IsoRank algorithm to multiple networks and show that the solu-
tion can be represented by a multidimensional tensor that can be explicitly written
in terms of low-rank nonnegative factors that are easy to compute (section 3).

\bullet We present a new k-dimensional matching algorithm for low-rank tensors with an
a posteriori approximation bound (section 4.1).

\bullet We experimentally show that multiple network alignment is faster and higher-
quality compared to performing multiple pairwise alignments when the number
of networks grows (section 6.3).

\bullet We perform a case study on anonymized data from a collaboration network, where
we show that aligning anonymized triplets of egonets can identify those triplets
with high Jaccard similarity, which can only be accurately computed from the de-
anonymized data (section 6.5).

3. A low-rank heuristic method. We now discuss algorithms for (2.2), (2.3).
Note that, if we were to relax to real values and heuristically change the constraints
to \| x\| 2 = 1, then the solution is the eigenvector of \bfitC \otimes \bfitB \otimes \bfitA with the largest
eigenvalue. This eigenvector could then be reshaped and input to a 3D matching
routine to produce a multiple network alignment. In practice, this technique needs
a number of improvements even for the pairwise case [8], and these are nontrivial
to adapt to the multiple network case, which is discussed further in the conclusion.
Instead, we adapt the IsoRank methodology and, specifically, the network similarity
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S596 H. NASSAR, G. KOLLIAS, A. GRAMA, AND D. GLEICH

decomposition (NSD) method [17] to compute IsoRank, which will easily scale to
multiple networks; we explain these now.

3.1. IsoRank. IsoRank is a pairwise network alignment method [29] that uses
the PageRank vector y of the graph with adjacency matrix \bfitB \otimes \bfitA (see [9] for more
on this relationship) as a principled heuristic analogue of what we informally think
of as a ``matching-biased eigenvector"" of \bfitB \otimes \bfitA . Formally, let \bfitD A and \bfitD B be the
diagonal degree matrices for graphs A and B; then y is given by the solution of the
equations

y = \alpha (\bfitB \bfitD  - 1
B \otimes \bfitA \bfitD  - 1

A )y + (1 - \alpha )h

\Updownarrow y = vec(\bfitY ),h = vec(\bfitH ),

\bfitY = \alpha \bfitA \bfitD  - 1
A \bfitY \bfitD  - 1

B \bfitB + (1 - \alpha )\bfitH .

The value of \alpha is typically chosen to be somewhere between 0.7 and 0.9 following [29],
and the data h or \bfitH is either uniform (if there is no prior information about what
might be a match) or chosen to represent some prior information. These equations
can be solved without ever forming the Kronecker matrix, although the data involved
is still O(n2) for two O(n) node graphs. Once we have the solution \bfitY , this can be
turned into an alignment by solving a bipartite matching problem with \bfitY .

3.2. Network similarity decomposition (NSD). The NSD method special-
izes IsoRank in the case when \bfitH is a low-rank matrix [17], such as when we are using
the uniform personalization term h = 1

mne, i.e., \bfitH = 1
mnones(m,n) (where A has n

vertices and B has m vertices and e the vector of all ones of appropriate size). Thus,
the relevant case for us is when \bfitH is rank-1. Then there is an extremely efficient
procedure to compute an exact low-rank representation of \bfitY . Suppose we initialize a
fixed-point iteration for the PageRank linear system with \bfitY (0) = \bfitH = uvT (because
it is rank-1), and then tth iterate is given by

\bfitY (t) = (1 - \alpha )

t - 1\sum 

i=0

\alpha i[(\bfitA \bfitD  - 1
A )iu][(\bfitB \bfitD  - 1

B )iv]T

+ \alpha t[(\bfitA \bfitD  - 1
A )tu][(\bfitB \bfitD  - 1

B )tv]T .

With some reorganization, this can be written as \bfitY (t+1) = \bfitU \bfitV T for an n-by-(t+ 1)
matrix \bfitU and an m-by-(t+1) matrix \bfitV . The PageRank solution converges fast in the
regime \alpha \in [0.7, 0.9], and usually only 10 iterations are enough. We now generalize
this insight to multiple networks to handle multiple network alignment.

3.3. Our method: Multiple network similarity decomposition. For mul-
tiple networks, the above formulation extends straightforwardly. We need to compute
the PageRank vector on the network \bfitA k \otimes \bfitA k - 1 \otimes \cdot \cdot \cdot \otimes \bfitA 2 \otimes \bfitA 1. Since we have
k networks, the analogue of the matrix \bfitY is now a k-dimensional tensor \bfitY that
stores the PageRank measure between every possible combination k of nodes coming
from k distinct networks. In words, we have Y (i1, i2, . . . , ik) denote the PageRank
measure for the ``node"" representing an alignment between nodes i1 from the first
graph, i2 from the second, . . . , and node ik from the kth graph. Assume now that we
have k column stochastic adjacency matrices corresponding to k networks. Call them
\bfitP 1 = \bfitA 1\bfitD 

 - 1
1 ,\bfitP 2 = \bfitA 2\bfitD 

 - 1
2 , . . . ,\bfitP k = \bfitA k\bfitD 

 - 1
k (where \bfitD i is the diagonal degree

matrix for the ith network). The massive PageRank vector we are interested in is
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given by

(3.1) y = \alpha (\bfitP k \otimes \bfitP k - 1 \otimes \cdot \cdot \cdot \otimes \bfitP 2 \otimes \bfitP 1)y + (1 - \alpha )h.

We note that a similar formulation is used in [22], where the focus is on the sparsity
of the vector h and the solution. In our formulation, we note that the matrix (\bfitP k \otimes 
\cdot \cdot \cdot \otimes \bfitP 1) and the vector y are never formed explicitly.

We study the case that h = uk \otimes uk - 1\otimes \cdot \cdot \cdot \otimes u1, which corresponds to assuming
that the tensor representation \bfitH would be rank 1. In this instance, we can proceed
similarly to the NSD scenario. We also start the iteration with y(0) = h = uk \otimes 
uk - 1 \otimes \cdot \cdot \cdot \otimes u1. Then, the first iterate is

y(1) = \alpha (\bfitP k \otimes \cdot \cdot \cdot \otimes \bfitP 1)y
(0) + (1 - \alpha )y(0)

= \alpha (\bfitP kuk \otimes . . .\otimes \bfitP 1u1) + (1 - \alpha )(uk \otimes uk - 1 \otimes . . .\otimes u1).

At step t, y(t) can be expressed as follows:

y(t) = (1 - \alpha )

t - 1\sum 

i=0

\alpha i(\bfitP i
kuk \otimes . . .\otimes \bfitP i

1u1) + \alpha t\bfitP t
kuk \otimes . . .\otimes \bfitP t

1u1.

Next, we can decompose the above equation. Form k matrices \bfitU i, such that

(3.2) \bfitU i =
\bigl[ 
c0\bfitP 

0
iui c1\bfitP 

1
iui . . . ct - 1\bfitP 

t - 1
i ui ct\bfitP 

t
iui

\bigr] 
,

where each cj is ((1 - \alpha )\alpha j)1/k when j \leq t - 1, and ct = \alpha t/k, and we summarize this
decomposition in the algorithm shown in Figure 2.

Hence, y(t) can be rewritten as follows:

y(t) =

t\sum 

i=0

\bfitU k(:, i)\otimes \bfitU k - 1(:, i)\otimes . . .\otimes \bfitU 1(:, i) =

t\sum 

i=0

\^y(i),

where \^y(i) = \bfitU k(:, i)\otimes \bfitU k - 1(:, i)\otimes . . .\otimes \bfitU 1(:, i), and the notation \bfitF (:, i) corresponds

to the ith column of a matrix \bfitF . If we reshape this into a tensor with vec(\bfitY i) = \^y(i),

and vec(\bfitY (t)) = y(t), then \bfitY (t) =
\sum t

i=0 \bfitY i. We can thus deduce that \bfitY (t) is a sum
of t + 1 rank-1 tensors. (Formally, the matrices \bfitU 1, . . . ,\bfitU k are the CP factors of

\bfitY (t) [11, section 12.5.4].) What remains in our procedure is a way to turn this low-
rank representation into an alignment by running a matching algorithm (section 4).

4. \bfitk -dimensional matching with low-rank factors. In this section, we dis-
cuss two approaches to solving the k-dimensional matching problem given here:

maximize
\sum 

i,j,...,\ell T (i, j, . . . , \ell )X(i, j, . . . , \ell )

subject to \flat 1(\bfitX )e \leq e; . . . ; \flat k(\bfitX )e \leq e;X(i, j, . . . , \ell ) \in \{ 0, 1\} 

when \bfitT is given by a nonnegative rank-t representation (illustrated in the middle
panel of Figure 1):

T (i, j, . . ., \ell ) =
\sum r

t=1 U1(i, t)U2(j, t) \cdot \cdot \cdot Uk(\ell , t) \leftrightarrow \bfitT =
\sum t

i=1 \bfitT i(4.1)

where vec(\bfitT i) = \bfitU k(:, i)\otimes \bfitU k - 1(:, i)\otimes \cdot \cdot \cdot \otimes \bfitU 1(:, i).

The first builds on an algorithm for low-rank bipartite matchings from [26]. The
second builds on algorithms for progressive alignment [24] and k-partite alignment
problems [10, 12].
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1 Input: \bfu 1,\bfu 2, . . . ,\bfu k; \bfitP 1,\bfitP 2, . . . ,\bfitP k; t;

2 Output: \bfitU 1,\bfitU 2, . . . ,\bfitU k

3 for i = i to k

4 c0 = (1 - \alpha )1/k

5 \bfv 0 = \bfu i

6 \bfitU i = [c0\bfv 0]

7 for j = 1 to t-1

8 cj = ((1 - \alpha )\alpha j)1/k

9 \bfv j = \bfitP i\bfv j - 1

10 \bfitU i =
\bigl[ 
\bfitU i cj\bfv j

\bigr] 

11 end

12 ct = \alpha t/k

13 \bfv t = \bfitP i\bfv t - 1

14 \bfitU i =
\bigl[ 
\bfitU i ct\bfv t

\bigr] 

15 end

Fig. 2. Pseudocode for the the multiple network similarity decomposition discussed in sec-
tion 3. Here, \bfitP i is the column stochastic adjacency matrix corresponding to network i, and \bfu i is
the corresponding factor from the starting low rank tensor decomposition, and t is the number of
iterations.

4.1. An a-posteriori approximation bound from the best single-rank
alignment. We proceed to show a new k-dimensional matching algorithm that can
be applied on tensors represented as low-rank factors. The idea is that we use each
rank-1 factor \bfitT i to generate a single k-dimensional matching. Then, we provide an
a-posteriori bound on the best alignment in this set. In practice, these bounds are
very good and provide approximation factors around 1.08 (see Figure 10).

The techniques extend [26] for the bipartite matching case. To do so, we first
need a specific generalized rearrangement inequality for k sequences. We use the
result from [28] and provide the statement of the inequality below.

Generalized Rearrangement Inequality. Assume we have k sequences of

numbers that are all positive. Let x
(j)
i denote the ith element in the jth sequence and

assume that x
(j)
1 \leq x

(j)
2 \leq . . . x

(j)
n for all sequences. The generalized rearrangement

inequality guarantees that:

n\sum 

i=1

k\prod 

j=1

x
(j)
i \geq 

n\sum 

i=1

x
(1)
i

k\prod 

j=2

x
(j)
\sigma j(i)

where \sigma j is any permutation function corresponding to the jth sequence.

Now, assume that we have a k-dimensional tensor \bfitT of the form shown in
Equation (4.1). For each rank-1 tensor \bfitT i, the generalized rearrangement inequal-
ity guarantees the best matching on it can be computed by sorting the vectors
\bfitU 1(:, i), . . . ,\bfitU k(:, i) in decreasing order and aligning the elements (we find it helpful
to think of the pairwise matrix, case where \bfitT i = uvT and the sorting is simple to
see). We now prove the following result (which extends the proof of the 2-dimensional
case presented in [26]).

Result. Let the binary-valued tensors \bfitM i of size n1 \times n2 \times . . . nk store the
matching corresponding to \bfitT i tensor, i.e., M(j1, j2, . . . , jk) = 1 if (j1, j2, . . . , jk) is a
match, and 0 otherwise. Then, there is a best matching in this set \bfitM 1, . . . ,\bfitM t, that
solves the k-dimensional matching problem while attaining a D-approximation bound,
where D is an aposterori computable bound.

Fig. 2. Pseudocode for the the multiple network similarity decomposition discussed in section 3.
Here, \bfitP i is the column stochastic adjacency matrix corresponding to network i, and \bfu i is the corre-
sponding factor from the starting low-rank tensor decomposition, and t is the number of iterations.

4.1. An a posteriori approximation bound from the best single-rank
alignment. We proceed to show a new k-dimensional matching algorithm that can
be applied on tensors represented as low-rank factors. The idea is that we use each
rank-1 factor \bfitT i to generate a single k-dimensional matching. Then, we provide an a
posteriori bound on the best alignment in this set. In practice, these bounds are very
good and provide approximation factors around 1.08 (see Figure 10).

The techniques extend [26] for the bipartite matching case. To do so, we first
need a specific generalized rearrangement inequality for k sequences. We use the
result from [28] and provide the statement of the inequality below.

Generalized Rearrangement Inequality. Assume we have k sequences of

numbers that are all positive. Let x
(j)
i denote the ith element in the jth sequence, and

assume that x
(j)
1 \leq x

(j)
2 \leq . . . x

(j)
n for all sequences. The generalized rearrangement

inequality guarantees that

n\sum 

i=1

k\prod 

j=1

x
(j)
i \geq 

n\sum 

i=1

x
(1)
i

k\prod 

j=2

x
(j)
\sigma j(i)

,

where \sigma j is any permutation function corresponding to the jth sequence.

Now, assume that we have a k-dimensional tensor \bfitT of the form shown in (4.1).
For each rank-1 tensor \bfitT i, the generalized rearrangement inequality guarantees the
best matching on it can be computed by sorting the vectors \bfitU 1(:, i), . . . ,\bfitU k(:, i) in
decreasing order and aligning the elements (we find it helpful to think of the pairwise
matrix case where \bfitT i = uvT and the sorting is simple to see). We now prove the
following result (which extends the proof of the 2-dimensional case presented in [26]).

Result. Let the binary-valued tensors \bfitM i of size n1 \times n2 \times . . . nk store the
matching corresponding to \bfitT i tensor, i.e., M(j1, j2, . . . , jk) = 1 if (j1, j2, . . . , jk) is a
match, and 0 otherwise. Then, there is a best matching in this set \bfitM 1, . . . ,\bfitM t that
solves the k-dimensional matching problem while attaining a D-approximation bound,
where D is an a posterori computable bound.

Proof. Define \bfitM i \bullet \bfitT i = vec(\bfitM i)
T vec(\bfitT i) to be the weight of the matching \bfitM i

applied on the tensor \bfitT i. Also, let \bfitM \ast be the matching that achieves the maximum

D
ow

nl
oa

de
d 

05
/2

3/
22

 to
 1

34
.1

02
.1

07
.8

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT S599

possible weight on \bfitT .
Define

di,j =
\bfitM i \bullet \bfitT i

\bfitM j \bullet \bfitT i
, and dj = max

i
di,j .

Let j\ast = argminjdj . Set D = dj\ast . Then, \bfitM 
\ast \bullet \bfitT \leq D\bfitM j\ast \bullet \bfitT . The proof of this

statement follows

\bfitM \ast \bullet \bfitT = \bfitM \ast \bullet \sum t
i=1 \bfitT i \leq 

\sum t
i=1 \bfitM i \bullet \bfitT i

\leq D
\sum t

i=1(\bfitM j\ast \bullet \bfitT i) \leq D(\bfitM j\ast \bullet \bfitT ),

where we used \bfitM i \bullet \bfitT i \leq D\bfitM j\ast \bullet \bfitT i by the definition of the quantities. Therefore,
the matching \bfitM j\ast achieves a D-approximation on the tensor \bfitT , where

D = min
j

max
i

\bfitM i \bullet \bfitT i

\bfitM j \bullet \bfitT i
.

4.2. A progressive alignment. The bounds given by the low-rank matching
algorithm (above) are often very good (Figure 10). In practice we found the procedure
in Figure 3 to give better results in terms of the overall multiple network alignment
objective. The inspiration for this algorithm is the progressive nature of both Prog-
Natalie++ and FUSE [24, 10], and a progressive algorithm for the k-partite matching
problem [12]. For three networks (a three-mode tensor), the idea is as follows: align
(via bipartite matching) the first two modes (networks). Then, use the alignment
between the first two modes to produce a new bipartite alignment problem to fold
in the third mode. That is, if we know that node i1 in network 1 matches to i2 in
network 2, then we can look at the entries \bfitT (i1, i2, :) to determine the best match
for (i1, i2) in the third network. When \bfitT is low rank, these entries also have low-
rank structure, and thus we use the routine from [26] to solve each of these low-rank
bipartite matching problems and state the overall procedure as an algorithm below.
We briefly studied optimizing the ordering of alignment, but this did not seem to
yield large differences. Note that this is different from progressive pairwise network
alignment because the scores \bfitT incorporate information from all networks, and our
progressive operations simply distill this information into a matching. That said, this
method loses quality as the number of networks increases (Figure 5), and our study
of this behavior led to improvements in the next subsection.
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Proof. Define \bfitM i \bullet \bfitT i = vec(\bfitM i)
T vec(\bfitT i) to be the weight of the matching

\bfitM i applied on the tensor \bfitT i. Also, let \bfitM \ast to be the matching that achieves the
maximum possible weight on \bfitT .

Define

di,j =
\bfitM i \bullet \bfitT i

\bfitM j \bullet \bfitT i
, and dj = max

i
di,j .

Let j\ast = argminjdj . Set D = dj\ast . Then, \bfitM 
\ast \bullet \bfitT \leq D\bfitM j\ast \bullet \bfitT . The proof of this

statement follows:

\bfitM \ast \bullet \bfitT = \bfitM \ast \bullet \sum t
i=1 \bfitT i \leq 

\sum t
i=1 \bfitM i \bullet \bfitT i

\leq D
\sum t

i=1(\bfitM j\ast \bullet \bfitT i) \leq D(\bfitM j\ast \bullet \bfitT ),

where we used \bfitM i \bullet \bfitT i \leq D\bfitM j\ast \bullet \bfitT i by the definition of the quantities. Therefore,
the matching \bfitM j\ast achieves a D - approximation on the tensor \bfitT , where

D = min
j

max
i

\bfitM i \bullet \bfitT i

\bfitM j \bullet \bfitT i
.

4.2. A progressive alignment. The bounds given by the low-rank matching
algorithm (above) are often very good (Figure 10). In practice we found procedure
in Figure 3 to give better results in terms of the overall multiple network alignment
objective. The inspiration for this algorithm is the progressive nature of both Prog-
Natalie++ and FUSE [24, 10], and a progressive algorithm for the k-partite matching
problem [12]. For three networks (a three-mode tensor), the idea is: align (via bi-
partite matching) the first two modes (networks). Then, use the alignment between
the first two modes to produce a new bipartite alignment problem to fold in the third
mode. That is, if we know that node i1 in network 1 matches to i2 in network 2, then
we can look at the entries \bfitT (i1, i2, :) to determine the best match for (i1, i2) in the
third network. When \bfitT is low rank, these entries also have low-rank structure, and
thus we use the routine from [26] to solve each of these low rank bipartite matching
problems and state the overall procedure as an algorithm below. We briefly studied
optimizing the ordering of alignment, but this did not seem to yield large differences.
Note that this is different from progressive pairwise network alignment because the
scores \bfitT incorporate information from all networks, and our progressive operations
simply distill this information into a matching. That said, this method loses quality
as the number of networks increases (Figure 5), and our study of this behavior led to
improvements in the next subsection.

1 Input: \bfitU 1,\bfitU 2, . . . ,\bfitU k;

2 Output: Matching M with k columns and matches in rows

3 a,b = bipartitematching(\bfitU 1\bfitU 
T
2 ) \# match first two modes.

4 M[: ,1:2] = [a,b]

5 for i = 3 to k

6 \# generate matching information with i - 1 modes matched

7 U = U1[M[:,1],:] \odot U2[M[:,2],:] \odot \cdot \cdot \cdot \odot Ui - 1[M[:,i-1] ,:]

8 \# using element -wise/Hadamard product \odot 
9 a,b = bipartitematching(\bfitU \bfitU T

i ) \# match in the ith mode

10 M = M[a,:]; M[:,i] = b \# permute and extend the matching

11 end

Fig. 3. Pseudocode for the progressive k-dimensional matching algorithm (section 4.2).
Fig. 3. Pseudocode for the progressive k-dimensional matching algorithm (section 4.2).
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4.3. Further improving the alignment for large numbers of networks.
The key step of the previous progressive method is a folding procedure on all the
previous alignments (line 7 of Figure 3) and we perform this folding by an element-
wise multiplication of all the previous low-rank factors. We notice experimentally
that this approach is reasonable for a handful of networks but becomes skewed by
any small entries close to zero when we increase the number of networks to align.
For this reason, we introduce a new additive term to the matrix \bfitU in line 8 that
balances the small entries with a sum and show the improved algorithm in Figure 4.
Specifically we use \bfitU = (1/2)\bfitU \ast /sum(\bfitU \ast ) + (1/2)\bfitU +/sum(\bfitU +) where \bfitU \ast is the
matrix computed on line 7 and \bfitU + is the matrix computed on line 8 of the algorithm
in Figure 4. Empirically, we found that this strategy performed more consistently
with large numbers of networks; theoretically, it is more akin to treating the alignment
data as finding a combination of k-dimensional matches and dense k-partite regions as
in [10, 23]. These operations retain the low-rank structure in each bipartite matching
problem.
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4.3. Further improving the alignment for large numbers of networks.
The key step of the previous progressive method is a folding procedure on all the
previous alignments (line 7 of Figure 3) and we perform this folding by an element-
wise multiplication of all the previous low rank factors. We notice experimentally
that this approach is reasonable for a handful of networks, but becomes skewed by
any small entries close to zero when we increase the number of networks to align.
For this reason, we introduce a new additive term to the matrix \bfitU in line 8 that
balances the small entries with a sum and show the improved algorithm in Figure 4.
Specifically we use \bfitU = (1/2)\bfitU \ast /sum(\bfitU \ast ) + (1/2)\bfitU +/sum(\bfitU +) where \bfitU \ast is the
matrix computed on line 7 and \bfitU + is the matrix computed on line 8 of the algorithm
in Figure 4. Empirically, we found that this strategy performed more consistently
with large numbers of networks; theoretically, it is more akin to treating the alignment
data as finding a combination of k-dimensional matches and dense k-partite regions as
in [10, 23]. These operations retain the low-rank structure in each bipartite matching
problem.

1 Input: \bfitU 1,\bfitU 2, . . . ,\bfitU k;

2 Output: Matching M with k columns and matches in rows

3 a,b = bipartitematching(\bfitU 1\bfitU 
T
2 ) \# match first two modes.

4 M[: ,1:2] = [a,b]

5 for i = 3 to k

6 \# generate matching information with i - 1 modes matched

7 U\ast = U1[M[:,1],:] \odot U2[M[:,2],:] \odot \cdot \cdot \cdot \odot Ui - 1[M[:,i-1] ,:]

8 U+ = U1[M[:,1],:] + U2[M[:,2],:] + \cdot \cdot \cdot + Ui - 1[M[:,i-1] ,:]

9 U = 1
2

U\ast /sum(U\ast ) + 1
2

U+/sum(U+)

10 a,b = bipartitematching(\bfitU \bfitU T
i ) \# match in the ith mode

11 M = M[a,:]; M[:,i] = b \# permute and extend the matching

12 end

Fig. 4. Pseudocode for the improved progressive k-dimensional matching algorithm, which is
more reasonable to use for a large number of networks (section 4.3).

5. Related work. Existing MNA algorithms can be viewed in two classes. Bio-
logically motivated algorithms are often designed to align protein-protein interaction
networks, whereas topological algorithms are more generic and try to exploit the
network structure.

5.1. Biological algorithms. In biology, there is a need to discover new rela-
tionships between proteins, and MNA can be used as a tool to study these connec-
tions [29]. The networks to be aligned are often protein protein interaction networks
(PPIs) of different species, and the idea is to use the alignment to learn new infor-
mation about the less studied species. In these cases, there are several measures to
compare the proteins independently of network interaction structure, such as by eval-
uating their sequence similarity of their genetic codings. Biological algorithms are
designed with this piece of information in mind, such as PrimAlign [13]. Another
algorithm, MultiMagna++ [30], uses a genetic algorithm that works directly with the
multi-way alignment permutations and uses objective or fitness functions that utilize
the biological information.

IsoRank [29] and IsoRankN [23] were some of the earliest MNA algorithms. These
methods computed pairwise topological similarity scores between each pair of net-
works and then assembled the result into a multiple alignment in a variety of ways.
They can be related back to a complete k-partite network representation of all the pair-

Fig. 4. Pseudocode for the improved progressive k-dimensional matching algorithm, which is
more reasonable to use for a large number of networks (section 4.3).

5. Related work. Existing MNA algorithms can be viewed in two classes. Bio-
logically motivated algorithms are often designed to align protein-protein interaction
networks, whereas topological algorithms are more generic and try to exploit the
network structure.

5.1. Biological algorithms. In biology, there is a need to discover new rela-
tionships between proteins, and MNA can be used as a tool to study these connec-
tions [29]. The networks to be aligned are often protein-protein interaction networks
(PPIs) of different species, and the idea is to use the alignment to learn new infor-
mation about the less studied species. In these cases, there are several measures to
compare the proteins independently of network interaction structure, such as by eval-
uating their sequence similarity of their genetic codings. Biological algorithms are
designed with this piece of information in mind, such as PrimAlign [13]. Another
algorithm, MultiMagna++ [30], uses a genetic algorithm that works directly with the
multiway alignment permutations and uses objective or fitness functions that utilize
the biological information.

IsoRank [29] and IsoRankN [23] were some of the earliest MNA algorithms. These
methods computed pairwise topological similarity scores between each pair of net-
works and then assembled the result into a multiple alignment in a variety of ways.
They can be related back to a complete k-partite network representation of all the
pairwise alignment information. Another recent algorithm, FUSE [10], uses protein

D
ow

nl
oa

de
d 

05
/2

3/
22

 to
 1

34
.1

02
.1

07
.8

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT S601

similarity to build the k-partite representation of the problem and then uses nonneg-
ative matrix trifactorization to incorporate network structure into the overall align-
ment.

5.2. Topological algorithms. There are two state-of-the-art algorithms intro-
duced in [24]: FLAN and ProgNatalie++. The FLAN method is based on generalizing
the concept of the facility location problem and is a good way to utilize prior infor-
mation about possible relationships (such as in entity resolution in their case). We
compare against ProgNatalie++ below, which extends the PNA algorithm Natalie
that was proposed by Klau [16]. ProgNatalie++ proceeds by solving the multiple
network alignment problem progressively, by aligning the first two networks, and
then folding in the third network using the existing match, etc. This involves solving
k  - 1 PNA problems.

6. Experiments. To evaluate our proposed algorithm, we perform a series of
experiments (i) on synthetically generated networks, where we can easily vary pa-
rameters to understand how the algorithms behave, (ii) on the problem of aligning
snapshots of a temporally evolving network of internet routers, and (iii) on inferring
high triangle Jaccard similarity in anonymized egonets, and (iv) a case study on large
networks with about a million nodes.

6.1. Methods. We precisely state the parameters of the various methods we
consider here, including some obvious baseline measures such as a random method
and intuitive extensions to pairwise methods. We also tried two software packages
IsoRankN and FUSE for these problems. These methods all returned empty align-
ments, which we believe is due to our lack of prior or biological information to guide
the method.

Pairwise. A simple way to align multiple networks is to run a pairwise network
alignment for all pairs of networks and extract any consistent alignment. For instance,
if the following three pairs appeared while aligning the three networks \bfitG A, \bfitG B , \bfitG C ,
(a1, b3), (b3, c9), (a1, c9), we treat the triplet (a1, b3, c9) as a match. For choosing the
right pairwise method to employ in this paradigm, we wanted a pairwise method that
does not rely on prior similarity scores; thus we chose the recent low-rank spectral
network alignment by [26].

By degree. This method is intuitive since we would expect that high degree nodes
match to each other. For each network, sort the nodes according to their degrees, and
then match the top degree nodes with each other until no more nodes are left in one
of the networks.

Progressive EigenAlign. We mention the recent pairwise network alignment algo-
rithm EigenAlign in [8] and its low-rank formulation from [26] to be a strong pairwise
network alignment algorithm when no prior information about node similarity is pres-
ent. Here, we suggest a simple extension to this algorithm to adapt it to align multiple
networks and we follow a progressive approach. We start with two networks to align
them using the low-rank formulation of EigenAlign from [26]. After the first two
networks are aligned, we fold them on top of each other by using the new matches to
form a new network. Then, we use this network to align it to the next network. For
k networks, the pairwise procedure would occur k  - 1 times.

Random. Another method we choose to compare our existing methods to is a
random alignment. This is more of a sanity check experiment to make sure that
the algorithms we are using do not generate arbitrary matchings and that indeed a
random matching would not outperform any of the existing methods.
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MultiLR-D. This is our algorithm, where we compute the matrices \bfitU i from (3.2)
with 8 iterations and \alpha = 0.8; then the final alignment is extracted by our D-
approximation (section 4.1). We support the choice of 8 iterations in a study on
Erd\H os--R\'enyi and preferential attachment graphs (Figure 7).

MultiLR-Prog. This is our algorithm where we use the procedure from section 4.2
and Figure 3 for the matching, where the \bfitU i are from (3.2) with 8 iterations and
\alpha = 0.8. The bipartite matching problems are themselves solved via a low-rank
bipartite matching procedure from [26] (with parameter b = 10).

MultiLR-Prog+. This is our algorithm with the improved progressive matching
explained in section 4.3 and Figure 4 and is the same as MultiLR-Prog, where we
replace the elementwise multiplication from Figure 3 (line 7) with a mixture model
for \bfitU . Otherwise it is identical to MultiLR-Prog.

ProgNatalie++ and ProgNatalie++ with prior. We use ProgNatalie++ from [24]
using a uniform prior for small problems. This does not scale with a reasonable run-
time (we ran problems with 100 nodes and 5 networks for a day without completing),
and so we also consider using the union of alignments produced by our low-rank fac-
tors (section 4.1) as the prior. In this case, the algorithms complete in a reasonable
amount of time (an hour for 5 networks with 100 nodes) because of the constrained
matching space.

6.2. Evaluating multiple alignment algorithms. Recall that the multiple
network alignment problem can be idealized in many different ways. The formulation
of the problem we assume is that there is some core graph shared among all the differ-
ent given networks and that finding this shared graph is the alignment task. This core
graph will have its edges present in all of the different realizations. This assumption,
however, is not shared across all the different perspectives on multiple network align-
ment. Hence, when we think about evaluating multiple network alignment methods,
we use a few evaluation metrics to discuss the resulting alignments.

The normalized overlap of a set of networks A1, . . . , Ak is the number of edges
in the conserved region after alignment scaled by the number of edges of the largest
graph. (Again, normalized overlap scores are between 0 and 1.) If \~\bfitA 1, . . . \~\bfitA k are
the adjacency matrices permuted via the alignment, then this is nnz( \~\bfitA 1 \odot \cdot \cdot \cdot \odot 
\~\bfitA k)/max(nnz(\bfitA i), . . . ,nnz(\bfitA k)) where \odot is the elementwise product and nnz is the
number of nonzeros. This evaluation measure is exactly what our multiple network
alignment method is designed to optimize.

Alternatively, when there is a true alignment known among the set of networks,
then we compute degree weighted recovery, which is the number of correct pairs,
scaled by the degrees of the nodes in the network. This setting fixes an answer
to the problem and then checks how much of that answer we recover. Because of
the degree weighting, this measure places more emphasis on high-degree regions. We
regard these as more important to align as low-degree regions often admit automorphic
equivalences. The pairwise nature of the evaluation measures also protects against a
single mistake in, say, 100 networks ruining the other 99 correctly aligned results. The
formal measure involves some ancillary notation. Let Dj be the sum of all degrees
in network j. The weight of a pair of vertices in a pair of networks is w(vj , vk) =
(degree(vj) + degree(vk))/(Dj +Dk); the expression correct(vj , vk) is one if node vj
from network j should be aligned to node vk from network k; the score of a single
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alignment of vertices between all networks is

(6.1) score(v1, . . . , vk) =

\biggl( 
k

2

\biggr)  - 1\biggl( k\sum 

j=1

k\sum 

h=j+1

w(vj , vh)correct(vj , vh)

\biggr) 
.

The overall degree weighted recovery score is simply the sum of the scores for each
alignment set. (These scores are scaled to sum to 1 for a perfect alignment of isomor-
phic networks.) Note that this method cannot be directly optimized as it presumes
knowledge of a correct answer.

6.3. Aligning Erd\H os--R\'enyi and preferential attachment graphs. In this
first experiment, our goal is to study how well our algorithm recovers solutions in a
planted problem as we add more noise and how this changes as we vary the number of
networks to be aligned. We consider Erd\H os--R\'enyi and preferential attachment graphs
with average degree 8 as reference graphs, and then randomly delete edges to generate
k instances of the networks to align. In this case, the ground-truth alignment is known
(even though there are symmetries in these graphs, and thus the ground-truth may
be ambiguous).

Graph generation. For Erd\H os--R\'enyi, we set the edge probability such that we
achieve the expected degree d = 8 and n nodes. For preferential attachment, to gen-
erate a graph with n nodes, we start with a 5-node clique graph and add \theta edges from
each new vertex following the preferential attachment model. The expected degree
is 2\theta because each new edge gets counted twice in the average degree computation.
Then to generate k instances of these graphs, we generate one reference graph, and
then we then pick an edge deletion probability pe and generate k instances of the
base graph, and we allow each edge to be deleted according to the probability pe. We
repeat this process k times to reach k networks.

As edge deletion varies. For our first experiment, we consider using 5 networks
with 500 nodes and vary the edge-deletion probability. The results from our methods
and the baselines are shown in Figure 5 (top two panels). In both types of graphs,
both of our progressive low-rank methods achieved the best results, whereas MultiLR-
D did not perform well as more edges were deleted. Although this method is the least
expensive (see runtime discussion in section 7.2) and provides a theoretically strong
bound on the matches (here, the highest value of D was 1.07), the method relies on
a sorting procedure, which may mislead the matching when there are many numbers
close to each other. Note that this issue was addressed in [26] by allowing each node
to match to more than one node (following a sorted ordering), then creating a sparse
matrix where each row/column had a very small number of nonzeros, and then solving
the bipartite matching problem on the matrix. This approach is not feasible here as
k-dimensional matching is NP-complete for k \geq 3.

As we add networks. For the second experiment, we also consider 500 node net-
works again and consider aligning a growing number of networks with a fixed edge
deletion probability 0.5/n. This corresponds to the case where we expect good accu-
racy with only 2 edges deleted from each network (in expectation). The results are
shown in Figure 5 (lower two panels) and show that MultiLR-Prog+ and MultiLR-
D are the only methods that are not sensitive to the number of networks. Because
of this, MultiLR-D becomes a competitive method for large numbers of networks.
Figure 5 shows the results for these two experiments.

As the network sizes vary. In this experiment, we are interested in observing how
the alignment quality varies as we change the sizes of the networks to be aligned.

D
ow

nl
oa

de
d 

05
/2

3/
22

 to
 1

34
.1

02
.1

07
.8

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S604 H. NASSAR, G. KOLLIAS, A. GRAMA, AND D. GLEICH
SCALABLE ALGORITHMS FOR MULTIPLE NETWORK ALIGNMENT S13

As edge deletion varies . . .
Erd\H os-R\'enyi Preferential Attachment

0 50 100 150 200
Exp. edges removed

0.0

0.2

0.4

0.6

0.8

1.0
De

g.
 w

ei
gh

te
d 

re
co

ve
ry

0 50 100 150 200
Exp. edges removed

0.0

0.2

0.4

0.6

0.8

1.0

De
g.

 w
ei

gh
te

d 
re

co
ve

ry
As we add networks . . .

Erd\H os-R\'enyi Preferential Attachment

20 40 60 80 100
Nb. of networks

0.0

0.2

0.4

0.6

0.8

1.0

De
g.

 w
ei

gh
te

d 
re

co
ve

ry

20 40 60 80 100
Nb. of networks

0.0

0.2

0.4

0.6

0.8

1.0

De
g.

 w
ei

gh
te

d 
re

co
ve

ry

MultiLR-Prog+ Pairwise Degree MultiLR-D
MultiLR-Prog ProgEigenAlign Random

Fig. 5. (Top two panels) As we increase the expected number of edges removed while aligning
5 networks, all methods recover fewer true matches and MultiLR-Prog and MultiLR-Prog+ are con-
sistently the best where MultiLR-D does not do well. Note that MultiLR-Prog and MultiLR-Prog+
are overlapping here. (Lower two panels) As we vary the number of networks to be aligned, all meth-
ods decay in quality except for MultiLR-Prog+ and MultiLR-D, with MultiLR-Prog+ consistently
achieving the best result (the two lower figures). In all figures, the shaded areas represent the 20th
and the 80th percentiles with these experiments run for 50 trials.

Here, we use preferential attachment graphs and we fix the edge deletion probability
to pe = 0.5/n, as we vary n. We observe that all methods are essentially resistant to
the change in the network sizes whereas this behavior is not true when the number
of networks become much bigger (such as 100). From figure 6, we can conclude that
MultiLR-Prog+ is resistant to both changes in the network sizes, as well as the number
of networks to be aligned. Interestingly, MultiLR-D is also resistant to such changes
but with a worse recovery score.

Eight iterations are enough. We now show a case study to support our choice of
8 iterations. We run our algorithm on several different problems with varying k and
varying n. We plot the degree weighted recovery normalized by the value on iteration
8. These results show that the quality of the result does not change considerably after

Fig. 5. (Top two panels) As we increase the expected number of edges removed while aligning
5 networks, all methods recover fewer true matches and MultiLR-Prog and MultiLR-Prog+ are con-
sistently the best where MultiLR-D does not do well. Note that MultiLR-Prog and MultiLR-Prog+
are overlapping here. (Lower two panels) As we vary the number of networks to be aligned, all meth-
ods decay in quality except for MultiLR-Prog+ and MultiLR-D, with MultiLR-Prog+ consistently
achieving the best result (the two lower figures). In all figures, the shaded areas represent the 20th
and the 80th percentiles with these experiments run for 50 trials.

Here, we use preferential attachment graphs, and we fix the edge deletion probability
to pe = 0.5/n, as we vary n. We observe that all methods are essentially resistant to
the change in the network sizes, whereas this behavior is not true when the number
of networks become much bigger (such as 100). From Figure 6, we can conclude that
MultiLR-Prog+ is resistant to changes in both the network sizes and the number of
networks to be aligned. Interestingly, MultiLR-D is also resistant to such changes but
with a worse recovery score.

Eight iterations are enough. We now show a case study to support our choice of
8 iterations. We run our algorithm on several different problems with varying k and
varying n. We plot the degree weighted recovery normalized by the value on iteration
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(a) k = 5 networks
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(b) k = 20 networks

200 400 600 800 1000
Nb. nodes in networks

0.0

0.2

0.4

0.6

0.8

1.0

De
g.

 w
ei

gh
te

d 
re

co
ve

ry

(c) k = 100 networks

Fig. 6. These figures show the weighted recovery scores on preferential attachment graphs as
we vary the sizes of the networks, and the number of networks to be aligned. We observe that when
the number of networks is small enough (5 networks), pairwise and multiple alignment methods
achieve similar results, whereas when we increase the number of networks to be aligned, multiple
alignment (MultiLR-Prog+) is the only method that sustains its result. In all figures, the shaded
areas represent the 20th and the 80th percentiles with these experiments run for 50 trials.
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Fig. 7. To make sure that 8 iterations of the power method are enough, we run our algorithm
MultiLR-D for other iteration values and discover that after 8 iterations essentially nothing changes.
The y-axis in these plots is the degree weighted recovery value relative to the value at iteration 8;
there are 6 curves for 6 different settings on two types of graphs, and they are all indistinguishable.

8. These results show that the quality of the result does not change considerably after
iteration 8 (see Figure 7). It might be helpful here to note that the vectors we produce
for each network are PageRank iterates (up to a constant scaling), and we know that
especially in the regime of \alpha = [0.7, 0.9], PageRank will converge quickly [4, 3].

6.4. Aligning real-world temporal graph snapshots. A representative use
of our methods would be to align a set of snapshots of a real-world graph over time.
Here we consider a dataset from [20] which consists of snapshots of an Internet routers
network at 733 time points. We consider two problems: aligning 5 random snapshots
with the 25 highest degree nodes (where we are able to run existing methods) and
aligning 5 random snapshots with the 100 highest degree nodes (where we can still

Fig. 6. These figures show the weighted recovery scores on preferential attachment graphs as
we vary the sizes of the networks, and the number of networks to be aligned. We observe that when
the number of networks is small enough (5 networks), pairwise and multiple alignment methods
achieve similar results, whereas when we increase the number of networks to be aligned, multiple
alignment (MultiLR-Prog+) is the only method that sustains its result. In all figures, the shaded
areas represent the 20th and the 80th percentiles with these experiments run for 50 trials.

5 10 15
iteration

0.00

0.25

0.50

0.75

1.00

n = 500, k = 5,20,100
n = 1000, k = 5,20,100

Preferential attachment

5 10 15
iteration

0.00

0.25

0.50

0.75

1.00

n = 500, k = 5,20,100
n = 1000, k = 5,20,100

Erd\H os--R\'enyi

Fig. 7. To make sure that 8 iterations of the power method are enough, we run our algorithm
MultiLR-D for other iteration values and discover that after 8 iterations essentially nothing changes.
The y-axis in these plots is the degree weighted recovery value relative to the value at iteration 8;
there are 6 curves for 6 different settings on two types of graphs, and they are all indistinguishable.

8. These results show that the quality of the result does not change considerably after
iteration 8 (see Figure 7). It might be helpful here to note that the vectors we produce
for each network are PageRank iterates (up to a constant scaling), and we know that
especially in the regime of \alpha = [0.7, 0.9], PageRank will converge quickly [4, 3].

6.4. Aligning real-world temporal graph snapshots. A representative use
of our methods would be to align a set of snapshots of a real-world graph over time.
Here we consider a dataset from [20] which consists of snapshots of an Internet router
network at 733 time points. We consider two problems: aligning 5 random snapshots
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Fig. 8. We consider 50 trials of aligning 5 real-world router graphs and show a violin plot (with
the median flagged) of the degree weighted recovery (blue) and normalized overlap (red) side by side
for the pairwise method. For the other methods, we show values relative to the pairwise scores.
These results show that we are almost as good as the existing state of the art method ProgNatalie++
on the small problems, whereas our methods run faster, and we can scale to larger problems.

with the 25 highest degree nodes (where we are able to run existing methods) and
aligning 5 random snapshots with the 100 highest degree nodes (where we can still
run ProgNatalie++ with our low-rank generated prior).

In Figure 8, we show a violin plot of the distribution of our results in terms of
overlap and degree weighted recovery over 50 trials of 5 random snapshots. For the
small run, we get comparable results to ProgNatalie++, while running in less than
2 seconds versus 40 minutes (see more timing in section 7.2). For the larger run,
MultiLR-Prog and MultiLR-Prog+ achieve results that consistently outperform the
pairwise baseline in terms of overlap.

6.5. Aligning anonymized egonets. Next, we use our multiple network align-
ment algorithm to align anonymized egonets of the collaboration network DBLP [7].
This experiment is inspired by one in [26]. In DBLP, the nodes are authors, and edges
represent coauthorship. We consider whether or not multiple alignment could infer
whether a group of three mutual coauthors (i.e., a triangle in the network) has high
Jaccard similarity when we only know anonymized egonets from the original network.

We use Jaccard(a, b, c) = N(a)\cap N(b)\cap N(c)
N(a)\cup N(b)\cup N(c) where N(a) is the set of neighbors of

node a. For each triple of three coauthors with at least 100 other coauthors, we align
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(a) Using MNA (b) Using pairwise
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Fig. 9. Figures a and b show the normalized overlap of the aligned three egonets using multiple
network alignment and pairwise respectively. These two figures show that when using multiple net-
work alignment, normalized overlap track the Jaccard similarity scores whereas the pairwise method
fails to show that. Figure c shows that for random triples, the normalized overlap is less than 0.25
in the majority of experiments. This means that random triplets have small normalized overlap as
well, which allows us to infer high-Jaccard similarity with high normalized overlap.
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Fig. 10. This figure shows the D approximation values from the experiment of aligning multiple
egonets in the DBLP network. These numbers show that the approximation bound D is very close
to 1 in practice.

and MultiLR-D runs in about 1.5 hours whereas the pairwise method takes a little
over 4 hours to finish. To ensure that we could be confident that high-overlap im-
plies high-Jaccard, we show that random triples are unlikely to have high normalized
overlap in the final figure panel.

We now show the quality of the posterior bound D we get from this method. We
plot a histogram of these values here (Figure 10) and observe that a striking number
of them is very close to 1, and even the maximum of them is still less than < 1.1.
For other cases when we ran our MulitLR-D algorithm, the values were comparable
as well with the maximum less than 1.07 or 1.08.

7. Scalability. In this section we evaluate our methods as we grow the networks'
sizes, and the number of networks to be aligned and show running time results from
previous experiments. The highest number of networks an existing MNA method
aligns is 10 (ProgNatalie++), and this is in the setting when prior similarity knowledge
is present. In this section, we show that two of our methods can scale to hundreds of
networks.

Fig. 9. Figures (a) and (b) show the normalized overlap of the aligned three egonets using
multiple network alignment and the pairwise method, respectively. These two figures show that when
using multiple network alignment, normalized overlap tracks the Jaccard similarity scores, whereas
the pairwise method fails to show that. Figure (c) shows that for random triplets, the normalized
overlap is less than 0.25 in the majority of experiments. This means that random triplets have small
normalized overlap as well, which allows us to infer high-Jaccard similarity with high normalized
overlap.
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Fig. 9. Figures a and b show the normalized overlap of the aligned three egonets using multiple
network alignment and pairwise respectively. These two figures show that when using multiple net-
work alignment, normalized overlap track the Jaccard similarity scores whereas the pairwise method
fails to show that. Figure c shows that for random triples, the normalized overlap is less than 0.25
in the majority of experiments. This means that random triplets have small normalized overlap as
well, which allows us to infer high-Jaccard similarity with high normalized overlap.
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Fig. 10. This figure shows the D approximation values from the experiment of aligning multiple
egonets in the DBLP network. These numbers show that the approximation bound D is very close
to 1 in practice.

and MultiLR-D runs in about 1.5 hours whereas the pairwise method takes a little
over 4 hours to finish. To ensure that we could be confident that high-overlap im-
plies high-Jaccard, we show that random triples are unlikely to have high normalized
overlap in the final figure panel.

We now show the quality of the posterior bound D we get from this method. We
plot a histogram of these values here (Figure 10) and observe that a striking number
of them is very close to 1, and even the maximum of them is still less than < 1.1.
For other cases when we ran our MulitLR-D algorithm, the values were comparable
as well with the maximum less than 1.07 or 1.08.

7. Scalability. In this section we evaluate our methods as we grow the networks'
sizes, and the number of networks to be aligned and show running time results from
previous experiments. The highest number of networks an existing MNA method
aligns is 10 (ProgNatalie++), and this is in the setting when prior similarity knowledge
is present. In this section, we show that two of our methods can scale to hundreds of
networks.

Fig. 10. This figure shows the D approximation values from the experiment of aligning multiple
egonets in the DBLP network. These numbers show that the approximation bound D is very close
to 1 in practice.

the egonets using the MultiLR-D method and measure the normalized overlap. The
results in Figure 9 show that we can easily infer high-Jaccard similarity whereas pair-
wise techniques cannot. This experiment entails aligning 425,388 triplets of networks
and MultiLR-D runs in about 1.5 hours, whereas the pairwise method takes a little
over 4 hours to finish. To ensure that we could be confident that high-overlap im-
plies high-Jaccard, we show that random triples are unlikely to have high normalized
overlap in the final figure panel.

We now show the quality of the posterior bound D we get from this method. We
plot a histogram of these values here (Figure 10) and observe that a striking number
of them are very close to 1, and even the maximum of them is still less than 1.1. For
other cases when we ran our MulitLR-D algorithm, the values were comparable as
well with the maximum less than 1.07 or 1.08.D
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Table 1
Degree weighted recovery for large graphs from section 7.1.

Dataset Nodes Edges MultiLR-D Degree

pe=0.1 pe=0.5 pe=0.1 pe=0.5

as-Skitter 1.6M 11M 0.90 0.78 0.15 0.15
roadNet-TX 1.3M 1.8M 0.98 0.43 10 - 5 10 - 5

roadNet-CA 1.9M 2.7M 0.67 0.42 10 - 5 10 - 5

roadNet-PA 1M 1.5M 0.66 0.31 10 - 5 10 - 5

7. Scalability. In this section we evaluate our methods as we grow the networks'
sizes and the number of networks to be aligned, and we show running time results
from previous experiments. The highest number of networks an existing MNA method
aligns is 10 (ProgNatalie++), and this is in the setting when prior similarity knowledge
is present. In this section, we show that two of our methods can scale to hundreds of
networks.

7.1. A case study on large graphs. In the previous sections, we note the
scalability of our methods as we increase the number of networks; here we want to
study our methods on large graphs, specifically graphs with more than one million
nodes. We used 4 base networks from the SNAP database that satisfy this criteria,
namely three road networks roadNet-CA, roadNet-PA, and roadNet-TX from [21],
and an Internet topology graph as-Skitter from [20]. The pipeline of the experiment
is similar to that in section 6.3; we use the edge deletion probability pe/n with pe =
\{ 0.1, 0.5\} and generate 5 instances of the graph.

Methods. We are unaware of any methods besides ours that will scale to networks
of this size (mainly because of an intermediate step that involves solving a huge
bipartite matching procedure). From our methods, MultiLR-D is the most interesting
comparison as it runs extremely fast and only relies on a sorting procedure. We also
use the By Degree method described in section 6, as it is the only other feasible
method, and provides a useful point of comparison for how MultiLR-D performs.

Results and conclusions. We show the average results from 20 runs of this ex-
periment in Table 1. These problems were extremely challenging in practice, and we
attribute the main challenge to symmetries in these graphs (i.e., areas in the base
network looking topologically similar to other areas in the network). Nevertheless, we
note here that while existing methods can only scale to five or ten networks with 100s
of nodes, our method is the first feasible option for aligning large graphs, especially
when very little perturbation occurred. We believe that the result in this challenging
scenario is not ideal but is a demonstration that such low-rank methods expand the
scalability envelope for multiple network alignment problems.

7.2. Scalability in terms of running time. In Table 2, we show running
times for the methods on the routers' alignment problems. Then in Figure 11, we
show runtime information for MultiLR-D and MultiLR-Prog+ for synthetic networks
as we increase size and the number of networks up to thousands. Figure 11 is a
demonstration that our low-rank methods are the first reasonable choice for aligning
many networks (beyond 5 networks), and especially when no prior similarity scores
are present.

8. Discussion and future work. Having a method that accurately and scal-
ably aligns large numbers of networks opens a number of new dimensions in data
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Table 2
Runtimes in seconds for the 25-node 5-network router problem (columns 2--3) and the 100-node

5-network router problem (columns 4--5). We show the median and maximum times.

Algorithm 25-node problem 100-node problem

median max median max

MultiLR-D 0.27 0.40 0.37 0.46
MultiLR-Prog 0.37 0.48 0.34 0.50
MultiLR-Prog+ 0.32 0.51 0.38 0.48
Degree 0.02 0.04 0.02 0.04
Random 0.01 0.02 0.01 0.02
ProgEigenAlign 1.39 1.48 2.44 2.59
Pairwise 5.86 6.21 5.04 5.37
ProgNatalie++ \& prior 23.09 241.1 649.4 1451
ProgNatalie++ 852.0 2823 - -
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Fig. 11. The runtime as we run MultiLR-D (top) and MultiLR-Prog+ (bottom) on the synthetic
experiments on a wide variety of problem sizes with Erd\H os--R\'enyi graphs.

science. In ongoing work, we are studying how to use this in terms of aligning graphs
derived from functional MRI data. In terms of the current method, we wish to gain
a better understanding of why MultiLR-Prog+ outperformed MultiLR-Prog. Our
working hypothesis is that the elementwise addition (compared with multiplication)
gives the method resilience to mistakes made early in the progressive process. More
broadly, the EigenAlign framework [8] is superior to the IsoRank framework for pair-
wise alignment. The ideas here apply to a multinetwork generalization of EigenAlign;
however, the analogous tensor \bfitY would have a Tucker-style factorization instead of
the CP-factorization we get for MultiLR. Crucially, the Tucker factorization needs a
tk-element core that would limit scalability to small k, and we need new k-dimensional
matching methods for these.
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